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Dimensionality effects on the Holstein polaron
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Based on a recently developed variational method, we explore the properties of the Holstein polaron on an
infinite lattice inD dimensions, where<D<4. The computational method converges as a power law, so that
highly accurate results can be achieved with modest resources. We present the most accurate ground state
energy(with no small parametgto date for polaron problems, 21 digits for the one-dimensi¢ha) polaron
at intermediate coupling. The dimensionality effects on polaron band dispersion, effective mass, and electron-
phonon(el-ph) correlation functions are investigated in all coupling regimes. It is found that the crossover to
large effective mass of the higher-dimensional polaron is much sharper than the 1D polaron. The correlation
length between the electron and phonons decreases significantly as the dimension increases. Our results com-
pare favorably with those of the quantum Monte Carlo, dynamical mean-field theory, density-matrix
renormalization-group, and Toyozawa variational methods. We demonstrate that the Toyozawa wave function
is qualitatively correct for the ground-state energy and the two-point electron-phonon correlation functions, but
fails for the three-point functions. Based on this finding, we propose an improved Toyozawa variational wave
function.
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[. INTRODUCTION the full quantum dynamical feature of phonof®etails can
be found in Ref. 2L The variational space is defined on an
The Holstein model, as a paradigm for polaron formation,infinite lattice, although only a finite separation is allowed
has attracted renewed interest in recent years because sevdtgiween the electron and the surrounding phonons in current
lines of experimental evidence support the presence of pdmplementations. We systematically expand the variational
laron carriers in strongly correlated electronic materials, in-SPace so that highly accurate results can be achieved with
cluding colossal magnetoresistance manganitegjanicss ~ Modest computational resources. .
quasi-one-dimensional systems, and High-cuprates:* The main purpose of this paper is to characterize the Hol-
Theoretical research on polaron physics began six decadSLein Polaron in higher dimensions. We consider a single-
ago, and the problem remains unsolved due to its in'[rinsig.ec'[m.n Holstein Hamiltonian on B-dimensional hypercu-
many-body complexity from the electron-phongai-ph) in- ic lattice,
teraction.(The problem of excitons coupled to phonons is

formally equivalenf) Standard perturbation treatmehtsre H=Hei+HepntHpn

usually limited to a particular parameter regime. With con-

stantly growing computational resources, various numerical =—t> (clc.+H.c)—\D clci(a+al)
techniques have been applied to polaron problems in recent o R

years, which give the most reliable results in the physically
interesting crossover regime. These techniques include + wE aTaj , (1)
finite-cluster exact diagonalizatiotED),2~*® the quantum T
Monte Carlo(QMC) method***° the density-matrix renor-
malization group(DMRG) method’® and the global-local wherec] creates an electron amd creates a phonon on site
variational methodGLVM)."’ j. The parameters of the model are the nearest-neighbor hop-
Recent numerical studies have focused on the oneping integralt, the el-ph coupling strengtk, and the phonon
dimensional1D) lattice model. Due to the enormous phonon frequencyw. The electron is coupled locally to a dispersion-
Hilbert space in three dimensions, the dimensionality effectsess optical phonon modé.There are two commonly de-
on the polaron problems are less studied except in the adidined dimensionless control parameters, the adiabaticity ratio
batic (or semiclassicalapproximations?*®and in perturba-  y=w/t and the el-ph coupling strengia= E,/2Dt, which
tion theory? The QMC method is also capable of computing is defined as the ratio of polaron energy for an electron con-
the energy and effective mass of the 3D polaron, but the fulfined to a single sit€E,=\?%w and the free electron half
dispersionE(K) is only reliable in the strong-coupling re- bandwidth Dt. The strong{weak) coupling regime refers
gime. However, with a recently developed variationalto «>1 (<1), and the adiabatitantiadiabatit regime re-
method, we can compute the polaron effective mass, banférs to y<1 (>1). An additional dimensionless parameter
dispersion, and el-ph correlation functions of the ground ands g=\/w, which appears in strong-coupling perturbation
low-lying excited states in all coupling regimes, preservingtheory.
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FIG. 1. A small variational Hilbert space, a subset of the gen-
eration 3 space, is shown for the 1D polaron. Basis states in theA
many-body Hilbert space are represented by dots, and nonzero of
diagonal matrix elements by lines. Stdte in the root state, an 10

