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Magnetization and dimerization profiles of the cut two-leg spin ladder
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The physical properties of the edge states of the cut two-leg spin ladder are investigated by means of the
bosonization approach. By carefully treating boundary conditions, we derive the existence of spin-1/2 edge
states in the spin ladder with a ferromagnetic rung exchange and for the open spin-1 Heisenberg chain. In
contrast, such states are absent in the antiferromagnetic rung coupling case. The approach, based on a mapping
onto decoupled semi-infinite off-critical Ising models, allows us to compute several physical quantities of
interest. In particular, we determine the magnetization and dimerization profiles of the cut two-leg spin ladder
and of the open biquadratic spin-1 chain in the vicinity of the SY(&fss-Zumino-Novikov-Witten critical
point.
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I. INTRODUCTION cent neighbors. If the chain is brokéhe., open boundary
conditions are considergdunpaired bonds are left at each
The infuence of impurities and imperfections on the be-end of the chain, resulting in two fre®&=1/2 objects at the
havior of low-dimensional strongly correlated systems hadoundaries and a fourfold ground-state degeneracy. This
attracted considerable attention in recent years. The introdud/BS picture provides a good and intuitive description of the
tion of static nonmagnetic impurities, like Zn or Li, at the ground state of the spin-1 chain. In particular, the exact
location of the magnetic ions is a sensitive probe of the cordiagonalizatiof? of finite open samples with an even number
relations that develop in these magnetic systems. A particuf sites has shown that the ground state is a singlet and the
larly striking exemple is the observation of fractional spin-€existence of an exponentially low-lying triplet state in the
1/2 edge states in the Haldane §apin-1 compound NENP Haldane gap. This leads to a fourfold ground-state degen-
cut by nonmagnetic impuriti€sThese spin-1/2 degrees of eracy in the thermodynamic limit. Such a degeneracy can
freedom are associated with static staggered moments clogéso be interpreted as the consequence of a spontaneously
to the chain ends which are revealed unambiguously in theroken hiddenZ,xZ, symmetry* associated with the for-
NMR profile of the Mg-doped )’BaNiOs.3 This effect can  mation of the Haldane gap. A string order parameter has been
be viewed as a local restoration of antiferromagnetism byntroduced to reveal this hidden symmetty’® More gener-
impurities. In fact, a transition to an antiferromagnetic statelly, it is expected within the VBS and nonlinear sigma
induced by the local moments has been observed recently imodel approaches that the integer sBitieisenberg chain
the Haldane gap compound PBM,Og.* Such a local en-  has spin§/2 chain-end excitations.
hancement of antiferromagnetism induced by nonmagnetic The physical properties of thé= 1/2 chain-boundary ex-
impurities is a rather general phenomenon in gapful quasicitations in the open spin-1 chain have been investigated in
one-dimensional systemis. The spin ladder material detail in a quantum Monte Carl6QMC) study;® and by
SrCy,0;, lightly doped with Zn impurities, exhibits a Curie- means of the density-matrix renormalization-gr¢DMRG)
like behavior at low temperature which has been explaine@pproacht® %3 Recently, the magnetization profiles at finite
by the unpaired free spins in the vicinity of the impufity. temperatures and fields have been determined using continu-
Further, it has been shown by NMR measurements that aus time QMC techniques to reconstruct the experimentally
staggered magnetization is induced along the leg by veryneasured NMR spectrum of the Mg-dopegBéNiOs.2* The
small (0.25%) concentrations of impuritié§ At low tem-  properties of the edge states of a more general model, the
perature, the induced moments become frozen, leading teilinear biquadratic spin-1 Heisenberg chain, defined by the
Néel order®®® Similar effects have been observed in the lad-Hamiltonian
der corgg)ound CCsH2N,),Cl, doped with £
impurities™ and in the spin-Peierls gap material CuG -~ 2
A simple explanation of the existence of free spin-1/2 H_‘]Z [S-S+1+B(S-S+07] @
moments at the ends of a broken spin-1 chain can be ob-
tained from the valence bond soliBS) model*?> where  have also been consider&tf® For B=1/3 (the so-called
eachS=1 spin is viewed as tw®&=1/2 spins in the sym- Affleck-Kennedy-Lieb-Tasaki poihthe VBS state turns out
metric triplet state. In this model, the singlet ground state ofo be the exact ground state of the bilinear-biquadratic
a chain with a periodic boundary is described by two valencenodel!? For 8= —1, Hamiltonian(1) has a critical point
bonds originating from each site to form singlets with adja-separating the Haldane phasef<3<1) from a dimerized
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phase < —1). At this (8= —1) critical point, the model is *

integrablé’ and belongs to the SU(2)Wess-Zumino- H=2 1312 Sup Sie1pTIiSia Szl )
Novikov-Witten (WZNW) universality clas$® The authors n=0| 'p=12

of Ref. 25 established that the edge states are present throu
the whole Haldane phase and disappear as soon @8=he  _1 5y and we consider an antiferromagnetic inchain inter-

—1 critical point is reached. . ._action J;>0. The bosonization method will be applied to
In this paper, we shall investigate the physical propert|e§_|amiItO

of the S=1/2 chain-end excitations of the semi-infiniter ltonian(2) in the regime|J, |<J) and, with a suitable
cut two-leg spin ladder and of the open spin-1 chain byredefmltlpn of the e_ffectlve coupling constants, it captures
means of the bosonization meth®dn the strong ferromag- € Physical properties of the model for arbitraly, since
netic rung limit, this two-leg ladder model is equivalent to anthere is a continuity between the_\?/’\éeak— and strong-coupling
open spin-1 Heisenberg chain with the two spins on the rungmits in the two-leg spin laddet~*? In particular, localS
forming an effectiveS=1 local moment. Since this strong- =1 Spins are formed in each rung of the ladder in the strong
couplin% limit is smoothly connected to the weak-coupling ferromagnetic interchain coupling limith( <0) so that the
one*~*2the approach provides a simple way to extract theapproach provides, in turn, a way to investigate the physical
low-energy properties of the open spin-1 chain. In this reproperties of the broken spin-1 Heisenberg chain.

spect, it gives an alternative derivation of the existence of the

spin-1/2 edge states predicted by the VBS th&oand the A. Bosonization of the open two-leg spin ladder
Schwinger-boson mean-field analy$is.Futhermore, we _ _ .
shall be able to calculate explicitly the physical properties of L€t us first consider the decoupling limif (=0), where

the open spin-1 chain such as the magnetization profile or th&€ System reduces to two independent spin-1/2 Heisenberg
NMR relaxation rate. To this end, the mappifigf the low-  chains with open boundary conditions. The low-energy prop-

energy Hamiltonian of a weakly coupled two-leg ladder ontoerties of the latter model can be still determined by means of
off-critical two-dimensional Ising models will be exploited the bosonization metholi=** As described in Appendix A,

to derive the chain boundary excitations, as has been done #iarting from the underlying Hubbard model, the bosonized
a study of disordered spin-1/2 laddéfsBy paying careful Hamiltonian for the open spin-1/2 Heisenberg chain with in-
attention to the boundary conditions of the fields that occudex p=1,2 reads, neglecting the marginally irrelevant term,
in the continuum limit, the staggered magnetization profilesas
of the model can be determined using exact results of a semi-
infinite one-dimensional quantum Ising model. The results
strongly depend on the sign of the interchain coupling and,
for an antiferromagnetic rung exchange, no magnetic chain-
end excitations are found. However, a weak dimerizationWherev is the spin velocity andl, is the momentum opera-
induced by the presence of the bounddr$#®exists for all  tor conjugate to the bosonic fiefl,. The boundary condi-
signs of the interchain interaction, and can be computed b{ion on the fieldsb,, reads

this mapping onto semi-infinite Ising models. Finally, the
influence of a strong external magnetic field fixing the spins ®,(0)=0, @

at the edge can be investigated by a similar approach.  which corresponds to a Dirichlet boundary condition. In the

The rest of the paper is organized as follows. In Sec. llcontinuum limit, the effective spin densit§,(x) separates
the low-energy Hamiltonian of the cut two-leg spin ladder isinto uniform and staggered parts,

mapped onto an O(3)Z, symmetric theory of four massive
Majorana fermions with suitable boundary conditions. The Sp(x)=JpR(x)+JpL(x)+(—1)"’anp(x), 5)

nature of the edge states that occur in the problem is theg\1 being the lattice spacing. As shown in Appendix A, the

discussed in Sec. Ill where the uniform magnetization pmf”ebosonized descriotion for the uniform spin density is given
and the NMR relaxation rate are computed for a ferromags; P P tyisg

netic interchain interaction. Section IV presents a calculatim#)y
of the staggered magnetization and dimerization profiles of

Ahere Shp is @ spin-1/2 operator at site on chainp (p

ngz"—wf:dx[(wna%(ﬁxq)p)zl )

the model by exploiting the mapping onto semi-infinite off- Z == L&ch BL s
critical quantum Ising models. The effect of a strong applied P 212 P
magnetic field fixing the spins at the boundary is investigated
in Sec. V. Finally, our concluding remarks are presented in ; e V2Ppr
Sec. VI, and the paper is supplied with four Appendixes L Sy (6)
which provide some technical details used in this work.
: efi\e‘?tpr
J, =,
Il. DERIVATION OF THE EFFECTIVE LOW-ENERGY pL 2ma

HAMILTONIAN @, being the chiral components of the bosonic fidig:

In this section, we apply the bosonization approach to theb,=(® g+ P, )/2. The staggered part of the spin density
semi-infinite two-leg spin ladder described by the Hamil-[Eq. (5)] can be expressed in terms &f, and its dual field
tonian 0O,,
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\ =3P +D.p),
Np=——[C0S\20,), ~SiN(20,), —si(y2®y) ], (7) TGt Ben) 12

