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Magnetization and dimerization profiles of the cut two-leg spin ladder
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The physical properties of the edge states of the cut two-leg spin ladder are investigated by means of the
bosonization approach. By carefully treating boundary conditions, we derive the existence of spin-1/2 edge
states in the spin ladder with a ferromagnetic rung exchange and for the open spin-1 Heisenberg chain. In
contrast, such states are absent in the antiferromagnetic rung coupling case. The approach, based on a mapping
onto decoupled semi-infinite off-critical Ising models, allows us to compute several physical quantities of
interest. In particular, we determine the magnetization and dimerization profiles of the cut two-leg spin ladder
and of the open biquadratic spin-1 chain in the vicinity of the SU(2)2 Wess-Zumino-Novikov-Witten critical
point.
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I. INTRODUCTION

The infuence of impurities and imperfections on the b
havior of low-dimensional strongly correlated systems h
attracted considerable attention in recent years. The intro
tion of static nonmagnetic impurities, like Zn or Li, at th
location of the magnetic ions is a sensitive probe of the c
relations that develop in these magnetic systems. A part
larly striking exemple is the observation of fractional sp
1/2 edge states in the Haldane gap1 spin-1 compound NENP
cut by nonmagnetic impurities.2 These spin-1/2 degrees o
freedom are associated with static staggered moments c
to the chain ends which are revealed unambiguously in
NMR profile of the Mg-doped Y2BaNiO5.3 This effect can
be viewed as a local restoration of antiferromagnetism
impurities. In fact, a transition to an antiferromagnetic st
induced by the local moments has been observed recent
the Haldane gap compound PbNi2V2O8.4 Such a local en-
hancement of antiferromagnetism induced by nonmagn
impurities is a rather general phenomenon in gapful qu
one-dimensional systems.5 The spin ladder materia
SrCu2O3, lightly doped with Zn impurities, exhibits a Curie
like behavior at low temperature which has been explai
by the unpaired free spins in the vicinity of the impurity6

Further, it has been shown by NMR measurements th
staggered magnetization is induced along the leg by v
small (0.25%) concentrations of impurities.7,8 At low tem-
perature, the induced moments become frozen, leadin
Néel order.6,8,9Similar effects have been observed in the la
der compound Cu2(C5H12N2)2Cl4 doped with Zn
impurities10 and in the spin-Peierls gap material CuGeO3.11

A simple explanation of the existence of free spin-1
moments at the ends of a broken spin-1 chain can be
tained from the valence bond solid~VBS! model,12 where
eachS51 spin is viewed as twoS51/2 spins in the sym-
metric triplet state. In this model, the singlet ground state
a chain with a periodic boundary is described by two vale
bonds originating from each site to form singlets with ad
0163-1829/2002/65~17!/174406~20!/$20.00 65 1744
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cent neighbors. If the chain is broken~i.e., open boundary
conditions are considered!, unpaired bonds are left at eac
end of the chain, resulting in two freeS51/2 objects at the
boundaries and a fourfold ground-state degeneracy. T
VBS picture provides a good and intuitive description of t
ground state of the spin-1 chain. In particular, the ex
diagonalization13 of finite open samples with an even numb
of sites has shown that the ground state is a singlet and
existence of an exponentially low-lying triplet state in th
Haldane gap. This leads to a fourfold ground-state deg
eracy in the thermodynamic limit. Such a degeneracy
also be interpreted as the consequence of a spontane
broken hiddenZ23Z2 symmetry14 associated with the for-
mation of the Haldane gap. A string order parameter has b
introduced to reveal this hidden symmetry.15,16 More gener-
ally, it is expected within the VBS and nonlinear sigm
model approaches that the integer spin-S Heisenberg chain
has spin-S/2 chain-end excitations.17

The physical properties of theS51/2 chain-boundary ex-
citations in the open spin-1 chain have been investigate
detail in a quantum Monte Carlo~QMC! study,18 and by
means of the density-matrix renormalization-group~DMRG!
approach.19–23 Recently, the magnetization profiles at fini
temperatures and fields have been determined using con
ous time QMC techniques to reconstruct the experiment
measured NMR spectrum of the Mg-doped Y2BaNiO5.24 The
properties of the edge states of a more general model,
bilinear biquadratic spin-1 Heisenberg chain, defined by
Hamiltonian

H5J(
i

@Si•Si 111b~Si•Si 11!2#, ~1!

have also been considered.25,26 For b51/3 ~the so-called
Affleck-Kennedy-Lieb-Tasaki point! the VBS state turns ou
to be the exact ground state of the bilinear-biquadra
model.12 For b521, Hamiltonian~1! has a critical point
separating the Haldane phase(21,b,1) from a dimerized
©2002 The American Physical Society06-1
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phase (b,21). At this (b521) critical point, the model is
integrable27 and belongs to the SU(2)2 Wess-Zumino-
Novikov-Witten ~WZNW! universality class.28 The authors
of Ref. 25 established that the edge states are present thr
the whole Haldane phase and disappear as soon as theb5
21 critical point is reached.

In this paper, we shall investigate the physical proper
of the S51/2 chain-end excitations of the semi-infinite~or
cut! two-leg spin ladder and of the open spin-1 chain
means of the bosonization method.29 In the strong ferromag-
netic rung limit, this two-leg ladder model is equivalent to
open spin-1 Heisenberg chain with the two spins on the r
forming an effectiveS51 local moment. Since this strong
coupling limit is smoothly connected to the weak-coupli
one,30–32 the approach provides a simple way to extract
low-energy properties of the open spin-1 chain. In this
spect, it gives an alternative derivation of the existence of
spin-1/2 edge states predicted by the VBS theory12 and the
Schwinger-boson mean-field analysis.17 Futhermore, we
shall be able to calculate explicitly the physical properties
the open spin-1 chain such as the magnetization profile or
NMR relaxation rate. To this end, the mapping33 of the low-
energy Hamiltonian of a weakly coupled two-leg ladder on
off-critical two-dimensional Ising models will be exploite
to derive the chain boundary excitations, as has been don
a study of disordered spin-1/2 ladders.34 By paying careful
attention to the boundary conditions of the fields that oc
in the continuum limit, the staggered magnetization profi
of the model can be determined using exact results of a s
infinite one-dimensional quantum Ising model. The resu
strongly depend on the sign of the interchain coupling a
for an antiferromagnetic rung exchange, no magnetic ch
end excitations are found. However, a weak dimerizati
induced by the presence of the boundary,17,21,35exists for all
signs of the interchain interaction, and can be computed
this mapping onto semi-infinite Ising models. Finally, t
influence of a strong external magnetic field fixing the sp
at the edge can be investigated by a similar approach.

The rest of the paper is organized as follows. In Sec.
the low-energy Hamiltonian of the cut two-leg spin ladder
mapped onto an O(3)3Z2 symmetric theory of four massiv
Majorana fermions with suitable boundary conditions. T
nature of the edge states that occur in the problem is t
discussed in Sec. III where the uniform magnetization pro
and the NMR relaxation rate are computed for a ferrom
netic interchain interaction. Section IV presents a calculat
of the staggered magnetization and dimerization profiles
the model by exploiting the mapping onto semi-infinite o
critical quantum Ising models. The effect of a strong appl
magnetic field fixing the spins at the boundary is investiga
in Sec. V. Finally, our concluding remarks are presented
Sec. VI, and the paper is supplied with four Appendix
which provide some technical details used in this work.

II. DERIVATION OF THE EFFECTIVE LOW-ENERGY
HAMILTONIAN

In this section, we apply the bosonization approach to
semi-infinite two-leg spin ladder described by the Ham
tonian
17440
gh

s

g

e
-
e

f
he

in

r
s
i-

s
,

n-
,

y

s

I,

e
n

e
-
n
f

d
d
n
s

e
-

H5 (
n50

` FJi (
p51,2

Sn,p•Sn11,p1J'Sn,1•Sn,2G , ~2!

where Sn,p is a spin-1/2 operator at siten on chainp (p
51,2), and we consider an antiferromagnetic inchain int
action Ji.0. The bosonization method will be applied
Hamiltonian~2! in the regimeuJ'u!Ji and, with a suitable
redefinition of the effective coupling constants, it captur
the physical properties of the model for arbitraryJ' , since
there is a continuity between the weak- and strong-coup
limits in the two-leg spin ladder.30–32 In particular, localS
51 spins are formed in each rung of the ladder in the stro
ferromagnetic interchain coupling limit (J',0) so that the
approach provides, in turn, a way to investigate the phys
properties of the broken spin-1 Heisenberg chain.

A. Bosonization of the open two-leg spin ladder

Let us first consider the decoupling limit (J'50), where
the system reduces to two independent spin-1/2 Heisen
chains with open boundary conditions. The low-energy pr
erties of the latter model can be still determined by mean
the bosonization method.36–41 As described in Appendix A,
starting from the underlying Hubbard model, the bosoniz
Hamiltonian for the open spin-1/2 Heisenberg chain with
dex p51,2 reads, neglecting the marginally irrelevant ter
as

H p
05

v
2pE0

`

dx@~pPp!21~]xFp!2#, ~3!

wherev is the spin velocity andPp is the momentum opera
tor conjugate to the bosonic fieldFp . The boundary condi-
tion on the fieldsFp reads

Fp~0!50, ~4!

which corresponds to a Dirichlet boundary condition. In t
continuum limit, the effective spin densitySp(x) separates
into uniform and staggered parts,

Sp~x!5JpR~x!1JpL~x!1~21!x/anp~x!, ~5!

a being the lattice spacing. As shown in Appendix A, t
bosonized description for the uniform spin density is giv
by

JpR,L
z 52

1

2pA2
]xFpR,L ,

JpR
† 5

eiA2FpR

2pa
, ~6!

JpL
† 5

e2 iA2FpL

2pa
,

FpR,L being the chiral components of the bosonic fieldFp :
Fp5(FpR1FpL)/2. The staggered part of the spin dens
@Eq. ~5!# can be expressed in terms ofFp and its dual field
Qp ,
6-2
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np5
l

pa
@cos~A2Qp!,2sin~A2Qp!,2sin~A2Fp!#, ~7!

wherel is a constant stemming from the underlying char
degrees of freedom that have been integrated out.

In the weak-coupling regimeuJ'u!Ji , the continuum
limit of Hamiltonian ~2! can then be derived using all thes
results. To this end, we introduce the symmetric and antis
metric combinations of the bosonic fields,

F65
F16F2

A2
~8!