14

electron at the origin with no phonon excitations. Vertical bonds 1D

create or destroy phonons. St$2¢ is an electron and one phonon, w0 | o—o 2D

both at the origin. Statg8) is an electron on site 1, and a phonon on — 3D

site 0. The dots can also be thought of as Wannier orbitals in & r—an 4D

one-body periodic tight-binding model. 10

~20 . n "
A variational space is constructed beginning with a root 0 10* 10° 10° 107

state, the electron at the origin with no phonon excitations, Nst

and acting repeatedly with the off-diagonal termhsagid \) _ _

in the Hamiltoniar{Eq. (1)]. States in generatiom are those FIG. 2. The iractional erroA in the polaron ground-state en-
that can be created by acting times with off-diagonal zrggc:?of f:?;;o(;eoéihg 5“ um_bleroogggts'_sls(t)a‘g&n the Hilbert
terms. All translations of these states on an infinite lattice ar&" P Rl T
included, and the problem is diagonalized for a given mo-which is a qualitative improvement on exact diagonalization
mentumk using a Lanczos methdd.A small variational ~ @S it is currently implemented, the latter requiring exponen-

: o : tial time.
isnp?:c;e, Villt?.l_iiv?:osr;ataegcﬂfgtzlerflirr?]gr(?ézt gglnl)q, Ijt:\zg\rllv: are In this paper we present detailed studies of the dimension-
9- . P ality effect on the Holstein polaron. First of all, we explore
done with over 10 states per unit cell.

) the polaron characteristics in the=0 ground state, and
The total number of stateN, per unit cell aftem gen-  compare our results with previous studies from QMC,
erations increases exponentially approximately@s-)™,  DMRG, and dynamical mean-field theofPMFT). Second,
where D is the spatial dimensior{.The bipolaron has the we compute the el-ph correlation function and the polaron
same D +1)™ dependence, but with a larger prefactdhe  energy E(k). Finally, the validity of the Toyozawa varia-
perhaps surprising fact is that while the size of the Hilberttional method is investigated by calculating the ground-state
space grows exponentially witm, the error in the ground- energy, and the two- and three-point el-ph correlation func-
state energy decreases exponentially, because states #Hms.
added in a fairly efficient order. Figure 2 shows the fractional
error in the ground-state energy as a function of the number
of basis states in Hilbert space. The accuracy is determined A. Quasiparticle weight Z, and effective massm*
by comparing the energy as the size of the Hilbert space is the gmall polaron crossover or “self-trapping transition”
increased. At intermediate coupling in any dimension, thé\as heen one of the core issues in polaron problems. Adia-
energy improves by about a factor of 8 with eachpatic theory suggests that the polaron in two and three di-
generatiorf> In one dimension, each added generation apmensions(but not in one dimensionis in an “extended”
proximately doubles the size of the Hilbert space, whereas istate with an infinite radius below an el-ph coupling thresh-
four dimensions, the size increases fivefold. This rapid coneld A\, and beyond which is a “localized” state with infinite
vergence at intermediate-coupling is valuable since no anffective mass.(This phenomenon is usually termed the
lytic approach is reliable in this regime. Table | lists the “Self-trapping transition.) However, our studies confirm
energies for 1D to 4D polarons at intermediate to weak coythat in all dimensions, there is a crossover rather than a self-

pling. The accuracy, 21 digits for a 1D polaron, is high com-{fapping transition(ground-state properties are analytid
pared to that of other numerical methods Sl,JCh as two the parameters are finite. This result is consistent with some

(o) : 14
three digits for OMC, six digits for DMRGor GLVM), and 6ther recent studieS:** and corroborates the theorem of

: - 3 Gerlach and Leen?
up to eight digits for ED™" Moreover, for the 3D polaron at  The quasiparticle weightrenormalization factoris de-

intermediate to strong coupling, an energy accuracy of 8—1@ned by the overlagsquared between the bare electron and
decimal places can be achieved in the nonadiabatic regimg polaron, i.e.,

with fewer than 3 10° basis states. To obtain an accuracy a2

beyond 13 digits, the code is executed in quadruple preci- Zy=[(Woxlc|0)]%, )

sion. The present variational method requires only powerin which |¥ ) is the ground-state wave function of a po-

law time to achieve a given accura¢y any dimensioj laron and|0) is the vacuum stateZ, can be measured in
photoemission or tunneling experiments. Figure 3 shows the
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TABLE |. Polaron ground state energies ket 0 in one to four dimension§lD—-4D) for «=0.5, g