+:%(¢:L_(D:R)-
where\ is a constant stemming from the underlying charge
degrees of freedom that have been integrated out. These chiral fields are no longer independent due to the ex-
In the weak-coupling regimeéJ,|<J;, the continuum istence of the boundary conditigiq. (11)], and one has
limit of Hamiltonian (2) can then be derived using all these
results. To this end, we introduce the symmetric and antisym- P .r(0)==D. (0). (13

metric combinations of the bosonic fields, The refermionization of Hamiltonia10) can then be ob-

tained through the bosonization formulas

_Cblicbz
= \/E lﬂ _Kte*i‘b:R
) R 2ma
0. = 0,0, ' (14
- \/E ) KieI(I)iL
Vo= )
2ma

so that the leading part of Hamiltonid8) that imposes the
strong-coupling behawor of the system decomposes into W@ here ., are Klein factors that obey the anticommutation

commuting partg+. ,* relation {x, ,x_}=0 to ensure the anticommutation be-
_ tween the fermion fields with different channel index The
H=H,+H_[H: ,H-]=0, © anticommutation betweeny.r and ., results from

[®r(X), P (y)]=—i, which stems from the Dirichlet
boundary conditiofEqg. (11)] as described in Appendix A.
The boundary conditions on the fermionic fields can be de-

'H+=2v—77f:dx[(771_[+)2+(c9x@+)2] duced from Eq(13):
#+r(0)=4+((0). (15

j dxcos 2D, The cosine terms of Eq10) can then be refermionized using
(10 identification (14) as well as the commutation relation
[P r(X), P (X)]=—im7,x>0:

with the bosonized expressions

Zwa

U e
H,=—f AX[ (71 )2+ (9 d )2
2 Jo TP )] cos 2. = —ima(ylgyeL — YL Y2r),
(16)
cos 20 . =ima(yl bl — b Yup).
The HamiltoniansH.. of Eq. (10) can thus be expressed in

where the boundary conditions on the bosonic fields are oferms of the fermion fields
Dirichlet type:

27Ta

.(0)=0. (11) Hy=—iv fo AX(Y pihar= L L)

In this derivation of the low-energy theory, one should note
that we have only taken into account the most relevant per-
turbation that appears in the continuum limit of the spin lad-
der. In particular, we have discarded the marginal contribu- . (17
tion that stems from the uniform pieces of the spin densities — f T _ ot

[Eq. (5)]. We shall later comment on the main effect of this o=l 0 X Rl —R™ V=L 9x-L)

term when Hamiltoniari9) will be refermionized.

— ¢l iR

"o =y v R)

B. Refermionization

The next step of the approach is to observe that the scal-
ing dimension of the interacting part#i-. is equal to 1. The
bosonic fields are precisely at the free-fermion point where
the cosine terms in Eq10) can be expressed in terms of with boundary conditiongl15) for the fermion fields.
massive fermions® To this end, we first introduce the left At this point, it is convenient to introduce four Majorana
and right bosonic fields correspondingdo. : (real) fermions from the Dirac ongdEq. (14)]:

Tl =y L R),
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2 gl wherem;>0 andm¢<<0 (respectivelyn;<0 andmg>0) for
ErLTiéRL . . ) . .
YirL= , a ferromagnetic(respectively antiferromagnetiénterchain
V2 coupling and in particular in the weak coupling cdse|
. (18 <J; one has the identification from Eq21): m=
CEritidry —J, N?/27 andmg=3J, \?/27r.
V-rL= N Thus we observe that in the low-energy limit the initial

Hamiltonian [Eq. (2)] of the cut two-leg spin ladder is
This identification together with the correspondenfégs.  mapped onto a model of four free massive Majorana fermi-
(6) and(14)] enable us to derive the refermionization of the ons with boundary conditiori22). In the strong ferromag-
uniform part of the spin densitid&q. (5)], netic rung limit—J, > 3" the singlet excitation described by

the Majorana fermiorgy | are frozen [mg— ), so that the

[
12, = El‘R,L+‘JgR,L: — Eeab%glgg{b low- -energy propgrﬂgs of the model are governeq by the trip-
let magnetic excitations corresponding to the f|e£§§ ,a
Ka —ja a  _.a .0 19 =123, In this strong ferromagnetic rung limit, we expect
RLTJIRLT IR LT ISR LERL the system to be equivalent to a broken spin-1 chain. Indeed,

where we have fixed the produkt, x  of the Klein factors it was shown by Tsyeliﬁ? by perturbing around the SU(g)
that appear in Eq(14) to i to obtain Eq.(19). In fact, this WZ_NW CFIUCQ' point’ of the b|quadra'F|c spin-1 gham,
identification[Eq. (19)] is nothing but the faithful represen- which is described by three massless Majorana fermions, that

tation of two independent SU(2)Kac-Moody currents the low-energy properties of a gapped spin-1 chain could be
JprL.P=1,2 in terms of four Majorana fermiorf§:*>** obtained from a triplet of massive Majorana fermions. Fur-

With the above results, Hamiltonia®) can be rewritten thermore, it can easily be seen that boundary conditan
with the four Majorana fermions and be separated into twdamplies that the SU(2) currents obey 5(0)=1{(0) which

commuting(triplet and singlet pieces means that there is no spin current flowing across the bound-
ary. Therefore, an open biquadratic spin-1 chain is described
H=H+Hs, (20 by a triplet of massive Majorana fermions,

with

v (e O 'Ut

Hi=—— fo dxazl (E30, 83— E20,£D) Hi=— de (ERdxER— ELxED)
JLAZ NI
o f de gagd - |mtJ0 dxazl gee (24)
(21)

with boundary conditior{22), and the Haldané&espectively
dimerized phase is characterized by a positivespectively

The boundary conditions on the Majorana fermions are obhegative triplet massm .
tained from constraintl5) and definition(18):

== f AX(ERdyén— ELIvED) —

£X(0)=£(0),a=0,...,3. (22 lll. S=1/2 CHAIN-BOUNDARY EXCITATIONS

Moreover, the marginal interchain perturbation that we have In this section, the nature of the edge states of the cut
so far neglected can be expressed in terms of the Majorarf#/0-leg spin ladder and open spin-1 chain are investigated
fermions using corresponden¢g9). As shown in Ref. 33, using the low-energy descriptidieq. (23)] of the model in

the resulting contribution leads to a velocity anisotropy and germs of four Majorana fermions with boundary conditions.

mass-renormalization in the singlet and triplet sectors so thdf particular, physical quantities such as the uniform compo-

the |Ow-energy Ham”tomaﬁEq (20)] now takes the form nent of the magnetization prOfile and the NMR relaxation
rate will be computed within this approach. The calculation

iv, of the staggered magnetization near the edge will be pre-
Hi=— 2/, d 2 (ERoNER— E10,ED) sented in Sec. IV, since it involves quantities that are non-
local in terms of the Majorana fermions.

3
—imtf dxX, &R
0 a=1 A. Localized Majorana fermion state

(23 The special structure of the low-energy Hamiltonj&m.

iUSIx 04 40 404 40\ f“ 040 (23)] together with constraint22) lead us to consider a
He=— — | dxX(£2dyén—EL0ED)—img | dxERér, 9
s 2 (rdxérE00xE0) s SRéL single massive Majorana fermion Hamiltonian of the form
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1= -
Htoyzzfo dx¥(x) ' (—ivogds+moy)W(x), (25 (

&R 1 cogkx+ 6) +isinkx)| .
a| (X )= —= &k N e '
& V2L &0 cog kx+ 6}) —i sin(kx)
whereo; are the usual Pauli matrices adt{x), is a Majo- m( 1) ,
rana 2-spinor that writes +H.c.p + ol1)€ MUy, (30
_ &r(X) whereas the decomposition for the singlet excitations with
Y= (X))’ (26 m.<0 reads

exactly solvable, being quadratic in terms of the fermions| .o 0 i

with boundary conditiorég(0)= £,(0). Hamiltonian(25) is (g%) : 1 { cog kx+ 6}) +i sin(kx) s
(X, 1) = — K S\ e
and the resulting eigenvectors read as follows in the Heisen- >- ‘/I k=0 costkxt ) =1 sin(kx)

berg representation,
+ H.c.] . (31
1 cog kx+ 6y)+i sin(kx) .
V(xt)=— > {& - e el : .

J2L k>0 cog kx+ 6,) —i sin(kx) Therefore, the localized Majorana zero-mode state only ap-

pears in the triplet sector for a ferromagnetic interchain in-

\/ﬁ 1 —mxv teraction. The translation of these results to the context of the

+tHe + i1 e o(m) 7, (27) spin-1 chain is straightforward: we just need to consider only

the triplet sector. We find that in the Haldane gap phase
whereé, is a fermion annihilation operator with=mn/L,  ~ (mM¢>0) we have localized Majorana fermion modes at the
is a zero mode Majorana fermion, afids the Heaviside step €dge, but, in contrast, the dimerized phasg<(0) is char-
function. In Eq(27), € denotes the energy dispersion of the acterized by the absence of such degl’ees of freedom. In Ref.

model, 34, it was shown that local zero modes were associated with
kinks and antikinks of the mags(x). In the present prob-
= VoA e, 28) lem, with a semi-infinite system, the edge can be seen as a

mass kinkmé(x) and local zero modes should thus be in-
duced irrespective of the sign of. However, with the semi-
infinite chain, boundary conditiof2) selects only one chi-

ral component. The sign of the mass then determines whether

and 6, is given by

cosakzﬁ the local mode belongs to the physical chiral component.
€’ This is the reason for the difference of physical behavior
(29)  between positive and negative mass.
_ m
S'nakze_k' B. Uniform component of the magnetization profile

