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Dimensionality effects on the Holstein polaron
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Based on a recently developed variational method, we explore the properties of the Holstein polaron on an
infinite lattice inD dimensions, where 1<D<4. The computational method converges as a power law, so that
highly accurate results can be achieved with modest resources. We present the most accurate ground state
energy~with no small parameter! to date for polaron problems, 21 digits for the one-dimensional~1D! polaron
at intermediate coupling. The dimensionality effects on polaron band dispersion, effective mass, and electron-
phonon~el-ph! correlation functions are investigated in all coupling regimes. It is found that the crossover to
large effective mass of the higher-dimensional polaron is much sharper than the 1D polaron. The correlation
length between the electron and phonons decreases significantly as the dimension increases. Our results com-
pare favorably with those of the quantum Monte Carlo, dynamical mean-field theory, density-matrix
renormalization-group, and Toyozawa variational methods. We demonstrate that the Toyozawa wave function
is qualitatively correct for the ground-state energy and the two-point electron-phonon correlation functions, but
fails for the three-point functions. Based on this finding, we propose an improved Toyozawa variational wave
function.

DOI: 10.1103/PhysRevB.65.174306 PACS number~s!: 74.20.Mn, 74.25.Kc
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I. INTRODUCTION

The Holstein model, as a paradigm for polaron formati
has attracted renewed interest in recent years because se
lines of experimental evidence support the presence of
laron carriers in strongly correlated electronic materials,
cluding colossal magnetoresistance manganites,1 organics,2

quasi-one-dimensional systems, and high-Tc cuprates.3,4

Theoretical research on polaron physics began six dec
ago, and the problem remains unsolved due to its intrin
many-body complexity from the electron-phonon~el-ph! in-
teraction.~The problem of excitons coupled to phonons
formally equivalent.5! Standard perturbation treatments6,7 are
usually limited to a particular parameter regime. With co
stantly growing computational resources, various numer
techniques have been applied to polaron problems in re
years, which give the most reliable results in the physica
interesting crossover regime. These techniques incl
finite-cluster exact diagonalization~ED!,8–13 the quantum
Monte Carlo~QMC! method,14,15 the density-matrix renor-
malization group~DMRG! method,16 and the global-local
variational method~GLVM !.17

Recent numerical studies have focused on the o
dimensional~1D! lattice model. Due to the enormous phon
Hilbert space in three dimensions, the dimensionality effe
on the polaron problems are less studied except in the a
batic ~or semiclassical! approximations,18,19 and in perturba-
tion theory.20 The QMC method is also capable of computi
the energy and effective mass of the 3D polaron, but the
dispersionE(kW ) is only reliable in the strong-coupling re
gime. However, with a recently developed variation
method, we can compute the polaron effective mass, b
dispersion, and el-ph correlation functions of the ground a
low-lying excited states in all coupling regimes, preservi
0163-1829/2002/65~17!/174306~10!/$20.00 65 1743
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the full quantum dynamical feature of phonons~details can
be found in Ref. 21!. The variational space is defined on a
infinite lattice, although only a finite separation is allowe
between the electron and the surrounding phonons in cur
implementations. We systematically expand the variatio
space so that highly accurate results can be achieved
modest computational resources.

The main purpose of this paper is to characterize the H
stein polaron in higher dimensions. We consider a sing
electron Holstein Hamiltonian on aD-dimensional hypercu-
bic lattice,

H5Hel1Hel-ph1Hph

52t(
^ i , j &

~ci
†cj1H.c.!2l(

j
cj

†cj~aj1aj
†!

1v(
j

aj
†aj , ~1!

wherecj
† creates an electron andaj

† creates a phonon on sit
j. The parameters of the model are the nearest-neighbor
ping integralt, the el-ph coupling strengthl, and the phonon
frequencyv. The electron is coupled locally to a dispersio
less optical phonon mode.22 There are two commonly de
fined dimensionless control parameters, the adiabaticity r
g5v/t and the el-ph coupling strengtha5Ep /2Dt, which
is defined as the ratio of polaron energy for an electron c
fined to a single siteEp5l2/v and the free electron hal
bandwidth 2Dt. The strong-~weak-! coupling regime refers
to a.1 (,1), and the adiabatic~antiadiabatic! regime re-
fers to g,1 (.1). An additional dimensionless paramet
is g5l/v, which appears in strong-coupling perturbatio
theory.
©2002 The American Physical Society06-1
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A variational space is constructed beginning with a ro
state, the electron at the origin with no phonon excitatio
and acting repeatedly with the off-diagonal terms (t andl)
in the Hamiltonian@Eq. ~1!#. States in generationm are those
that can be created by actingm times with off-diagonal
terms. All translations of these states on an infinite lattice
included, and the problem is diagonalized for a given m