=1.0, andt=1.0.
1D 2D 3D 4D
Eg -2.46968472393287071561 -4.814735778337 -7.1623948409 -9.513174069
crossover oZ;_, as a function of ¢ atg=3, for 1D—-4D Mo 1 9*3(k,E) 33 (k,E)
cases. We see thtite crossover to large effective mass (large m* Sk=0To1 T g2 TTE ) Q)

z~ 1) of the higher-dimensional polaron is much sharper than

the 1D polaron ForD>1, a fairly abrupt crossover occurs \yhere the derivatives are evaluated at the ground state en-
at a>1, whereas the crossover for the 1D polaron spans BrgyE=E, andk=0. In the variational space of Fig. 1 or in
wide range ofe. With a smallerg (but greater than)lthe  ihe"full space, the self-energy has a nonzermependence
crossover will be slower but with the same dimensional charyecause distinct unit cells are connected at branch (@eah
acteristics. In the limit 4—0, the phonon wave function {_o_3 .), in addition to the trivial connection at root
contracts to the electron site, wih=exp(~g?). The inset  |eyel. A restricted variational space, the comb basis, allows
shows a comparison d, andmg/m* for the 1D polaron.  phonon excitations only on the electron site, as shown in Fig.
Their fractional differences, defined asif/m* —2,)/Z,, 4. |n this subspace, the self-energykisndependent, since
is shown as a dotted line. The maximunis 22%, in the  the only path between unit cells is at the root level. The
intermediate coupling regime, while the minimum occurs asse|f-energy remaink independent even in a larger space in
la—0 (small t), where § is the order oft® from strong-  which the tree trunks sprout lateral branches, so long as the
coupling perturbation theorySCPT. We find thaté de-  pranches do not connect to neighboring unit cells. For these
creases significantly as the dimension increases. The maxizses, theZ factor and inverse mass are identicé 0. In
mum differenced,,y is 4.5% for the 2D polaron and 2.0% O(t) SCPT, § vanishes for the same reason afg_,
for the 3D polaron. F0|g:\/§, Smax In three dimensions =moy/m* =exp(—g).
drops to 0.63%. The effect of dimensionality o& is made plausible by the
The ground-state energf satisfies E=ey—2tcosk)  following. In the Holstein model, the dimensionalify does
+2(k,E), whereX (k,E) is the self-energyZ,—o is the prob-  not directly affect the ternHe,.,, in Eq. (1), because the
abl'lty of the wave function on the root site, and from first- e|_ph Coup]ing is local and the phonon is dispersionless_
order perturbation theor¥,_,=JE/de€, resulting inZ,_o  High-dimensional polarons share the same simplicity of the
=111-92(k,E)/JE]. The origin of the difference between el-ph coupling as 1D polarons. Furthermore, we §ecec.
the inverse mass anfd—, lies in thek dependence of the |I1) that the el-ph correlation length decreaseBascreases.
self-energy, Thus thek dependence of the self-energy weakens in higher
dimensions. The above arguments do not, however, hold for
the Frdnlich model (or the extended Holstein modelvith
longer-range el-ph coupling; 2 whereZ, andmy/m* be-
have quite differently.

10°

107 |
B. Comparison with QMC, DMRG, and DMFT methods

Figure 5 shows our results for the effective mass as a

Z o2 | function of @ (at fixed y=1.0) in comparison with DMRG
and QMC. Our results are accurate to at least four digits,
107 3
2
10° 0 0‘5 1 1I5 2
1/ . ol o2
FIG. 3. Quasiparticle weighf;_q as a function of the inverse FIG. 4. The comb basis, a variational space in which phonon

coupling strength ¥ for one (solid ling), two (dotted ling, three  excitations are present only on the electron site. Vertical lines create
(dashed ling and four(long dashed linedimensions.« is varied phonons and horizontal lines are the electron hops. $tates an

by changing the hopping at fixed w and\. The comb basis ap- electron on site 0 and no phonons. St@gis an electron and one
proximation (see below is shown as a dot-dashed line. The inset phonon, both on site 0. Stal) is an electron and two phonons, all
shows the comparison of the inverse effective nmagém* (dashed  on site 0. Staté4) is the translation of statd). The comb basis is
line) andZ, (solid line) for one dimensions. The fractional differ- a subset of the larger variational space. As in DMFT, it only keeps
enceds=(my/m*—2,)/Z, is plotted as a dotted line. track of the on-site el-ph correlations.
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10° ; ‘ , 10 ; ‘ .
——— This work
s---a QMC —— This work
o---© DMRG =---2 OMC

