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Nonadiabatic effects in a generalized Jahn-Teller lattice model: Heavy and light polarons, pairing
and the metal-insulator transition
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The self-consistent ground state polaron potential of one-dimensional lattice of two-level molecules with
spinless electrons and two dispersionless phonon modes with linear coupling and quantum phonon-assisted
~nonadiabatic! transitions between the levels is found anharmonic in phonon displacements. As a function of
these, the potential shows a crossover from two nonequivalent broad minima to a single narrow minimum
which correspond to the positions of the levels in the ground state. Generalized variational approach respecting
the mixing of levels~reflection! via a variational parameter implies prominent nonadiabatic effects:~i! In the
limit of the symmetricE^ e Jahn-Teller situation they cause transition between the regime of the predomi-
nantly one-level ‘‘heavy’’ polaron and a ‘‘light’’ polaron oscillating between the levels due to phonon assistance
with almost vanishing polaron displacement. Vanishing polaron selflocalization impliesenhancement of the
electron transferdue to decrease of the ‘‘heavy’’ polaron mass~undressing! at the point of the transition. There
can occurpairing of ‘‘light’’ polarons due to exchange of virtual phonons.Continuous transition to new energy
ground state close to the transition from ‘‘heavy’’ polaron phase to ‘‘light’’ (bi)polaron phase occurs. In the
‘‘heavy’’ phase, we have found anomalous~anharmonic! enhancements of quantum fluctuations of the phonon
coordinate, conjugated momentum and their product in the ground state as functions of the effective coupling
which reach their maxima atE^ e JT symmetry. They decrease rapidly to their harmonic values as soon as the
‘‘light’’ phase is stabilized.~ii ! Nonadiabatic dependence of the polaron mass~Debye-Waller screening! on the
optical phonon frequency appears.~iii ! The contribution of Rabi oscillations to the transfer enhances signifi-
cantly quantum shift of the insulator-metal transition line to higher values of the critical effective electron-
phonon coupling supporting so the metallic phase. In theE^ e JT case, insulator-metal transition can coincide
with the transition between the ‘‘heavy’’ and the ‘‘light’’~bi!polaron phase only at certain~strong! effective
electron-phonon interaction.

DOI: 10.1103/PhysRevB.65.174305 PACS number~s!: 71.38.2k, 73.90.1f, 42.50.Dv, 05.30.2d
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I. INTRODUCTION

Recently an interest in electron-phonon models was
newed owing to high-Tc-superconducting layered cuprat
and fullerene compounds that exhibit structure instability d
to strong Jahn-Teller effect accompanied by an evident
tope effect.1–6 Here, nonadiabatic~quantum! fluctuations
were found to be important since the majority of the sup
conducting structures exhibited low values of the Fermi
ergy, comparable to the phonon energy and large isot
effect. Nonadiabatic fluctuations also appeared relevan
manganese-based perovskites at Jahn-Teller~JT! distortion
assisted by formation of JT polaron and causing oxygen
tope effect and a collosal magnetoresistance.3 The mecha-
nism of nonadiabatic pairing was proposed by several
thors: Manini et al.,7 Zheng and co-workers,8,9 Kresin and
co-workers,4,5 Pietronero and co-workers10 for C60 com-
pounds and recently also for the challenging new superc
ductor MgB2.11 Theories of pairing mechanism based on p
larons ~bipolarons!, including also electron-electro
interactions evoked great interest as well.12–14

Nonadiabatic fluctuations affect the charge transport
cause they reduce the polaron band narrowing8,9,15 ~i.e., po-
laron renormalization of the electron mass!. Fluctuations in-
crease near the phase transitions16–19 destroying the phase
coherence for weak interactions and shifting the critical c
0163-1829/2002/65~17!/174305~14!/$20.00 65 1743
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plings to higher values. However, numerical simulations
different lattice models~Fradkin and Hirsch,16 Borghi
et al.,17 McKenzieet al.18! prove a general statement that th
resulting quantum fluctuations are much more pronoun
than those obtained by variational approaches, e.g., by Zh
et al.,8 Feinberget al.,15 Lo and Sollie,20 and Chenet al.21

Namely, the quantum shift of critical values of the electro
phonon coupling from numerical simulations to higher v
ues~preferring so the metallic phase! was shown to exceed
considerably their variational values. Moreover, the nume
cal simulations of two-level lattice electron-phonon syste
in one dimension by Feinberget al.15 and by Borghiet al.17

evidence anomalous increase of quantum fluctuations of
phonon coordinate and of the conjugated momentum as
as anomalous increase of their product referring to enha
ment of anharmonic effects. The simulations manifest a d
matic increase of phonon fluctuations and of their product
beyond the standard uncertainty principle. The inadequac
the variational approaches was ascribed to insufficiency
the squeezed coherent phonons~harmonic oscillators! to
comprise anharmonic behavior of the phonons in two-le
~-band! models.

Since the early beginning,22 Jahn-Teller model was inves
tigated mainly in chemistry as a prototype model of electro
phonon interaction for localized centers in solids. It was us
to study the instability of the orbitally degenerate electro
states of highly symmetric ionic configuration against ion
©2002 The American Physical Society05-1
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distortions in localized molecular centers in crystals.23,24The
effect was explained by Jahn-Teller theorem about lifting
degeneracy of an orbitally degenerate electronic state
symmetry lowering distortions of nuclear configuration
This effect is also involved, e.g., in physics of structu
phase transitions in solids doped with Jahn-Teller ac
ions,25 for mechanisms based on tunneling between two e
tronic levels coupled to phonon modes,23 in optical26 and
paramagnetic ion spectra.27

Though JT effect was considered as the most represe
tive nonadiabatic system, Born-Oppenheimer approxima
has been extensively used although it is valid only in
limit of large local distortions. Inconsistency of the adiaba
approach for small distortions was analyzed by Wagner
co-workers.23,28

Importance of JT effect in physics was increased due
the above-mentioned discovery of JT effect based struct
transitions in some high-Tc superconductors and i
manganese-based perovskites. Therefore, the considerat
now focused on lattice versions of the JT model.