mentum kW using a Lanczos method.21 A small variational
space, with seven states per electron site~unit cell!, is shown
in Fig. 1. ~The more accurate numerical computations
done with over 107 states per unit cell.!

The total number of statesNst per unit cell afterm gen-
erations increases exponentially approximately as (D11)m,
where D is the spatial dimension.@The bipolaron has the
same (D11)m dependence, but with a larger prefactor.# The
perhaps surprising fact is that while the size of the Hilb
space grows exponentially withm, the error in the ground-
state energy decreases exponentially, because state
added in a fairly efficient order. Figure 2 shows the fractio
error in the ground-state energy as a function of the num
of basis states in Hilbert space. The accuracy is determ
by comparing the energy as the size of the Hilbert spac
increased. At intermediate coupling in any dimension,
energy improves by about a factor of 8 with ea
generation.23 In one dimension, each added generation
proximately doubles the size of the Hilbert space, wherea
four dimensions, the size increases fivefold. This rapid c
vergence at intermediate-coupling is valuable since no a
lytic approach is reliable in this regime. Table I lists th
energies for 1D to 4D polarons at intermediate to weak c
pling. The accuracy, 21 digits for a 1D polaron, is high co
pared to that of other numerical methods, such as two
three digits for QMC, six digits for DMRG~or GLVM!, and
up to eight digits for ED.24 Moreover, for the 3D polaron a
intermediate to strong coupling, an energy accuracy of 8
decimal places can be achieved in the nonadiabatic reg
with fewer than 33106 basis states. To obtain an accura
beyond 13 digits, the code is executed in quadruple pr
sion. The present variational method requires only pow
law time to achieve a given accuracy~in any dimension!,

FIG. 1. A small variational Hilbert space, a subset of the g
eration 3 space, is shown for the 1D polaron. Basis states in
many-body Hilbert space are represented by dots, and nonzero
diagonal matrix elements by lines. Stateu1& in the root state, an
electron at the origin with no phonon excitations. Vertical bon
create or destroy phonons. Stateu2& is an electron and one phonon
both at the origin. Stateu3& is an electron on site 1, and a phonon
site 0. The dots can also be thought of as Wannier orbitals
one-body periodic tight-binding model.
the
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which is a qualitative improvement on exact diagonalizat
as it is currently implemented, the latter requiring expone
tial time.

In this paper we present detailed studies of the dimens
ality effect on the Holstein polaron. First of all, we explo
the polaron characteristics in thek50 ground state, and
compare our results with previous studies from QM
DMRG, and dynamical mean-field theory~DMFT!. Second,
we compute the el-ph correlation function and the pola
energy E(kW ). Finally, the validity of the Toyozawa varia
tional method is investigated by calculating the ground-st
energy, and the two- and three-point el-ph correlation fu
tions.

II. SMALL-POLARON CROSSOVER

A. Quasiparticle weight Zk and effective massm*

The small polaron crossover or ‘‘self-trapping transition
has been one of the core issues in polaron problems. A
batic theory suggests that the polaron in two and three
mensions~but not in one dimension!, is in an ‘‘extended’’
state with an infinite radius below an el-ph coupling thres
old lc , and beyond which is a ‘‘localized’’ state with infinite
effective mass.~This phenomenon is usually termed th
‘‘self-trapping transition.’’! However, our studies confirm
that in all dimensions, there is a crossover rather than a s
trapping transition~ground-state properties are analytic!, if
the parameters are finite. This result is consistent with so
other recent studies,20,14 and corroborates the theorem
Gerlach and Lo¨wen.25

The quasiparticle weight~renormalization factor! is de-
fined by the overlap~squared! between the bare electron an
a polaron, i.e.,

Zk5u^C0,kuck
†u0&u2, ~2!

in which uC0,k& is the ground-state wave function of a p
laron andu0& is the vacuum state.Zk can be measured in
photoemission or tunneling experiments. Figure 3 shows

-
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s
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FIG. 2. The fractional errorD in the polaron ground-state en
ergy as a function of the number of basis statesNst in the Hilbert
space for parametersa50.5, g51.0, andt51.0.
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TABLE I. Polaron ground state energies atk50 in one to four dimensions~1D–4D! for a50.5, g
51.0, andt51.0.