Q65
Q16Q2

A2
,

so that the leading part of Hamiltonian~2! that imposes the
strong-coupling behavior of the system decomposes into
commuting partsH6 ,33,42

H.H11H2@H1 ,H2#50, ~9!

with the bosonized expressions

H15
v

2pE0

`

dx@~pP1!21~]xF1!2#

2
J'l2

2p2a
E

0

`

dx cos 2F1 ,

~10!

H25
v

2pE0

`

dx@~pP2!21~]xF2!2#

1
J'l2

2p2a
E

0

`

dx cos 2F21
J'l2

p2a
E

0

`

dx cos 2Q2 ,

where the boundary conditions on the bosonic fields are
Dirichlet type:

F6~0!50. ~11!

In this derivation of the low-energy theory, one should no
that we have only taken into account the most relevant p
turbation that appears in the continuum limit of the spin la
der. In particular, we have discarded the marginal contri
tion that stems from the uniform pieces of the spin densi
@Eq. ~5!#. We shall later comment on the main effect of th
term when Hamiltonian~9! will be refermionized.

B. Refermionization

The next step of the approach is to observe that the s
ing dimension of the interacting part inH6 is equal to 1. The
bosonic fields are precisely at the free-fermion point wh
the cosine terms in Eq.~10! can be expressed in terms
massive fermions.33 To this end, we first introduce the le
and right bosonic fields corresponding toF6 :
17440
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2 ~F6L1F6R!,

~12!
Q65 1

2 ~F6L2F6R!.

These chiral fields are no longer independent due to the
istence of the boundary condition@Eq. ~11!#, and one has

F6R~0!52F6L~0!. ~13!

The refermionization of Hamiltonian~10! can then be ob-
tained through the bosonization formulas

c6R5
k6e2 iF6R

A2pa
,

~14!

c6L5
k6eiF6L

A2pa
,

wherek6 are Klein factors that obey the anticommutatio
relation $k1 ,k2%50 to ensure the anticommutation b
tween the fermion fields with different channel index6. The
anticommutation betweenc6R and c6L results from
@F6R(x),F6L(y)#52 ip, which stems from the Dirichlet
boundary condition@Eq. ~11!# as described in Appendix A
The boundary conditions on the fermionic fields can be
duced from Eq.~13!:

c6R~0!5c6L~0!. ~15!

The cosine terms of Eq.~10! can then be refermionized usin
identification ~14! as well as the commutation relatio
@F6R(x),F6L(x)#52 ip,x.0:

cos 2F652 ipa~c6R
† c6L2c6L

† c6R!,
~16!

cos 2Q65 ipa~c6R
† c6L

† 2c6Lc6R!.

The HamiltoniansH6 of Eq. ~10! can thus be expressed i
terms of the fermion fields

H152 ivE
0

`

dx~c1R
† ]xc1R2c1L

† ]xc1L!

1
iJ'l2

2p E
0

`

dx~c1R
† c1L2c1L

† c1R!

~17!

H252 ivE
0

`

dx~c2R
† ]xc2R2c2L

† ]xc2L!

2
iJ'l2

2p E
0

`

dx~c2R
† c2L2c2L

† c2R!

1
iJ'l2

p E
0

`

dx~c2R
† c2L

† 2c2Lc2R!,

with boundary conditions~15! for the fermion fields.
At this point, it is convenient to introduce four Majoran

~real! fermions from the Dirac ones@Eq. ~14!#:
6-3
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c1R,L5
jR,L

2 1 i jR,L
1

A2
,

~18!

c2R,L5
jR,L

3 1 i jR,L
0

A2
.

This identification together with the correspondences@Eqs.
~6! and ~14!# enable us to derive the refermionization of t
uniform part of the spin densities@Eq. ~5!#,

I R,L
a 5J1R,L

a 1J2R,L
a 52

i

2
eabcjR,L

b jR,L
c ,

~19!
KR,L

a 5J1R,L
a 2J2R,L

a 5 i jR,L
a jR,L

0 ,

where we have fixed the productk1k2 of the Klein factors
that appear in Eq.~14! to i to obtain Eq.~19!. In fact, this
identification@Eq. ~19!# is nothing but the faithful represen
tation of two independent SU(2)1 Kac-Moody currents
JpR,L ,p51,2 in terms of four Majorana fermions.29,43,44

With the above results, Hamiltonian~9! can be rewritten
with the four Majorana fermions and be separated into t
commuting~triplet and singlet! pieces

H5Ht1Hs , ~20!

with

Ht52
iv
2 E0

`

dx(
a51

3

~jR
a]xjR

a2jL
a]xjL

a!

1
iJ'l2

2p E
0

`

dx(
a51

3

jR
ajL

a

~21!

Hs52
iv
2 E0

`

dx~jR
0]xjR

02jL
0]xjL

0!2
3iJ'l2

2p E
0

`

dxjR
0jL

0 .

The boundary conditions on the Majorana fermions are
tained from constraint~15! and definition~18!:

jR
a~0!5jL

a~0!,a50, . . . ,3. ~22!

Moreover, the marginal interchain perturbation that we ha
so far neglected can be expressed in terms of the Majo
fermions using correspondence~19!. As shown in Ref. 33,
the resulting contribution leads to a velocity anisotropy an
mass-renormalization in the singlet and triplet sectors so
the low-energy Hamiltonian@Eq. ~20!# now takes the form

Ht52
iv t

2 E
0

`

dx(
a51

3

~jR
a]xjR

a2jL
a]xjL

a!

2 imtE
0

`

dx(
a51

3

jR
ajL

a

~23!

Hs52
ivs

2 E
0

`

dx~jR
0]xjR

02jL
0]xjL

0!2 imsE
0

`

dxjR
0jL

0 ,
17440
o

-

e
na

a
at

wheremt.0 andms,0 ~respectivelymt,0 andms.0) for
a ferromagnetic~respectively antiferromagnetic! interchain
coupling and in particular in the weak coupling caseuJ'u
!Ji one has the identification from Eq.~21!: mt5
2J'l2/2p andms53J'l2/2p.

Thus we observe that in the low-energy limit the initi
Hamiltonian @Eq. ~2!# of the cut two-leg spin ladder is
mapped onto a model of four free massive Majorana fer
ons with boundary condition~22!. In the strong ferromag-
netic rung limit2J'@Ji , the singlet excitation described b
the Majorana fermionjR,L

0 are frozen (umsu→`), so that the
low-energy properties of the model are governed by the t
let magnetic excitations corresponding to the fieldsjR,L

a ,a
51,2,3. In this strong ferromagnetic rung limit, we expe
the system to be equivalent to a broken spin-1 chain. Inde
it was shown by Tsvelik,45 by perturbing around the SU(2)2

WZNW critical point27 of the biquadratic spin-1 chain
which is described by three massless Majorana fermions,
the low-energy properties of a gapped spin-1 chain could
obtained from a triplet of massive Majorana fermions. F
thermore, it can easily be seen that boundary condition~22!
implies that the SU(2)2 currents obeyI R

a(0)5I L
a(0) which

means that there is no spin current flowing across the bou
ary. Therefore, an open biquadratic spin-1 chain is descri
by a triplet of massive Majorana fermions,

Ht52
iv t

2 E
0

`

dx(
a51

3

~jR
a]xjR

a2jL
a]xjL

a!

2 imtE
0

`

dx(
a51

3

jR
ajL

a , ~24!

with boundary condition~22!, and the Haldane~respectively
dimerized! phase is characterized by a positive~respectively
negative! triplet massmt .

III. SÄ1Õ2 CHAIN-BOUNDARY EXCITATIONS

In this section, the nature of the edge states of the
two-leg spin ladder and open spin-1 chain are investiga
using the low-energy description@Eq. ~23!# of the model in
terms of four Majorana fermions with boundary condition
In particular, physical quantities such as the uniform com
nent of the magnetization profile and the NMR relaxati
rate will be computed within this approach. The calculati
of the staggered magnetization near the edge will be p
sented in Sec. IV, since it involves quantities that are n
local in terms of the Majorana fermions.

A. Localized Majorana fermion state

The special structure of the low-energy Hamiltonian@Eq.
~23!# together with constraint~22! lead us to consider a
single massive Majorana fermion Hamiltonian of the form
6-4
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Htoy5
1

2E0

`

dxC~x!T~2 ivs3]x1ms2!C~x!, ~25!

wheres i are the usual Pauli matrices andC(x), is a Majo-
rana 2-spinor that writes

C~x!5S jR~x!

jL~x!
D , ~26!

with boundary conditionjR(0)5jL(0). Hamiltonian~25! is
exactly solvable, being quadratic in terms of the fermio
and the resulting eigenvectors read as follows in the Heis
berg representation,

C~x,t !5
1

A2L
(
k.0

H jkS cos~kx1uk!1 i sin~kx!

cos~kx1uk!2 i sin~kx!
D e2 i ekt

1H.c.J 1Am

v S 1

1D e2mx/vu~m!h, ~27!

wherejk is a fermion annihilation operator withk5pn/L, h
is a zero mode Majorana fermion, andu is the Heaviside step
function. In Eq.~27!, ek denotes the energy dispersion of t
model,

ek5Av2k21m2, ~28!

anduk is given by

cosuk5
vk

ek
,

~29!

sinuk5
m

ek
.

For a positive massm, from the decomposition@Eq. ~27!#
one observes the existence of an exponentially localized s
with zero energy inside the gap. Such localized Majora
fermionic states were already discussed in several diffe
contexts such as the holon edge state in an attractive
dimensional electron gas,38,46the random mass Majorana fe
mion model,34,47,48and the problem of a magnetic impurit
in a superconductor.49,50 Finally it was pointed out recently
that such bound states may find applications in quan
computation.51,52 For a negativem, the corresponding zero
energy eigenvector is non normalizable, and such state
not appear. Also note that if we impose the boundary con
tion jR(0)52jL(0) instead~as we shall do in Sec. V!, we
can reduce this to the problem we have just discussed by
transformationjL→2jL , m→2m.