T ’ 0t oo DMRG v

(b) 2D

, — This work
10 a5 QUC
go
€
‘ (c)3D

10°

FIG. 5. The effective mass* for the (a) 1D, (b) 2D, and(c) 3D polarons is compared to DMR@®Ref. 1§ and QMC (Ref. 149
calculations(No DMRG data are available for the 3D polarpin all casesw=1.0, andt=1.0. Note the different horizontal scales.

which is well below the linewidth. In all casg&igs. 5a)— 1D [Fig. 5@)] the results from DMRG are as accurate as
5(c)], m*/mq increases slowly whew is small, followed by  those from QMC. DMRG does not, however, calculate the
a rapid increase whea>1. Since it is calculated ab=t mass accurately in 2[Fig. 5(b)].

=1.0 (not a smallt), the mass behaves differently than = Dynamical mean-field theory has previously been applied
exp@? that SCPT suggests. Note that the crossover is morto the Holstein polaron problefl.The approach is exact in
rapid asD increases, which is consistent with the results ininfinite dimensions but an interpolation to 3D lattices is
Sec. Il A. In every dimension, our results are in quantitativemade possible by using a semielliptical free density of states
agreement with QMC. The numerical error in QMC is ap-N(E) to mimic the low-energy features. Figure 6 shows a
proximately 0.1% to 0.3%* which is good though less ac- comparison of our results on a cubic lattice to DMFT, which
curate than finite cluster ED or the present approach. DMR@G made by setting the bandwidths equal. Overall, in panel
is generally considered a powerful tool in dealing with (a), we see a qualitative agreement between the two calcula-
many-body problems. Using DMRG, Jeckelmann and Whitdions. DMFT is accurate in the strong-coupling regime,
have calculated Holstein polaron properties in 1D and 2Dwhere the surrounding phonons are predominately on the
DMRG seems to be most successful in calculating theelectron site. This is also the regime where strong-coupling
ground-state energyat k=0) and el-ph correlation func- perturbation theory works well. In Fig(#6), we see our nu-
tions. However, finite-size scaling is required for DMRG to merical results in agreement with weak-coupling perturba-
computem* ,*® which becomes more difficult fob>1. In  tion theory in\. However, DMFT fails to computen* cor-
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x(0)

o

0 1 2 3 ;1 5 FIG. 7. The on-site correlatiog(0) for the 3D polaron. Our
o results(solid lineg are compared to the DMFTdotted lines with
symbolg. The parameters are the same as in Fig. 6

Ill. ELECTRON-PHONON CORRELATIONS

-~-- WCPT Next we compute the correlation function between the
106+ —— This work 0 1 electron and phonon displacemeilattice deformatiop in
o> DMFT the ground state:
x(i=])=(¥olclci(aj+a))|Wo). @

*
m*/m,

This correlation function can be considered as a measure of
the polaron sizé? It should not be confused with the “po-
laron radius” in the extreme adiabatic limit, which refers to
the spatial extent of a symmetry-breaking localized state. We
would like to emphasize that a comprehensive study of el-ph
correlation for the ground state of the 3D polaron has not yet
been reported by any other modern numerical technigjte,

03 our knowledge. Then-site correlationhas been studied by

o DMFT, and the results are compared in Fig"*The on-site
lattice distortiony(0) is shown as function o and the rest

of parameters are the same as in Fig. 6. In Figy(Q) is
normalized to 1 wher is infinite (i.e.,t—0) according to
lim_ox(0)=2g. Again, we obtain a good qualitative agree-
ment. The curves show an abrupt change in slope only for
large g, where the discrepancy with DMFT is largest.