1D 2D 3D 4D

E0 -2.46968472393287071561 -4.814735778337 -7.1623948409 -9.5131740
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crossover ofZkW50 as a function of 1/a at g53, for 1D–4D
cases. We see thatthe crossover to large effective mass (lar
z21) of the higher-dimensional polaron is much sharper th
the 1D polaron. For D.1, a fairly abrupt crossover occur
at a.1, whereas the crossover for the 1D polaron span
wide range ofa. With a smallerg ~but greater than 1!, the
crossover will be slower but with the same dimensional ch
acteristics. In the limit 1/a→0, the phonon wave function
contracts to the electron site, withZk5exp(2g2). The inset
shows a comparison ofZk and m0 /m* for the 1D polaron.
Their fractional differenced, defined as (m0 /m* 2Zk)/Zk ,
is shown as a dotted line. The maximumd is 22%, in the
intermediate coupling regime, while the minimum occurs
1/a→0 ~small t), whered is the order oft2 from strong-
coupling perturbation theory~SCPT!. We find that d de-
creases significantly as the dimension increases. The m
mum differencedmax is 4.5% for the 2D polaron and 2.0%
for the 3D polaron. Forg5A5, dmax in three dimensions
drops to 0.63%.

The ground-state energyE satisfies E5e022t cos(k)
1S(k,E), whereS(k,E) is the self-energy.Zk50 is the prob-
ability of the wave function on the root site, and from firs
order perturbation theoryZk505]E/]e0, resulting inZk50
51/@12]S(k,E)/]E#. The origin of the difference betwee
the inverse mass andZk50 lies in thek dependence of the
self-energy,

FIG. 3. Quasiparticle weightZkW50 as a function of the inverse
coupling strength 1/a for one ~solid line!, two ~dotted line!, three
~dashed line!, and four~long dashed line! dimensions.a is varied
by changing the hoppingt at fixed v and l. The comb basis ap
proximation ~see below! is shown as a dot-dashed line. The ins
shows the comparison of the inverse effective massm0 /m* ~dashed
line! and Zk ~solid line! for one dimensions. The fractional differ
enced5(m0 /m* 2Zk)/Zk is plotted as a dotted line.
17430
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2Zk505

1

2t

]2S~k,E!

]k2 Y S 12
]S~k,E!

]E D , ~3!

where the derivatives are evaluated at the ground state
ergyE5E0 andk50. In the variational space of Fig. 1 or i
the full space, the self-energy has a nonzerok dependence
because distinct unit cells are connected at branch level~path
12223 . . . ), in addition to the trivial connection at roo
level. A restricted variational space, the comb basis, allo
phonon excitations only on the electron site, as shown in F
4. In this subspace, the self-energy isk independent, since
the only path between unit cells is at the root level. T
self-energy remainsk independent even in a larger space
which the tree trunks sprout lateral branches, so long as
branches do not connect to neighboring unit cells. For th
cases, theZ factor and inverse mass are identical,d50. In
O(t) SCPT, d vanishes for the same reason andZk50
5m0 /m* 5exp(2g2).

The effect of dimensionality ond is made plausible by the
following. In the Holstein model, the dimensionalityD does
not directly affect the termHel-ph in Eq. ~1!, because the
el-ph coupling is local and the phonon is dispersionle
High-dimensional polarons share the same simplicity of
el-ph coupling as 1D polarons. Furthermore, we see~in Sec.
III ! that the el-ph correlation length decreases asD increases.
Thus thek dependence of the self-energy weakens in hig
dimensions. The above arguments do not, however, hold
the Fröhlich model ~or the extended Holstein model! with
longer-range el-ph coupling,26–28 whereZk and m0 /m* be-
have quite differently.