In this paper we will investigate an extended lattice of
molecules: site molecules with doubly degenerate elec
level coupled to two internal phonon modes with differe
symmetries and different coupling constants. The antisy
metric mode splits the levels, the symmetric one couples
levels via phonon assisted onsite and intersite electron t
sitions ~Rabi oscillations!. As we show, these transitions a
especially important if the difference of the effective pote
tial minima as a function of the phonon displacement is
the order of the phonon energy~symmetric Jahn-Teller mol
ecules!. We shall use a generalized variational approa
which will account formore aspects of nonadiabaticity: In-
stead of simple squeezed coherent phonons, as a more a
priate variational ansatz for phonons we take a two-cen
squeezed coherent wave function that accounts for
possibility of the phonon-mediated coupling of levels. T
variational wave function of the two-level electron-phon
systems with reflection symmetry~antisymmetry! of the co-
herent phonon states related to both the levelsf1 and f2

was first introduced by Shore and Sander29 as linear combi-
nationsf11hf2 andf21hf1 , h being new~reflection!
variational parameter. The approach has been widely
ploited and further developed by Wagner and co-workers30,31

for exciton~211!, dimer @~221! and~222!# systems~with the
tunneling between the levels in contrast to the phon
assisted electron transitions of our model!; here the notation
(xyz) is used forx as the number of the levels,y as the
number of the sites, andz as the number of the electrons in
cell!. The detailed comparison of the ground-state energ
~GSE! of different variational phonon wave functions for a
exciton-phonon or dimer-phonon models31 confirmed the
two-peak variational choice as the most suitable one,
giving the best fitting of the exact solutionin the medium-
and strong-coupling regimes.

A similar structure of the wave function was proposed
the phonon wave function coupled to two electronic state
a double-well potential by Kresin and Wolf5 in their model of
the nonadiabatic origin of the isotope effect in high-Tc
superconductors.
17430
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In the Sec. II, we formulate variational approach for o
model. We find effective ground-state potential as a funct
of all ~four! phonon variational parameters@displacements of
two phonon modes, squeezing and reflection~mixing!#.

In the Sec. III, we compare variational results for t
ground-state energy of the two-center squeezed cohe
phonon wave function with the adiabatic ground-state ene
and identify the region of importance of the reflection (h)
and nonsymmetry (x5b/a) parameters to be the regio
close tox51 (E^ e JT symmetry!. Special importance of
the symmetric~Jahn-Teller! lattice molecules occurs as
specific condition for which the reflection parameter is t
most effective. At this symmetry, there takes place a no
diabatic transition between the polaron dominantly se
localized within one level, ‘‘heavy’’ polaron of a broad min
mum and the almost delocalized, ‘‘light’’ polaron of a narro
minimum ~with vanishing displacement! oscillating between
close levels via both onsite and intersite phonon-assisted
neling: Namely, the coherent phonons 2 are accompanie
Rabi oscillations of the electron between the levels due to
phonon mode 1. The latter virtual phonons mediate the c
pling of polarons that may occupy the levels.

We compare ground-state characteristics of the ‘‘heav
and ‘‘light’’ region as functions of pairs of competing class
cal ~effective coupling! and quantum~phonon frequency,
tunneling! parameters. The self-trapping due to electro
phonon coupling competes with the lattice transfer of el
trons ~bandwidth!, which itself is being renormalized by th
Debye-Waller factor. The characteristics of the relat
insulator-metal transition, the value of the gap and con
quently of the critical coupling are determined by the co
plex interplay of the transfer supporting the metallic pha
and of the electron-phonon coupling supporting the insu
ing phase. The shift of the critical line to higher values of t
critical couplings due to quantum effects is discussed in
Sec. IV.

In the Sec. V we investigate anomalous behavior of
squeezed ground-state quantum fluctuations of the can
cally conjugated phonon coordinates and their product on
effective coupling (m) and effective potential asymmetr
(x) parameters, namely, the strong anharmonic fluctuati
that reach their maximum values again atx51. They de-
crease to the harmonic oscillator values forx.1. A related
model is a lattice of two-level dimers with one spin electr
at each site@~222! lattice model# studied by exact numerica
methods by Borghiet al.17 The present model differs from
that one, but concerning the quantum fluctuations of the p
non coordinate and momenta qualitatively the same res
as for their model are expected.

We remark that variational methods are widely used
electron-phonon lattice models.