Figure 8 shows the effect of dimensionality on the corre-
rectly in the weak-coupling regime. The reason is that, ination functiony(i —j). In the strong-coupling regime, panel
DMFT, the lattice problem is mapped onto a self-consistentg) shows, in every dimension, a sharp drop on the first two
local impurity modef;>** which preserves the interplay of sites and an exponentially decaying tail. For the 3D polaron
the electron and the phonons omithe local level We will at a distance of three lattice siteg(3)/x(0) drops below
see that the spatial extent of the el-ph correlations increasei® . In the weak-coupling regimiganel(b)] x has nearly a
as the el-ph coupling decreases, which explains the signifsimple exponential decay with a less steep slope, which im-
cant discrepancy in the weak-coupling regime. It is alsoplies a nontrivial extent of the el-ph interplay in space. In
worth noting that DMFT neglects tHedependence of self- both panels, we observe a common trend ghaecays more
energy, i.e., the inverse effective mass is always equal to theapidly as the lattice dimension increases, i.e., the surround-
quasiparticle weight. As we have pointed out above, the difing phonons are more localized near the electron in higher
ference betweemmy/m* and Z, is not negligible in the dimensions. This feature enables DMFT to give sensible re-
intermediate- to weak-coupling regime. sults in higher finite dimensions. We have also investigated

FIG. 6. (a) The massan* of the 3D polaronw=1, this work
(solid lines compared to DMFTdotted line$ (Ref. 29. (b) Com-
parison to weak-coupling perturbation thedCPT) for g?=5.
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10° 1
Strong coupling regime
2
o0 R (a) g =50
E/2Dt=3.0 08 |
X 10° 2
8
o
06 |
107
107° :
’ * ( i ) ? " %4 05 1 15 2
i— . .
) 1/0

FIG. 9. The probability density in the ground state that resides
in the comb subspad@., ., as a function of the inverse bare cou-
pling strength 14, for the 1D-4D polaron. The parameter set is the
¢ =20 | same as in Fig. 3.

', E/2Dt=05

Weak coupling regime

a=0 ora=», P,ompgoes to 1. The minimum overlap oc-
curs in the crossover regime. As expectBd,, gets closer
to 1 asD increases. For the 3D polaron, the minimum of
| Pcomb IS 91.1%, in contrast to 45.8% for the 1D polaron.
™~ These trends can also be seen analytically. In the adiabatic
4 limit (w=0), perturbing int from a self-trapped state with
energy E,, the self-trapping transition occurs at=1

—1/(4D). The leading order correction .., for the
self-trapped polaron state is

8. 12 16 1
(i-j) ACombE:l-_Pcomb:W- (6)

FIG. 8. Correlationy of the electron density and the phonon In the nonadiabatic limitA .o, can be calculated by SCPT

displacement as a function of distande-§) for the 3D polaron - . - .
along the (1,0,0) direction, the 2D polaron along the (1,0) direc-to second order in the hoppirglt takes the following form:
tion, and the 1D polaron db) strong coupling, andb) weak cou-

92(n+ m) 1
pling, = 1.0. Note the different vertical scales.

94e—292 »
Acomb:—z—ZDa nzo mE::L nimi —(n—i—m)z-

()

other two-point el-ph correlation functions such as
(clciafa;) (not shown, which has dimensional characteris-
tics similar toy.

The rapid decay of the el-ph correlation function for the
higher-dimensional polaron suggests that the off-site el-p
interplay is relatively weak in larg®. One would then ex-
pect the comb basis of Fig. 4, a subspace of the full Hilber
space, to give a better approximation in laigeWe check
this assumption by numerically calculating the fraction of the

probability density in the exact ground state that resides in .
the comb subspace, IV. ENERGY DISPERSION E (k)

The above expressions show that for a giverand g, the
discrepancyA .,mp decreases ab increases and eventually
vanishes in infiniteD. The comb basis should thus give a

ood account for the Holstein problem in laiDeWe see in

ig. 3, however, that dimension 3 is not high enough for the
comb to give quantitatively accurate results, and that dimen-
%ion 4 is not much better. Convergence to higher dimensions
is slow.

. Most of the recently developed numerical methods are

Pcomt={(WolP[¥o), (5  capable of computing the polaron band dispersion in 1D. For

) the 2D polaron, the only nonperturbative calculations of

whereP is the projection operator onto the comb subspaceyand dispersion published so far were computed by finite-
and the wave functiof’, is obtained in the full variational cluster ED(Ref. 11 and quantum Monte Carlo methotss.

space. Figure 9 show’.,pas a function of the inverse bare Due to the huge phonon Hilbert space in high dimensions,

coupling constant I/ for 1D—4D cases. In both of the limits the previous ED results are limited to small clusters, so that
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tum, so as to makg, essentially vanish and to give a band-
width E(7) — E(0)~ w. Due to the large extent of the el-ph
correlations in the flattened band, our results are less accurate
in the flattened regim@ In the case of intermediate coupling