B. Comparison with QMC, DMRG, and DMFT methods

Figure 5 shows our results for the effective mass a
function of a ~at fixedg51.0) in comparison with DMRG
and QMC. Our results are accurate to at least four dig

t

FIG. 4. The comb basis, a variational space in which phon
excitations are present only on the electron site. Vertical lines cr
phonons and horizontal lines are the electron hops. Stateu1& is an
electron on site 0 and no phonons. Stateu2& is an electron and one
phonon, both on site 0. Stateu3& is an electron and two phonons, a
on site 0. Stateu4& is the translation of stateu1&. The comb basis is
a subset of the larger variational space. As in DMFT, it only kee
track of the on-site el-ph correlations.
6-3
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FIG. 5. The effective massm* for the ~a! 1D, ~b! 2D, and ~c! 3D polarons is compared to DMRG~Ref. 16! and QMC ~Ref. 14!
calculations.~No DMRG data are available for the 3D polaron.! In all cases,v51.0, andt51.0. Note the different horizontal scales.
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which is well below the linewidth. In all cases@Figs. 5~a!–
5~c!#, m* /m0 increases slowly whena is small, followed by
a rapid increase whena.1. Since it is calculated atv5t
51.0 ~not a small t), the mass behaves differently tha
exp(g2) that SCPT suggests. Note that the crossover is m
rapid asD increases, which is consistent with the results
Sec. II A. In every dimension, our results are in quantitat
agreement with QMC. The numerical error in QMC is a
proximately 0.1% to 0.3%,14 which is good though less ac
curate than finite cluster ED or the present approach. DM
is generally considered a powerful tool in dealing w
many-body problems. Using DMRG, Jeckelmann and Wh
have calculated Holstein polaron properties in 1D and 2
DMRG seems to be most successful in calculating
ground-state energy~at k50) and el-ph correlation func
tions. However, finite-size scaling is required for DMRG
computem* ,16 which becomes more difficult forD.1. In
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1D @Fig. 5~a!# the results from DMRG are as accurate
those from QMC. DMRG does not, however, calculate t
mass accurately in 2D@Fig. 5~b!#.

Dynamical mean-field theory has previously been appl
to the Holstein polaron problem.29 The approach is exact in
infinite dimensions but an interpolation to 3D lattices
made possible by using a semielliptical free density of sta
N(E) to mimic the low-energy features. Figure 6 shows
comparison of our results on a cubic lattice to DMFT, whi
is made by setting the bandwidths equal. Overall, in pa
~a!, we see a qualitative agreement between the two calc
tions. DMFT is accurate in the strong-coupling regim
where the surrounding phonons are predominately on
electron site. This is also the regime where strong-coup
perturbation theory works well. In Fig. 6~b!, we see our nu-
merical results in agreement with weak-coupling pertur
tion theory inl. However, DMFT fails to computem* cor-
6-4
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DIMENSIONALITY EFFECTS ON THE HOLSTEIN POLARON PHYSICAL REVIEW B65 174306
rectly in the weak-coupling regime. The reason is that,
DMFT, the lattice problem is mapped onto a self-consist
local impurity model,30,31 which preserves the interplay o
the electron and the phonons onlyat the local level. We will
see that the spatial extent of the el-ph correlations incre
as the el-ph coupling decreases, which explains the sig
cant discrepancy in the weak-coupling regime. It is a
worth noting that DMFT neglects thek dependence of self
energy, i.e., the inverse effective mass is always equal to
quasiparticle weight. As we have pointed out above, the
ference betweenm0 /m* and Zk is not negligible in the
intermediate- to weak-coupling regime.

FIG. 6. ~a! The massm* of the 3D polaron,v51, this work
~solid lines! compared to DMFT~dotted lines! ~Ref. 29!. ~b! Com-
parison to weak-coupling perturbation theory~WCPT! for g255.
17430
n
t

es
fi-
o

he
f-

III. ELECTRON-PHONON CORRELATIONS

Next we compute the correlation function between t
electron and phonon displacements~lattice deformation! in
the ground state:

x~ i 2 j !5^C0uci
†ci~aj1aj

†!uC0&. ~4!

