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Nonadiabatic effects in a generalized Jahn-Teller lattice model: Heavy and light polarons, pairing,
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The self-consistent ground state polaron potential of one-dimensional lattice of two-level molecules with
spinless electrons and two dispersionless phonon modes with linear coupling and quantum phonon-assisted
(nonadiabatig transitions between the levels is found anharmonic in phonon displacements. As a function of
these, the potential shows a crossover from two nonequivalent broad minima to a single narrow minimum
which correspond to the positions of the levels in the ground state. Generalized variational approach respecting
the mixing of levels(reflection via a variational parameter implies prominent nonadiabatic efféigtin the
limit of the symmetricE® e Jahn-Teller situation they cause transition between the regime of the predomi-
nantly one-level “heavy” polaron and a “light” polaron oscillating between the levels due to phonon assistance
with almost vanishing polaron displacement. Vanishing polaron selflocalization ingiesncement of the
electron transfedue to decrease of the “heavy” polaron massdressingat the point of the transition. There
can occupairing of “light” polarons due to exchange of virtual phonor@ontinuous transition to new energy
ground state close to the transition from “heavy” polaron phase to “light” (bi)polaron phase ocduarshe
“heavy” phase, we have found anomaloaharmonit enhancements of quantum fluctuations of the phonon
coordinate, conjugated momentum and their product in the ground state as functions of the effective coupling
which reach their maxima &®e JT symmetry. They decrease rapidly to their harmonic values as soon as the
“light” phase is stabilized (ii) Nonadiabatic dependence of the polaron n{@sbye-Waller screeningn the
optical phonon frequency appeafsi) The contribution of Rabi oscillations to the transfer enhances signifi-
cantly quantum shift of the insulator-metal transition line to higher values of the critical effective electron-
phonon coupling supporting so the metallic phase. InBlee JT case, insulator-metal transition can coincide
with the transition between the “heavy” and the “lightbi)polaron phase only at certaistrong effective
electron-phonon interaction.
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[. INTRODUCTION plings to higher values. However, numerical simulations of
different lattice models(Fradkin and HirscH® Borghi
Recently an interest in electron-phonon models was reet al,'” McKenzieet al'®) prove a general statement that the
newed owing to highF.-superconducting layered cuprates resulting quantum fluctuations are much more pronounced
and fullerene compounds that exhibit structure instability dudhan those obtained by variational approaches, e.g., by Zheng
to strong Jahn-Teller effect accompanied by an evident iscet al.° Feinberget al,** Lo and Soliie?® and Chenet al*!
tope effect® Here, nonadiabatiqquantum fluctuations Namely, the quantum shift of critical values of the electron-

were found to be important since the majority of the Superphonon coupling from numerical simulations to higher val-

conducting structures exhibited low values of the Fermi enU€S(preferring so the metallic phaseas shown to exceed

ergy, comparable to the phonon energy and large isotop%onsmerably their variational values. Moreover, the numeri-

effect. Nonadiabatic fluctuations also appeared relevant iﬁal simulations of two-level lattice electron-phonon systems

H H H 15 H 17
manganese-based perovskites at Jahn-Tell€r distortion In one dimension by Felnbelg al.” and by Borghle.t al.
assisted by formation of JT polaron and causing oxygen iSO@Vldence anor_nalous increase of quantum fluctuations of the

. phonon coordinate and of the conjugated momentum as well
tope effect and a collosal magnetoresistahdéie mecha-

: : : L as anomalous increase of their product referring to enhance-
nism of non§d|aba7'[|c pairing was proposecgi by several alsent of anharmonic effects. The simulations manifest a dra-
thors: Manﬂ etal,” Zheng and co-worker&} Kresin and  natic increase of phonon fluctuations and of their product far
co-workers,” Pietronero and co-worké‘r%_for Ceo COM-  peyond the standard uncertainty principle. The inadequacy of
pounds and recently also for the challenging new superconhe variational approaches was ascribed to insufficiency of
ductor MgB,.** Theories of pairing mechanism based on po-the squeezed coherent phonoffgrmonic oscillators to
larons (bipolarong, including also electron-electron comprise anharmonic behavior of the phonons in two-level
interactions evoked great interest as wWéif-* (-band models.

Nonadiabatic fluctuations affect the charge transport be- Since the early beginnirg,Jahn-Teller model was inves-
cause they reduce the polaron band narrofiirtg(i.e., po-  tigated mainly in chemistry as a prototype model of electron-
laron renormalization of the electron masSluctuations in-  phonon interaction for localized centers in solids. It was used
crease near the phase transitién$® destroying the phase to study the instability of the orbitally degenerate electronic
coherence for weak interactions and shifting the critical coustates of highly symmetric ionic configuration against ionic
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distortions in localized molecular centers in cryst&i&! The In the Sec. Il, we formulate variational approach for our
effect was explained by Jahn-Teller theorem about lifting themodel. We find effective ground-state potential as a function
degeneracy of an orbitally degenerate electronic state bgf all (four) phonon variational parametdmisplacements of
symmetry lowering distortions of nuclear configurations.two phonon modes, squeezing and reflectimixing)].
This effect is also involved, e.g., in physics of structural In the Sec. Ill, we compare variational results for the
phase transitions in solids doped with Jahn-Teller activeground-state energy of the two-center squeezed coherent
ions2° for mechanisms based on tunneling between two elegphonon wave function with the adiabatic ground-state energy
tronic levels coupled to phonon modésin opticaf® and  and identify the region of importance of the reflection)
paramagnetic ion spectfa. and nonsymmetry = B/a) parameters to be the region
Though JT effect was considered as the most representgfose toy=1 (E®e JT symmetry. Special importance of
tive nonadiabatic system, Born-Oppenheimer approximatiofthe symmetric(Jahn-Telley lattice molecules occurs as a
has been extensively used although it is valid only in thespecific condition for which the reflection parameter is the
limit of large local dis_tortio_ns. Inconsistency of the adiabatic y,qst effective. At this symmetry, there takes place a nona-
approach for small distortions was analyzed by Wagner aniapatic transition between the polaron dominantly self-