A fully analytic nonvariational approach with nonconse
vation of the number of phonons was performed for a lo
(D50) dimer by Weber-Milbrodt.32 Unfortunately, in the
extended (D51) lattice model this method acquires extrem
mathematical complexity. It was used as a basis for num
cal study16 of the above-mentioned lattice model.
5-2
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II. EXTENDED „LATTICE … GENERALIZED
JAHN-TELLER MODEL

We investigate 1D~one-dimensional! lattice of spinless
double degenerated electron states linearly coupled to
intramolecular phonon modes described by Hamiltonian

H5V (
n,i 51,2

~bin
† bin11/2!1(

n
@a~b1n

† 1b1,n!szn

2b~b2n
† 1b2,n!sxn#2

T

2 (
n, j 51,2

~R1,j1R21,j !I n ,

~1!

wherebi ,n ,i 51,2 are phonon annihilation operators, and
Pauli matricess ln represent a two-level electron system
They satisfy identities@s ln ,s jn#5 iskn , l 5x,y,z, represent-
ing 1/2 pseudospins related to the electron densities
usual way, i.e., sxn5 1

2 (c1,n
† c2,n1c2,n

† c1,n), syn

51/2i (c1,n
† c2,n2c2,n

† c1,n), szn5
1
2 (c1,n

† c1,n2c2,n
† c2,n), I n

5 1
2 (c1,n

† c1,n1c2,n
† c2,n) is a unit matrix, andcj ,n are electron

annihilation operators. The operatorR61,j5e6 ipa of the dis-
placement by a lattice constant6a acts in both the electron
and phonon space,R61,j f n5 f n61R61,j .

In terms of the creation-annihilation electron and phon
operators the Hamiltonian can be cast as follows:

H5(
n

FV (
i 51,2

S bin
† bin1

1

2D1
a

2
~n1n2n2n!~b1n

† 1b1n!

2
b

2
~c1n

† c2n1c2n
† c1n!~b2n

† 1b2n!

2
T

2 (
j 51,2

~cj ,n
† cj ,n111H.c.!G . ~2!

For b52a, the interaction part of Eq.~1!

aS b1n
† 1b1n , b2n

† 1b2n

b2n
† 1b2n , 2~b1n

† 1b1n!
D ~3!

yields the rotationally symmetricE^ e form24 with a pair~an
antisymmetric and a symmetric under reflection! of double-
degenerated vibrations. This is, e.g., the case of Cu11 ions
with d9 configurations in high-Tc cuprates.33,24

Taking aÞb removes the degeneration of the vibron
states breaking the rotational symmetry of the electr
phonon interactions, the model still staying within the cla
of JT models.1,23,22

The dispersionless optical phonon modeb1 splits the de-
generated unperturbed electron level (j 51,2) while the
modeb2 mediates the electron transitions between the lev
This latter term represents phonon-assisted tunneling
mechanism of the nonclassical~nonadiabatic! nature as well
as is the pure tunneling in related exciton and dimer mod

Evidently, Hamiltonian~1! (aÞb) is reflection symmet-
ric, G(el)G(ph)H5H,
17430
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u2&5G(el)u1&, ~G(el)!251,

G1n
(ph)~b1n

† 6b1n!52~b1n
† 6b1n!G1n

(ph) , ~G1n
(ph)!251,

~4!

whereG1n
(ph)5exp(ipb1n

† b1n) is the phonon reflection opera
tor. While the phonon 1 is antisymmetric under the refle
tion, phonon 2 remains symmetric.

In addition, the transfer part of Eq.~2! exhibits SU~2!
symmetry of the left- and right-moving electrons~holes!.

Let us note that the quantum phonon assistance of
electron tunneling@b term in Eqs.~2! and~1!# constitutes the
difference of the model from the related dimer and excit
quantum models where instead ofb(n(b2n

† 1b2n)sxn of Eq.
~1! there standsDsxn , whereD is the distance between th
levels.29,31

The local part of Eq.~1! can be diagonalized in electro
subspace by the Fulton-Gouterman unitary operator34 Un
[U2,nU1,n , where

Ui ,n5
1

A2
S 1, Gi ,n

1,2Gi ,n
D , Gi ,n5exp~ ipbin

† bin![Gi ,n
(ph) ,

~5!

as follows

H̃L5(
n

UnH0nUn
215V (

n,i 51,2
S bin

† bin1
1

2D
1

1

2 (
n

@a~b1n
† 1b1,n!2b~b2n

† 1b2n!G1,n!] I n .

~6!

On the other hand, in the transfer term

H̃T52
T

2 (
n

~Vn,1R11Vn,21R21! ~7!

there appears a nondiagonality

Vn,615@~11G1nG1n61!I n1~12G1nG1,n61!G2nszn#

3@~11G2nG2n61!I n1~12G2nG2,n61!sxn#.

~8!

Here, Pauli matrices transform asUisxUi
215Gisz ,

UiszUi
215sx , andUi(bi

†1bi)Ui
215(bi

†1bi)2sx .
The diagonal terms of Eq.~8! represent the polaron trans

fer within one level while the off-diagonal ones represent
interlevel polaron transfer through the lattice. Evidently, t
contribution of the off-diagonal terms proportional
12GinGi ,n11 is much smaller when compared with tho
proportional to 11GinGi ,n11.

Because of nonconservation of the number of coher
phonons, they are able even in the ground state to a
electron transitions between the levels. In the Hamilton

~6!, the operatorG1n5(21)b1n
† b1n @Eq. ~5!#, highly nonlinear

in the phonon-1 appears mediated by phonons 2. It in
duces multiple electron oscillations between the split lev
mediated bycontinuous virtual absorption and emission
5-3
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the phonons 1. The effect is analogous to Rabi oscillations
quantum optics due to photons.35 Let us note that Rabi os
cillations assist both the interlevel onsite and intersite e
tron transitions mediated by the electron transferT.