This correlation function can be considered as a measur
the polaron size.32 It should not be confused with the ‘‘po
laron radius’’ in the extreme adiabatic limit, which refers
the spatial extent of a symmetry-breaking localized state.
would like to emphasize that a comprehensive study of el
correlation for the ground state of the 3D polaron has not
been reported by any other modern numerical technique,33 to
our knowledge. Theon-site correlationhas been studied by
DMFT, and the results are compared in Fig. 7.34 The on-site
lattice distortionx(0) is shown as function ofa and the rest
of parameters are the same as in Fig. 6. In Fig. 7,x(0) is
normalized to 1 whena is infinite ~i.e., t→0) according to
limt→0x(0)52g. Again, we obtain a good qualitative agre
ment. The curves show an abrupt change in slope only
largeg, where the discrepancy with DMFT is largest.

Figure 8 shows the effect of dimensionality on the cor
lation functionx( i 2 j ). In the strong-coupling regime, pane
~a! shows, in every dimension, a sharp drop on the first t
sites and an exponentially decaying tail. For the 3D pola
at a distance of three lattice sites,x(3)/x(0) drops below
1024. In the weak-coupling regime@panel~b!# x has nearly a
simple exponential decay with a less steep slope, which
plies a nontrivial extent of the el-ph interplay in space.
both panels, we observe a common trend thatx decays more
rapidly as the lattice dimension increases, i.e., the surrou
ing phonons are more localized near the electron in hig
dimensions. This feature enables DMFT to give sensible
sults in higher finite dimensions. We have also investiga

FIG. 7. The on-site correlationx(0) for the 3D polaron. Our
results~solid lines! are compared to the DMFT~dotted lines with
symbols!. The parameters are the same as in Fig. 6
6-5
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other two-point el-ph correlation functions such
^ci

†ciaj
†aj& ~not shown!, which has dimensional characteri

tics similar tox.
The rapid decay of the el-ph correlation function for t

higher-dimensional polaron suggests that the off-site e
interplay is relatively weak in largeD. One would then ex-
pect the comb basis of Fig. 4, a subspace of the full Hilb
space, to give a better approximation in largeD. We check
this assumption by numerically calculating the fraction of t
probability density in the exact ground state that resides
the comb subspace,

Pcomb5^C0uP̂uC0&, ~5!

where P̂ is the projection operator onto the comb subsp
and the wave functionC0 is obtained in the full variationa
space. Figure 9 showsPcombas a function of the inverse bar
coupling constant 1/a for 1D–4D cases. In both of the limit

FIG. 8. Correlationx of the electron density and the phono
displacement as a function of distance (i 2 j ) for the 3D polaron
along the (1,0,0) direction, the 2D polaron along the (1,0) dir
tion, and the 1D polaron at~a! strong coupling, and~b! weak cou-
pling, v51.0. Note the different vertical scales.
17430
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a50 or a5`, Pcomb goes to 1. The minimum overlap oc
curs in the crossover regime. As expected,Pcomb gets closer
to 1 asD increases. For the 3D polaron, the minimum
Pcomb is 91.1%, in contrast to 45.8% for the 1D polaro
These trends can also be seen analytically. In the adiab
limit ( v50), perturbing int from a self-trapped state with
energy Ep , the self-trapping transition occurs ata51
21/(4D). The leading order correction ofPcomb for the
self-trapped polaron state is

Dcomb[12Pcomb5
1

8Da2 . ~6!

In the nonadiabatic limit,Dcomb can be calculated by SCP
to second order in the hoppingt. It takes the following form:

Dcomb5
g4e22g2

2Da2 (
n50

`

(
m51

`
g2(n1m)

n!m!

1

~n1m!2
. ~7!

The above expressions show that for a givena and g, the
discrepancyDcomb decreases asD increases and eventuall
vanishes in infiniteD. The comb basis should thus give
good account for the Holstein problem in largeD. We see in
Fig. 3, however, that dimension 3 is not high enough for
comb to give quantitatively accurate results, and that dim
sion 4 is not much better. Convergence to higher dimensi
is slow.

IV. ENERGY DISPERSION E„k¢ …

Most of the recently developed numerical methods
capable of computing the polaron band dispersion in 1D.
the 2D polaron, the only nonperturbative calculations
band dispersion published so far were computed by fin
cluster ED~Ref. 11! and quantum Monte Carlo methods.15

Due to the huge phonon Hilbert space in high dimensio
the previous ED results are limited to small clusters, so t

-

FIG. 9. The probability density in the ground state that resid
in the comb subspacePcomb as a function of the inverse bare cou
pling strength 1/a, for the 1D-4D polaron. The parameter set is t
same as in Fig. 3.
6-6
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DIMENSIONALITY EFFECTS ON THE HOLSTEIN POLARON PHYSICAL REVIEW B65 174306
the band dispersion can only be evaluated at a fewkW points.
The QMC allows calculation of energy at any desiredkW
point, but is limited to the condition that the polaron ban
width is much smaller than the phonon frequency, wh
corresponds to the strong-coupling regime.