N N With all these results, the physical properties of the edge
For a positive massn, from the decompositiofiEq. (27)]  states of the open spin-1 chain can be investigated. We first
one observes the existence of an exponentially localized stattalyze the smooth part of the magnetization profile of the
with zero energy inside the gap. Such localized Majoranaystem. To this end, we consider the uniform péitx) of

fermionic states were already discussed in several differefhe total spin density'S, (x) =S, (x) + S,(x)], which takes
contexts such as the holon edge state in an attractive ongse following form in the continuum limit using Eq5):

dimensional electron g&&**the random mass Majorana fer-

mion modefP*#"*8and the problem of a magnetic impurity 2
in a superconductdr*° Finally it was pointed out recently M(X) = > [Jar(X¥)+ s (X)]. (32)
that such bound states may find applications in quantum a=1

computatiorr:*2 For a negativan, the corresponding zero-
energy eigenvector is non normalizable, and such states d#/ith the help of identificatiori19), we immediately find that
not appear. Also note that if we impose the boundary condithe fieldM(x) is expressed locally in terms of the Majorana
tion £x(0)=— £,(0) instead(as we shall do in Sec.)ywe fermions that account for the triplet excitations in the system:
can reduce this to the problem we have just discussed by the
transformationé, — —§,, m——m. i [

From the analysis of the toy modgtq. (25)], we deduce M#(x)=— Efabcfg(x)fge(x)_ §€abC§E(X)§E(X)-
the decomposition of the triplet and singlet Majorana fields (33
in the basis of the eigenvectors of Hamiltoni&@3) subject
to boundary conditior(22). For J, <0, i.e.,m;>0 andmq Using the decompositiofEq. (30)], we write the uniform
<0, for the triplet sectoa=1,2,3, with obvious notations, densityM(x) in the basis of the eigenvectors of the Hamil-
one obtains tonianH; [Eq. (23)],
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m 2m, of an applied magnetic field. Let us finally mention that if the
M3(x)= —ieaPCyPyt—e=2mx/vi— —Le*mtx’”l triplet massm; is negative then th&=1/2 chain-boundary
Ut vt excitations disappear, as can be easily seen from the decom-
abe b e position [Eq. (27)]. We thus conclude that these fr&e
ngo e??"cogkx+ ) (i1 §n°+H.c) =1/2 end spins are absent in a ladder with an antiferromag-
netic interchain exchangg >0 as well as in the dimerized
eabe baot Cboc phase of the spin-1 biquadratic chain. It is worth noting that
T kq2>0 (A(k,q,x)i §céq +B(k,a,x)i §&q the absence of free spin-1/2 moments in the spontaneously
’ dimerized phase of a frustrated spin chain was shown very
+H.c), (34  recently>®

with . .
C. Calculation of the NMR relaxation rate
A(k,0,x) = cog kx+ ) cog qx+ ) + sin(kx)sin(qx), The NMR relaxation rate T/, of the cut two-leg spin
(39 ladder with a ferromagnetic interchain interaction can be
" \ . ) computed by means of the Majorana approach described in
B(k,q,x) = cogkx+ i) cog qx+ ) —sin(kx)sin(qx). the previous sections. For the standard two-leg spin ladder, it
The total uniform magnetizatio8, is defined by was theorgtically invgstigated in Refs. 56—-58. Herg we shall
only consider the uniform part of the NMR relaxation rate,
o and restrict ourselves, for simplicity, to the contribution that
S= fo dxM(x), (36)  identifies to the I, of the spin-1 Heisenberg chain in the
limit of strong ferromagnetic interchain couplingJ, >J;.
so that we obtain The general formula giving this NMR relaxation rate
reads as follow¥:

i :
S=—get 2 g @D T
——=—Imy(X,w), (39
The first term in this equation describes a spin-1/2 moment, Ti(x) o

since it corresponds to the Majorana representation of a spi

1/2 operator? In particular, result(37) implies that the smallest energy scale of the problem=T,m,. We intro-

elgctron-sp|n-.resonanc(eESR) reponse Of. the CUF two-leg duce the following susceptibility to perform the calculation
spin ladder with a ferromagnetic interchain coupling decom-of the NMR rate IT;:

poses into the bulk response and the response at a chain end.

The latter is identical to the ESR response of an isolated s

spin-1/2 impurity. Since there is a continuity between the X(X,iwn)ZJ dreln(T_.M(x,7)-M(x,0)),  (40)
weak- and strong-coupling limits in this systéfi®’the Ma- 0

jorana approach thus provides an alternative description of

Where o is the nuclear resonance frequency which is the

the chain-endS=1/2 mode of the open spin-1 HeisenbergWith ~~ the analytical continuation  x(x, )
chain to the one obtained within the Schwinger bosor=X(%:i@n)liu,—a+io- Using the decompositiofEq. (34)] in
formalism?’ the basis of the eigenvectors of the Hamiltoniah [Eq.

The uniform part of the magnetization profile of the (23)] that describes the triplet degrees of freedom, the NMR
model can be also read from the decomposifieq. (34)].  relaxation rate can be expressed as
For completeness, in Appendix B we give an alternative deri-
vation of thez component of the uniform magnetization pro- 1 6T ) . .
file of the cut two-leg spin ladder without using the Majorana 0 a2 > A(k,a.X)[Ne(el) —Ne(ey)]
fermions method. We obtain the following result using Eq. ! ol ka>0
(34): X 8w+ el—eb), (4D)
(Ma(x)) = ﬂe—zmtx/vt _ i_eabcnbnc (39) ne(€) being the Fermi distribution function. The sum in Eq.
Ut 2 ’ (41) can be replaced by an integral through the substitution

which can be interpreted as a spin-1/2 chain-boundary exc?‘@oﬁl‘f"dklw and the NMR relaxation rate simplifies, in

tation localized over a lengtlv,/2m; with an amplitude he low-temperature imi¥ <m,, as
2m, /vy . This implies that the size of the spin-1/2 edge state

diverges while its amplitude vanishes as the SY(&ZNW 1 6 (= _J €k

critical point of theS=1 biquadratic chain is approached T (x) "~ w_vzfo dke™ T ——————[cos'(kx+ )
from the Haldane phase, in full agreement with the DMRG t K2t 2myw

analysis of Ref. 25. The Majorana fermion description also 02

implies that the uniform component of the magnetization !

profile should not be affected by temperature in the absence +sirf(kx)]?, (42
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where the frequencw insures the convergence of the inte-

gral atk=0. Using the energy dispersigkqg. (28)] of mas- &= o . (48
sive Majorana fermions and identificatid@9), one finally vemT

obtains the expression
This length scale diverges wh@n— 0, and plays the role of

1 6 (= . e}( (vik)* an effective coherence length for the NMR relaxation rate.
=— dke /T S 5 Similarily, the cosine terms of Eq43) can be rewritten in
TiX)  ap?Jo , 2m ((vk)=+mp) the low-temperature limit as
ke+
h
7mt6) 2/ 2mtX
2mek miv k J= ‘mr’Tf dg——— {3—4 cos( a)
— ——sin(2kx) + ———————sin(4kx) 5 Ut
m;+ (k) ((0ik)?+m?)? 6+ ;
t
2m; me((vk)2—m? Amex
+ f[l COS(ZKX)Hﬁ +co o). (49
(Utk) +mt 2((Utk) +mt) Ut
We note that, fox>a, i.e., far from the chain end, the low-
X[1-cog4kx)]]. (43 temperature behavior of the NMR relaxation reads
At the extremity of the chainX=0), the NMR relaxation
, : o 1 9mt 5
rate takes a simple form in the low-temperature lifhit - —ml/TJ e ™O2T (50
<m, T.(x>a) m,2
02+—
m
;_ % ( T _1) e M/Ty ﬁEJ(@”
T1(x=0) th M T T which corresponds to the bulk behavior of the NMR relax-
2 ation rate of the spin-1 Heisenberg chain found in Ref. 61,
-
~ _) e m/T (44)  where the Haldane gap identifies with the triplet mags
m;
E,(X) being the exponential integral function. Therefore, we IV. STAGGERED MAGNETIZATION AND
conclude that the presence of the boundary leads to a nar- DIMERIZATION PROFILES

rowing of NMR line at low temperature compared to the
bulk system. In principle, this NMR rate can be measured The staggered magnetization component of a two-leg spin
experimentally® by measurements of nuclear magnetizationladder with a defect was investigated semiclassically in Ref.
recovery’® 62. Such a semiclassical approach has the inconvenience of

Now we turn to the calculation of the dependence of breaking the S(2) rotational symmetry. Nevertheless, it
1/T,. The sine terms that appear in E43) can be rewritten gives useful qualitative indications of the expected magneti-
as zation profile. For the open ladder, the boundary condition on

the bosonic fields i$ . (0)=0. In the bulk, a semiclassical
. Mntf doe- mtcoshﬁlTsm(sz minimization of the ground-state energy impliéd  )=0
Ut

Ut smhe) (J,>0) and(®,)=m/2 (J, <0). Thus we expect no stag-
. ! gered magnetization profile in the case of an antiferromag-
netic rung coupling, and a profile with an exponential decay
sinh 9), (45) far from the boundary in the case of a ferromagnetic rung
coupling. In this section, we present an approach that has the
advantage over the semiclassical method of preserving the
Stull rotational symmetry. As is well known, the low-energy
properties of the two-leg spin ladder can be described using
2 (i four decoupled off-critical two-dimensional Ising mod&ts.
@ (46) ; . .
&t In particular, this approach allows the calculation of the lead-
ing asymptotics of the staggered part of the spin-spin corre-
where the functionp(y) is defined by lation functions which involve nonlocal operators in terms of
the underlying Majorana fermions. In this section, we shall
exploit the existence of a similar mapping for the semi-