For various local electron-phonon models, a number
phonon variational wave functions using coherent a
squeezed coherent phonons was proposed in order to r
the best ground state.20,21,9,15

Specially, for two-level systems Shore and Sander29 pro-
posed variational eigenfunctions in the form of symmet
and antisymmetric combinations of the reflection symme
components related to both the levels. Each of these com
nents was chosen in a form that accounted for mixing w
the reflected state via new variational parameter. This ch
was stated to be the best variational wave function,
yielding the lowest ground-state energy. The method was
ther developed by Wagner and co-workers31 for dimers and
excitons. We shall adopt this approach in what follows
taking

F1,2[f1c16f2c25
1

AC
@~f11hf2!c16~f2

1hf1!c2#5
1

AC
@f1~c16hc2!6f2~c26hc1!#,

~9!

with the upper sign for the ground stateF1 and lower sign
for the excited stateF2.

In Eq. ~9!, f15f11hf2 andf25f21hf1 are pho-
non wave functions related to two levels with mixing of th
bare f1 (f2) and reflectedf2 (f1) parts mediated by
the variational parameterh.

Further,c1 and c2 are components of the electron sta
vector related to the upper and lower level, respectively,

c1~n!5c1n
† u0el&, c2~n!5c2n

† u0el&, ~10!

whereu0el& is the electron vacuum. Note that the last line
Eq. ~9! allows us to interpret alternatively the parameterh as
reflection parameter of the electron states as well.

The squeezed coherent phonon wave functions

f6@g1m~n!,g2m~n!,r m~n!#

[D1,6@g1m~n!#D2@g2m~n!#S1@r m~n!#u0ph&,

~11!

are related to lower (f1) and higher (f2) level; u0ph& is the
phonon vacuum.

The generators of the coherent phonons are functiona
related displacements

D1,6@g1m~n!#5exp(
m

6@g1m~n!b1m
† 2g1m* ~n!b1m#,

~12!

D2@g2m~n!#5exp(
m

@g2m~n!b2m
† 2g2m* ~n!b2m#, ~13!
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as well as the generator of squeezing,

S1@r m~n!#5exp(
m

r m~n!~b1m
†2 2b1m

2 !. ~14!

Respective generator of the mode 2,S2@r 2m(n)#51, be-
cause Hamiltonian~2! is linear inb2 ,b2

† and r 2m(n)50.
The normalization condition then reads

1

N2 (
m,n

C1m~n!5C, ~15!

where

C1m~n!511h212h exp@22ug̃1m~n!u2#, ~16!

and

g̃1m~n![g1m~n!exp@22r m~n!#. ~17!

Generally,g jm(n) is a nonlocal quantity that represen
the displacement of the modej at the sitem due to an elec-
tron at the siten, g jm(n)51/AN(qg jq(n)exp(2iqma). We
take

g jq~n!5
g j

AN
exp~ iqna!→g jm~n!5g jdm,n , ~18!

whereg j are independent ofn. Equation~18! indicates that
the phonon displacement accompanies the electron at the
n. The same is valid for the squeezing,r m(n)5rdm,n .

Full Bloch solution to the transformed lattice Hamiltonia
H̃5H̃L1H̃T , @Eqs. ~6!, ~7!# is chosen as a generalize
Fulton-Gouterman variational ansatz34,31 in the vector form
@Eq. ~9!#,

CFG~k!5
1

AC
(

n
exp~ ikna!S f1~n!c1~n!

f2~n!c2~n!
D , ~19!

where the electron partsc i are defined by Eq.~10! and the
phonon partsf i(n) by Eqs.~9! and ~11!–~14!.

We have investigated the model~2! in a former paper36

with respect to the stability of a soliton ground state agai
quantum fluctuations. However, the variational wave fun
tion we used did not account for the two-center nature of
wave function here respected by the reflection parameteh
@Eq. ~9!#.

In what follows the ground-state energy as a function
the optimized variational parametersh, g1 ,g2 ,r will be
determined.

III. THE GROUND STATE

When considering the ground state ofH̃5H̃L1H̃T , @Eqs.
~6! and~7!#, we omit the electron and phonon dynamic term
by settingk50,q50.

By averagingH̃5H̃L1H̃T @Eqs.~6!, ~7!# over the phonon
wave functions~19! with ~9! and~11! one obtains for the site
Hamiltonian~6! ~Appendix B!
5-4
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FIG. 1. The potential~20! for x5b/a50.5,
m52, V50.05 andT51 as function ofg1 ,g2.
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^H̃L&
N

[Hph1Hint , ~20!

where

Hph5
V

2
~cosh 4r 11!I

1V
11h222he28r 1exp~22ug̃1u2!

11h212h exp~22ug̃1u2!
ug1u2I 1Vug2u2I ,

~21!

Hint[Ha1Hb5
a~12h2!

11h212h exp~22ug̃1u2!
g1sz

2
b@~11h2!exp~22ug̃1qu2!12h#

11h212h exp~22ug̃1u2!
g2I , ~22!

whereHa andHb area- andb-dependent parts of the inte
actionHint @Eq. ~22!#. From the transfer HamiltonianH̃T ~7!
there remains

^H̃T&
N

52T exp~2W!M[2~HT1I 1HT2isy

1HT3sz1HT4sx!. ~23!

The Debye-Waller factor exp(2W)M in Eq. ~23! is given in
the Appendix B. The differential part of the Debye-Wall
factor W in the ground state is zero. ForM it holds

M5@~11E1
2!I 1~12E1

2!E2szn#@~11E2
2!I 1~12E2

2!sx#,
~24!

whereEi are given by~Appendix B!