The present variational approach, however, is not sub
to any of the above restrictions.21 Figure 10~a! shows the
evolution of the band dispersion for a 3D polaron along sy
metry directions in the Brillouin zone at various el-ph co
pling constantsl. Figure 10~b! shows the correspondingZk .
Starting with weak couplingl52.0 ~dashed line!, the po-
laron band is close to the bare electron band at a lower b
edge. The deviation between them increases askW increases.
WhenE(k)2E(0) approachesv, we observe a band flatten
ing effect, similar to the 1D and 2D cases, accompanied b
sharp drop of quasiparticle weightZk . The large-k lowest-
energy state can be considered roughly as ‘‘ak50 polaron
ground state’’ plus ‘‘an itinerant~or weakly bound! phonon
with momentumk.’’ It is the phonon that carries the momen

FIG. 10. Ground state energyE(kW ) of the 3D polaron in pane
~a! and quasiparticle weightZk in panel~b! for three different el-ph
coupling constants:l54.5 ~solid line!, l53.5 ~dotted line!, and
l52.0 ~dashed line!. The other parameters arev52.0 andt51.
The dot-dashed line in~a! is the dispersion of a bare electron. Th

corresponding ground-state energiesE(kW50) are 210.608348,
28.0642850, and26.588526818, respectively.
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tum, so as to makeZk essentially vanish and to give a ban
width E(p)2E(0)'v. Due to the large extent of the el-p
correlations in the flattened band, our results are less accu
in the flattened regime.35 In the case of intermediate couplin
l53.5, the polaron bandwidth is narrower than the phon
frequency. The upper part of the band has much less dis
sion than the lower part butwith a substantial Zk . This in-
dicates a distinct mechanism for the crossover as a func
of kW . In the case ofl54.5, the strong el-ph interaction lead
to the well-known polaron band collapse and a signific
suppression ofZk at all k.

V. TOYOZAWA VARIATIONAL METHOD

Four decades ago, a simple and intuitive variational
proach to the 1D polaron problem was proposed
Toyozawa.36 This method has been successfully applied
various fields and revisited in a number of guises37,38

throughout the years. It is generally believed to provide
qualitatively correct description of the polaron ground sta
aside from predicting a spurious discontinuous change in
mass at intermediate coupling. We show below that altho
the Toyozawa wave function gives a good account of
ground state energy and the two-point functions, it fails
correctly describe the three-point functions.

The Toyozawa wave function is written as a product
coherent states,

uCT~k!&5(
j

eik j cj
†u0&)

m
uzj 1m&, ~8!

whereuzi& is a coherent state of the phonon mode on sitei. In
the antiadiabatic limitv/t→`, this wave function gives the
exact solutioncj

†u0&uzj&, wherezj5l/v and the otherz’ s
are zero. For the general case, momentumk50, thez’ s are
real and symmetric:zj 1m5zj 2m . To determine the validity
of the Toyozawa wave function, we probe the structure of
phonon cloud in thek50 ground state by computing th
following two- and three-point el-ph correlation functions:

a2~ j ![^c0
†c0aj

†aj&, ~9!

a3~ j ,m![^c0
†c0aj

†ajam
† am&. ~10!

The z’ s in Eq. ~8! are optimized so as to give a minimum
energy. It can be proved that the optimalz’ s decay exponen-
tially as a function of the el-ph separation. Thus they alwa
give purely exponentially decaying two-point functions r
s,
e

7

TABLE II. A comparison of the ground-state energyE0, two- and three-point el-ph correlation function
and Zk50, evaluated by the present method, the Toyozawa method, equation~11!, and Shore-Sander wav
functions (C IV in Ref. 40!. Parameters arel51.2, v51, t51, andD51.