+—| de
mvilo costt

6m. (» e~ mycoshé/T Am.X
t ;N o t
in
Ut
In the regimeT <m, this expression can be approximated a

|zﬂe_mt”—'\ ’£|:()D(g
2 my &t

2 (— 1)n 2n+1 (47) L A .
(2n+ 1) ' infinite two-leg spin ladder to determine the staggered com-
ponent of the magnetization profile and the induced dimer-
and &5 is a thermal length which reads ization in the system.
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A. Staggered magnetization Kennedy'® an exponentially low-lying triplet, above the sin-

Let us discuss more precisely this mapping onto an effecd!€t ground state, is found in the Haldane gap for a finite
tive Ising model. It is well known that a one-dimensional OP€N SPin-1 Heisenberg chain. In the thermodynamic limit,
(1D) theory of massive Majorana fermions describes thdhe grour)d' state is thus fourfolq degenerate..At first sight, it
long-distance properties of a 1D quantum Ising m&§dei® ~ Seems difficult _tg r_eproduce this r_esult starting from t_hree
For a recent detailed review on this correspondence, th@€coupled semi-infinite quantum Ising models. Indeed, in the
reader may consult, for instance, Chap. 12 of Ref. 29. In thérong-coupling limit=J,>J;, the singlet degrees of free-
case of a semi-infinite system, this mapping remains vali©m areé frozen and the three Ising models for the triplet
and the boundary conditions on the Ising spins depends orector are all in their ordered phases -0 for J, <0) so

the ones for the Majorana fermiof&More specifically, here that(ci)#0 (i=1,2,3). In this case, each Ising model has a
we shall follow the conventions of Ref. 67, so that if the doubly degenerate ground state, which thus gives an eight-

Majorana fermionstr, obey the boundary condition fold degeneracy. However, it is important to note that there is
' a redundancy in the Ising description since the triplet Hamil-

£r(0)=£,(0), (51 tonian in Eq.(23), the boundary condition on the Majorana
fermions[Eq. (22)], and the Ising representation of the stag-

the boundary spin is free to fluctuate and takes the valuegansformations
+1). On the other hand, the Ising model experiences a fixed

boundary condition(i.e., the boundary spin is fixed to the i gl
valuea(0)=1 for instancé when the Majorana fields verify RL RL

Er(0)=—£.(0). (52) i i, (54)

The massan of these fermions is a linear measurement of the
deviation of the temperature with respect to the critical one:
m=T.—T as in Ref. 67, such that a positive mass corre-which leads to a physical fourfold ground-state degeneracy,
sponds to the low-temperature phase of the Ising model. Thgs it should. Let us return to the calculation of the magneti-
low-energy Hamiltoniar{Eq. (23)] of the cut two-leg spin  zation profile for a ferromagnetic interchain couplidg
ladder with the boundary conditidi22) on the fermions can <0 wherem,>0 andm¢<0. Identification(53) shows that
thus be viewed as four decoupled off-critical 1D quantumthe average staggered magnetization goes to zero far from
Ising models with free boundary conditions. In particular, thethe chain end sincéu; , =0 in the case of a positive trip-
localized Majorana fermionic states with zero energy in theget mass. However, due to the presence of the boundary, a
trlplet sector, found for a ferromagnetic interchain COUplingstaggered magnetization can appear close to the chain end,
(J.<0) in Sec. Ill, can be interpreted physically, in the Ising j.e., whenx= 0. The magnetization profile encodes the cross-
mapping, as a domain wall attached to the boundary whickyer effect on the local magnetization as a function of the
separates two domains of opposite magnetizatiog=(T.  distance from the boundary. The magnetization profile of the
—T>0). Inthe singlet sector, one has, in contrag<0, SO spin-1 chain is obtained from the one of the ladder with
that the corresponding Ising model with free boundary conferromagnetic interchain interaction by taking the lititg|
ditions is in its disordered phase. As a consequence, the zeros o or equivalentlyu,— 1.4%%3
energy Majorana mode cannot exist in that case as it can be |n this respect, let us first present general results by ex-
seen from the decompositi¢ig. (31)]. ploiting the duality transformation on a 1D quantum Ising
The next step of the approach is to use the exackodel. This transformation exchanges the order and disorder
I’esult§7_69 known for the semi-infinite ISing model to deter- Operators«)-HM, but in addition’ the boundary conditions on
mine the staggered part of the magnetization profile of thene |sing spins, i.e., the free boundary conditions become,
cut two-leg spin ladder. To this end, the staggered magnettixed and vice versa. Therefore, one obtains the following

zationn, =n,+n, of the total spin densits, =S,+S, is  equivalences on the different one-point functions of the
expressed in terms of the order and disorder operatpend  model:

1o Of the different Ising models using the bosonic descrip-

gi— —0j,

tion [Eq. (7)] and the bosonization approach for two Ising (o(T>Te)hree= ((T<T¢) Yixea= 0,
model$§*-°°
n* ~ 1O _ B mXx
+ 152537%0: <U(T>Tc)(x)>fixed_<M(T<Tc)(x)>free_ o.F T )
N~ oy a0k, (53 (55

mx
ni’vtfltfz,us,uo- (o (T<T)(X))ixed= ((T>T) (X)) free= O'wG(T)v
At this point, it is worth discussing the ground-state degen-

eracy of the semi-infinite two-leg spin ladder with a ferro- _ o mx
magnetic interchain coupling. As first pointed out by (o(T<Te) (X)) ree= (w(T>Te) (X)) ixea= 0H| —
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v being the velocity of the underlying Majorana fermion andandH can be found in Appendix D. For the sake of simplic-
0., is the expectation value of (respectivelyu) for T ity, here we only need the asymptotic behaviors of these
<T, (respectivelyT>T,). An estimate ofc. valid for m  functions, which read as follows in the long-distance limit
<vla is o,=2"% Y8¥2(|m|a/v)® where A is the X=mxuv>1:%

Glaisher constan® It is indeed obvious that one h&s(T

>T¢))iee= 0 for an Ising model withl>T, and free bound- 1 e
ary conditions. In contrast, one should observe that, even in G(X)=1+ 167 X3
the disordered phase of the model, a nonzero magnetization (60)
(o(T>T) )ivea* 0 exists for fixed boundary conditions —ox
since the Ising spins are polarized at the boundary. In this H(X)=1— Le_
case, the precise crossover between the boundary and bulk 27 x¥2’

behaviors is described by the functién The staggered part ) ) .
of the magnetization profile of the cut two-leg spin ladderwhereas in the short-distance limit=mx/v<1, one has the

with a ferromagnetic interchain coupling can thus be defollowing estimate$?©°
duced from the correspondenfEq. (53)] and the general

results[Eq. (55)], G(X)~X"18,
3 4\ 1/8 308 (61)
m;|mga MeX mx| [ |mgx H(X)~X>".
(N%(X))~ ——| F|—/=|HY el —
N vf‘vS Ut Ut vs |’ From these results, we deduce the behavior of the staggered
component of the magnetization profile far from the chain
3 4\ 1/8 end
(nY.(x))~ melmsja® F(ﬁ)Hz(m%(—'ms'X) '
B vf’vs Ut Ut vs /)’ m3|m |a4 1/8 m3|m |a4 1/8
(56) (ni(x)>~( t 35 ) emtx/vt:( t 35 ) e Y&,
Ui{Ug ViUg
(E.00) (m?lms|a4)”8F mtx)Hz(mtx>G(|ms|x) (62
NG (X))~ —5—— — — |G| —],
vivs Ut Ut Us with a similar behavior for the open spin-1 chain. As ex-

which exhibits a full rotationally invariant form as it should PeCted. the local staggered magnetization decays exponen-
be. Remarkably, a staggered magnetization appears althouffally With the distance from the boundary, with a length
there is none for an isolated spin-1/2 Heisenberg chain. Thec@le that depends only on the bulk properties and identifies
expressions o6 andH are exactly known, and were deter- the correlation lengtté,=v/m; of the model. It is worth

mined by Barie® from a lattice description and later by Neting the absence of any prefactor in front of the expo-
Konik et al® in the continuum case by the form factor ap- nential term in Eq(62) in the long-distance limik> ¢, . This

proach. As shown in Appendix C using this latter formalism,SUggests that the staggered magnetization for long chains

the functionF can, in fact, be directly expressed in terms of With open boundary conditions is the relevant quantity to
G: extract a very precise value of the Haldane gap, as has been

done by means of the DMRG approaCtA similar exponen-
F(x)=e *G(x). (57) tial behavior was also obtained in the semiclassical
treatmenf? and in a phenomenological theory of the open
spin-1 chain describing the system as a spin-1/2 moment
coupled to one-dimensional massive bos8h@omparing to

As a consequence, tlzlecomponent of the staggered magne-
tization for instance simplifies as

z Eqg. (38), we note that the staggered magnetization has a
(n%.(x)) : : N
correlation lengtlt,, whereas the uniform magnetization has
mf’|m5|a4 8 m,X m,X |mg|x a cprrelation lengtl,/2, in agreement with the phenomeno-
~ == e M2l — |G| — logical free boson theoR’ In contrast to the free boson
UtUs Ut Ut Us theory, we find no«™ %2 prefactor in the uniform component

(58  of the magnetization. In the short-distance lixi€;, one

_ _ ) obtains a power-law behavior from E@1) for the two-leg
In the case of the open spin-1 chain, performing the substipqger with a ferromagnetic interchain interaction,
tution ug—1 in Eq. (53), in a similar way we obtain the

magnetization profile.