3,28 : AT =
co-workers: localized within one level, “heavy” polaron of a broad mini-

th Imgo\r/tal:rc]:enct)if ‘r]]T de(fjfiect '\? fhy‘?"g_f_ wf?s Lngreasdedtrdu;e :c?Pum and the almost delocalized, “light” polaron of a narrow
€ above-mentioned diScovery o etiect based structu 6r‘ninimum(with vanishing displacemenbscillating between

transitions in some higfi, superconductors and in close levels via both onsite and intersite phonon-assisted tun-
manganese-based perovskites. Therefore, the consideration 19 P

now focused on lattice versions of the JT model. neling: Namely, the coherent phonons 2 are accompanied by
In this paper we will investigate an extended lattice of JTRabi oscillations of the electron between the levels due to the

molecules: site molecules with doubly degenerate electroRnonon mode 1. The latter virtual phonons mediate the cou-
level coupled to two internal phonon modes with differentPling of polarons that may occupy the levels.

symmetries and different coupling constants. The antisym- W& compare ground-state characteristics of the “heavy”
metric mode splits the levels, the symmetric one couples thahd “light” region as functions of pairs of competing classi-
levels via phonon assisted onsite and intersite electron tra¢al (effective coupling and quantum(phonon frequency,
sitions (Rabi oscillations As we show, these transitions are tunneling parameters. The self-trapping due to electron-
especially important if the difference of the effective poten-phonon coupling competes with the lattice transfer of elec-
tial minima as a function of the phonon displacement is oftrons (bandwidth, which itself is being renormalized by the
the order of the phonon energgymmetric Jahn-Teller mol- Debye-Waller factor. The characteristics of the related
ecules. We shall use a generalized variational approactinsulator-metal transition, the value of the gap and conse-
which will account formore aspects of nonadiabaticitin-  quently of the critical coupling are determined by the com-
stead of simple squeezed coherent phonons, as a more appflex interplay of the transfer supporting the metallic phase
priate variational ansatz for phonons we take a two-centerand of the electron-phonon coupling supporting the insulat-
squeezed coherent wave function that accounts for thgyg phase. The shift of the critical line to higher values of the

possibility of the phonon-mediated coupling of levels. Thecyitical couplings due to quantum effects is discussed in the
variational wave function of the two-level electron-phonongec. v

systems with reflection symmetfantisymmetry of the co-
herent phonon states related to both the levilsand ¢ _
was first introduced by Shore and Sarfders linear combi-
nations¢, + n¢_ and¢_+ ¢, , 5 being new(reflection

In the Sec. V we investigate anomalous behavior of the
squeezed ground-state quantum fluctuations of the canoni-
cally conjugated phonon coordinates and their product on the

variational parameter. The approach has been widely e effective coupling ) and effective potential asymmetry

ploited and further developed by Wagner and co-woriet's )b() parameter.s, nam_ely, the strong aqharmonic fluctuations
for exciton(211), dimer[(221) and(222)] systemgwith the that reach their maximum yalues againyat 1. They de-
tunneling between the levels in contrast to the phononprease_tO the harmomc oscnlat_or value_sjalsl. A_related
assisted electron transitions of our madékre the notation Medel is a lattice of two-level dimers with one spin electron
(xy2) is used forx as the number of the levelg, as the &t each sit¢(222 Ia_tt|celr7node] studied by exact_numencal
number of the sites, arglas the number of the electrons in a Methods by Borghet al™* The present model differs from
cell). The detailed comparison of the ground-state energiefat one, but concerning the quantum fluctuations of the pho-
(GSB of different variational phonon wave functions for an non coordinate and momenta qualitatively the same results
exciton-phonon or dimer-phonon mod&lsconfirmed the as for their model are expected.
two-peak variational choice as the most suitable one, i.e., We remark that variational methods are widely used for
giving the best fitting of the exact solution the medium-  electron-phonon lattice models.
and strong-coupling regimes. A fully analytic nonvariational approach with nonconser-
A similar structure of the wave function was proposed forvation of the number of phonons was performed for a local
the phonon wave function coupled to two electronic states ofD=0) dimer by Weber-Milbrod#? Unfortunately, in the
a double-well potential by Kresin and Waif their model of ~ extended D=1) lattice model this method acquires extreme
the nonadiabatic origin of the isotope effect in high- mathematical complexity. It was used as a basis for numeri-
superconductors. cal study® of the above-mentioned lattice model.
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Il. EXTENDED (LATTICE ) GENERALIZED |2>=G(e|)|1>, (G(el))2= 1,
JAHN-TELLER MODEL

h h h
We investigate 1D(one-dimensionallattice of spinless G(lﬂ )(blnibln):_(blnibln)egﬂ ), (G(la =1,
double degenerated electron states linearly coupled to two )
intramolecular phonon modes described by Hamiltonian ~ where G{2" = exp( bl b,,) is the phonon reflection opera-
tor. While the phonon 1 is antisymmetric under the reflec-
. . tion, phonon 2 remains symmetric.
H=0Q le(binbin+ 12)+ 2, [a(b]+Dbip) oy, In addition, the transfer part of Ed2) exhibits SU2)
e " symmetry of the left- and right-moving electrofisles.
Let us note that the quantum phonon assistance of the
— (bl + 020 04n]— 5 Zl , (Ryj+R-1j)ln, electron tunneling 8 term in Eqs(2) and(1)] constitutes the
e difference of the model from the related dimer and exciton
(1)  quantum models where instead 8E (b}, + bp) o, Of Eq.