N =3.5, the polaron bandwidth is narrower than the phonon
frequency. The upper part of the band has much less disper-
sion than the lower part bwtith a substantial Z. This in-
dicates a distinct mechanism for the crossover as a function

of k. In the case of =4.5, the strong el-ph interaction leads
to the well-known polaron band collapse and a significant

08 | 4 AN ] suppression oZ, at all k.
! \
| ! \ ]
G 0.6 (b) Il AN \\ V. TOYOZAWA VARIATIONAL METHOD
04 | t/ N 1 . N I
,'},. \ Four decades ago, a simple and intuitive variational ap-
oal [ ‘\ 1 proach to the 1D polaron problem was proposed by
ol A N Toyozawa®® This method has been successfully applied to
A1) 0 (1.0,0) (1.1,0) @11 various fields and revisited in a number of guiéé8
kim throughout the years. It is generally believed to provide a

- qualitatively correct description of the polaron ground state,
FIG. 10. Ground state enerdy(k) of the 3D polaron in panel  aside from predicting a spurious discontinuous change in the
(a) and quasiparticle weight, in panel(b) for three different el-ph  m3ss at intermediate coupling. We show below that although
coupling constantsh =4.5 (solid line), \=3.5 (dotted ling, and  {he Toyozawa wave function gives a good account of the
A=2.0 (dashed ling The other parameters ae=2.0 andt=1. 440 state energy and the two-point functions, it fails to
The dot-dashed line ifg) is the dispersion of a bare electron. The correctly describe the three-point functions.

corresponding ground-state energiE¢k=0) are —10.608348, The Toyozawa wave function is written as a product of
—8.0642850, and- 6.588526818, respectively. coherent states

the band dispersion can or_1|y be evaluated at quym|n_t§. |‘IfT(k)>=2 elki CHO)H |Zj+m>a ®)
The QMC allows calculation of energy at any desired i m

point, but is limited to the condition that the polaron ban.d'where|zi) is a coherent state of the phonon mode onisite
width is much smaller than the phonon frequency, WhIChthe antiadiabatic limitw/t— o, this wave function gives the

corresponds to the strong-coupling regime. g _ _ )
The present variational approach, however, is not subjec(?XaCt solutionc; |0>|Zl>’ wherezj=\/w and the otr’lerz S
are zero. For the general case, momentun0, thez's are

to any of the above restrictiodd.Figure 1@a) shows the : . o
y 9 @ real and symmetricz; , ,=z;_,. To determine the validity

evolution of the band dispersion for a 3D polaron along sym ;
b b 9 SYM ot the Toyozawa wave function, we probe the structure of the

metry directions in the Brillouin zone at various el-ph cou- phonon cloud in thek=0 ground state by computing the
ling constants.. Figure 1@b) shows the correspondirgy, . ! N . . ;
Ping 9 @) P " following two- and three-point el-ph correlation functions:

Starting with weak coupling. =2.0 (dashed ling the po-
laron band is close to the bare electron band at a lower band

edge. The deviation between them increasek aEreases.
WhenE(k) —E(0) approaches, we observe a band flatten-
ing effect, similar to the 1D and 2D cases, accompanied by a
sharp drop of quasiparticle weigly,. The largek lowest- The z's in Eq. (8) are optimized so as to give a minimum
energy state can be considered roughly ak=a0 polaron energy. It can be proved that the optinzas decay exponen-
ground state” plus “an itinerantor weakly bound phonon tially as a function of the el-ph separation. Thus they always
with momentunk.” It is the phonon that carries the momen- give purely exponentially decaying two-point functions re-

aa(j)=(clcoa]a;), (9)

+

as(j,m)=(cicoaajalam). (10)

TABLE II. A comparison of the ground-state enerBy, two- and three-point el-ph correlation functions,
and Z,_,, evaluated by the present method, the Toyozawa method, equafiprand Shore-Sander wave
functions @'V in Ref. 40. Parameters are=1.2, o=1,t=1, andD=1.