3/8
m,a R mX G m,X
Ut Ut Ut

(0% (x))~ T—:<ax>1’2, 63

(n%.(x))~ (59

whereas, in the case of the spin-1 chain, this power law is

The functionsG andH that appear in these equations can bemodified to

cast into a Fredholm determinant for(eee, for instance,

Appendix Q or expressed in terms of a solution to the Pain- z _ma
levelll differential equatior?®%°Complete expressions f& (n% () Ve

X 5/8

. (64
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an arbitrary vertical line. In the case of an antiferromagnetic
spin ladderQ, is always even whereas it is odd for a system
weakly connected to the spin-1 chain. Futhermore, the au-
thors of Ref. 16 noted that for open boundary conditions
ground states characterized by an odd valu@phave spin-

x 1/2 edge states, while these end states disappear @pén

c even. This is in full agreement with the results for the cut
two-leg spin ladder obtained in this work within the
bosonization approach.

B. Dimerization induced by open boundary condition

my /vy The dimerization profile induced by the presence of a
boundary can be also computed by this mapping onto semi-
FIG. 1. The staggered magnetization profiféx) of an open infinite Ising models. The dimerization operator in terms of
spin-1 chain in the Haldane gap phase. Fox/v<1, n%(x) the original lattice spins is defined by
~x%8 and formx/v>1, nA(x)~e” ™, )
— n

The resulting staggered magnetization profile for a spin-1 ern=(1) [)21 SnprSheap- 63
chain is plotted in Fig. 1. We note that the staggered magne- i o i , i
tization profile [Eq. (59)] has a vanishing intensity and a Thg bosonized descrlptlon of this operator in the continuum
diverging correlation length when the Haldane gap goes t§Mit reads as follows in terms of the bosonic fields. of
zero, in agreement with the DMRG analysis of Ref. 25.E9- (8):
Moreover, our calculation predicts that a staggered magneti- _
zation will exist atT=0 in the S}, =0 sector. This was € ~cosb . cosb_. (66
indeed observed in a DMRG calculatiGhAt first sight, it ~ Using the bosonization representation of two Ising
seems to contradict the results of QMC simulatibhslow-  models®~%this operator can then be expressed in terms of
ever, these calculations are performed at a finite temperaturthe different Ising disorder operators:
For the one-dimensional quantum Ising model with free
boundary conditions, there is no long-range orde{dn at €4 L1223 M- (67)

T . . ﬁgttern, since the Ising models in the triplet sector are in their
on, the average magnetization3fy, =0 state will vanish, in

; . . . ordered phases fal, <0 so that{u;)=0 (i=1,2,3). How-
agreement W'th what IS ob;er_ved n QMC caIcuIat|o.ns.. ever, as for the existence of a local staggered magnetization,
The magnetization profile in the antiferromagnetic inter-

. . . ; - the presence of the boundary induces a nontrivial dimeriza-
chain coupling case can be investigated by a similar aPion in the systent”213which can be obtained from results
proach. ForJ, >0, one now hasn,<0 andms>0, so that

. . . S 55):
the Ising models of the triplet sector are in their d|sordered( )

phases whereas the Ising model of the singlet sector belongs m3|m |a* 18 mx Imyx

to its ordered phase. We thus obtain, using the re$GBs <6+(X)>~(t—s) e3le/UtG3<_t)G(_s)_
and (55), that(n,)=0, and similarily it can also be shown vf‘vS Ut Us
that(n_)={(n;—n,)=0. Therefore, we conclude on the ab- (68)

sence ofS=1/2 chain-boundary excitations and of a nonzero, ,_. :
magnetization profile for the cut two-leg spin ladder with an%ﬁgqv%i;geeztsi%n;tpégt}%%ﬂse' fg(?;la(;]ig](efsrilgti\gﬁ- deduce the

antiferromagnetic rung coupling. This result is consistent

with the fact that the ground state of this model is always 3 4\ U8

uniqgue whether open or periodic boundary conditions are <e+(x)>~(m‘|m5|a ) e b x>¢

used. In this respect, the standard two-leg spin ladder with vas

J, >0, in contrast to thd, <0 case, is not equivalent to the (69)
Haldane phase characterized by th&sel/2 chain-end ex- -2

citations, even though they share similar properties such as <6+(X)>“(5) , X<

the presence of a spin gap and a nonzero string order

parametef>’® In fact, it was recently pointed out that the Note that the exponent 1/2 is identical to the exponent that
two systems belong to two topologically distinct clas¥ds  would have been obtained in two decoupled gapless spin-1/2
particular, it was argued that th8=1 spin chain and the chains by boundary conformal field theRPhysically, this
two-leg spin ladder with), >0 have two different types of means that the edge makes the system behave as if it was
string order that are intimately related to the valence bondjapless for distances shorter than the correlation length. In
structure of the ground states. The topological distinction ighe case of the spin-1 chain, the dimerization operfiaor.
made by counting the numb@&, of valence bonds crossing (67)] simplifies toe, ~ uquous (1o—1), S0 that we obtain
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Its short-distance asymptotics becomes thyde: (X))
~x %8 whereas the long-distance one reads as follows us-
ing Eq. (60):
3&3/2 e &
—_ (X)) =€, 1+ —, (74
\3 (e+0x) 167 x3?
€., being the nonzero bulk dimerization.
V. EFFECT OF A STRONG EXTERNAL BOUNDARY
MAGNETIC FIELD
my X/vy The effect of a strong applied magnetic field which fixes

the spins at the boundary can be investigated using the Ising

FIG. 2. The staggered dimerization profite (x) of an open  representation described in Sec. IV. To this end, let us first
Splrl-?ill.s chain in the Haldane gap P3has/,e. Fax/v<1, €.(X)  recall the effect of a transverse edge magnetic field in the
~x>% and formx/v>1, €, (x)~e” ", semi-infinite XX Z spin-1/2 Heisenberg chaif.It has been
found that the system, along the entXeXZ critical line,
renormalizes to the infinite field fixed point where the spin at
the edge is polarized. In bosonization language, one has an
example of a&&=1 boundary flow between the Dirichlet and
The |0ng—distance limit of this dimerization has a similar Neumann boundary conditions. At the &)Jinvariant point,
form as in Eq.(69) and the short-distance behavior is modi- the edge field is exactly marginal, and a line of fixed point
fied to(e (x))~x %% Again, this exponent could have been gccurs between the Dirichlet and Neumann  limiting
predicted from boundary conformal field theéfyWe also  cased>7#In the following, we shall only consider the physi-
observe that this exponent was obtained in a DMRG study ofg] sjtuation where the spin at the edge is fully polarized or
a biquadratic spin-1 chain at the SUE2WZNW critical  fixed, so that it corresponds to the infinite field fixed-point or
point3® The predicted dimerization profile for a spin-1 chain Neumann boundary condition on the bosonic fiéig asso-

3/8
<6+<x>>~(%) e‘3mtX’”t63(@). (70
Ut Ut

in the Haldane gap regime is plotted in Fig. 2. ~ciated with a spin-1/2 chain with indgx=1,2,
In the antiferromagnetic interchain coupling case, a simi-
lar calculation can be made. The dimerization operfoy. dy®,(0t)=0 Vt, (75

(67)] again has a zero ground-state expectation value in the ) ) _ »

bulk since the Ising model in the singlet sector is in its or-O €quivalently, it can be interpreted as a Dirichlet boundary

dered phasentic>0). As seen above, the two-leg spin ladder condition on the dual fiel®,,,

with an antiferromagnetic rung coupling has no magn8tic _

=1/2 chain-boundary excitations, but a localized Majorana 0p(0H)=0 V¢, (76)

state in the singlet sector still remains as it can be deducegrovided we are considering a magnetic field applied parallel

from the decompositiofEq. (27)] with mg>0. This zero to thex axis. The actual direction of the applied field is not

mode manifests itself in the existence of a dimerization proimportant since the model is $2) invariant. The chiral

file which is given by fields® ., , defined by Eq(8), are no longer independent
due to boundary conditiofr6), and now satisfy

|mt|3msa4 18 —mux/v 3 |mI|X mSX
(e4(X))~ v B G o G o) P (0)=D.(0), 77
t¥s
(71)  from which we deduce the following analytical continuation
, ) ) (x=0):
with the following asymptotics§s=vs/my):
| |3 4 18 (DtL(Xit):q)iR(_X!t)' (78)
m¢|°msa B
<6+(X)>~(3—) e ¥, x>¢, The change of boundary conditions in comparison to the
UtUs Dirichlet case[Eq. (13)] in zero field has several conse-
(72) quences. First of all, the commutator between the left and

(e4(x))~

_) vz X<g,. right bosonic fields is modified due to the folding condition
a ' [EQ.(79)]: [P -r(X), P~ (y)]=+iw. As a consequence, the
) ) . . low-energy Hamiltonian of the model for a ferromagnetic
In the case of the spontaneously dimerized spin-1 chain, theerchain couplingl, <0 s still given by Eq(23), but with
dimerization profile takes the form a negative triplet mass,=J, \%/27<0 and a positive sin-
38 glet massmg=—3J,\?/2w>0. Moreover, the boundary
|mt|a) Gs(lmt|x> (73) conditions on the Majorana fermions have also changed in
Ut ' the Neumann cad&q. (77)]. They can be deduced as in Sec.