E1[exp~22ug̃1u2!, E2[exp~22ug2u2!. ~25!
17430
ExpressionsEi @Eq. ~25!# in the ground state are independe
of q and n because of the form ofg iq(n)5g iexp(2iqna)
@Eq. ~18!#. This substantially simplifies subsequent calcu
tions leavingEi andC1 as functions ofg i

2 independent onn.
The transfer termsHTi ,i 51,2,3,4 in Eq.~23! with Eq. ~24!
are expressed as

HT152
T

4
~11E1

2!~11E2
2!,

HT252
T

4
~12E1

2!~12E2
2!E2 ,

~26!

HT352
T

4
~12E1

2!~11E2
2!E2 ,

HT452
T

4
~11E1

2!~12E2
2!.

Here,HT1 ,HT3 andHT2 ,HT4 are diagonal and off-diagona
terms of Eq.~23!, respectively.

The effective polaron potential in Eq.~20! @with Eqs.
~21!–~25!# as a highly nonlinear function ofg1 and g2 is
visualized in Fig. 1.

The potential exhibits two sets of minima related to tw
competing ground states:

~i! Two nonequivalent broad minima related to both t
levels ~12! at 6g1Þ0 andg2 close to 0;

~ii ! One narrow minimum atg1 close to 0,g2.0, where
both levels approach close together. This minimum devel
at growingb; evidently its behavior depends also onT value
because of nonlinearity of the Debye-Waller factorM @Eqs.
~24! and ~25!#.

The ground-state energies related to these two set
competing minima were calculated numerically. The res
of the numerical minimization of the diagonalized form
energy~20!,
5-5
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FIG. 2. The ground-state en
ergy ~28! in the x-V plane atm
52.5 ~a! and~b! in thex-m plane
at V50.5. The ‘‘light’’ phase is
evidently much more sensitive to
effects of x and m than the
‘‘heavy’’ polaron.
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E5Hph1Hb1HT1
2@~Ha1HT3

!21HT4

2 2HT2

2 #1/2

~27!

can be written symbolically as

EG~m,x,V/T!5E~$g1q ,g2q ,r ,h%min!/T. ~28!

Here, the index ‘‘min’’ denotes the optimized values. Th
model parameters

m5
a2

2VT
, x5

b

a
,

V

T
~29!

are parameters of the effective interaction, asymmetry,
nonadiabaticity, respectively. EnergyEG @Eq. ~28!# is in
17430
d

scaled units, renormalized byT. The results of the numerica
evaluations of the ground-state energy~28! are depicted in
Figs. 2~a! and 2~b! for different model parameters.

One can distinguish there two regions depending on
value ofx with different behavior of ground state in each
them:

~i! The ground state pertaining to the lower broad mi
mum atg1,0 andg2'0 with a small reflection part atg1

.0 is referred to as a ‘‘heavy’’ region. It corresponds to
predominantly intralevel ‘‘heavy’’ polaron that is represent
by a two-peak wave function, both peaks representing a
monic oscillator„;exp@2(x7g1)

2#… displaced by the value
6g1 @as it is seen from the form of the ansatz~12!#. The
5-6
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FIG. 3. The range of relevance of the refle
tion measureh: Difference DEG5EG(h50,r
50)2EG , for x51, EG is the exact ground
state~28!. Forx,1, the difference increases wit
x reaching its maximum atx51. At x.1 it
drops to zero, i.e., the narrow minimum ‘‘light’
phase is resistant againsth.
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‘‘heavy’’ polaron is dominant atx,1 where the broad mini-
mum g1,0 is dominating.

~ii ! Close tox51, the energies of two minima go ver
close together~their difference is in the order of the phono
energyV). They drop to one narrow minimum that repr
sents a new ground state.Close tox51, continuous transi-
tion to a new ground state occurs. It stabilizes atx.1,
where ~optimized! g1 value is close to 0 andg2.0. This
region is referred to as a ‘‘light’’ polaron region becaus
owing to the abrupt decrease ofg1'0 atx.1, the effective
mass of the intralevel polaron drops to almost its fre
electron value, i.e.,the polaron self-localization vanishes i
the ‘‘light’’ region . Because of this ‘‘undressing,’’ the trans
port characteristics of the excited electron would increa
Moreover, due to the tiny distance between the levels, t
coupling takes place by the exchange of virtual phonons
At suitable conditions, in the excited state, when both lev
are occupied by electrons of opposite spins,the mechanism
of virtual phonon exchange implies the pairing of electro,
i.e., formation of ‘‘light’’ bipolarons.

The ground-state energy, especially its behavior dep
dent on pairs of parametersx, V andx, m is illustrated in
details in Fig. 2. While being weaklyV dependent, the en
ergy strongly decreases withx inside the ‘‘light’’ phase@Fig.
2~a!#. The position of the phase line is slightly shifted fro
x51 atV50 to higher values ofx with increasingV. This
is consistent with the fact that the phonon fluctuations
most effective when the difference between the energie
the phases is of the order of the phonon energy.

The ground-state energy in the ‘‘heavy’’ region (x,1) is
independent ofx, its decrease inside the ‘‘light’’ region (x
.1) is dependent on the effective couplingm @Fig. 2~b!#.
The energy decrease due tom is stronger in the ‘‘light’’ phase
~depending onx) than in the ‘‘heavy’’ phase.

The region of importance of reflection measureh andr is
illustrated in the Fig. 3. There we show the difference b
tween the ground-state energy withr and h omitted and
ground state with four variational parameters calculated
17430
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merically. However, contribution due tor EG(h,r 50)2EG
;231023 of the maximum value in Fig. 3. The said param
eters turn out to be most relevant inE^ e JT case (x51).