] o (1) there standa\ o,,, whereA is the distance between the
whereb; ,,i=1,2 are phonon annihilation operators, and thejg,/q|529.31

Pauli matriceso, represent a two-level electron system.  Tpe |ocal part of Eq(1) can be diagonalized in electron

They satisfy identitie§o|, ,ojn]=i0n, | =X,y,2, represent-  gypspace by the Fulton-Gouterman unitary ope?ator,
ing 1/2 pseudospins related to the electron densities in a&u,,U,,, where

usual way, i.e., oyn= %(CI,nCZ,n+C;,nCl,n)v Oyn
:1/2i(CInCZn_C;nCln)1 Uzn:%(clncln_C;nCZn)a In 11, Gj
n®2, n®1 -1, n-2, _ ; _ - _ ~(ph
=3(Cl \Cin+Ch,Cap) is @ unit matrix, anct; , are electron Ui,n—ﬁ 1,-G |’ Gi n=explimhb;) =GR,
annihilation operators. The operaf@r.; ;=e~'P® of the dis- ’ (5)
placement by a lattice constatita acts in both the electron
and phonon spac®. ;f,="f,.1R.1;. as follows
In terms of the creation-annihilation electron and phonon 1
operators the Hamiltonian can be cast as follows: HL:; UnHOnUEl=Qn > (biTnbin+ 5
H=S 1S [bib+ 2]+ ey (bl +by) 1 ; ;
n S, | inTin ) g e T2niiEn T ‘*‘52 [a(bi,+b1p) = B(bon+0b20)G1p)]ly.
B 6
- E(CInC2n+ ancln)(bgn_’_ b2n) . ( )
On the other hand, in the transfer term
L +H.c) ) T
- = Ci Ci .c)|. ~
2 J:1,2( et Hr=— 5 ; (VpiR1+V, _1R_5) (7)
For 8= — a, the interaction part of Eq1) there appears a nondiagonality
bI +b1n b; +b2n Vn,tlz[(1+GlnGln:1)|n+(1_G1nG1,n:1)G2nUzn]
n ! n
bl by, —(bl +by) @ X[(1+GonGan=1)lnt (1= GonGopa1) oenl.

®
yields the rotationally symmetrig ® e form?* with a pair(an _ , .

i i i i Here, Pauli matrices transform a¥),o,U, =G0
antisymmetric and a symmetric under reflecjioh double- - . o Fix i9z;
degenerated vibrations. This is, e.g., the case of Cions ~ UiozU; “= 0y, andU;(bj+b)U; “=(bj+b;)20,.
with d° configurations in highF. cuprates>2* The diagonal terms of E¢8) represent the polaron trans-

Taking a# 8 removes the degeneration of the vibronic fer within one level while the off-diagonal ones represent the
states breaking the rotational symmetry of the electroninterlevel polaron transfer through the lattice. Evidently, the
phonon interactions, the model still staying within the classcontribution of the off-diagonal terms proportional to

of JT modelg23:22 1-Gj,Gj n+1 is much smaller when compared with those
The dispersionless optical phonon mdaesplits the de- ~ Proportional to GG n+1.
generated unperturbed electron levél=(,2) while the Because of nonconservation of the number of coherent

modeb, mediates the electron transitions between the levelPhonons, they are able even in the ground state to assist

This latter term represents phonon-assisted tunneling, glectron transitions betweeTn the levels. In the Hamiltonian

mechanism of the nonclassidalonadiabatitnature as well ~ (6), the operato6;,=(— 1)P1Pin [Eq. (5)], highly nonlinear

as is the pure tunneling in related exciton and dimer modeldn the phonon-1 appears mediated by phonons 2. It intro-
Evidently, Hamiltonian(1) (a# B) is reflection symmet- duces multiple electron oscillations between the split levels

ric, GENGPIH=H, mediated bycontinuous virtual absorption and emission of
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the phonons 1The effect is analogous to Rabi oscillations in as well as the generator of squeezing,
quantum optics due to photofisLet us note that Rabi os-
cillations assist both the interlevel onsite and intersite elec- _ 2 2
tron transitions mediated by the electron trangfer Sl[rm(n)]—exp§ rm(n)(bIm—blm). (14
For various local electron-phonon models, a number of
phonon variational wave functions using coherent andRespective generator of the mode SZ[er(n)] 1, be-
squeezed coherent phonons was proposed in order to reaguse Hamiltoniait2) is linear inb,,b} andr ,,m(n)=0.
the best ground staf@2%:91% The normalization condition then reads
Specially, for two- IeveI systems Shore and Safitipro-
posed variational eigenfunctions in the form of symmetric 2 B
and antisymmetric combinations of the reflection symmetric @ - Cim(n)=C, (15)
components related to both the levels. Each of these compo-
nents was chosen in a form that accounted for mixing withwhere
the reflected state via new variational parameter. This choice _
was stated to be the best variational wave function, i.e., Cim(N)=1+ 72+ 2nexd — 2| yim(n)|?], (16)
yielding the lowest ground-state energy. The method was fur-
ther developed by Wagner and co-workrer dimers and 21
excitons. We shall adopt this approach in what follows by

taking h')"lm(n)z Yim(N)exd —2rm(n)]. 17
1 Generally, y;m(n) is a nonlocal quantity that represents
Dy =1 dotho=—[(d.+ ¢ )1 +(p_ the displacement of the modet the sitem due .to an elec-
Jc tron at the siten, ¥j,(n)=1//NZ4yjq(n)exp(—igma). We
take