(e4(x))~

Ut
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Il from identifications(14) and (18), so that we obtain the Eq.(62) far from the boundary, but is enhanced in the vicin-

following boundary conditions: ity of the chain end in comparison to the behayigg. (63)]
X L in zero field. These results are in agreement with QMC simu-
§1(0)=—§&gr(0), lations of the spin-1 Heisenberg chain with free and fixed
) ) boundary condition$®
§1(0)=¢&r(0), A similar calculation can be made in the case of an anti-
3 3 ferromagnetic interchain interaction. The only difference is
£(0)=£r(0), (79 that we must make the following substitutioh—T.— T,
0 0 —T. For a strong applied field along tixedirection, we now
£0(0)=—£&g(0). obtain

One can interpret these results in light of the Ising de- meX |mg|x
scription presented in Sec. IV. The Ising models in the triplet (n’i(x)>~e‘2mtx’”t‘"‘s'x’”sGs<—)G( ) (83
sector with indexes 2 and @espectively 1) have frege- vt Us
spectively fixed boundary conditions and belong to their and(n%)=(n%)=0. However, there is now a nonzero stag-
disordered phasesn<0). The Ising model that accounts gered relative magnetizatiotn_=n,—n,) in the J, >0
for the singlet excitations has fixed boundary conditions angase, which can be determined using the Ising representation
is in its ordered phasan{;>0). TheS=1/2 chain-boundary of this operator:
excitations of the open spin-1 chain thus disappear in the

presence of a strong applied edge magnetic field. It remains N ~w10,0310,

only a single localized Majorana fermionic statewith zero

energy that describes fluctuations in t8&=0 triplet sub- nY ~ o pup0sig, (84
space which is unaffected by the applied magnetic field

along thex direction. The Ising representations of the stag- N% ~a 030,

gered magnetizatiofEg. (53)] and the dimerization operator

[Eq. (67)] have to be modified slightly due to the change of SO that

sign of the commutator between the left and right compo- mex mex Img|x
nents of the bosonic field® .., and they are now given by <ny~2(x)>~emtx’vtez(v—t) H v—t) H( US ) (85)
t t S
X ~
M4~ T1k2k300, and(n*)=0. Finally, the dimerization profile in th, >0

y case reads as
Ny~ p1004300,

, mdidoas| MEX| o[ MeX [mg|x
N% ~ mm20300, (80 (e, (X))~e IMXUsG| — |H| — | G , (86)
Ut Ut Us
€, 01020309. so that we obtain the following asymptotics respectively in
From these results and identificati¢5), we thus deduce (e ong and short distance limits:
the staggered magnetization and dimerization profiles of the (e, (x))~e Vs
two-leg spin ladder with a ferromagnetic interchain coupling * (87)
in a strong applied magnetic field along thexis, (e+(x)>~x1’2.
- Img| x| [ mgx : . . .
(nN*(x))~e Imixivy g3 20 g ) (81) We close this section by discussing the case of the spon-
Ut Us taneously dimerized spin-1 chain. The Ising representations

whereas (n’,)=(n%)=(e,)=0. The asymptotics of the of staggered and dimerization fields are now given by Eq.

non-zero staggered magnetization can be extracted from E¢€9 With oo—1. The staggered magnetization and dimeriza-

(60) and (61): tion profiles are
<ni(x)>~e7>(/§t, x> &, (82 (nﬁ(x))~e_2"/§lG3(§t>,
(N (x))~x"2 x<¢,. (89)
X X
The short-distance exponent is identical to the one predicted (e+(x))~G(g H? g>
t t

from boundary conformal field theory in a gapless spin-1/2
chain with a strong magnetic field at the bounddrfthe  |n the short-distance limit, we obtain the power-law behav-
same resulfEq. (82)] also holds in the case of the spin-1 jors

chain, albeit with a different short distance behavior

(n* (x))~x"%8 which can be obtained from boundary con- (n%(x))~x"3®
formal field theory. We conclude that the staggered magneti- (89)
zation in a strong applied field decays in the same way as in <e+(x)>~x5’8,
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whereas for long distances we have the absence of any staggered magnetization profile irSthe
=0 state and also of a nonzero string order parameter at

(N (x))~e 24, finite temperature in agreement with the QMC simulatiths.
Regarding perspectives, the approach presented in this

<E+(X)>2600( 1- \;_—T (90)  tems. The effects of an uniaxial single-ion anisotropy
™ X D,=(S9)? on the magnetic properties of the open spin-1
Therefore, we observe that the dimerization reaches here ighain can be investigated. Since the different species of Ma-

bulk expectation value from below in contrast to the freejorana fermions do not interact, we expect that spin-1/2 edge
boundary cas€Eq. (74)]. states excitations should still be observed, in agreement with

the QMC results! The calculation of magnetization profiles
with our method should not pose any difficulty. The ap-
proach could also be generalized to study the effect of a
In this paper, we have investigated the nature of the chainweak bond or magnetic impurities in a spin-1 ch&ias will
boundary excitations of the cut two-leg spin ladder and thébe discussed in a separate publication. Another interesting
open spin-1 chain by means of the bosonization method. Theituation is the nature of the edge states of two open spin-1/2
crucial point of the analysis is the mappii§® of the low-  Heisenberg chains coupled by a biquadratic interchain
energy Hamiltonian of these systems onto free massive Mdnteraction”® Due to the extended @) symmetry of the
jorana fermions (or, equivalently, decoupled noncritical model, we expect to find two spin-1/2 excitations at the edge
guantum Ising mode)swith suitable boundary conditions. In of the system. A more challenging problem is the generali-
particular, the exact resuffs® of the semi-infinite one- zation of our approach t8=3/2 Heisenberg chains. Accord-
dimensional quantum Ising model allow a determination ofing to Ref. 17, it is expected that edge states with fraction-
the low-energy properties of the cut two-leg spin ladder suchalized spin S’ exist in the spinS chain with S'=5/2
as, for instance, the magnetization and dimerization profiledrespectivelyS’ = (S—1/2)/2] for integer(respectively half-
For a ferromagnetic rung coupling (<0), the system is odd-integer spins. This conjecture, based on the large-N
characterized by the presence of fractional spin-1/2 edgkmit of SU(N) quantum antiferromagnets and strong-
states which, in the limitJ, /Jj— —, identify the well-  coupling expansion, was verified by a DMRG analysis for
known S=1/2 chain-end degrees of freedom of the openS=3/2,22! A generalization of the approach presented here
spin-1 chain. In this respect, the approach presented in this the S=1 case is to describe sp#iHeisenberg chain as
paper provides an alternative derivation of the existence operturbed SU(2)s=U(1)®Z,5 WZNW models?®%° For
these edge states first predicted theoretically within the VB®alf-odd integerS, only the parafermion sectoZ,s is
modet? and the Schwinger boson mean-field analyéi;m  gapped. We should thus expect the edge spin excitations to
the case of an antiferromagnetic interchain interaction be generated by the bound states of the masgjuetheory
>0, no S=1/2 chain-end excitations are found, but a non-on the half-line. For intege§, edge excitations should be
magnetic localized Majorana fermion zero mode is stillinduced by the boundary bound states of the perturbed
present and leads to the formation of a non-zero dimerizatiolVZNW model. A similar problematic should also be consid-
profile in the system. ered for the related problem ofleg spin-1/2 ladders. Fi-
The magnetization and dimerization profiles, derived innally, an interesting question would be the study of interac-
this paper, should be confronted with numerical simulationdions between edge states in chains of finite leffgtising
of the cut two-leg spin ladder or the open biquadratic spin-lthe Majorana fermions description.
chain in the vicinity of the SU(2) WZNW critical point.
Due to the semi-infinite geometry considered here, our re-
sults would best be compared with DMRG calculations of a ACKNOWLEDGMENTS
Ilr?elteeitpr lenmlitic‘:ahsalg chgzcaef g':el(/)? mgrgzgtea;ttaégggegtt?h?sne of The authors would like to thank T. Jolicoeur, D. Allen, P.
Azaria, M. Bocquet, A. A. Nersesyan, M. Saito, and Y. Su-

point, it is worth noting that all the calculations were done at

zero temperature. Our results could in principle be extended" - & for valuable discussions. E. O. thanks Nagoya Uni-
P : P P versity for kind hospitality, and for support during his stay at

to finite temperature using the thermal form factor tech- . . : L
: X . : . the Physics Department where this project was initiated.
nigues derived for the one-dimensional quantum lIsing
model’® Unfortunately, it is not an easy task within this for-
malism to obtain explicit expressions fdo(x)) for fixed
boundary conditions. This makes any direct comparison to
QMC simulations difficult®?* However, one can argue by
finite size scaling arguments that the correlation functions In this appendix, we describe the bosonization approach
should not be strongly affected by a finite temperature asf the spin-1/2 Heisenberg chain with open boundary
long asm>T. This can be checked by an explicit computa- conditions>®373%*1 This enables us to fix the conventions
tion of the two-point correlation functioff. We also stress that will be used in this paper, and also to discuss some
that at finite temperature and for free boundary conditionssubtleties related to the presence of open boundary condi-

one haga(x))=0 in the quantum Ising model. This implies tions. To this end, we consider the repulsive Hubbard model

12 e_ZX/ft) work could be applied to other one-dimensional gapful sys-

VI. CONCLUDING REMARKS

APPENDIX A: BOSONIZATION APPROACH OF THE
OPEN S=1/2 HEISENBERG CHAIN
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at half-filling with open boundary conditions described bywhere «, are Klein factors that obey the anticommutation
the Hamiltonian relations{x, ,k,} =6, , t0 ensure the anticommutation be-
tween the fermion fields of different spin index. In E§4),
+ we have also introduced some phase factors wita1l and
Hy= _tiZ‘l (ci(,ci+1(,+H.c.)+Ui:El iy, (A1) 7,=—1 for later convenience. The boundary conditions on
the chiral bosonic fields are then obtained from ER),
wherec;,, is the electronic annihilation operator of spin in-

N—1 N

dexo=1,| at sitei (1<i<N), andn;,=c/ c;, stands for PLo(0)=—DPry(0) + m,

the occupation number of electron with spin index The (AS5)
summation over repeated greek symbols is assumed in the ® (L)=—bg (L)+7T(E_1 +2q,m
following, and the hopping terrhis positive. In this model, 7 7 7

it is well known that a charge gap, exists for any positive
value of the interactioiJ, and in the low-energy limit E
<m.) only the spin excitations remain and describe the uni-
versal scaling properties of the spin-1/2 Heisenberg chain. In

g, being an integer. In our conventions, the total bosonic
field @, with spin indexo, and its dual® ., are related to
the ch|ral component®r | , through

this way, we shall derive the continous description of the =L Dp,+ D)
spin density of theS=1/2 Heisenberg chain with open 72 TRe e (A6)
boundary conditions starting from the electronic made. 0,=3(P ,—Dr,)