The effects ofh andr on the ground state is apparent on
at moderate couplings in the ‘‘heavy’’ region, reaching th
maximum atx51. The narrow minimum~the ‘‘light’’ re-
gion! is resistant againsth.

In order to demonstrate important properties of displa
ments (m andV dependence! it is sufficient, except for the
region of importance of the reflection~Fig. 3! inside the
‘‘heavy’’ region apparent forg2 ~Fig. 4!, to calculate them in
the limit h50. We shall use Eq.~27! approximated for the
cases of both ‘‘heavy’’ and ‘‘light’’ polarons and obtain im
plicit expressions forg i that, however, are good to visualiz
their behavior in both regions:

~i! ‘‘heavy’’ polaron (g2 small,E2'1,HT2
,HT4

'0):

g1'
2ae4r

2TE1
2F21

Ve4r

TE1
2 G , ~30!

g2 is small except for the region of fluctuations visualized
Fig. 4. One can see, that the self-localization due to phon
2 in the ‘‘heavy’’ region;2g2

2 clearly implies the ‘‘cave’’ in
the ground-state energy due to the reflection measureh ~an-
harmonicity! of the ground state~Fig. 3!.

~ii ! ‘‘light’’ polaron ( g1 small,E1'1,HT2
,HT3

'0):

g1'
2ae4r

2TE1
2S 11

b2

2VT
1

Ve4r

TE1
2 D '1028,

~31!

g2'
b

2TE2
2S 21

V

TE2
2D .
5-7
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FIG. 4. Displacementg2
2 of

phonons 2 in the ‘‘heavy’’ region
(x51); it evidently implies the
‘‘cave’’ due to reflectionh of the
ground-state energy in the
‘‘heavy’’ region ~Fig. 3!.
it
um

y

by

th
io
. 3

n

f

e
-
l t
is

on
ing

of
ua-

si-
nd
on-
rms

x
to
an

it is

ns-
n

n
of
In the ‘‘light’’ region the fluctuations ofg1 are missing as
well as the fluctuations of the energy. This is consistent w
the above result of the resistance of the narrow minim
againsth.

For both ‘‘heavy’’ and ‘‘light’’ polaron a dependence ofg i
on the nonadiabaticity parameterV/T appears. It implies the
dependence of the Debye-Waller factor and consequentl
the polaron mass on the phonon frequencyV. This can be
thought of as an analogy of theisotope effectat zero tem-
perature.

In the ‘‘heavy’’ phase, electron transitions mediated
phonons 2 to the upper level enhance fluctuations;g2,
which mix phonons 2 with phonons 1 and contribute to
fluctuations of the ground-state energy of the heavy reg
This is the reason for the similarity of the results in Figs
and 4.

IV. METAL-INSULATOR TRANSITION

To illustrate the effect of various interactions, let us co
sider first a simple two-level case (T50). The ground state
will be obtained by the numerical minimization of energy

E05Hph1Ha1Hb , ~32!

whereHa and Hb are a- and b-dependent components o
the interaction termHint @Eq. ~22!#. The result is of the form

EG
0 5

V

2
~cosh 4r 011!2HPa2HPb , ~33!

where the label 0 specifies the optimized variational valu
In Eq. ~33!, HPa and HPb are contributions of the self
localization energies of two coupled polarons proportiona
a2/2V andb2/2V, respectively. The splitting of the levels
implied to be

D052uEG
0 u. ~34!
17430
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Correspondingly, a lattice of JT molecules (TÞ0) shows
either metallic or insulating phase behavior depending
whether the split bands overlap or not. Usually the result
situation depends strongly on the phonon renormalization
the gap and of the electron band including phonon fluct
tions.

Our aim here is to investigate the metal-insulator tran
tion due to the competition of the polaron localization a
the delocalization due to the transfer including the phon
assisted electron transfer effects. Namely, the transport te
HTi compete the level splitting~34! because of the comple
interplay of the diagonal and off-diagonal contributions
the bandwidth. In order to find the value of the gap as
order parameter of the metal-insulator phase transition
necessary to perform usual renormalization: SU~2! symmetry
of the right- and left-moving electrons and holes of the tra
fer part of Hamiltonian~1! makes it possible to split electro
operators onto an electron and a hole part,

ci5ci ,11ci ,2 , i 51,2, ~35!

the signs6 indicating directions of the electron motion. I
view of the reflection symmetry of the two-level local part
Hamiltonian ~1! against the levelE50 in the middle be-
tween the levels electron operators~35! can be rewritten in a
renormalized form,

c15c1,1
(el)1c1,1

(h)† , c25c2,2
(h)†1c2,2

(el) . ~36!

This renormalization implies the change of the sign ofT
(HTi

) for holes (E,0).

There are two pairs of electrons and holes,c1,1
(el) , c2,2

(h)† and

c2,2
(e) , c1,1

(h)† , i.e., two state vectors (
g

2
*

f 1 ) and (
f
1
*

2g2), which

satisfy equations
5-8
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FIG. 5. ~a! The gap in the
plane of m and x for V50.5.
While the critical coupling
mH(V) for I -M transition in the
‘‘heavy’’ phase (x,1) is very
slightly dependent ofx, mL(V,x)
in the ‘‘light’’ phase refers to the
transition curve forx.1. ~b! The
shift of the metal-insulator transi
tion in the ‘‘heavy’’ region due to
quantum fluctuations at stron
coupling @m.mH(V)#.
t-
HmS f 1

g2*
D 1S 2D/2, 0

0, D/2 D S 2g2*

f 1
D 50, ~37!