1
¢ )e]= = (b1t )b (bt nih)], _
\/6 Vi .
7jq(n)=_exrxlqna)_”)’jm(n)z')/jém,nv (18)
© N
with the upper sign for the ground stafe, and lower sign  Where y; are independent af. Equation(18) indicates that
for the excited state,. the phonon displacement accompanies the electron at the site
In EQ. (9), ¢1=¢.+nd_ andp,=¢p_+ nep, are pho- N. The same is valid for the squeezing,(n) =r oy,
non wave functions related to two levels with mixing of the  Full Bloch solution to the transformed lattice Hamiltonian
bare ¢, (¢_) and reflectedp_ (¢,) parts mediated by H=H, +H;, [Egs. (6), (7)] is chosen as a generalized
the variational parametey. Fulton-Gouterman variational ans&t? in the vector form
Further, ¢, and ¢, are components of the electron state[Eq. (9)],
vector related to the upper and lower level, respectively,
$1(n)y(N)
$2(N) ()
where the electron parts; are defined by Eq10) and the
phonon partsp;(n) by Eqgs.(9) and (11)—(14).

We have investigated the modé) in a former papef
with respect to the stability of a soliton ground state against

1
da(n=clilOe),  ¥a(m)=clylOc), (10 Vea(k)= = 2 eXp(ikna)( ) (19

where|0g)) is the electron vacuum. Note that the last line of
Eq. (9) allows us to interpret alternatively the paramejpeais
reflection parameter of the electron states as well.

The squeezed coherent phonon wave functions

& [ Y1m(N), Yam(N), I m(N)] quantum fluctqations. However, the variational wave func-
tion we used did not account for the two-center nature of the
=Dy [ Y1m(N)ID 2L Yom(M1S1[rm(M)1[0pn), wave function here respected by the reflection parameter

(12) [Eq. (9)].
_ . In what follows the ground-state energy as a function of
are related to lowerd ., ) and higher ¢_) level;|0p,) isthe  the optimized variational parametess 7y;,v,,r will be

phonon vacuum. determined.
The generators of the coherent phonons are functionals of
related displacements IIl. THE GROUND STATE
D.. M=expS + mbl —¥% (n)by T, When considering the ground statefdfH, +H+, [Egs.
1=L71m(1)] p%: [71m(M)b1m = ¥im(1)D1m] (6) and(7)], we omit the electron and phonon dynamic terms

(120 by settingk=0,g=0.
By averagingH =H +H [Egs.(6), (7)] over the phonon

D nl=e nbl — % (M)b,1, (13 wave functiong19) with (9) and(11) one obtains for the site
oL Yom(M)]=€XP2 [Vam(N)blm= Vim(Mbaml, (13 Hamiltonian(6) (Apmendin B
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FIG. 1. The potential20) for y=p8/a=0.5,
pn=2,0=0.05andT=1 as function ofy,, y,.

(HO Expression&; [Eq. (25)] in the ground state are independent
TEth'f' Hint (20 of g and n because of the form of;,(n) = y;exp(—igna)
[Eqg. (18)]. This substantially simplifies subsequent calcula-
where tions leavingE; andC; as functions 01'>yi2 independent om.

The transfer termsi;,i=1,2,3,4 in Eq.(23) with Eq. (24)

Q are expressed as
th=5(cosh 4+1)l

T
- - 2 2
1+7]2_27]e78r1exq_2|71|2) HTl 4(1+E1)(1+E2):

1+ n?+2nexp(— 2| y1|?) b,
(21) HT2=—£<1—E%><1—E%>E2,
a(1- ) (26)
i e 2 2n e — 272D ™ His=— 5 (1-ED(1+EDE,,

 BLL+ PP exp(—2|y1g D) +27]
1+ +2nexp(—2[y4?)

l, (22 T
vl (22 Hry=— 7 (1+ED)(1-E3).

whereH , andH ; are a- and 8-dependent parts of t~he inter- Here,Hry,Hrs andH1,,Hy, are diagonal and off-diagonal
actionHj, [Eq. (22)]. From the transfer HamiltoniaA 1 (7)  terms of Eq.(23), respectively.

there remains The effective polaron potential in Eq20) [with Egs.
_ (21)—(25)] as a highly nonlinear function of; and vy, is
(H) _ . visualized in Fig. 1.
N —Texp-W)M=2(Hpl +Hrpio, The potential exhibits two sets of minima related to two
competing ground states:
+Hrzo,+Hpyoy). (23 (i) Two nonequivalent broad minima related to both the

levels(12) at + y,;#0 andvy, close to O;

(ii) One narrow minimum ay close to 0,y,>0, where
both levels approach close together. This minimum develops
at growing; evidently its behavior depends also dwalue
M=[(1+ Ef)l +(1—Ei)EzUzn][(l+ Ei)l +(1- Eg)gx]’ because of nonlinearity of the Debye-Waller fackdrEgs.

The ground-state energies related to these two sets of
whereE; are given by(Appendix B competing minima were calculated numerically. The result
_ of the numerical minimization of the diagonalized form of
Ei=exp(—2|y1?), E,=exp(—2|y,/°). (25  energy(20),

The Debye-Waller factor exp(W)M in Eq. (23) is given in
the Appendix B. The differential part of the Debye-Waller
factor W in the ground state is zero. Fbf it holds
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FIG. 2. The ground-state en-
ergy (28) in the y-Q plane atu
=2.5(a) and(b) in the y-u plane
at 1=0.5. The “light” phase is
evidently much more sensitive to
effects of y and w than the
“heavy” polaron.