(A1)]. An alternative approach as described in Refs. 36, 39,

and 41 is to consider the spin-1XXZ Heisenberg chain so that Eq.(A5) imposes Dirichlet boundary conditions on
with open boundary conditions and the use of the Jordanthe bosonic field:

Wigner transformation. Since in this work we shall only con-

sider SU2) invariant interactions, it is more appropriate to ®,(0)= ™

start from the Hubbard modgEq. (A1)]. The open boundary v '

conditions are taken into account by introducing two fictious (A7)
sites 0 andN+1 in Eg. (A1) and by imposing vanishing

boundary conditions on the fermion operatocg=cy1 (DG(L):E(g_l T,

=0.3%38The low-energy properties of the model can then be

determined by applying the bosonization metfiogith suit- ~ The low-energy dynamics of the non-interacting Hamiltonian

able boundary conditions on the bosonic fieltis®4° H, of the original mode[Eq. (A1)] is thus described by two
independent free massless boson Hamiltonian with boundary

1. Noninteracting case conditions(A7),

In the low-energy limit, the continuum version of the non- ) )
interacting part of HamiltoniariA1) can be derived by ex- Ho= 277 2 f Ax((4P )+ (7ll,)%),  (A8)
pressing the lattice fermiors,, in terms of left- and right-
moving spinful fermionic fieldsV'| g, (x), ve being the Fermi velocity andll, is the momentum op-

erator conjugate teb,. The mode decomposition of the
bosonic field® , compatible with these boundary conditions

- ~ AW, (X)+ (=)W (), (A2)  reads as
with x=na, a being the lattice spacing. The resulting bound- D, (x,t)==+ Z(E_z) + \/;770 )f
ary conditions on the fermionic fields of EGA2) are thus 7 2\a 7L
W, (0)=—Wg,(0), E SINKX)
o o +& "WF+H.c), (A9)
(A3) =N
q’LU(L):_(_l)L/a\PRa’(L)v . e s
where k, —nq-r/L, ap, IS the boson annihilation operator
with L=(N+1)a. The left and right excitations are no obeylng[an(,, /1= 61.m84.,+ and the zero-mode operator

longer independent due to the presence of these boundarles
The next step of the approach is the introduction of right-
and left-moving bosonic field$g, , through

o, has a dlscrete spectrugimq, . The mode decomposi-
tion of the momentum operatdid ,= 9, /7vg conjugate
to the bosonic field can thus be deduced from &®):

K e|7TT 14 _ S \/—
—idR, vn ' )
\I’Ro_ 5ra e Ro, H"(X’t):nzl Tsm(knx)(_ anoeflknvpt_i_ a;(relknv,:t).
(A4) (A10)
imT 14
Lo= K€ e'PLo, In particular, one can check that mode decompositi@®
2ma and (A10) satisfy the canonical commutation relation
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[D(x,1),1(y,1)]=185,56(X—Yy),  (All)

S (x—y) being the delta function at finite sizej (x)
=>,e*¥/2L. The dual field®,, satisfiess,® ,==II, and
0O ,=ved®,, so that one obtains the mode expansion

t
+ \/—7700') °F

®U<x,t>=msog+ = ——2

cogk,x)

+§[

an,e” iknopt _ aﬁae'k"” Ft) ,

(A12)

where the zero mode coordinafe,, is conjugate tom, :
[ Do Too' 1= id, . and it is not fixed by boundary condi-

PHYSICAL REVIEW B 65 174406

This basis as well as commutation relatid@d.4) allow us
to express Hamiltonia(A8) in terms of two commuting gap-
less spin and charge contributions:

L L
Hozs_;fo dX[((?XCDC)Z-F (771—[(:)2] +;_;_j0 dX[((?XCDS)Z
+(7llg)?%]. (A16)

As is well known, a weak Hubbard interaction preserves this
famous spin-charge separation and, at half-filling, opens a
mass gapm, for the charge degrees of freedom. In the spin
sector, the effect of the interaction is exhausted by a renor-
malization of the spin velocity and by the existence of a
marginal irrelevant contribution in the Hamiltonian. In par-

tions (A7). Finally, the mode decompositions of the chiral ticular, the interaction does not renormalize the bosonic field
bosonic fields®g,, can be determined by identification Ps Since itis protected by the underlying &) symmetry of

(AB):

X+U|:t

+ \/—7700' \/;2)00

m
q)LU:E E ——2

©

the model. Neglecting the logarithmic corrections introduced
by the marginal irrelevant term, the low-energg<€m.)
Hamiltonian that describes the universal properties ofShe
=1/2 Heisenberg chain is simply

i . . L
—ikp _ 1 kg, v
+n:l ﬁ(anue ikp(x+vgt) anoel (x+v|:t)) HS:ﬁJO dX[((?XCI)S)Z‘l‘ (WHS)z], (Al?)
(A13) . . . .
v being the velocity of the spin collective mode. The bound-
- X—pet ary conditions of the bosonic fielé¢ can be obtained from
F '~
Prp=5 + [E(——z g, |——— — T oy Egs. (A7) and (A15),
Z ®4(0)=0 A18
-3 '_(an eikn(x—vEt) _ o T @=ikn(x—vgt)). (0=0, (A18)
= \/ﬁ o no
In addition, one can show that these chiral fields satisfy the q;S(L):q_W1
following commutation relations whelh> a: \/5

[(I)L(r(x!t)v(DLa"(yvt)] =—i Wﬁg,o’sgr(x_y),
[q)Ra'(X!t)vq)Ro’(yit)]:iWéo,a’sgr(x_y)v (A14)

[q)Ro(X,t),@Lo'(y,t)]:O if X:y:0
=—2i7d

o0’

if x=y=L
=—imd,  If 0<xy<L,

g being an integer. Similarily, the mode decompositions of
the chiral bosonic fieldsbsg, read, with the help of Eq.
(A13), as

Dg (x,t)= \/—7705 + \/—¢Os

o0

(a £ —ikp(x+v t)_a eIkn(x+v t))

sgn(x) being the sign function. =1 \/—
2. Effective spin density (A19)
The next step of the approach is the introduction of the
bosonic fields that describe the charge and spin degrees of & g(x,t)= \/—7705 —mdos
freedom:
q)R,LT+(I)R,Ll a e'kn(x vgt) al e—lkn(x ut))
q’cR,L:T, (A15) nEl \/—
P with [$os, mos]=i and [ans, =6, m. Moreover, from
Do = RLT TRLI Eg. (A14) we deduce that these fields obey the commutation
J2 relations
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[Psi(X,1), Py, 1) ]=—i7sgnx—y),

o= — =g,
[®oex,t), Doy, =imsgrix—y),  (A20) 2m\2
[Pr(X,1),Dg (Y, 1)]=0 if x=y=0 5 ®
=———=4
= —2i7 if x=y=L R o2m2 R
——im if 0<xy<L. _ (A27)
o t__ KK e
At this point, it is important to note that the last commutator Jsr™ me SR
in Eq. (A20) has the opposite sign of the prescription made
in Refs. 33 and 29. The actual value of its sign stems from _
the fact that we are considering open boundary conditions in gt VKK iy,
the lattice system which identify the Dirichlet boundary con- sl 2ra € '
ditions[Eq. (A18)] on the bosonic fieldb. In fact, one can
derive the value of the commutafobsg, @ ] by a different  whereas the staggered part is given by
method. The boundary condition at=0 on the chiral
bosonic spin fields is Ni res K¢
ni=— —1—cog20,),
D (0t)=—Dr(01)VH. (A21) ma
Since ®g (X, 1) =Dg (X+vst) and D g(X,t) =D g(vst—X), Nifr Kk
one thus obtains the folding condition0) ny= f lsin( \/5(95), (A28)
7a

q)SL(th) = (DSR( _X,t),

which is satisfied by mode decompositid#gl9). Moreover,
the commutatof dg(x,t),Psx(Y,t)] is fixed by the require-
ment that®¢ and I1g are canonical conjugate operators so
that, by using folding conditioifA22), we deduce:

[q)SR(th)vq)SL(yit)] == [q)SR(X!t)vq)SR( _yvt)]
=—imsgnx+y)=—im. (A23)

(A22)

L
Ng=— g 11 V2dy),

N\ being a constant stemming from the charge degrees of
freedom that have been integrated out in the low-energy re-
gime E<m,. The productk;«, has no dynamic, and in this
work we use the prescriptiok, x| =i for simplicity. Finally,

as it can be checked from the correspondeitg (A27)],

It turns out that the sign of this commutator is important forthe left-moving contribution of the uniform part of the spin
the investigation of th&=1/2 chain-boundary excitations of density [Eq. (A25)] obeys a operator product expansion
the open two-leg spin ladder as described in Sec. Il and 11l ofWith & similar result for the right-moving tepm

this work.