From the analysis of the toy model@Eq. ~25!#, we deduce
the decomposition of the triplet and singlet Majorana fie
in the basis of the eigenvectors of Hamiltonian~23! subject
to boundary condition~22!. For J',0, i.e., mt.0 andms
,0, for the triplet sectora51,2,3, with obvious notations
one obtains
17440
s
n-

te
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s

S jR
a

jL
a D ~x,t !5

1

A2L
(
k.0

H jk
aS cos~kx1uk

t !1 i sin~kx!

cos~kx1uk
t !2 i sin~kx!

D e2 i ek
t t

1H.c.J 1Amt

v t
S 1

1D e2mtx/v tha, ~30!

whereas the decomposition for the singlet excitations w
ms,0 reads

S jR
0

jL
0 D ~x,t !5

1

A2L
(
k.0

H jk
0S cos~kx1uk

s!1 i sin~kx!

cos~kx1uk
s!2 i sin~kx!

D e2 i ek
st

1H.c.J . ~31!

Therefore, the localized Majorana zero-mode state only
pears in the triplet sector for a ferromagnetic interchain
teraction. The translation of these results to the context of
spin-1 chain is straightforward: we just need to consider o
the triplet sector. We find that in the Haldane gap pha
(mt.0) we have localized Majorana fermion modes at t
edge, but, in contrast, the dimerized phase (mt,0) is char-
acterized by the absence of such degrees of freedom. In
34, it was shown that local zero modes were associated
kinks and antikinks of the massm(x). In the present prob-
lem, with a semi-infinite system, the edge can be seen
mass kinkmu(x) and local zero modes should thus be i
duced irrespective of the sign ofm. However, with the semi-
infinite chain, boundary condition~22! selects only one chi-
ral component. The sign of the mass then determines whe
the local mode belongs to the physical chiral compone
This is the reason for the difference of physical behav
between positive and negative mass.53

B. Uniform component of the magnetization profile

With all these results, the physical properties of the ed
states of the open spin-1 chain can be investigated. We
analyze the smooth part of the magnetization profile of
system. To this end, we consider the uniform partM (x) of
the total spin density@S1(x)5S1(x)1S2(x)#, which takes
the following form in the continuum limit using Eq.~5!:

M ~x!5 (
a51

2

@JaR~x!1JaL~x!#. ~32!

With the help of identification~19!, we immediately find that
the fieldM (x) is expressed locally in terms of the Majoran
fermions that account for the triplet excitations in the syste

Ma~x!52
i

2
eabcjR

b~x!jR
c ~x!2

i

2
eabcjL

b~x!jL
c~x!.

~33!

Using the decomposition@Eq. ~30!#, we write the uniform
densityM (x) in the basis of the eigenvectors of the Ham
tonianHt @Eq. ~23!#,
6-5
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Ma~x!52 i eabchbhc
mt

v t
e22mtx/v t2A2mt

v tL
e2mtx/v t

3 (
k.0

eabccos~kx1uk
t !~ i jk

bhc1H.c.!

2
eabc

2L (
k,q.0

~A~k,q,x!i jk
bjq

c†1B~k,q,x!i jk
bjq

c

1H.c.!, ~34!

with

A~k,q,x!5cos~kx1uk
t !cos~qx1uq

t !1sin~kx!sin~qx!,
~35!

B~k,q,x!5cos~kx1uk
t !cos~qx1uq

t !2sin~kx!sin~qx!.

The total uniform magnetizationS0 is defined by

S05E
0

`

dxM ~x!, ~36!

so that we obtain

S0
a52

i

2
eabchbhc22i eabc(

k.0
jk

bjk
c† . ~37!

The first term in this equation describes a spin-1/2 mom
since it corresponds to the Majorana representation of a s
1/2 operator.54 In particular, result~37! implies that the
electron-spin-resonance~ESR! reponse of the cut two-leg
spin ladder with a ferromagnetic interchain coupling deco
poses into the bulk response and the response at a chain
The latter is identical to the ESR response of an isola
spin-1/2 impurity. Since there is a continuity between t
weak- and strong-coupling limits in this system,30–32the Ma-
jorana approach thus provides an alternative description
the chain-endS51/2 mode of the open spin-1 Heisenbe
chain to the one obtained within the Schwinger bos
formalism.17

The uniform part of the magnetization profile of th
model can be also read from the decomposition@Eq. ~34!#.
For completeness, in Appendix B we give an alternative d
vation of thez component of the uniform magnetization pr
file of the cut two-leg spin ladder without using the Majora
fermions method. We obtain the following result using E
~34!:

^Ma~x!&5
2mt

v t
e22mtx/v tK 2

i

2
eabchbhcL , ~38!

which can be interpreted as a spin-1/2 chain-boundary e
tation localized over a lengthv t/2mt with an amplitude
2mt /v t . This implies that the size of the spin-1/2 edge st
diverges while its amplitude vanishes as the SU(2)2 WZNW
critical point of theS51 biquadratic chain is approache
from the Haldane phase, in full agreement with the DMR
analysis of Ref. 25. The Majorana fermion description a
implies that the uniform component of the magnetizat
profile should not be affected by temperature in the abse
17440
t,
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of an applied magnetic field. Let us finally mention that if th
triplet massmt is negative then theS51/2 chain-boundary
excitations disappear, as can be easily seen from the dec
position @Eq. ~27!#. We thus conclude that these freeS
51/2 end spins are absent in a ladder with an antiferrom
netic interchain exchangeJ'.0 as well as in the dimerized
phase of the spin-1 biquadratic chain. It is worth noting th
the absence of free spin-1/2 moments in the spontaneo
dimerized phase of a frustrated spin chain was shown v
recently.55

C. Calculation of the NMR relaxation rate

The NMR relaxation rate 1/T1 of the cut two-leg spin
ladder with a ferromagnetic interchain interaction can
computed by means of the Majorana approach describe
the previous sections. For the standard two-leg spin ladde
was theoretically investigated in Refs. 56–58. Here we s
only consider the uniform part of the NMR relaxation rat
and restrict ourselves, for simplicity, to the contribution th
identifies to the 1/T1 of the spin-1 Heisenberg chain in th
limit of strong ferromagnetic interchain coupling2J'@Ji .

The general formula giving this NMR relaxation ra
reads as follows56:

1

T1~x!
5

T

v
Imx~x,v!, ~39!

where v is the nuclear resonance frequency which is
smallest energy scale of the problem:v!T,mt . We intro-
duce the following susceptibility to perform the calculatio
of the NMR rate 1/T1:

x~x,ivn!5E
0

b

dteivnt^TtM ~x,t!•M ~x,0!&, ~40!

with the analytical continuation x(x,v)
5x(x,ivn)u ivn→v1 i0. Using the decomposition@Eq. ~34!# in

the basis of the eigenvectors of the HamiltonianHt @Eq.
~23!# that describes the triplet degrees of freedom, the NM
relaxation rate can be expressed as

1

T1~x!
5

6Tp

vL2 (
k,q.0

A2~k,q,x!@nF~ek
t !2nF~eq

t !#

3d~v1ek
t 2eq

t !, ~41!

nF(e) being the Fermi distribution function. The sum in E
~41! can be replaced by an integral through the substitut
(k.0→L*0

`dk/p and the NMR relaxation rate simplifies, i
the low-temperature limitT!mt , as

1

T1~x!
5

6

pv t
2
E

0

`

dke2ek
t /T

ek
t

Ak21
2mtv

v t
2

@cos2~kx1uk
t !

1sin2~kx!#2, ~42!
6-6
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where the frequencyv insures the convergence of the int
gral atk50. Using the energy dispersion@Eq. ~28!# of mas-
sive Majorana fermions and identification~29!, one finally
obtains the expression

1

T1~x!
5

6

pv t
2
E

0

`

dke2ek
t /T

ek
t

Ak21
2mtv

v t
2

F ~v tk!4

~~v tk!21mt
2!2

2
2mtv tk

mt
21~v tk!2

sin~2kx!1
mt

3v tk

~~v tk!21mt
2!2

sin~4kx!

1
2mt

2

~v tk!21mt
2

@12cos~2kx!#1
mt

2~~v tk!22mt
2!

2~~v tk!21mt
2!2

3@12cos~4kx!#G . ~43!

At the extremity of the chain (x50), the NMR relaxation
rate takes a simple form in the low-temperature limitT
!mt ,

1

T1~x50!
5

6mt

pv t
2 F S T

mt
21De2mt /T1

mt

T
E1S mt

T D G
;S T

mt
D 2

e2mt /T, ~44!

E1(x) being the exponential integral function. Therefore,
conclude that the presence of the boundary leads to a
rowing of NMR line at low temperature compared to t
bulk system. In principle, this NMR rate can be measu
experimentally59 by measurements of nuclear magnetizat
recovery.60

Now we turn to the calculation of thex dependence o
1/T1. The sine terms that appear in Eq.~43! can be rewritten
as

I 52
12mt

pv t
2 E0

`

due2mtcoshu/TsinS 2mtx

v t
sinhu D

1
6mt

pv t
2E0

`

du
e2mtcoshu/T

cosh2u
sinS 4mtx

v t
sinhu D . ~45!

In the regimeT!mt , this expression can be approximated

I .
3mt

pv t
2

e2mt /TA2T

mt
FwS 2x

jT
D22wS x

jT
D G , ~46!

where the functionw(y) is defined by

w~y!5 (
n50

`

~21!n
n!

~2n11!!
y2n11, ~47!

andjT is a thermal length which reads
17440
ar-

d

s

jT5
v t

A8mtT
. ~48!

This length scale diverges whenT→0, and plays the role of
an effective coherence length for the NMR relaxation ra
Similarily, the cosine terms of Eq.~43! can be rewritten in
the low-temperature limit as

J.
3mt

pv t
2

e2mt /TE
0

`

du
e2mtu

2/2T

Au21
2v

mt

F324 cosS 2mtx

v t
u D

1cosS 4mtx

v t
u D G . ~49!

We note that, forx@a, i.e., far from the chain end, the low
temperature behavior of the NMR relaxation reads

1

T1~x@a!
.

9mt

pv t
2

e2mt /TE
0

` du

Au21
2v

mt

e2mtu
2/2T, ~50!

which corresponds to the bulk behavior of the NMR rela
ation rate of the spin-1 Heisenberg chain found in Ref.
where the Haldane gap identifies with the triplet massmt .