E=Hpnt+Hg+Hr — [(H,+ HT3)2+ H$4_ H$2]1/2 scaled gnits, renormalized By The results of the nl_Jmeri(_:aI
27) eyaluatlons of the grognd—state enei@p) are depicted in
Figs. 2a) and Zb) for different model parameters.
One can distinguish there two regions depending on the
Ea( s UT)=E({ 19, ¥2q T T min) T (28) value of y with different behavior of ground state in each of

can be written symbolically as

them:
Here, the index fmin” denotes the optimized values. The (i) The ground state pertaining to the lower broad mini-
model parameters mum aty;<0 andy,~0 with a small reflection part af,
o2 g Q >0 is r_eferred_to as a “heavy” region. It cor_responds to a
k=57 X==0 T (29 predominantly intralevel “heavy” polaron that is represented

by a two-peak wave function, both peaks representing a har-

are parameters of the effective interaction, asymmetry, angonic oscillator(~exg —(x+ y1)’]) displaced by the value
nonadiabaticity, respectively. Enerd¥s [Eq. (28)] is in  *y; [as it is seen from the form of the ansdi2)]. The
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x=1.

FIG. 3. The range of relevance of the reflec-
- o, tion measurez: Difference AEG=Eg(7=0r
”'I;?fo;'{;’;';‘?,‘,‘f}’,:,,, ",""'ff’if";';g,,,, =0)—Eg, for x=1, Eg is the exact ground
state(28). For y<1, the difference increases with
x reaching its maximum ajy=1. At y>1 it
drops to zero, i.e., the narrow minimum “light”
phase is resistant against

2

e Z,
2
R A A e s

“heavy” polaron is dominant ajy<<1 where the broad mini- merically. However, contribution due toE(#7,r=0)—Eg
mum y, <0 is dominating. ~2x% 102 of the maximum value in Fig. 3. The said param-
(ii) Close toxy=1, the energies of two minima go very eters turn out to be most relevanti®we JT case g=1).
close togetheftheir difference is in the order of the phonon  The effects ofp andr on the ground state is apparent only
energy()). They drop to one narrow minimum that repre- at moderate couplings in the “heavy” region, reaching their
sents a new ground stat€lose toy=1, continuous transi- maximum aty=1. The narrow minimumthe “light” re-
tion to a new ground state occurét stabilizes aty>1, gion) is resistant againsyp.
where (optimized vy, value is close to 0 and,>0. This In order to demonstrate important properties of displace-
region is referred to as a “light” polaron region because,ments  and() dependendgeit is sufficient, except for the
owing to the abrupt decrease f~0 at y>1, the effective region of importance of the reflectiofFig. 3 inside the
mass of the intralevel polaron drops to almost its free-‘heavy” region apparent fory, (Fig. 4), to calculate them in
electron value, i.ethe polaron self-localization vanishes in the limit »=0. We shall use Eq27) approximated for the
the “light” region. Because of this “undressing,” the trans- cases of both “heavy” and “light” polarons and obtain im-
port characteristics of the excited electron would increaseplicit expressions foty; that, however, are good to visualize
Moreover, due to the tiny distance between the levels, theitheir behavior in both regions:
coupling takes place by the exchange of virtual phonons 1. (i) “heavy” polaron (y, small, Ezwl,HTZ,HTﬁO):
At suitable conditions, in the excited state, when both levels

are occupied by electrons of opposite spitiie mechanism —ae™
of virtual phonon exchange implies the pairing of electrons P4 A A S—— I (30
i.e., formation of “light” bipolarons. 2TE2 2+ Qe

The ground-state energy, especially its behavior depen- ! TEi

dent on pairs of parametejs () andy, w is illustrated in ) ) ) ) _ _
details in Fig. 2. While being weakl{) dependent, the en- Y2 is small except for the region of fluc.tua'qons visualized in
ergy strongly decreases wighinside the “light’ phase[Fig. F|g. 4, Czne caryl, see, that th% self-locghza}tlon du‘fa to p"h_onons
2(a)]. The position of the phase line is slightly shifted from 2 In the “heavy” region~ — y; clearly implies the “cave”in
x=1 atQ =0 to higher values of with increasing®. This  the ground-state energy due to the reflection meaguign-
is consistent with the fact that the phonon fluctuations ard@rmonicity of the ground statéFig. 3).
most effective when the difference between the energies of (ii) “light” polaron (y; small,E;~1H ,Hy ~0):
the phases is of the order of the phonon energy.

The ground-state energy in the “heavy” regiop<1) is _ —a€
independent ofy, its decrease inside the “light” regiony( Y= 32 Qe4r)

4r
~1078,

1+

>1) is dependent on the effective coupling[Fig. 2(b)]. 2TE§ ZQT+ 5

The energy decrease duegds stronger in the “light” phase TE]

(depending ory) than in the “heavy” phase. (32)
The region of importance of reflection measur@ndr is _ B

illustrated in the Fig. 3. There we show the difference be- Y= Q

tween the ground-state energy withand » omitted and 2TE§(2+ —2)

ground state with four variational parameters calculated nu- TE;
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FIG. 4. Displacementy3 of
phonons 2 in the “heavy” region
(x=1); it evidently implies the
“cave” due to reflectionz of the
ground-state energy in the

e
e
CSSTS

< SRS OIS SIS, “ ” : ;
0 ‘:“::;Wo:. 0.5 heavy” region (Fig. 3.
L. OSSO
ek
0% Q
N
In the “light” region the fluctuations ofy, are missing as Correspondingly, a lattice of JT moleculeB#0) shows