With all these results at hands, it is straightforward to Sab i €2220C (W)
derive the continuum description of the spin density starting J?L(Z)JSL(W)~ YR 2w (A29)
from the lattice spin operatd, 87 (z—w)

with z=v¢7+ix. The uniform left spin density,, identifies
the SU(2) Kac-Moody currents which are the generators of
the conformal field theory associated with the criticality of
o?(a=Xx,y,z) being the Pauli matrices. Using decompositionthe spin-1/2 Heisenberg chaisee, for instance, the REf.
(A2), the spin density separates into a uniform and staggerefdr a review.

parts in the continuum limit,

1
— t _a
SP=5C{,0asCis

5Cle (A24)

APPENDIX B: ALTERNATIVE DERIVATION OF THE

X) = Jsr(X) + Jg (X) + (— 1)¥2ny(x), A25
)= JsrX) 35100+ ( ) «(X) ( ) UNIFORM MAGNETIZATION PROFILE
ith the identifications . . . .
W ! eat In this appendix, we derive the component of the uni-
a _1igt Ay form magnetization profile of the cut two-leg spin ladder
SRLT2 T RLaTap T RLA ith a ferromagnetic rung coupling without using the Majo-
(A26) wi g g pling g J

rana fermion formalism. To this end, we return to the com-
plex fermion Hamiltoniar#<, [Eq. (17)] with J, <0. Thez
The bosonized description of the spin density can then bgart of the total magnetization density is given b§*
obtained with help of bosonization formula4), commuta-  =: 4" gy, g+ ¥ ¥\ ;. Using boundary conditiofi5) and

n3=3(V! 0%, Vet ¥, 02, p).

tion relations (A14), and canonical transformatio(A15).
The resulting expressions for the uniform part read

Hamiltonian (17) with m=—J,/27>0, we obtain the fol-
lowing mode decompositions for the fermionic fielgs | :
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m
Pir(X)= \[

+f*(k,x)ay ],

1
Mgyt — D [f(k,X)ay

VoL %

(B1)

m
N x—\[ Mg+ — % (k,x)ay +
YoL(X) FE[ (k,X)ay
+f(k,x)ay -], (B2)

where f(k,x) =coskx+ 6)+isinkx), 6, being defined by

Eqg. (29). HamiltonianH, [Eq. (17)] can be expressed in

terms of thea, .. fermionic modes

Ho= 2 ek) (@ a s~ ag-ay, ), (B3)

with the energy dispersioa(k) = \Ju?k?+m?. The uniform
magnetization profile along theaxis is then given by

|~

(MZ(x))= kZO [coS(kx+ 6)) +sirP(kx)— 1]((a} _ay -

2m
+al&akj))+Te‘2mx’”(agao>. (B4)
Using expression$29), noting thatng(e(k)) +ng(— e(k))
=1 andX,.¢—L[gdk/7 in the largeL limit, the uniform
magnetization simplifies as

" 2
<MZ(X)>: 2m —2mX/U<a a0> f dkl: m 2C012kX)
+m
PLLLINWE (B5)
(vk)2+m25m( ¥|

Performing the integrals, we finally find the following result:

(M200)= e I (afagy - 12). (86

This profile is identical to the one obtained by the Majorana

fermions calculatiodEq. (38)].
If we apply a uniform magnetic field along theaxis, the
Hamiltonian . [Eq. (B3)] is modified as

1/2),
(B7)

H+=k2 (re(k)—h):aj a, :—h(aja,—

r==+

PHYSICAL REVIEW B 65 174406
From 2% we recover the usual susceptibility and specific
heat of the spin-1 chain. We see t1§{%is the free energy
of an isolated spin-1/2. Thus, ftr<B andh<m, the ther-
modynamic properties of the system are identical to those of
an isolated spin-1/2. This result is in agreement with the
QMC simulations of long chaif® and DMRG calculations
of effective interaction of edge states in long chaths.

APPENDIX C: CALCULATION OF THE FUNCTION  F(x)

In this appendix, we compute the one-point function of
the disorder operator in the low-temperature phase of the
semi-infinite one-dimensional quantum Ising model with free
boundary conditions. To this end, the form factor approach to
correlation function® will be used, as in Ref. 69, for the
calculation of the magnetization one-point function.

Let us first recall some results on the form factors of the
bulk quantum Ising modéf®3 The excited states of this
model are created by acting on the ground state with fermion
creation operatorA’:

61 .. 60)=AT(61)---AT(6,)]0), (CD

where the#,’s are the usual rapidity variables parametrizing
momentum and energy asp(6;)=msinhé, e(6;)
=mcoshé , m being the fermion’s masa(>0 for T<T,),
and its velocity has been set to unity here for simplicity. The
creationA' and annihilatiorA operators satisfy the fermionic
anticommutation relation normalized as follows:

{A(6,),AT(02)}=278(0,— 6,). (C2

For T<T,, the form factors of the order operaterare

6,— 6,
=" ] tam—( 1,
1=i<j=2n 2
whereas the form factors with an odd number of rapidities
are zero. They are normalized such that the conformal limit
of the spin-spin correlation function is

(0|a(0)] 65 . . (C3

fZ
(0’(r)a'(0)>=rl—/4, (C4
with r = x?+ 72 and F=2~1%8A~32m~18 A peing the
Glaisher constant. In the low-temperature phase, the form
factors of the disorder operator are given by

. 6. — 6.
(0] w(0)]6y ... O )=i" I tanl-( - J>,
1si<j=2n+1
(CH)

whereas the Hamiltoniaf(  in Eq. (9) is not affected by the and those with an even number of rapidities are zero. For
magnetic field. The resulting free energy per unit length isT>T_ the roles ofs and u are interchanged.

then given by

1 :)c
=5, 2 In(1+e~Ale(0-rh)

- %m[z coshiBh/2)]= foulky gedoe (B8)

With these results, one can extend the method of Ref. 69
to calculate the one-point function of the disorder operator in
the low-temperature phase of the semi-infinite Ising model
with free boundary conditions. The free boundary condition
on the Majorana fermions (0)= ég(0)] is interpreted as a
boundary stat¢B) which encodes all informations about the
boundary conditiofi! In this approach, the Hilbert space of
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the theory is the same as in the bulk so that the one-point Jcoshe,— 1\/cosh0 1
function can be extracted through V(6;,6;,mx)= Coshd, T coshd, g~ mx(coshd; +coshd)
(C13
— —XEp
<’“(X)>_; (0[u(0)In)(n|B)e ’ (CH The functionA(mx) can then be expressed as a Fredholm

_ _ determinant:
[n) being a complete set of states of the bulk Hilbert space.

The boundary state corresponding to the Ising modeTl at dgl = 46,
<T, on the half line with free boundary condition§’is A(mx)= E o f_ 5 detv(6;,6;,mx)
t HLLP t Y,
[B)=(1+AT0)exg | 5 R(OAT(=0)A'(0)|[0), =Det(1+z . (C14
(C7)

Using the results obtained in Ref. 68(mXx), given by Eq.
with R(#)=—i coth(@/2). This boundary state contains a (C14), coincides with the Fredholm determinant representa-
zero-momentum one-particle state which corresponds to fion of the one-point function of the Ising magnetization for
domain wall, attached to the boundary, that separates twp<T_ with fixed boundary conditions, i.eG(mx) in our
domains of opposite magnetizatioT{T.). Such a term notations[see, in particular Eq(55)]. Therefore, from Eq.

contributes to the expectation vaI[Eq. (CG)], while it does (C9), we f|na||y deduce the f0||owing relation:
not enter the calculation of the one-point function of the

order operator. Expanding the exponential in EQ7), we F(mx) =e ™G(mx). (C1H
obtain the following expression using the fact that the form

fgct.ors of u are non-zero only for an odd number of rapidi- )ppENDIX D' EXPRESSION OF THE FUNCTIONS G(x)
ties: AND H (x) IN TERMS OF SOLUTIONS OF THE

PAINLEVE Il EQUATION
dal »d o,
n(x))= 2 T ...fo 5

According to BarieW® the functionsG andH, describing
the crossover effect on the local magnetization of the semi-

— 01,01, ...— Hn,0n>ﬁ( 0,) ...R(6,) infinite Ising model aff <T,, with free and fixed boundary
conditions, can be expressed in terms of a solutgf) of
X @ M{1+2 cosh@y)+ . .. +2 cosh@p)] (C8  the Painlevelll differential equation. This latter equation

. . . reads as follows:
From this we deduce the identity

2
(r(x))=e"MA(mXx). (€9 ijaZ (;gg) —ainz—zmz—%. (D1)
The next step of the approach is to use the form factqu of
[Eqg. (C5)] to derive an expression fok(mx). First of all,  The boundary conditions on are
one has
0
(0|(0)[0;60,,— 61; . ..;0,,— 6,) 7(6)~— 6| Iny + e |(6—0),
7 il ¢ 7 24 (20 o2
=i"]] tan —tanha tan tan ,
H 1l ) ( 2 w0122 (g,
(C10

ve being the Euler’s constant. The functio@sandH that
so that, using the expression ( 6), we obtain are the building blocs of the staggered magnetization and
dimerization profiles are related to the solutig(d) by

d01 2d 6, [ 6,
=3, 5[5 ﬁ(iﬂl ta”k?ta”hai) G(y)= nl"‘(y)exp[ [/ de(gnz( o) (1o
X detW( Gi ,ﬁj)e’zmxgl COSh(Hk), (Cll) _ (3_2)2) _%[1_ 77( 0)]] },
with (D3)
» 0
W8, 6)= 2/coshg;cosh, 12 H(y)= 771/4(Y)exp{ J;, da(gnz( 0)([1— 7%(6)1?
'"77 coshg; + coshe; a2l 1
Following Ref. 69, we introduce the quantity _(d_e) )_5[771( 0)—1]”.
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There is an interesting connection between the Painleve
[Il differential equation and the two-dimensional sinh-
Gordon equation. Indeed, the relation is obtained by consid-

ering (0)=e X9 so that differential equatiofD1) takes
the form

d’y 1dy

ﬁ‘l‘g@zz SinhZX.

(D4)

The functions G and H in EdD3) can then be expressed in
terms ofy:

PHYSICAL REVIEW B 65 174406
» 6 dy)\?
= ax(V)/4 _ i B
G(y)=e ex;{ Jy de{s 4 sintfy (de) }

_ %(1_eX(0))]:|,

(DS)

2
4sink?X—(3—);) }

o 0
H(Y)=eX(y)’4exr{f da[—
y 8

— %(ex((’)_ 1)H_
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