IV. STAGGERED MAGNETIZATION AND
DIMERIZATION PROFILES

The staggered magnetization component of a two-leg s
ladder with a defect was investigated semiclassically in R
62. Such a semiclassical approach has the inconvenienc
breaking the SU~2! rotational symmetry. Nevertheless,
gives useful qualitative indications of the expected magn
zation profile. For the open ladder, the boundary condition
the bosonic fields isF6(0)50. In the bulk, a semiclassica
minimization of the ground-state energy implies^F1&50
(J'.0) and^F1&5p/2 (J',0). Thus we expect no stag
gered magnetization profile in the case of an antiferrom
netic rung coupling, and a profile with an exponential dec
far from the boundary in the case of a ferromagnetic ru
coupling. In this section, we present an approach that has
advantage over the semiclassical method of preserving
full rotational symmetry. As is well known, the low-energ
properties of the two-leg spin ladder can be described us
four decoupled off-critical two-dimensional Ising models33

In particular, this approach allows the calculation of the lea
ing asymptotics of the staggered part of the spin-spin co
lation functions which involve nonlocal operators in terms
the underlying Majorana fermions. In this section, we sh
exploit the existence of a similar mapping for the sem
infinite two-leg spin ladder to determine the staggered co
ponent of the magnetization profile and the induced dim
ization in the system.
6-7
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A. Staggered magnetization

Let us discuss more precisely this mapping onto an ef
tive Ising model. It is well known that a one-dimension
~1D! theory of massive Majorana fermions describes
long-distance properties of a 1D quantum Ising model.63–66

For a recent detailed review on this correspondence,
reader may consult, for instance, Chap. 12 of Ref. 29. In
case of a semi-infinite system, this mapping remains v
and the boundary conditions on the Ising spins depends
the ones for the Majorana fermions.67 More specifically, here
we shall follow the conventions of Ref. 67, so that if th
Majorana fermionsjR,L obey the boundary condition

jR~0!5jL~0!, ~51!

then the Ising model satisfies a free boundary condition~i.e.,
the boundary spin is free to fluctuate and takes the va
61). On the other hand, the Ising model experiences a fi
boundary condition~i.e., the boundary spin is fixed to th
values(0)51 for instance! when the Majorana fields verify

jR~0!52jL~0!. ~52!

The massm of these fermions is a linear measurement of
deviation of the temperature with respect to the critical o
m5Tc2T as in Ref. 67, such that a positive mass cor
sponds to the low-temperature phase of the Ising model.
low-energy Hamiltonian@Eq. ~23!# of the cut two-leg spin
ladder with the boundary condition~22! on the fermions can
thus be viewed as four decoupled off-critical 1D quantu
Ising models with free boundary conditions. In particular, t
localized Majorana fermionic states with zero energy in
triplet sector, found for a ferromagnetic interchain coupli
(J',0) in Sec. III, can be interpreted physically, in the Isin
mapping, as a domain wall attached to the boundary wh
separates two domains of opposite magnetization (mt5Tc
2T.0). In the singlet sector, one has, in contrast,ms,0, so
that the corresponding Ising model with free boundary c
ditions is in its disordered phase. As a consequence, the z
energy Majorana mode cannot exist in that case as it ca
seen from the decomposition@Eq. ~31!#.

The next step of the approach is to use the ex
results67–69known for the semi-infinite Ising model to dete
mine the staggered part of the magnetization profile of
cut two-leg spin ladder. To this end, the staggered magn
zation n15n11n2 of the total spin densityS15S11S2 is
expressed in terms of the order and disorder operatorssa and
ma of the different Ising models using the bosonic descr
tion @Eq. ~7!# and the bosonization approach for two Isin
models64–66

n1
x ;m1s2s3m0 ,

n1
y ;s1m2s3m0 , ~53!

n1
z ;s1s2m3m0 .

At this point, it is worth discussing the ground-state deg
eracy of the semi-infinite two-leg spin ladder with a ferr
magnetic interchain coupling. As first pointed out b
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Kennedy,13 an exponentially low-lying triplet, above the sin
glet ground state, is found in the Haldane gap for a fin
open spin-1 Heisenberg chain. In the thermodynamic lim
the ground state is thus fourfold degenerate. At first sigh
seems difficult to reproduce this result starting from thr
decoupled semi-infinite quantum Ising models. Indeed, in
strong-coupling limit2J'@Ji , the singlet degrees of free
dom are frozen and the three Ising models for the trip
sector are all in their ordered phases (mt.0 for J',0! so
that ^s i&Þ0 (i 51,2,3). In this case, each Ising model has
doubly degenerate ground state, which thus gives an ei
fold degeneracy. However, it is important to note that there
a redundancy in the Ising description since the triplet Ham
tonian in Eq.~23!, the boundary condition on the Majoran
fermions@Eq. ~22!#, and the Ising representation of the sta
gered magnetization@Eq. ~53!# are all invariant under the
transformations

jR,L
i →2jR,L

i ,

m i→m i , ~54!

s i→2s i ,

which leads to a physical fourfold ground-state degenera
as it should. Let us return to the calculation of the magn
zation profile for a ferromagnetic interchain couplingJ'

,0 wheremt.0 andms,0. Identification~53! shows that
the average staggered magnetization goes to zero far
the chain end sincêm1,2,3&50 in the case of a positive trip
let mass. However, due to the presence of the boundar
staggered magnetization can appear close to the chain
i.e., whenx50. The magnetization profile encodes the cro
over effect on the local magnetization as a function of
distance from the boundary. The magnetization profile of
spin-1 chain is obtained from the one of the ladder w
ferromagnetic interchain interaction by taking the limitumsu
→`, or equivalentlym0→1.45,33

In this respect, let us first present general results by
ploiting the duality transformation on a 1D quantum Isin
model. This transformation exchanges the order and diso
operatorss↔m, but in addition, the boundary conditions o
the Ising spins, i.e., the free boundary conditions beco
fixed and vice versa. Therefore, one obtains the follow
equivalences on the different one-point functions of t
model:

^s~T.Tc!& free5^m~T,Tc!&fixed50,

^s~T.Tc!~x!&fixed5^m~T,Tc!~x!& free5s`FS mx

v D ,

~55!

^s~T,Tc!~x!&fixed5^m~T.Tc!~x!& free5s`GS mx

v D ,

^s~T,Tc!~x!& free5^m~T.Tc!~x!&fixed5s`HS mx

v D ,
6-8
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MAGNETIZATION AND DIMERIZATION PROFILES OF . . . PHYSICAL REVIEW B 65 174406
v being the velocity of the underlying Majorana fermion a
s` is the expectation value ofs ~respectivelym) for T
,Tc ~respectivelyT.Tc). An estimate ofs` valid for m
!v/a is s`521/12e21/8A3/2(umua/v)1/8 where A is the
Glaisher constant.70 It is indeed obvious that one has^s(T
.Tc)& free50 for an Ising model withT.Tc and free bound-
ary conditions. In contrast, one should observe that, eve
the disordered phase of the model, a nonzero magnetiza
^s(T.Tc)&fixedÞ0 exists for fixed boundary condition
since the Ising spins are polarized at the boundary. In
case, the precise crossover between the boundary and
behaviors is described by the functionF. The staggered par
of the magnetization profile of the cut two-leg spin ladd
with a ferromagnetic interchain coupling can thus be
duced from the correspondence@Eq. ~53!# and the genera
results@Eq. ~55!#,

^n1
x ~x!&;S mt

3umsua4

v t
3vs

D 1/8

FS mtx

v t
DH2S mtx

v t
DGS umsux

vs
D ,

^n1
y ~x!&;S mt

3umsua4

v t
3vs

D 1/8

FS mtx

v t
DH2S mtx

v t
DGS umsux

vs
D ,

~56!

^n1
z ~x!&;S mt

3umsua4

v t
3vs

D 1/8

FS mtx

v t
DH2S mtx

v t
DGS umsux

vs
D ,

which exhibits a full rotationally invariant form as it shou
be. Remarkably, a staggered magnetization appears alth
there is none for an isolated spin-1/2 Heisenberg chain.
expressions ofG andH are exactly known, and were dete
mined by Bariev68 from a lattice description and later b
Konik et al.69 in the continuum case by the form factor a
proach. As shown in Appendix C using this latter formalis
the functionF can, in fact, be directly expressed in terms
G:

F~x!5e2xG~x!. ~57!

As a consequence, thez component of the staggered magn
tization for instance simplifies as

^n1
z ~x!&

;S mt
3umsua4

v t
3vs

D 1/8

e2mtx/v tH2S mtx

v t
DGS mtx

v t
DGS umsux

vs
D .

~58!

In the case of the open spin-1 chain, performing the sub
tution m0→1 in Eq. ~53!, in a similar way we obtain the
magnetization profile.

^n1
z ~x!&;S mta

v t
D 3/8

e2mtx/v tH2S mtx

v t
DGS mtx

v t
D . ~59!

The functionsG andH that appear in these equations can
cast into a Fredholm determinant form~see, for instance
Appendix C! or expressed in terms of a solution to the Pa
levéIII differential equation.68,69Complete expressions forG
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andH can be found in Appendix D. For the sake of simpli
ity, here we only need the asymptotic behaviors of the
functions, which read as follows in the long-distance lim
X5mx/v@1:68,69

G~X!.11
1

16Ap

e22X

X3/2

~60!

H~X!.12
1

2Ap

e22X

X1/2
,

whereas in the short-distance limitX5mx/v!1, one has the
following estimates:68,69

G~X!;X21/8,
~61!

H~X!;X3/8.