HmS 2g2

f 1*
D 1S D/2, 0

0, 2D/2D S f 1*

g2
D 50, ~38!

where Hm results from the minimization of Eq.~20! with
respect to the variational parameters~28!,

Hm5S 2EG , 0

0, EG
D , ~39!

andEG given by Eq.~28!.
17430
The solution for the gapD finally reads@see Figs. 2~b!–
4~b!#

D52uEG~T→2T!u ~40!

and implies a condition for the stability of either the insula
ing phase, ifEG(T→2T).0, or the metallic phase in the
opposite case, whereD[0.

Figure 5 depicts bothI -M and ‘‘heavy’’-‘‘light’’ transi-
tions. In the ‘‘heavy’’ phase, at smallV the I -M transition
line is determined by the critical couplingmH(V) indepen-
dent ofx up to x51. In the ‘‘light’’ phase, the critical cou-
pling mL(V,x),mH(V) decreases with increasingx. The
point @x51,mH(V)# is the only point of coincidence of the
5-9
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FIG. 6. The gap in the ‘‘light’’
region (x.1) as a function ofV
andm for x51.5. The fluctuations
increase withV.
h

t

on
h

th
e
-
fo

th

ht

he

Re-

he
e

ly,
‘‘heavy’’-‘‘light’’ transition and the I-M transition. At small
m the fluctuations support the metallic phase in the lig
region@Fig. 5~a!#, while at smallx ~and sufficiently largem
that the insulating phase could be stable! they support the
metallic phase in the heavy region@Figs. 5~a,b!#.

The I -M transition can appear in the ‘‘heavy’’ region a
largem ~29! and smallV @Fig. 2~a!#. From Fig. 3~medium
values ofm) one can locate the region of relevant reflecti
h into the metallic phase, where the bands overlap. T
‘‘light’’ region ( x.1) is resistant againsth: no similar effect
as that one shown in Fig. 3 there exists. Therefore, in
heavy region the metallic phase is strongly supported du
the fluctuations at weak couplingsm. Heavy phase is there
fore metallic in the broad range of parameters except
strong couplings@Fig. 2~b!#. At certain ~large! m the I -M
transition drops close to the linex51, so that the transition
coincides with the heavy to light polaron transition. Wi
decreasingm the I -M transition line moves to largerx @Fig.
5~b!#: the M -I transition moves away from the heavy-lig
17430
t

e

e
to

r

transition into the light region. In the light region theI -M
transition line moves to smallerm when compared with the
heavy region~Fig. 6!.

As one can also see from Figs. 6 and 8, theI -M transition
line in the phase diagramm,V is stronglyV dependent. The
phase line in the plane (m,V) between the phases shows t
broadening of the metallic phase with growingV, i.e., the
metallic phase is supported by the quantum fluctuations.
spective ground-state energy slightly increases withV.

To make effects of different contributionsHTi
more trans-

parent, we can first analytically calculate the effect of t
diagonal termsHT1

andHT3
. @Let us note that neglecting th

off-diagonal transfer, i.e.,HTi
, i 52,4 in Eq.~26!, means ne-

glecting the additional splitting of the bands. More precise
it means neglecting the off-diagonal terms in Eq.~8!#.

Minimization of the energy~27! with HT2
5HT4

50,

E15Hph1Ha1Hb1HT1
1HT3

, ~41!
FIG. 7. The competition of the level splitting

and bandwidthT terms @ T̃5TM ~23!#. D0 is
splitting of the levels~34!, D1 neglects the off-
diagonal termsHT2

,HT4
, @Eq. ~43!#. D is the ex-

act gap given by Eq.~40!.
5-10
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FIG. 8. Comparison of the phase diagram of the exact mo
~40! ~solid line! with that one neglecting off-diagonal transfer~43!
~dashed line! of the heavy region. The metallic phase occurs on
left and the insulator on the right of the respective line.
te
re-
ty

17430
implies the ground state of a similar structure as that one
Eq. ~33!,

EG
1 5

V

2
~cosh 4r 111!2HPa

1 2HPb
1 1HT1

1 1HT3

1 , ~42!

where the label 1 specifies the optimized variational valu
Respective splitting yields

D152uEG
1 22~HT1

1 1HT3

1 !u

52uHV
1 2HPa

1 2HPb
1 2HT1

1 2HT3

1 u. ~43!

The qualitative picture of the role of different contribu
tions in the formation of the gap is given in Fig. 7.

The exact phase diagram is compared with the resul
Eq. ~43! in Fig. 8. Here one can see that the main contrib
tion to the shift of the phase diagram in support of the m
tallic phase is on account of the off-diagonal electron trans
termsHT2

andHT4
~26! related to phonon assisted Rabi o

cillations. These contributions play an important role in t
light phase@Fig. 2~b!#.

V. SQUEEZED QUANTUM GROUND STATE „VACUUM …

FLUCTUATIONS OF PHONONS

In Fig. 9 we display numerical results for the coordina
and momentum fluctuations of the phonon in the heavy
gion (x,1) of the ground state. Evident anharmonici

el

e

FIG. 9. Quantum fluctuations of~a! the coordinateD2Q1, ~b! momentum,D2P1 and~c! their productD2Q1D2P1. ~d! Details of Fig. 3
underlying the region of parameters of Figs. 9~a–c!.
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peaks in the region of relevance of the reflectionh @Fig.
9~c!# are due to the mixing with the phonon of the high
level. The peaks are related to the ground-state~squeezed
vacuum! fluctuations of the phonon coordinateQ1