well as the fluctuations of the energy. This is consistent witheither metallic or insulating phase behavior depending on
the above result of the resistance of the narrow minimunwhether the split bands overlap or not. Usually the resulting
againstz. situation depends strongly on the phonon renormalization of
For both “heavy” and “light” polaron a dependence ¢f  the gap and of the electron band including phonon fluctua-
on the nonadiabaticity paramet@/T appears. It implies the tions.
dependence of the Debye-Waller factor and consequently of Our aim here is to investigate the metal-insulator transi-
the polaron mass on the phonon frequeity This can be tion due to the competition of the polaron localization and
thought of as an analogy of thisotope effecht zero tem- the delocalization due to the transfer including the phonon-

perature. assisted electron transfer effects. Namely, the transport terms
In the “heavy” phase, electron transitions mediated byH+; compete the level splitting34) because of the complex
phonons 2 to the upper level enhance fluctuatieng,,  interplay of the diagonal and off-diagonal contributions to

which mix phonons 2 with phonons 1 and contribute to thethe bandwidth. In order to find the value of the gap as an
fluctuations of the ground-state energy of the heavy regionorder parameter of the metal-insulator phase transition it is
This is the reason for the similarity of the results in Figs. 3necessary to perform usual renormalization{3dymmetry
and 4. of the right- and left-moving electrons and holes of the trans-
fer part of Hamiltonian(1) makes it possible to split electron
IV. METAL-INSULATOR TRANSITION operators onto an electron and a hole part,

To illustrate the effect of various interactions, let us con- .
sider first a simple two-level cas@ £ 0). The ground state Ci=Ci++Ci—, 1=12, (35
will be obtained by the numerical minimization of energy
0 the signs= indicating directions of the electron motion. In
E'=HpntHatHpg, (B2 view of the reflection symmetry of the two-level local part of
whereH,, andH are a- and -dependent components of Hamiltonian (1) against the leveE=0 in the middle be-

the interaction ternH;, [Eq. (22)]. The result is of the form tween thg levels electron operatd®5) can be rewritten in a
renormalized form,

Q

E2=—(cosh4°+1)—Hp,—Hpjg, (33

¢ 2 g ci=cE+c",  co=c T+, (36)
where the label O specifies the optimized variational values.
In Eq. (33), Hp, and Hpz are contributions of the self- This renormalization implies the change of the signTof
localization energies of two coupled polarons proportional ta/H ) for holes E<0).

2 2 i itti i '
a“/2Q) and B°/2€), respectively. The splitting of the levelsis  There are two pairs of electrons and hoté@') , C(;F and

implied to be : —g_ :
P ¢, ¢, ie., two state vectors;j() and (,”), which
- +
A°=2|E|. (34 satisfy equations

174305-8
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FIG. 5. (@ The gap in the
plane of x and xy for (1=0.5.
While the critical coupling
un(Q) for 1-M transition in the
“heavy” phase (y<<1) is very
4 slightly dependent of, u (Q,x)

0. in the “light” phase refers to the
transition curve fory>1. (b) The
A b) shift of the metal-insulator transi-
5 - tion in the “heavy” region due to
quantum fluctuations at strong
coupling[ u> ()]
— Q=0.01
4 L
------ 0=0.1
-—- 0=0.5
3 L
-—- Q=1
- 0=1.5
2 L
1 L
X
f. —A/2, 0\[—g* The solution for the gap finally reads[see Figs. &)—
H + =0, 3 4
™ g* 0, A/2 ) fo 37 ()]
A=2|Eg(T——-T 40
Hnl s |+ =0, (38 N - . . .
2 0, —A2)\g_ and implies a condition for the stability of either the insulat-

ing phase, IfEg(T— —T)>0, or the metallic phase in the
where H,, results from the minimization of Eq20) with opposite case, where=0.

respect to the variational paramet¢zs), Figure 5 depicts both-M and “heavy”-“light” transi-
tions. In the “heavy” phase, at small the |-M transition
B —Eg, O line is determined by the critical coupling () indepen-
Hm= 0, Eg /' (39) dent of y up to y=1. In the “light” phase, the critical cou-

pling w (Q,x)<uy(L2) decreases with increasing The
andEg given by Eq.(28). point[ x=1,un(Q)] is the only point of coincidence of the

174305-9
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x=1.5

FIG. 6. The gap in the “light”
region (y>1) as a function of)
andu for y=1.5. The fluctuations
increase with(}.

“heavy”-*light” transition and the I-M transition. At small  transition into the light region. In the light region theM

w the fluctuations support the metallic phase in the lighttransition line moves to smallgx when compared with the

region[Fig. 5a)], while at smally (and sufficiently largeu heavy regionFig. 6).

that the insulating phase could be statleey support the As one can also see from Figs. 6 and 8, It transition

metallic phase in the heavy regigRigs. Sa,b]. line in the phase diagram, is stronglyQ dependent. The
The I-M transition can appear in the “heavy” region at phase line in the planeu(Q)) between the phases shows the

large 1 (29) and smallQ) [Fig. 2@)]. From Fig. 3(medium  broadening of the metallic phase with growifiy i.e., the

values ofu) one can locate the region of relevant reflectionmetallic phase is supported by the quantum fluctuations. Re-

7 into the metallic phase, where the bands overlap. Thgpective ground-state energy slightly increases With

“light” region ( x>1) is resistant againsj: no similar effect To make effects of different contributiois; more trans-

as that one shown in Fig. 3 there exists. Therefore, in the,yrent e can first analytically calculate the effect of the

heavy region the metallic phase is strongly supported due t iagonal terms, andHTs. [Let us note that neglecting the

the fluctuations at weak couplings. Heavy phase is there- . . o .
fore metallic in the broad range of parameters except fof-diagonal transfer, i.ekir, i=2,4in Eq.(26), means ne-

strong couplinggFig. 2(b)]. At certain (large u the I-M _glecting the addit.ional splitting of the bands: More precisely,
transition drops close to the ling=1, so that the transition it means neglecting the off-diagonal terms in Eg).].
coincides with the heavy to light polaron transition. With ~ Minimization of the energy27) with Hy,=Hy =0,
decreasingu thel-M transition line moves to largey [Fig.