From these results, we deduce the behavior of the stagg
component of the magnetization profile far from the cha
end,

^n1
z ~x!&;S mt

3umsua4

v t
3vs

D 1/8

e2mtx/v t5S mt
3umsua4

v t
3vs

D 1/8

e2x/j t,

~62!

with a similar behavior for the open spin-1 chain. As e
pected, the local staggered magnetization decays expo
tially with the distance from the boundary, with a leng
scale that depends only on the bulk properties and ident
the correlation lengthj t5v t /mt of the model. It is worth
noting the absence of anyx prefactor in front of the expo-
nential term in Eq.~62! in the long-distance limitx@j t . This
suggests that the staggered magnetization for long ch
with open boundary conditions is the relevant quantity
extract a very precise value of the Haldane gap, as has b
done by means of the DMRG approach.19 A similar exponen-
tial behavior was also obtained in the semiclassi
treatment,62 and in a phenomenological theory of the op
spin-1 chain describing the system as a spin-1/2 mom
coupled to one-dimensional massive bosons.20 Comparing to
Eq. ~38!, we note that the staggered magnetization ha
correlation lengthj t , whereas the uniform magnetization h
a correlation lengthj t/2, in agreement with the phenomen
logical free boson theory.20 In contrast to the free boso
theory, we find nox23/2 prefactor in the uniform componen
of the magnetization. In the short-distance limitx!j t , one
obtains a power-law behavior from Eq.~61! for the two-leg
ladder with a ferromagnetic interchain interaction,

^n1
z ~x!&;

mt

v t
~ax!1/2, ~63!

whereas, in the case of the spin-1 chain, this power law
modified to

^n1
z ~x!&;

mta

v t
S x

aD 5/8

. ~64!
6-9
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The resulting staggered magnetization profile for a spi
chain is plotted in Fig. 1. We note that the staggered mag
tization profile @Eq. ~59!# has a vanishing intensity and
diverging correlation length when the Haldane gap goes
zero, in agreement with the DMRG analysis of Ref. 2
Moreover, our calculation predicts that a staggered magn
zation will exist atT50 in the Stot.

z 50 sector. This was
indeed observed in a DMRG calculation.23 At first sight, it
seems to contradict the results of QMC simulations.18 How-
ever, these calculations are performed at a finite tempera
For the one-dimensional quantum Ising model with fr
boundary conditions, there is no long-range order in^s& at
T.0 due to the thermal nucleation of soliton excitation
Hence we expect that, as soon as the temperature is swit
on, the average magnetization inStot.

z 50 state will vanish, in
agreement with what is observed in QMC calculations.

The magnetization profile in the antiferromagnetic int
chain coupling case can be investigated by a similar
proach. ForJ'.0, one now hasmt,0 andms.0, so that
the Ising models of the triplet sector are in their disorde
phases whereas the Ising model of the singlet sector bel
to its ordered phase. We thus obtain, using the results~53!
and ~55!, that ^n1&50, and similarily it can also be show
that ^n2&5^n12n2&50. Therefore, we conclude on the a
sence ofS51/2 chain-boundary excitations and of a nonze
magnetization profile for the cut two-leg spin ladder with
antiferromagnetic rung coupling. This result is consist
with the fact that the ground state of this model is alwa
unique whether open or periodic boundary conditions
used. In this respect, the standard two-leg spin ladder w
J'.0, in contrast to theJ',0 case, is not equivalent to th
Haldane phase characterized by theseS51/2 chain-end ex-
citations, even though they share similar properties suc
the presence of a spin gap and a nonzero string o
parameter.32,71 In fact, it was recently pointed out that th
two systems belong to two topologically distinct classes.16 In
particular, it was argued that theS51 spin chain and the
two-leg spin ladder withJ'.0 have two different types o
string order that are intimately related to the valence bo
structure of the ground states. The topological distinction
made by counting the numberQy of valence bonds crossin

FIG. 1. The staggered magnetization profilenz(x) of an open
spin-1 chain in the Haldane gap phase. Formtx/v t!1, nz(x)
;x5/8, and formtx/v t@1, nz(x);e2mtx/v t.
17440
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an arbitrary vertical line. In the case of an antiferromagne
spin ladder,Qy is always even whereas it is odd for a syste
weakly connected to the spin-1 chain. Futhermore, the
thors of Ref. 16 noted that for open boundary conditio
ground states characterized by an odd value ofQy have spin-
1/2 edge states, while these end states disappear whenQy is
even. This is in full agreement with the results for the c
two-leg spin ladder obtained in this work within th
bosonization approach.

B. Dimerization induced by open boundary condition

The dimerization profile induced by the presence o
boundary can be also computed by this mapping onto se
infinite Ising models. The dimerization operator in terms
the original lattice spins is defined by

e1n5~21!n(
p51

2

Sn,p•Sn11,p . ~65!

The bosonized description of this operator in the continu
limit reads as follows in terms of the bosonic fieldsF6 of
Eq. ~8!:

e1;cosF1cosF2 . ~66!

Using the bosonization representation of two Isi
models,64–66 this operator can then be expressed in terms
the different Ising disorder operators:

e1;m1m2m3m0 . ~67!

In the bulk, the system does not experience any dimeriza
pattern, since the Ising models in the triplet sector are in th
ordered phases forJ',0 so that̂ m i&50 (i 51,2,3). How-
ever, as for the existence of a local staggered magnetiza
the presence of the boundary induces a nontrivial dimer
tion in the system,17,21,35which can be obtained from result
~55!:

^e1~x!&;S mt
3umsua4

v t
3vs

D 1/8

e23mtx/v tG3S mtx

v t
DGS umsux

vs
D .

~68!

Using the asymptotics@Eqs. ~60! and ~61!#, we deduce the
following estimates for the local dimerization:

^e1~x!&;S mt
3umsua4

v t
3vs

D 1/8

e23x/j t, x@j t

~69!

^e1~x!&;S x

aD 21/2

, x!j t .

Note that the exponent 1/2 is identical to the exponent t
would have been obtained in two decoupled gapless spin
chains by boundary conformal field theory.36 Physically, this
means that the edge makes the system behave as if it
gapless for distances shorter than the correlation length
the case of the spin-1 chain, the dimerization operator@Eq.
~67!# simplifies toe1;m1m2m3 (m0→1), so that we obtain
6-10
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^e1~x!&;S mta

v t
D 3/8

e23mtx/v tG3S mtx

v t
D . ~70!

The long-distance limit of this dimerization has a simil
form as in Eq.~69! and the short-distance behavior is mod
fied to^e1(x)&;x23/8. Again, this exponent could have bee
predicted from boundary conformal field theory.72 We also
observe that this exponent was obtained in a DMRG stud
a biquadratic spin-1 chain at the SU(2)2 WZNW critical
point.35 The predicted dimerization profile for a spin-1 cha
in the Haldane gap regime is plotted in Fig. 2.

In the antiferromagnetic interchain coupling case, a si
lar calculation can be made. The dimerization operator@Eq.
~67!# again has a zero ground-state expectation value in
bulk since the Ising model in the singlet sector is in its
dered phase (ms.0). As seen above, the two-leg spin ladd
with an antiferromagnetic rung coupling has no magnetiS
51/2 chain-boundary excitations, but a localized Majora
state in the singlet sector still remains as it can be dedu
from the decomposition@Eq. ~27!# with ms.0. This zero
mode manifests itself in the existence of a dimerization p
file which is given by

^e1~x!&;S umtu3msa
4

v t
3vs

D 1/8

e2msx/vsG3S umtux
v t

DGS msx

vs
D ,

~71!

with the following asymptotics (js5vs /ms):

^e1~x!&;S umtu3msa
4

v t
3vs

D 1/8

e2x/js, x@js ,

~72!

^e1~x!&;S x

aD 21/2

, x!js .

In the case of the spontaneously dimerized spin-1 chain,
dimerization profile takes the form

^e1~x!&;S umtua
v t

D 3/8

G3S umtux
v t

D . ~73!

FIG. 2. The staggered dimerization profilee1(x) of an open
spin-1 chain in the Haldane gap phase. Formtx/v t!1, e1(x)
;x23/8, and formtx/v t@1, e1(x);e23mtx/v t.
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Its short-distance asymptotics becomes thus:^e1(x)&
;x23/8, whereas the long-distance one reads as follows
ing Eq. ~60!:

^e1~x!&.e`S 11
3j t

3/2

16Ap

e22x/j t

x3/2 D , ~74!

e` being the nonzero bulk dimerization.

V. EFFECT OF A STRONG EXTERNAL BOUNDARY
MAGNETIC FIELD

The effect of a strong applied magnetic field which fix
the spins at the boundary can be investigated using the I
representation described in Sec. IV. To this end, let us fi
recall the effect of a transverse edge magnetic field in
semi-infiniteXXZ spin-1/2 Heisenberg chain.73 It has been
found that the system, along the entireXXZ critical line,
renormalizes to the infinite field fixed point where the spin
the edge is polarized. In bosonization language, one ha
example of ac51 boundary flow between the Dirichlet an
Neumann boundary conditions. At the SU~2! invariant point,
the edge field is exactly marginal, and a line of fixed po
occurs between the Dirichlet and Neumann limitin
cases.73,74 In the following, we shall only consider the phys
cal situation where the spin at the edge is fully polarized
fixed, so that it corresponds to the infinite field fixed-point
Neumann boundary condition on the bosonic fieldFp asso-
ciated with a spin-1/2 chain with indexp51,2,

]xFp~0,t !50 ;t, ~75!

or, equivalently, it can be interpreted as a Dirichlet bound
condition on the dual fieldQp ,

Qp~0,t !50 ;t, ~76!

provided we are considering a magnetic field applied para
to thex axis. The actual direction of the applied field is n
important since the model is SU~2! invariant. The chiral
fields F6R,L , defined by Eq.~8!, are no longer independen
due to boundary condition~76!, and now satisfy

F6L~0!5F6R~0!, ~77!

from which we deduce the following analytical continuatio
(x>0):

F6L~x,t !5F6R~2x,t !. ~78!

The change of boundary conditions in comparison to
Dirichlet case@Eq. ~13!# in zero field has several conse
quences. First of all, the commutator between the left a
right bosonic fields is modified due to the folding conditio
@Eq. ~78!#: @F6R(x),F6L(y)#51 ip. As a consequence, th
low-energy Hamiltonian of the model for a ferromagne
interchain couplingJ',0 is still given by Eq.~23!, but with
a negative triplet massmt5J'l2/2p,0 and a positive sin-
glet massms523J'l2/2p.0. Moreover, the boundary
conditions on the Majorana fermions have also changed
the Neumann case@Eq. ~77!#. They can be deduced as in Se
6-11
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II from identifications~14! and ~18!, so that we obtain the
following boundary conditions:

jL
1~0!52jR

1~0!,

jL
2~0!5jR

2~0!,

jL
3~0!5jR

3~0!, ~79!

jL
0~0!52jR

0~0!.