E0 a2(0) a3(1,2) a3(1,22) Zk50

This work -2.69356579774920 . . . 0.40770 0.0004691 0.000005888 0.627322 . . .
Toyozawa -2.662819 0.32527 0.0002142 0.0002142 0.65738
Eq. ~11! -2.671530 0.34240 0.0007649 0.000003244 0.64271
Shore and Sander -2.685826 0.37780 0.0005572 0.0001132 0.6375
6-7
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gardless of the el-ph coupling. This, however, is not true
the numerically exact results. Table II and Fig. 11 comp
Toyozawa’s results and the numerically exact results for
termediate coupling.39 We note that the Toyozawa wav
function gives reasonably accurate results for the grou
state energy, two-point functions, andZk50. In Table II, the
fractional error in energy is about 1%~with zj 11 /zj
50.35568 andz050.57033). However, it gives wildly inac
curate three-point functions. For example, Toyozaw
a3(1,22) is a factor of 36 too large anda3(1,2) is a factor
of 2 too small. Toyozawa’sa3(5,26) is too large by six
orders of magnitude. This failure indicates that the elect
does not organize its surrounding phonon cloud in the w
that Toyozawa suggested. Instead, by directly analyzing
exact ground-state wave function, we find that the elect
organizes its surrounding phonons like a traveling salesm
does, namely, the polaron favors the phonon configura
with a shorter creation path.~The length of the creation pat

FIG. 11.
FIG. 11. ~a! The two-point functiona2( j ) is evaluated in one

dimension by the present variational method~solid line with
squares!, the Toyozawa method~dashed line with circles!, and the
modified Toyozawa method@Eq. ~11!# ~dashed line with diamonds!.
~b! The three-point functionsa3( j , j 11) ~solid lines! and
a3( j ,2 j 21) ~dashed lines!. The symbols are the same as in~a!.
Note that the plain Toyozawa method gives exactly the same re
for the two three-point functions, which in fact differ widely. P
rameters arev51.0, t51.0, andl51.2.
17430
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is the number of off-diagonal operations, phonon creatio
and electron hops, required to create a state from the
electron state. Shorter paths are favored at intermediat
weak el-ph coupling, although more on-site phonons can
favored at large coupling.! For example, we have

u^C0uc0
†a0

†u0&u.u^C0uc0
†a1

†u0&u.u^C0uc0
†a2

†u0&u.•••

in the one-phonon subspace and

u^C0uc0
†a0

†a0
†u0&u.u^C0uc0

†a1
†a1

†u0&u.u^C0uc0
†a1

†a21
† u0&u

.•••

in the two-phonon subspace. The amplitude attenuates
idly as the phonon-creation path increases.

The numerically exact result in Fig. 11~b! shows that it is
far more favorable to create two-phonon excitations on
same side of the electron than on opposite sides. There
we propose to write a polaron as a sum of two asymme
clouds, one extending like a comet tail primarily off to th
right and the other extending to the left,

uCT8~k!&5(
j

eik jcj
†u0&~•••uzj 22&uzj 21&uzj&uzj 11&uzj 12&•••

1•••uzj 12&uzj 11&uzj&uzj 21&uzj 22&•••), ~11!

where zj 2mÞzj 1m , and the normalization factor has bee
omitted. The optimized~minimum-energy! phonon wave
function in Eq. ~11! is strongly asymmetric, and in fac
changes sign on one side, as shown in Table III. The m
purpose of Eq.~11! is to investigate how the simplest asym
metric wave function improves the Toyozawa method. Sh
and Sander have proposed a more complicated wave f
tion uCSS

IV& which is a sum of the symmetric term in Eq.~8!
and the two asymmetric terms in Eq.~11!.40 ~Asymmetric
wave functions were also considered in Ref. 37.! The num-
ber of independent variables inCT ,CT8 , andCSS

IV is 1
2 N, N,

and 3
2 N, respectively, whereN is the number of sites tha

allow phonon excitations. The minimum energies from t

lts

TABLE III. A partial list of the optimized phonon wave function
zj in Eq. ~11!.