1_
5(b)]: the M-I transition moves away from the heavy-light B =HpntHo+HptHr +Hr, (42)

FIG. 7. The competition of the level splitting
and bandwidthT terms [T=TM (23)]. A, is
splitting of the levels(34), A; neglects the off-
diagonal termddrHy,, [Eq. (43)]. A is the ex-
act gap given by Eq40).
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NONADIABATIC EFFECTS IN A GENERALIZED JAHN- ... PHYSICAL REVIEW B65 174305
implies the ground state of a similar structure as that one of

Q
0.4 I Eq. (33),

/ _Q 1 1
(cosh4 +1)—Hp —H ,3+HT+HT, (42

0.3 | where the label 1 specifies the optimized variational values.
Respective splitting yields

A'=2|E} 2HT+HT)|
0.2
’ = 2Hh—Hb, M HE-HE[. @3

!
| The qualitative picture of the role of different contribu-
tions in the formation of the gap is given in Fig. 7.
0.1 ! The exact phase diagram is compared with the result of
/ Eqg. (43) in Fig. 8. Here one can see that the main contribu-
l tion to the shift of the phase diagram in support of the me-
tallic phase is on account of the off-diagonal electron transfer
! L termsH+, andHy, (26) related to phonon assisted Rabi os-
cillations. These contributions play an important role in the

0. 1. 2. 3.
\ight phas€gFig. 2(b)].

FIG. 8. Comparison of the phase diagram of the exact mode
(40) (solid line) with that one neglecting off-diagonal transfgid)
(dashed lingof the heavy region. The metallic phase occurs on the V. SQUEEZED QUANTUM GROUND STATE (VACUUM)
left and the insulator on the right of the respective line. FLUCTUATIONS OF PHONONS
In Fig. 9 we display numerical results for the coordinate
and momentum fluctuations of the phonon in the heavy re-
gion (y<1) of the ground state. Evident anharmonicity

Q=0.4
A a*p b)
Q a) [—x=0.5 1
0.5p — - m o m e m
N x=0.8 o
0.54f / H s
| ~ 0.495}} o
1 Co
I Sy
0.49} \ /s
\.\..A, ‘////
0.485} |\
\
\ /
u b
0.5 1 1.5 2 2.5 3 H

\ 0'.'.' -,

‘ NS ,:' ~-..'
2'.\\'"’ l S Y
\‘ 1‘ “

H 0.

9.5 1 1.5 2 2.5 3
FIG. 9. Quantum fluctuations @&) the coordinateA?Q;, (b) momentumA2P, and(c) their productA?Q;A?P;. (d) Details of Fig. 3

underlying the region of parameters of Figea99.
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peaks in the region of relevance of the reflectipnFig. Hence, we have identified two regions of stabilify: the
9(c)] are due to the mixing with the phonon of the higherregion of the dominatingeavy polaror(xy<1) related to the
level. The peaks are related to the ground-statpieezed broad minimum at negative; (the absolute minimujnand
vacuunm) fluctuations of the phonon coordinat®,  y>~0 and(ii) the region of the dominatingight polaron
:1/\/§(b’lr+ by), (x>1) related to the narrow minimum at;~0 (Fig. 1).
The almostvanishing polaron self-localizatiom the “light
region” (“undressing”) meansenhancement of the polaron
1+4§/§ transfer due to respective decrease of the polaron effective
mass. Even in the heavy phase the effect can be present due
to fluctuations of the light phaséigs. 3 and 4
Close to the transition from heavy to light polaron yat
=1, a continuous transition teew ground state that is stable
at y>1 occurs(Fig. 2). In this ground state thisrmation of
v, defined by Eq.(17). For the variational parameters light bipolaronsis possible, which are characterized by the
y1,m,F we have to take their optimize@round stateval-  e€nhancement of the effective transfer due to the vanishing

ues. For the related momentuy =(i/\2)(b!—b,), one Self-localization. The pairing of the polarons is caused by
obtains the ground-state fluctualj)i%n( V2)(bi-by) virtual exchange of phonons 1 mediated by phonons 2 be-

tween the electrons in both levels at suitable configuration.

1
AQ;=(QT)—(Qu)*= s expl4r)

4(1- )"
[1+ 72+ 27 exp—2y])]?

, (44)

1 This effect might be of interest from the point of view of
A2P1=(P§)—(Pl)zzzexp(—4r), (45 bipolaron mechanisms of the superconducti¥tfthe I-M
transition and heavy-light phase coincide in the crossing
where again the optimized value foiis meant. point of the linesy=1 and uy(Q) [critical line of I-M

Their productA?Q,;A?P, for the oscillator in the ground transition in the heavy phase, Figajl.
state[Fig. 9(c)] exhibiting a peak in the region of relevant ~ The Debye-Waller factof24) shows nonadiabatic depen-
reflection 7 is the evidence for its anharmonicity due to the dence on the phonon frequen€y through vy;, [Egs. (30),
coupling with the higher-level oscillator. The reflection (31)]. Then, the effective transfer parameter of electrons is
variational parametey; is efficient only in the heavy region correspondingly increased and the electron effective mass
(x<1), for y=1 the fluctuations decrease close towards th&lecreased. This effect reminds us of the “isotope effect,”
classical value 0.25 of the harmonic oscillator near the narhowever, at zero temperature.
row minimum: the stable ground state of the light polaron is The metal-insulator transition occurs in both regions:
achieved aty=1. In the light region the oscillator remains heavy region is the region of dominating metallic phase,
close to harmonic one; no analogous effects to those in th@here the transition to the insulating phase can occur only at
heavy region occur. The results displayed in Fig. 9 stay irufficiently largex (Fig. 5. On the other hand, in the light
evident correlation with the region of relevance of the reflectegion thel-M transition can occur at relatively small
tion parameter; of the Fig. 3(see its detail in Fig. @) for ~ (Figs. 5 and & For certainu thel-M transition can coincide