One can interpret these results in light of the Ising d
scription presented in Sec. IV. The Ising models in the trip
sector with indexes 2 and 3~respectively 1) have free~re-
spectively fixed! boundary conditions and belong to the
disordered phases (mt,0). The Ising model that account
for the singlet excitations has fixed boundary conditions a
is in its ordered phase (ms.0). TheS51/2 chain-boundary
excitations of the open spin-1 chain thus disappear in
presence of a strong applied edge magnetic field. It rem
only a single localized Majorana fermionic statej1 with zero
energy that describes fluctuations in theSx50 triplet sub-
space which is unaffected by the applied magnetic fi
along thex direction. The Ising representations of the sta
gered magnetization@Eq. ~53!# and the dimerization operato
@Eq. ~67!# have to be modified slightly due to the change
sign of the commutator between the left and right com
nents of the bosonic fieldsF6 , and they are now given by

n1
x ;s1m2m3s0 ,

n1
y ;m1s2m3s0 ,

n1
z ;m1m2s3s0 , ~80!

e1;s1s2s3s0 .

From these results and identification~55!, we thus deduce
the staggered magnetization and dimerization profiles of
two-leg spin ladder with a ferromagnetic interchain coupli
in a strong applied magnetic field along thex axis,

^n1
x ~x!&;e2umtux/v tG3S umtux

v t
DGS msx

vs
D , ~81!

whereas ^n1
y &5^n1

z &5^e1&50. The asymptotics of the
non-zero staggered magnetization can be extracted from
~60! and ~61!:

^n1
x ~x!&;e2x/j t, x@j t , ~82!

^n1
x ~x!&;x21/2, x!j t .

The short-distance exponent is identical to the one predi
from boundary conformal field theory in a gapless spin-
chain with a strong magnetic field at the boundary.73 The
same result@Eq. ~82!# also holds in the case of the spin
chain, albeit with a different short distance behav
^n1

x (x)&;x23/8 which can be obtained from boundary co
formal field theory. We conclude that the staggered magn
zation in a strong applied field decays in the same way a
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Eq. ~62! far from the boundary, but is enhanced in the vici
ity of the chain end in comparison to the behavior@Eq. ~63!#
in zero field. These results are in agreement with QMC sim
lations of the spin-1 Heisenberg chain with free and fix
boundary conditions.18

A similar calculation can be made in the case of an a
ferromagnetic interchain interaction. The only difference
that we must make the following substitutionT2Tc→Tc
2T. For a strong applied field along thex direction, we now
obtain

^n1
x ~x!&;e22mtx/v t2umsux/vsG3S mtx

v t
DGS umsux

vs
D , ~83!

and^n1
y &5^n1

z &50. However, there is now a nonzero sta
gered relative magnetization̂n25n12n2& in the J'.0
case, which can be determined using the Ising representa
of this operator:

n2
x ;m1s2s3m0 ,

n2
y ;s1m2s3m0, ~84!

n2
z ;s1s2m3m0 ,

so that

^n2
y,z~x!&;e2mtx/v tG2S mtx

v t
DHS mtx

v t
DHS umsux

vs
D , ~85!

and ^n2
x &50. Finally, the dimerization profile in theJ'.0

case reads as

^e1~x!&;e2umsux/vsGS mtx

v t
DH2S mtx

v t
DGS umsux

vs
D , ~86!

so that we obtain the following asymptotics respectively
the long and short distance limits:

^e1~x!&;e2x/js

~87!
^e1~x!&;x1/2.

We close this section by discussing the case of the sp
taneously dimerized spin-1 chain. The Ising representati
of staggered and dimerization fields are now given by E
~80! with s0→1. The staggered magnetization and dimeriz
tion profiles are

^n1
x ~x!&;e22x/j tG3S x

j t
D ,

~88!

^e1~x!&;GS x

j t
DH2S x

j t
D .

In the short-distance limit, we obtain the power-law beha
iors

^n1
x ~x!&;x23/8,

~89!
^e1~x!&;x5/8,
6-12
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whereas for long distances we have

^n1
x ~x!&;e22x/j t,

^e1~x!&.e`S 12
j t

1/2

Ap

e22x/j t

x1/2 D . ~90!

Therefore, we observe that the dimerization reaches her
bulk expectation value from below in contrast to the fr
boundary case@Eq. ~74!#.

VI. CONCLUDING REMARKS

In this paper, we have investigated the nature of the ch
boundary excitations of the cut two-leg spin ladder and
open spin-1 chain by means of the bosonization method.
crucial point of the analysis is the mapping33,45 of the low-
energy Hamiltonian of these systems onto free massive
jorana fermions ~or, equivalently, decoupled noncritica
quantum Ising models! with suitable boundary conditions. I
particular, the exact results67–69 of the semi-infinite one-
dimensional quantum Ising model allow a determination
the low-energy properties of the cut two-leg spin ladder s
as, for instance, the magnetization and dimerization profi
For a ferromagnetic rung coupling (J',0), the system is
characterized by the presence of fractional spin-1/2 e
states which, in the limitJ' /Ji→2`, identify the well-
known S51/2 chain-end degrees of freedom of the op
spin-1 chain. In this respect, the approach presented in
paper provides an alternative derivation of the existence
these edge states first predicted theoretically within the V
model12 and the Schwinger boson mean-field analysis.17 In
the case of an antiferromagnetic interchain interactionJ'

.0, no S51/2 chain-end excitations are found, but a no
magnetic localized Majorana fermion zero mode is s
present and leads to the formation of a non-zero dimeriza
profile in the system.

The magnetization and dimerization profiles, derived
this paper, should be confronted with numerical simulatio
of the cut two-leg spin ladder or the open biquadratic spi
chain in the vicinity of the SU(2)2 WZNW critical point.
Due to the semi-infinite geometry considered here, our
sults would best be compared with DMRG calculations o
finite spin-1 chain with a spin-1/2 moment attached to one
the extremities to cancel one of the edge states.19,23 At this
point, it is worth noting that all the calculations were done
zero temperature. Our results could in principle be exten
to finite temperature using the thermal form factor tec
niques derived for the one-dimensional quantum Is
model.75 Unfortunately, it is not an easy task within this fo
malism to obtain explicit expressions for^s(x)& for fixed
boundary conditions. This makes any direct comparison
QMC simulations difficult.18,24 However, one can argue b
finite size scaling arguments that the correlation functio
should not be strongly affected by a finite temperature
long asm@T. This can be checked by an explicit comput
tion of the two-point correlation function.76 We also stress
that at finite temperature and for free boundary conditio
one haŝ s(x)&50 in the quantum Ising model. This implie
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the absence of any staggered magnetization profile in thS
50 state and also of a nonzero string order paramete
finite temperature in agreement with the QMC simulations18

Regarding perspectives, the approach presented in
work could be applied to other one-dimensional gapful s
tems. The effects of an uniaxial single-ion anisotro
Dz( i(Si

z)2 on the magnetic properties of the open spin
chain can be investigated. Since the different species of
jorana fermions do not interact, we expect that spin-1/2 e
states excitations should still be observed, in agreement
the QMC results.77 The calculation of magnetization profile
with our method should not pose any difficulty. The a
proach could also be generalized to study the effect o
weak bond or magnetic impurities in a spin-1 chain,78 as will
be discussed in a separate publication. Another interes
situation is the nature of the edge states of two open spin
Heisenberg chains coupled by a biquadratic interch
interaction.79 Due to the extended O~4! symmetry of the
model, we expect to find two spin-1/2 excitations at the ed
of the system. A more challenging problem is the gener
zation of our approach toS>3/2 Heisenberg chains. Accord
ing to Ref. 17, it is expected that edge states with fracti
alized spin S8 exist in the spin-S chain with S85S/2
@respectivelyS85(S21/2)/2# for integer~respectively half-
odd-integer! spins. This conjecture, based on the large
limit of SU(N) quantum antiferromagnets and stron
coupling expansion, was verified by a DMRG analysis
S53/2,2.21 A generalization of the approach presented h
in the S51 case is to describe spin-S Heisenberg chain as
perturbed SU(2)2S5U(1)^ Z2S WZNW models.28,80 For
half-odd integer S, only the parafermion sectorZ2S is
gapped. We should thus expect the edge spin excitation
be generated by the bound states of the massiveZ2S theory
on the half-line. For integerS, edge excitations should b
induced by the boundary bound states of the pertur
WZNW model. A similar problematic should also be consi
ered for the related problem ofn-leg spin-1/2 ladders. Fi-
nally, an interesting question would be the study of inter
tions between edge states in chains of finite length22 using
the Majorana fermions description.
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APPENDIX A: BOSONIZATION APPROACH OF THE
OPEN SÄ1Õ2 HEISENBERG CHAIN

In this appendix, we describe the bosonization appro
of the spin-1/2 Heisenberg chain with open bounda
conditions.36,37,39,41This enables us to fix the convention
that will be used in this paper, and also to discuss so
subtleties related to the presence of open boundary co
tions. To this end, we consider the repulsive Hubbard mo
6-13
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at half-filling with open boundary conditions described
the Hamiltonian

HU52t (
i 51

N21

~cis
† ci 11s1H.c.!1U(

i 51

N

ni↑ni↓ , ~A1!

wherecis is the electronic annihilation operator of spin i
dex s5↑,↓ at site i (1< i<N), andnis5cis

† cis stands for
the occupation number of electron with spin indexs. The
summation over repeated greek symbols is assumed in
following, and the hopping termt is positive. In this model,
it is well known that a charge gapmc exists for any positive
value of the interactionU, and in the low-energy limit (E
!mc) only the spin excitations remain and describe the u
versal scaling properties of the spin-1/2 Heisenberg chain
this way, we shall derive the continous description of t
spin density of theS51/2 Heisenberg chain with ope
boundary conditions starting from the electronic model@Eq.
~A1!#. An alternative approach as described in Refs. 36,
and 41 is to consider the spin-1/2XXZ Heisenberg chain
with open boundary conditions and the use of the Jord
Wigner transformation. Since in this work we shall only co
sider SU~2! invariant interactions, it is more appropriate
start from the Hubbard model@Eq. ~A1!#. The open boundary
conditions are taken into account by introducing two fictio
sites 0 andN11 in Eq. ~A1! and by imposing vanishing
boundary conditions on the fermion operators:c05cN11
50.36,38The low-energy properties of the model can then
determined by applying the bosonization method29 with suit-
able boundary conditions on the bosonic fields.36–38,40

1. Noninteracting case

In the low-energy limit, the continuum version of the no
interacting part of Hamiltonian~A1! can be derived by ex
pressing the lattice fermionscns in terms of left- and right-
moving spinful fermionic fieldsCL,Rs(x),

cns

Aa
; i x/aCRs~x!1~2 i !x/aCLs~x!, ~A2!

with x5na, a being the lattice spacing. The resulting boun
ary conditions on the fermionic fields of Eq.~A2! are thus

CLs~0!52CRs~0!,
~A3!