Eo a,(0) a3(1,2) a3(1,—2) Zy—g
This work -2.6935657977492 . . 0.40770  0.0004691 0.000005888 0.62732.
Toyozawa -2.662819 0.32527 0.0002142 0.0002142 0.65738
Eqg. (12 -2.671530 0.34240 0.0007649 0.000003244 0.64271
Shore and Sander -2.685826 0.37780 0.0005572 0.0001132 0.63757
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10° : : : : TABLE lll. A partial list of the optimized phonon wave function
1 ) zj in Eq. (11).
_1 [ ]
10 This work 1 e ,
o Toyozawa !
102 | o Eq.(11) -6 -0.12384-03
-5 -0.3901®-03
10° | -4 -0.11879-02
-3 -0.3217®-02
w04 | (a) -2 -0.4844D-02
-1 0.3529@-01
= 0 0.5851® + 00
0 1 0.3815® +00
- 2 0.1404® +00
10 ' ' ' ' 3 0.4611D-01
4 0.1463D-01
10° 5 0.4590®-02
6 0.1434®-02
10°
is the number of off-diagonal operations, phonon creations
and electron hops, required to create a state from the bare
107" electron state. Shorter paths are favored at intermediate or
weak el-ph coupling, although more on-site phonons can be
favored at large couplingFor example, we have
-14
" (Wolctat|o)l > |(Wolckallo)| > |(Wolcfaflo)|> -
Jpon in the one-phonon subspace and

[(Wolcsagad| 0)|>[(Wolchaial0)| >(Wolciata 1[0)]

FIG. 11. >

FIG. 11. (a) The two-point functiona,(j) is evaluated in one .
dimension by the present variational methésblid line with N the two-phonon subspace. The amplitude attenuates rap-

squarey the Toyozawa methotashed line with circlgs and the idly as the phonon-creation path increases.

modified Toyozawa methddq. (11)] (dashed line with diamongls The numerically exact result in Fig. @ shows that it is
(b) The three-point functionsas(j,j+1) (solid liney and  far more favorable to create two-phonon excitations on the
az(j,—j—1) (dashed lings The symbols are the same as(a). same side of the electron than on opposite sides. Therefore,

Note that the plain Toyozawa method gives exactly the same resuliwe propose to write a polaron as a sum of two asymmetric
for the two three-point functions, which in fact differ widely. Pa- clouds, one extending like a comet tail primarily off to the
rameters are»=1.0, t=1.0, and\=1.2. right and the other extending to the left,

gardless of the el-ph coupling. This, however, is not true of .

the numerically exact results. Table Il and Fig. 11 compard ¥5(K))= >, €Mcf|0)(- - |z _)z—1)|Z))|Zj+ )12 2) - - -
Toyozawa’s results and the numerically exact results for in- !

termediate coupling® We note that the Toyozawa wave oz zie Dz zi— Dz —o) ), (11)
function gives reasonably accurate results for the ground- : : 1 .

state energy, two-point functions, adg_,. In Table II, the ~wherezj_n#7j.,, and the normalization factor has been
fractional error in energy is about 1%with z,,/z; ~ Omitted. The optimized(minimum-energy phonon wave
=0.35568 andz,=0.57033). However, it gives wildly inac- function in Eqg. (11) is strongly asymmetric, and in fact
curate three-point functions. For example, Toyozawa'schanges sign on one side, as shown in Table Ill. The main
a3(1,—2) is a factor of 36 too large and,(1,2) is a factor ~ Purpose of Eq(11) is to investigate how the simplest asym-
of 2 too small. Toyozawa'srs(5,—6) is too large by six Metric wave function improves the Toyozawa method. Shore

orders of magnitude. This failure indicates that the electror@nd Sander have proposed a more complicated wave func-
does not organize its surrounding phonon cloud in the wagion |¥'s9 which is a sum of the symmetric term in E@)

that Toyozawa suggested. Instead, by directly analyzing thand the two asymmetric terms in E¢11).* (Asymmetric
exact ground-state wave function, we find that the electronvave functions were also considered in Ref.) 3he num-
organizes its surrounding phonons like a traveling salesmaber of independent variables i1,/ , andWgsis 3N, N,
does, namely, the polaron favors the phonon configuratioand 3N, respectively, wherd\ is the number of sites that

with a shorter creation patliThe length of the creation path allow phonon excitations. The minimum energies from the
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-2 - ‘ ‘ polaron energies and wave functions available from 1D to
4D at intermediate coupling.