the corresponding region of paramejerSimilar effects of ~ Wwith the heavy-light polaron transitioat y=1 [Fig. 5a)].
anharmonicity were found by numerical simulations in theThe interlevel and the combined interlevel and intersite elec-

related model by Borghét al® mentioned in the Introduc- tron Rabi oscillations in the ground state, are identified to be
tion. the main reason for thshift of the FM transition line to
stronger effective couplings.e., in support of the metallic
VI. CONCLUSIONS phas_e(Figs. 5 and Y. Figure L’?a) illustrates the existence of
the light polaron in both the insulating and metallic phase.
The self-consistent polaron potential provided by the Hol-  Fluctuations of the phonon-conjugated coordinates and
stein intralevel and interlevel electron-phonon couplings intheir product exhibit peakéFig. 9) in the region of param-
our two-level lattice model is highly nonlinear function of eters where the effect of (Figs. 3, 4 is relevant. Conse-
phonon displacement¥ig. 1). As a consequence, there oc- quently, the effect appears orily the heavy regiomeaching
curs a competition between the regime of two nonequivalenits maximum aty=1 and growing with(). The peaks are
broad minima att y; andy, close to O related to two elec- evidence foithe strongly anharmonic behaviaf the heavy
tron levels and the regime of one narrow minimum»yat  polaron in the region of relevance af. In the light region,
>0 andy;, close to 0 when both broad minima collapse to athere occurs a degeneracy over(no effect of » on the
single one, so that both levels drop to that minimum. Theminimum of the potentia) i.e., no analogous effect of the
broad minima dominate gt<1, the narrow one g¢>1. At fluctuations, but nearly a harmonic oscillator is observed.
E®e Jahn-Teller symmetry ¥=1) energies of the broad This is obviously due to the specific form of the variational
and narrow minima coincide and the phonon-assisted tunne&nsatz, which is inspired by the shape of the “pure” heavy
ing due to the nonadiabatic fluctuations reaches its maximurpolaron(i.e., with y<<1). Therefore the ansat®), reflecting
close to this limit. Wheny is approaching 1, there occurs the essentials of the heavy polaron, is proper for describing
pairing of the levels due to the interlevel onsite and intersitehe heavy region, but when concerning the light region, it
polaron tunneling mediated by the exchange of virtualpresents, to some extent, a heuristic extrapolation. We could
phonons. The narrow minimum is suppressed if the electrohave started from another ansatz underlying the essentials of
transfer energyl’ decreases. light polaron(which could be, for example, inspired for the
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“pure” case of y>1) in order to investigate the light region % eXF[—2|;’1m(n)|2]}| yam(M)2

and gain some extrapolation towards smalerNaturally,

the transitiorE® e Jahn-Teller casey=1) too needs further

considerations. TN E Cam(M)]v2m(M)[?1, (B1)
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APPENDIX A
and

We shall use the following formula&®

D(y)S(1)=S(r)D(y), y=ye 2, (A1) Hy=— E Cym(nexd —Wo(n) M (n)
_1 — T .
S (r)bS(r)=bcoshZ +b'sinh 2r, (A2) —2(Hral + Higi oy Hyaorst Hcrg). B3

(0[S™ ' [rm(nID ™ {ym(N)IDm(n+1)Sry(n+1)]

— _irx -z 2 Calculation of the Debye-Waller factor exp(V)M [Eq.
ez [ym(n+ D =y(MI, (A3) (23)] and of Eq.(25) is based on the formula@3)—(A5).

wherey=ye~

For averages obtained by using virtual Fock stateswe

use formulas Eqg. (A3) we receive folW(n) in Eq. (B3),

(0|D 157 1(—1)""PSD|0)

d'ylm n)‘ dyom(n) 2

: |
w3 ([T <] e

=oMD" )g= 2 (- 1Unl)I?,
(A4) With the help of Eqs(A4) and (A5) one obtains folE,,(n)
=(G1m+1G1m),
where|y),=SD|0)=S|y) and,
v )”’2 Em(N)=(0m+1,0m/S i 1(MIS rn(n)]
- Hn
2p XD Yy 2 (M 1D yam(M)](— 1) ime Prmes
Xexp( |72|2+ a 2) (A5) X (= 1)PinPamD[ yy (N +1)]D
" X[yimsa(n+ IS p(n+1)]

Y

(ZMV)J'IZ

<n|y>g:(nl—u)l’2

Here,u=cosh2, v=sinh &, u?>—v?=1, herev is real.

APPENDIX B Srm2(n+1)][0n,0my1)
The average of the Hamiltonian in E@) over the states =exp(— 3 [[Yam(M?+ [yim(n+ 1) |2+ Y1 ms 1(0)]?
(19) referred to one site results i(ﬁ OIN=Hpp+Hin,

where +|3’1,m+1(n+1)|2+3’1m(n+ 1) Y1m(N)

+’;’1,m+ 1(n+ 1);’1,m+ 1(n) +’:)"1m(n);’l,m+ 1(n)

Hon= o2 2 Cinmlcosti4ra(n)+ 111, + Y (n+ 1) Yam(N+1)]). (B5)
+ 2 > {1+ p2—2e78mMy In the~ continuum limit (B5) yields Eg(n)—
CN* mn exp(—27(n).
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or We approximated the average of a product in the transfer
term by a product of averages. In the continuum limit, from
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