CLs~L !52~21!L/aCRs~L !,

with L5(N11)a. The left and right excitations are n
longer independent due to the presence of these bounda

The next step of the approach is the introduction of rig
and left-moving bosonic fieldsFR,Ls through

CRs5
kseipts/4

A2pa
e2 iFRs,

~A4!

CLs5
kseipts/4

A2pa
eiFLs,
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where ks are Klein factors that obey the anticommutatio
relations$ks ,ks8%5ds,s8 to ensure the anticommutation be
tween the fermion fields of different spin index. In Eq.~A4!,
we have also introduced some phase factors witht↑51 and
t↓521 for later convenience. The boundary conditions
the chiral bosonic fields are then obtained from Eq.~A3!,

FLs~0!52FRs~0!1p,
~A5!

FLs~L !52FRs~L !1pS L

a
21D12qsp,

qs being an integer. In our conventions, the total boso
field Fs with spin indexs, and its dualQs , are related to
the chiral componentsFR,Ls through

Fs5 1
2 ~FRs1FLs!,

~A6!
Qs5 1

2 ~FLs2FRs!,

so that Eq.~A5! imposes Dirichlet boundary conditions o
the bosonic field:

Fs~0!5
p

2
,

~A7!

Fs~L !5
p

2 S L

a
21D1qsp.

The low-energy dynamics of the non-interacting Hamiltoni
H0 of the original model@Eq. ~A1!# is thus described by two
independent free massless boson Hamiltonian with bound
conditions~A7!,

H05
vF

2p (
s5↑,↓

E
0

L

dx~~]xFs!21~pPs!2!, ~A8!

vF being the Fermi velocity andPs is the momentum op-
erator conjugate toFs . The mode decomposition of th
bosonic fieldFs compatible with these boundary condition
reads as

Fs~x,t !5
p

2
1S p

2 S L

a
22D1App̃0sD x

L

1 (
n51

`
sin~knx!

An
~anse2 iknvFt1H.c.!, ~A9!

where kn5np/L, ans is the boson annihilation operato
obeying@ans ,ams8

†
#5dn,mds,s8 and the zero-mode operato

p̃0s has a discrete spectrumApqs . The mode decomposi
tion of the momentum operatorPs5] tFs /pvF conjugate
to the bosonic field can thus be deduced from Eq.~A9!:

Ps~x,t !5 (
n51

`
iAn

L
sin~knx!~2anse2 iknvFt1ans

† eiknvFt!.

~A10!

In particular, one can check that mode decompositions~A9!
and ~A10! satisfy the canonical commutation relation
6-14
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@Fs~x,t !,Ps8~y,t !#5 ids,s8dL~x2y!, ~A11!

dL(x2y) being the delta function at finite size:dL(x)
5(neiknx/2L. The dual fieldQs satisfies]xQs5pPs and
] tQs5vF]xFs , so that one obtains the mode expansion

Qs~x,t !5Apf̃0s1S p

2 S L

a
22D1App̃0sD vFt

L

1 i (
n51

`
cos~knx!

An
~anse2 iknvFt2ans

† eiknvFt!,

~A12!

where the zero mode coordinatef̃0s is conjugate top̃0s :

@f̃0s ,p̃0s8#5 ids,s8 and it is not fixed by boundary cond
tions ~A7!. Finally, the mode decompositions of the chir
bosonic fieldsFR,Ls can be determined by identificatio
~A6!:

FLs5
p

2
1Fp2 S L

a
22D1App̃0sGx1vFt

L
1Apf̃0s

1 (
n51

`
i

An
~anse2 ikn(x1vFt)2ans

† eikn(x1vFt)!

~A13!

FRs5
p

2
1Fp2 S L

a
22D1App̃0sGx2vFt

L
2Apf̃0s

2 (
n51

`
i

An
~anseikn(x2vFt)2ans

† e2 ikn(x2vFt)!.

In addition, one can show that these chiral fields satisfy
following commutation relations whenL@a:

@FLs~x,t !,FLs8~y,t !#52 ipds,s8sgn~x2y!,

@FRs~x,t !,FRs8~y,t !#5 ipds,s8sgn~x2y!, ~A14!

@FRs~x,t !,FLs8~y,t !#50 if x5y50

522ipds,s8 if x5y5L

52 ipds,s8 if 0 ,x,y,L,

sgn(x) being the sign function.

2. Effective spin density

The next step of the approach is the introduction of
bosonic fields that describe the charge and spin degree
freedom:

FcR,L5
FR,L↑1FR,L↓

A2
, ~A15!

FsR,L5
FR,L↑2FR,L↓

A2
.

17440
e

e
of

This basis as well as commutation relations~A14! allow us
to express Hamiltonian~A8! in terms of two commuting gap
less spin and charge contributions:

H05
vF

2pE0

L

dx@~]xFc!
21~pPc!

2#1
vF

2pE0

L

dx@~]xFs!
2

1~pPs!
2#. ~A16!

As is well known, a weak Hubbard interaction preserves t
famous spin-charge separation and, at half-filling, open
mass gapmc for the charge degrees of freedom. In the sp
sector, the effect of the interaction is exhausted by a ren
malization of the spin velocity and by the existence of
marginal irrelevant contribution in the Hamiltonian. In pa
ticular, the interaction does not renormalize the bosonic fi
Fs since it is protected by the underlying SU~2! symmetry of
the model. Neglecting the logarithmic corrections introduc
by the marginal irrelevant term, the low-energy (E!mc)
Hamiltonian that describes the universal properties of thS
51/2 Heisenberg chain is simply

Hs5
vs

2pE0

L

dx@~]xFs!
21~pPs!

2#, ~A17!

vs being the velocity of the spin collective mode. The boun
ary conditions of the bosonic fieldFs can be obtained from
Eqs.~A7! and ~A15!,

Fs~0!50, ~A18!

Fs~L !5
qp

A2
,

q being an integer. Similarily, the mode decompositions
the chiral bosonic fieldsFsR,L read, with the help of Eq.
~A13!, as

FsL~x,t !5App̃0s

x1vst

L
1Apf̃0s

1 (
n51

`
i

An
~anse

2 ikn(x1vst)2ans
† eikn(x1vst)!,

~A19!

FsR~x,t !5App̃0s

x2vst

L
2Apf̃0s

2 (
n51

`
i

An
~anse

ikn(x2vst)2ans
† e2 ikn(x2vst)!,

with @f̃0s ,p̃0s#5 i and @ans ,ams
† #5dn,m . Moreover, from

Eq. ~A14! we deduce that these fields obey the commutat
relations
6-15
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@FsL~x,t !,FsL~y,t !#52 ipsgn~x2y!,

@FsR~x,t !,FsR~y,t !#5 ipsgn~x2y!, ~A20!

@FsR~x,t !,FsL~y,t !#50 if x5y50

522ip if x5y5L

52 ip if 0 ,x,y,L.

At this point, it is important to note that the last commuta
in Eq. ~A20! has the opposite sign of the prescription ma
in Refs. 33 and 29. The actual value of its sign stems fr
the fact that we are considering open boundary condition
the lattice system which identify the Dirichlet boundary co
ditions @Eq. ~A18!# on the bosonic fieldFs . In fact, one can
derive the value of the commutator@FsR,FsL# by a different
method. The boundary condition atx50 on the chiral
bosonic spin fields is

FsL~0,t !52FsR~0,t !;t. ~A21!

SinceFsL(x,t)5FsL(x1vst) and FsR(x,t)5FsR(vst2x),
one thus obtains the folding condition (x>0)

FsL~x,t !52FsR~2x,t !, ~A22!

which is satisfied by mode decompositions~A19!. Moreover,
the commutator@FsR(x,t),FsR(y,t)# is fixed by the require-
ment thatFs and Ps are canonical conjugate operators
that, by using folding condition~A22!, we deduce:

@FsR~x,t !,FsL~y,t !#52@FsR~x,t !,FsR~2y,t !#

52 ip sgn~x1y!52 ip. ~A23!

It turns out that the sign of this commutator is important
the investigation of theS51/2 chain-boundary excitations o
the open two-leg spin ladder as described in Sec. II and II
this work.

With all these results at hands, it is straightforward
derive the continuum description of the spin density start
from the lattice spin operatorSi ,

Si
a5

1

2
cia

† sab
a cib , ~A24!

sa(a5x,y,z) being the Pauli matrices. Using decompositi
~A2!, the spin density separates into a uniform and stagge
parts in the continuum limit,

S~x!5JsR~x!1JsL~x!1~21!x/ans~x!, ~A25!

with the identifications

JsR,L
a 5 1

2 CR,La
† sab

a CR,Lb ,
~A26!

ns
a5 1

2 ~CLa
† sab

a CRb1CRa
† sab

a CLb!.

The bosonized description of the spin density can then
obtained with help of bosonization formula~A4!, commuta-
tion relations ~A14!, and canonical transformation~A15!.
The resulting expressions for the uniform part read
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JsL
z 52

1

2pA2
]xFsL ,

JsR
z 52

1

2pA2
]xFsR

~A27!

JsR
† 52

ik↑k↓
2pa

eiA2FsR

JsL
† 52

ik↑k↓
2pa

e2 iA2FsL,

whereas the staggered part is given by

ns
x52

l ik↑k↓
pa

cos~A2Qs!,

ns
y5

l ik↑k↓
pa

sin~A2Qs!, ~A28!

ns
z52

l

pa
sin~A2Fs!,

l being a constant stemming from the charge degrees
freedom that have been integrated out in the low-energy
gimeE!mc . The productk↑k↓ has no dynamic, and in this
work we use the prescriptionk↑k↓5 i for simplicity. Finally,
as it can be checked from the correspondence@Eq. ~A27!#,
the left-moving contribution of the uniform part of the sp
density @Eq. ~A25!# obeys a operator product expansio
~with a similar result for the right-moving term!

JsL
a ~z!JsL

b ~w!;
da,b

8p2~z2w!2
1

i eabcJsL
c ~w!

2p~z2w!
, ~A29!

with z5vst1 ix. The uniform left spin densityJsL identifies
the SU(2)1 Kac-Moody currents which are the generators
the conformal field theory associated with the criticality
the spin-1/2 Heisenberg chain~see, for instance, the Ref.29

for a review!.