Previously, a thorough investigation of the dimensionality
effect, including correlation functions, was out of reach of
numerical methods. The main findings of the dimensionality
effects on the Holstein polaron are summarized as follows:
The crossover from a quasifree to a large effective mass is
found to be much sharper in higher dimensions. As was rec-
ognized previously, there is no symmetry-breaking self-
trapping transition for finite parameters in any dimension, as
suggested by adiabatic thedqajthough there is a phase tran-
sition in the first excited statd. See also Ref. 29. Our re-
sults form* agree with QMC, although there is a discrep-
ancy with DMRG inD>1. The electron-phonon correlation

-7 s ‘ ‘ functions decay significantly faster in higher than lower di-
08 ! 1)"[ 2 28 mensions. This implies a shorter el-ph correlation length in
large dimensions and leads to a diminishing difference be-

FIG. 12. A comparison of the ground-state energy as a functioqyeen the inverse effective masg /m* and the wave func-
of the coupling constant from various variational approaches fogjgn renormalizationZ;_, as D increases. The DMFT ap-
w=1 andt=1. proach thus gives better results in higher dimensions. Our

R . comparison shows that DMFT gives qualitatively correct re-
above methods are compared in Fig. 12. It is clear that thgults for the effective mass, mean phonon number, and on-

energies are improved as we expand the variational Spacgye ,ponon distortion in the intermediate- to strong-couplin
WTC\P%,C‘P_QIS' The Shore-Sander method shows the mOSPegirﬂe. We also examine the comb-basis approgach, \F/)vhigh
substantial improvement in the crossover regime. The coMymits the el-ph correlation to the on-site level as DMFT
parison of other polaron properties is shown in Table Il andyoes. The discrepancy between the comb basis and the full
Fig. 11. Our trial wave functiof'?'1) improves the energy pasis decreases slowly Bsincreases.

by 30% and thek=0 Z factor by 50% compared to 75%  Fjnally, our approach is compared to the well-known Toy-
and 66%, respectively, from the Shore-Sander wave functionyzawa variational method. We quantitatively examine the
In Fig. 11(a), Eq. (11) gives a more accurate two-point func- method in the intermediate-coupling regime. Overall, the
tion a,(j) than the original Toyozawa function. It similarly Toyozawa wave function gives reasonably accurate energy
improves the other two-point functiop; (not shown. Panel  and two-point functions, but fails seriously for the three-
(b) shows two three-point functionsas(j,j+1) and  point functions(The numerically exact three-point functions
a3(j,—]—1). Due to its symmetric phonon cloud, the Toy- are quite different for excitations on opposite sides of the
ozawa wave function must give exactly the same result foelectron compared to the same side, whereas the Toyozawa
the two three-point functions. In contrast, the exact resultsvave function predicts that they are identizaNe propose
show thatas(j,j+1)>as(j,—j—1). Equation(1l) gives  an improved variational wave function, a sum of two asym-
the correct behavior of the two three-point functions onmetric phonon cloud§Eq. (11)], which gives improved
nearby sites, but loses quantitative accuracy in the tails. Althree-point functions, and somewhat more accurate results
though the Shore-Sander energy is better than that of Eqer the energyZ factor, and two-point el-ph correlation func-
(12), the Shore-Sander three-point functions are actuallyjons.

worse. The simplest attemp#1) to correct the identified For all the polaron features calculated, the present nu-
shortcomings in the Toyozawa variational wave function apmerical approach compares favorably to other numerical
pears to be a step in the right direction, although not asnethods in terms of accuracy, ease of implementation, and
quantitatively accurate for most properties as variationathe ability to compute ground- and excited-state energies and

w=1
41 t=1

<E,> 0--0 Toyozawa

m--u Fq (11)
& --< Shore—Sander
—— This work

methods with more parametéers* correlation functions. It can also be directly applied to study
the effects of dimensionality on other interesting problems,
VI. CONCLUSION such as the Fitdich model or extended Holstein model with

) . _longer-range electron-phonon interactions, and to bipolaron
In summary, we have performed extensive ”“me”cabroblems

studies of the Holstein polaron in spatial dimensions 1
through 4. The numerical method used adds basis states to
the Hilbert space in an efficient order, resulting in an error
that scales as a power of the size of the Hilbert spégé,
where# is a nonuniversal exponent3 at intermediate cou- The authors are grateful to S. Ciuchi, E. Jeckelmann, and
pling in 1D, and~1.6 in 3D. This is a qualitative improve- P. Kornilovitch for discussions and permission to use their
ment over standard exact diagonalization, which requires exdata, and to J. E. Gubernatis and K. K. Loh for valuable
ponential effort to achieve a given accuracy. Using modestliscussions. This work was supported by the U.S. Depart-
computational resources, we obtain by far the most accuratment of Energy and by Los Alamos LDRD.
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