Site j zj

-6 -0.12384D-03
-5 -0.39019D-03
-4 -0.11875D-02
-3 -0.32178D-02
-2 -0.48444D-02
-1 0.35290D-01
0 0.58515D100
1 0.38153D100
2 0.14043D100
3 0.46112D-01
4 0.14632D-01
5 0.45908D-02
6 0.14349D-02
6-8
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above methods are compared in Fig. 12. It is clear that
energies are improved as we expand the variational sp
CT,CT8,CSS

IV . The Shore-Sander method shows the m
substantial improvement in the crossover regime. The c
parison of other polaron properties is shown in Table II a
Fig. 11. Our trial wave functionuCT8& improves the energy
by 30% and thek50 Z factor by 50% compared to 75%
and 66%, respectively, from the Shore-Sander wave funct
In Fig. 11~a!, Eq. ~11! gives a more accurate two-point fun
tion a2( j ) than the original Toyozawa function. It similarl
improves the other two-point functionx j ~not shown!. Panel
~b! shows two three-point functions,a3( j , j 11) and
a3( j ,2 j 21). Due to its symmetric phonon cloud, the To
ozawa wave function must give exactly the same result
the two three-point functions. In contrast, the exact res
show thata3( j , j 11)@a3( j ,2 j 21). Equation~11! gives
the correct behavior of the two three-point functions
nearby sites, but loses quantitative accuracy in the tails.
though the Shore-Sander energy is better than that of
~11!, the Shore-Sander three-point functions are actu
worse. The simplest attemptuCT8& to correct the identified
shortcomings in the Toyozawa variational wave function
pears to be a step in the right direction, although not
quantitatively accurate for most properties as variatio
methods with more parameters.17,41

VI. CONCLUSION

In summary, we have performed extensive numeri
studies of the Holstein polaron in spatial dimensions
through 4. The numerical method used adds basis state
the Hilbert space in an efficient order, resulting in an er
that scales as a power of the size of the Hilbert spaceNst

2u ,
whereu is a nonuniversal exponent'3 at intermediate cou
pling in 1D, and'1.6 in 3D. This is a qualitative improve
ment over standard exact diagonalization, which requires
ponential effort to achieve a given accuracy. Using mod
computational resources, we obtain by far the most accu

FIG. 12. A comparison of the ground-state energy as a func
of the coupling constant from various variational approaches
v51 andt51.
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polaron energies and wave functions available from 1D
4D at intermediate coupling.

Previously, a thorough investigation of the dimensional
effect, including correlation functions, was out of reach
numerical methods. The main findings of the dimensiona
effects on the Holstein polaron are summarized as follo
The crossover from a quasifree to a large effective mas
found to be much sharper in higher dimensions. As was r
ognized previously, there is no symmetry-breaking se
trapping transition for finite parameters in any dimension,
suggested by adiabatic theory~although there is a phase tran
sition in the first excited state21!. See also Ref. 29. Our re
sults for m* agree with QMC, although there is a discre
ancy with DMRG inD.1. The electron-phonon correlatio
functions decay significantly faster in higher than lower
mensions. This implies a shorter el-ph correlation length
large dimensions and leads to a diminishing difference
tween the inverse effective massm0 /m* and the wave func-
tion renormalizationZkW50 as D increases. The DMFT ap
proach thus gives better results in higher dimensions.
comparison shows that DMFT gives qualitatively correct
sults for the effective mass, mean phonon number, and
site phonon distortion in the intermediate- to strong-coupl
regime. We also examine the comb-basis approach, w
limits the el-ph correlation to the on-site level as DMF
does. The discrepancy between the comb basis and the
basis decreases slowly asD increases.

Finally, our approach is compared to the well-known To
ozawa variational method. We quantitatively examine
method in the intermediate-coupling regime. Overall, t
Toyozawa wave function gives reasonably accurate ene
and two-point functions, but fails seriously for the thre
point functions.~The numerically exact three-point function
are quite different for excitations on opposite sides of
electron compared to the same side, whereas the Toyoz
wave function predicts that they are identical.! We propose
an improved variational wave function, a sum of two asy
metric phonon clouds@Eq. ~11!#, which gives improved
three-point functions, and somewhat more accurate res
for the energy,Z factor, and two-point el-ph correlation func
tions.

For all the polaron features calculated, the present
merical approach compares favorably to other numer
methods in terms of accuracy, ease of implementation,
the ability to compute ground- and excited-state energies
correlation functions. It can also be directly applied to stu
the effects of dimensionality on other interesting problem
such as the Fro¨hlich model or extended Holstein model wit
longer-range electron-phonon interactions, and to bipola
problems.
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