APPENDIX B: ALTERNATIVE DERIVATION OF THE
UNIFORM MAGNETIZATION PROFILE

In this appendix, we derive thez component of the uni-
form magnetization profile of the cut two-leg spin ladd
with a ferromagnetic rung coupling without using the Maj
rana fermion formalism. To this end, we return to the co
plex fermion HamiltonianH1 @Eq. ~17!# with J',0. Thez
part of the total magnetization density is given byMz

5:c1R
† c1R1c1L

† c1L :. Using boundary condition~15! and
Hamiltonian ~17! with m52J'/2p.0, we obtain the fol-
lowing mode decompositions for the fermionic fieldsc1R,L :
6-16
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c1R~x!5Am

v
e2mx/va01

1

A2L
(

k
@ f ~k,x!ak,1

1 f * ~k,x!ak,2#, ~B1!

c1L~x!5Am

v
e2mx/va01

1

A2L
(

k
@ f * ~k,x!ak,1

1 f ~k,x!ak,2#, ~B2!

where f (k,x)5cos(kx1uk)1i sin(kx), uk being defined by
Eq. ~29!. HamiltonianH1 @Eq. ~17!# can be expressed i
terms of theak,6 fermionic modes

H15(
k

e~k!~ak,1
† ak,12ak,2

† ak,2!, ~B3!

with the energy dispersione(k)5Av2k21m2. The uniform
magnetization profile along thez axis is then given by

^Mz~x!&5
1

L (
k.0

@cos2~kx1uk!1sin2~kx!21#~^ak,2
† ak,2

1ak,1
† ak,1&!1

2m

v
e22mx/v^a0

†a0&. ~B4!

Using expressions~29!, noting thatnF(e(k))1nF(2e(k))
51 and(k.0→L*0

`dk/p in the largeL limit, the uniform
magnetization simplifies as

^Mz~x!&5
2m

v
e22mx/v^a0

†a0&2E
0

`dk

p F m2

~vk!21m2
cos~2kx!

1
mvk

~vk!21m2
sin~2kx!G . ~B5!

Performing the integrals, we finally find the following resu

^Mz~x!&5
2m

v
e22mx/v@^a0

†a0&21/2#. ~B6!

This profile is identical to the one obtained by the Majora
fermions calculation@Eq. ~38!#.

If we apply a uniform magnetic field along thez axis, the
HamiltonianH1 @Eq. ~B3!# is modified as

H15 (
k,r 56

~r e~k!2h!:ak,r
† ak,r :2h~a0

†a021/2!,

~B7!

whereas the HamiltonianH2 in Eq. ~9! is not affected by the
magnetic field. The resulting free energy per unit length
then given by

f s52
1

bE0

`dk

p (
r 56

ln~11e2b(e(k)2rh)!

2
1

b
ln@2 cosh~bh/2!#5 f s

bulk1 f s
edge. ~B8!
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From f s
bulk , we recover the usual susceptibility and speci

heat of the spin-1 chain. We see thatf s
edge is the free energy

of an isolated spin-1/2. Thus, forh!b andh!m, the ther-
modynamic properties of the system are identical to those
an isolated spin-1/2. This result is in agreement with
QMC simulations of long chains18 and DMRG calculations
of effective interaction of edge states in long chains.22

APPENDIX C: CALCULATION OF THE FUNCTION F „x…

In this appendix, we compute the one-point function
the disorder operator in the low-temperature phase of
semi-infinite one-dimensional quantum Ising model with fr
boundary conditions. To this end, the form factor approach
correlation functions81 will be used, as in Ref. 69, for the
calculation of the magnetization one-point function.

Let us first recall some results on the form factors of t
bulk quantum Ising model.82,83 The excited states of this
model are created by acting on the ground state with ferm
creation operatorsA†:

uu1 . . . un&5A†~u1!•••A†~un!u0&, ~C1!

where theu i ’s are the usual rapidity variables parametrizi
momentum and energy asp(u i)5m sinhui , e(u i)
5m coshui , m being the fermion’s mass (m.0 for T,Tc!,
and its velocity has been set to unity here for simplicity. T
creationA† and annihilationA operators satisfy the fermioni
anticommutation relation normalized as follows:

$A~u1!,A†~u2!%52pd~u12u2!. ~C2!

For T,Tc , the form factors of the order operators are

^0us~0!uu1 . . . u2n&5 i n )
1< i , j <2n

tanhS u i2u j

2 D , ~C3!

whereas the form factors with an odd number of rapidit
are zero. They are normalized such that the conformal li
of the spin-spin correlation function is

^s~r !s~0!&5
F 2

r 1/4
, ~C4!

with r 5Ax21t2 andF5221/12e1/8A23/2m21/8, A being the
Glaisher constant. In the low-temperature phase, the f
factors of the disorder operator are given by

^0um~0!uu1 . . . u2n11&5 i n )
1< i , j <2n11

tanhS u i2u j

2 D ,

~C5!

and those with an even number of rapidities are zero.
T.Tc , the roles ofs andm are interchanged.

With these results, one can extend the method of Ref
to calculate the one-point function of the disorder operato
the low-temperature phase of the semi-infinite Ising mo
with free boundary conditions. The free boundary conditi
on the Majorana fermions@jL(0)5jR(0)# is interpreted as a
boundary stateuB& which encodes all informations about th
boundary condition.67 In this approach, the Hilbert space o
6-17
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the theory is the same as in the bulk so that the one-p
function can be extracted through

^m~x!&5(
n

^0um~0!un&^nuB&e2xEn, ~C6!

un& being a complete set of states of the bulk Hilbert spa
The boundary state corresponding to the Ising model aT
,Tc on the half line with free boundary conditions is67

uB&5~11A†~0!!expF E
0

` du

2p
R̂~u!A†~2u!A†~u!G u0&,

~C7!

with R̂(u)52 i coth(u/2). This boundary state contains
zero-momentum one-particle state which corresponds
domain wall, attached to the boundary, that separates
domains of opposite magnetization (T,Tc). Such a term
contributes to the expectation value@Eq. ~C6!#, while it does
not enter the calculation of the one-point function of t
order operator. Expanding the exponential in Eq.~C7!, we
obtain the following expression using the fact that the fo
factors ofm are non-zero only for an odd number of rapid
ties:

^m~x!&5 (
n50

`
1

n! E0

`du1

2p
. . . E

0

`dun

2p
^0um~0!u0;

2u1 ,u1 ; . . . ;2un ,un&R̂~u1! . . . R̂~un!

3e2mx[112 cosh(u1)1 . . . 12 cosh(un)] . ~C8!

From this we deduce the identity

^m~x!&5e2mxA~mx!. ~C9!

The next step of the approach is to use the form factor om
@Eq. ~C5!# to derive an expression forA(mx). First of all,
one has

^0um~0!u0;u1 ,2u1 ; . . . ;un ,2un&

5 i n)
i 51

n

tanh2
u i

2
tanhu i)

i , j
tanh2S u i2u j

2 D tanh2S u i1u j

2 D ,

~C10!

so that, using the expression ofR̂(u), we obtain

A~mx!5 (
n50

`
1

n! E0

`du1

2p
. . . E

0

`dun

2p S )
i 51

n

tanh
u i

2
tanhu i D

3detW~u i ,u j !e
22mx(

k51

n

cosh(uk), ~C11!

with

W~u i ,u j !5
2Acoshu icoshu j

coshu i1coshu j
. ~C12!

Following Ref. 69, we introduce the quantity
17440
nt

e.

a
o

V~u i ,u j ,mx!5
Acoshu i21Acoshu j21

coshu i1coshu j
e2mx(coshu i1coshu j ).

~C13!

The functionA(mx) can then be expressed as a Fredho
determinant:

A~mx!5 (
n50

`
1

n! E2`

` du1

2p
. . . E

2`

` dun

2p
detV~u i ,u j ,mx!

5DetS 11
V

2p D . ~C14!

Using the results obtained in Ref. 69,A(mx), given by Eq.
~C14!, coincides with the Fredholm determinant represen
tion of the one-point function of the Ising magnetization f
T,Tc with fixed boundary conditions, i.e.,G(mx) in our
notations@see, in particular Eq.~55!#. Therefore, from Eq.
~C9!, we finally deduce the following relation:

F~mx!5e2mxG~mx!. ~C15!

APPENDIX D: EXPRESSION OF THE FUNCTIONS G„x…
AND H „x… IN TERMS OF SOLUTIONS OF THE

PAINLEVÉ III EQUATION

According to Bariev,68 the functionsG andH, describing
the crossover effect on the local magnetization of the se
infinite Ising model atT,Tc , with free and fixed boundary
conditions, can be expressed in terms of a solutionh(u) of
the Painleve´ III differential equation. This latter equation
reads as follows:

1

h

d2h

du2
5S 1

h

dh

du D 2

2
1

uh

dh

du
1h22

1

h2
. ~D1!

The boundary conditions onh are

h~u!;2uF ln
u

4
1gEG~u→0!,

~D2!

h~u!;12
K0~2u!

2p
~u→`!,

gE being the Euler’s constant. The functionsG and H that
are the building blocs of the staggered magnetization
dimerization profiles are related to the solutionh(u) by

G~y!5h21/4~y!expF E
y

`

duH u

8
h22~u!S @12h2~u!#2

2S dh

du D 2D2
1

2
@12h~u!#J G ,

~D3!

H~y!5h1/4~y!expF E
y

`

duH u

8
h22~u!S @12h2~u!#2

2S dh D 2D2
1

@h21~u!21#J G .
du 2

6-18
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There is an interesting connection between the Pain´
III differential equation and the two-dimensional sin
Gordon equation. Indeed, the relation is obtained by con
ering h(u)5e2x(u) so that differential equation~D1! takes
the form

d2x

du2
1

1

u

dx

du
52 sinh 2x. ~D4!

The functions G and H in Eq.~D3! can then be expressed
terms ofx:
J

u
f-

ev

ev
,

i,

o,

Y.

.
.

a

ra
.

Z.

tt

B
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e

d-
G~y!5ex(y)/4expF E

y

`

duH u

8 F4 sinh2x2S dx

du D 2G
2

1

2
~12e2x(u)!J G ,

~D5!

H~y!5e2x(y)/4expF E
y

`

duH u

8 F4 sinh2x2S dx

du D 2G
2

1

2
~ex(u)21!J G .
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