51/A2(b1
†1b1),

D2Q15^Q1
2&2^Q1&

25
1

2
exp~4r !F114g̃1

2

2
4~12h2!2g̃1

2

@11h212h exp~22g̃1
2!#2G , ~44!

g̃1 defined by Eq. ~17!. For the variational parameter
g1 ,h,r we have to take their optimized~ground state! val-
ues. For the related momentumP15( i /A2)(b1

†2b1), one
obtains the ground-state fluctuation

D2P15^P1
2&2^P1&

25
1

2
exp~24r !, ~45!

where again the optimized value forr is meant.
Their productD2Q1D2P1 for the oscillator in the ground

state@Fig. 9~c!# exhibiting a peak in the region of relevan
reflectionh is the evidence for its anharmonicity due to t
coupling with the higher-level oscillator. The reflectio
variational parameterh is efficient only in the heavy region
(x,1), for x51 the fluctuations decrease close towards
classical value 0.25 of the harmonic oscillator near the n
row minimum: the stable ground state of the light polaron
achieved atx51. In the light region the oscillator remain
close to harmonic one; no analogous effects to those in
heavy region occur. The results displayed in Fig. 9 stay
evident correlation with the region of relevance of the refl
tion parameterh of the Fig. 3~see its detail in Fig. 9~d! for
the corresponding region of parameters!. Similar effects of
anharmonicity were found by numerical simulations in t
related model by Borghiet al.16 mentioned in the Introduc
tion.

VI. CONCLUSIONS

The self-consistent polaron potential provided by the H
stein intralevel and interlevel electron-phonon couplings
our two-level lattice model is highly nonlinear function o
phonon displacements~Fig. 1!. As a consequence, there o
curs a competition between the regime of two nonequiva
broad minima at6g1 andg2 close to 0 related to two elec
tron levels and the regime of one narrow minimum atg2
.0 andg1 close to 0 when both broad minima collapse to
single one, so that both levels drop to that minimum. T
broad minima dominate atx,1, the narrow one atx.1. At
E^ e Jahn-Teller symmetry (x51) energies of the broad
and narrow minima coincide and the phonon-assisted tun
ing due to the nonadiabatic fluctuations reaches its maxim
close to this limit. Whenx is approaching 1, there occur
pairing of the levels due to the interlevel onsite and inters
polaron tunneling mediated by the exchange of virt
phonons. The narrow minimum is suppressed if the elec
transfer energyT decreases.
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Hence, we have identified two regions of stability:~i! the
region of the dominatingheavy polaron(x,1) related to the
broad minimum at negativeg1 ~the absolute minimum! and
g2'0 and ~ii ! the region of the dominatinglight polaron
(x.1) related to the narrow minimum atg1'0 ~Fig. 1!.
The almostvanishing polaron self-localizationin the ‘‘light
region’’ ~‘‘undressing’’! meansenhancement of the polaro
transfer due to respective decrease of the polaron effec
mass. Even in the heavy phase the effect can be presen
to fluctuations of the light phase~Figs. 3 and 4!.

Close to the transition from heavy to light polaron atx
51, a continuous transition tonew ground state that is stabl
at x.1 occurs~Fig. 2!. In this ground state theformation of
light bipolarons is possible, which are characterized by t
enhancement of the effective transfer due to the vanish
self-localization. The pairing of the polarons is caused
virtual exchange of phonons 1 mediated by phonons 2
tween the electrons in both levels at suitable configurati
This effect might be of interest from the point of view o
bipolaron mechanisms of the superconductivity.12 The I -M
transition and heavy-light phase coincide in the cross
point of the linesx51 and mH(V) @critical line of I -M
transition in the heavy phase, Fig. 5~a!#.

The Debye-Waller factor~24! shows nonadiabatic depen
dence on the phonon frequencyV throughg i , @Eqs. ~30!,
~31!#. Then, the effective transfer parameter of electrons
correspondingly increased and the electron effective m
decreased. This effect reminds us of the ‘‘isotope effec
however, at zero temperature.

The metal-insulator transition occurs in both region
heavy region is the region of dominating metallic pha
where the transition to the insulating phase can occur onl
sufficiently largem ~Fig. 5!. On the other hand, in the ligh
region the I -M transition can occur at relatively smallm
~Figs. 5 and 6!. For certainm theI -M transition can coincide
with the heavy-light polaron transitionat x51 @Fig. 5~a!#.
The interlevel and the combined interlevel and intersite el
tron Rabi oscillations in the ground state, are identified to
the main reason for theshift of the I-M transition line to
stronger effective couplings, i.e., in support of the metallic
phase~Figs. 5 and 7!. Figure 5~a! illustrates the existence o
the light polaron in both the insulating and metallic phase

Fluctuations of the phonon-conjugated coordinates a
their product exhibit peaks~Fig. 9! in the region of param-
eters where the effect ofh ~Figs. 3, 4! is relevant. Conse-
quently, the effect appears onlyin the heavy regionreaching
its maximum atx51 and growing withV. The peaks are
evidence forthe strongly anharmonic behaviorof the heavy
polaron in the region of relevance ofh. In the light region,
there occurs a degeneracy overh ~no effect of h on the
minimum of the potential!, i.e., no analogous effect of th
fluctuations, but nearly a harmonic oscillator is observ
This is obviously due to the specific form of the variation
ansatz, which is inspired by the shape of the ‘‘pure’’ hea
polaron~i.e., with x!1). Therefore the ansatz~9!, reflecting
the essentials of the heavy polaron, is proper for describ
the heavy region, but when concerning the light region
presents, to some extent, a heuristic extrapolation. We co
have started from another ansatz underlying the essentia
light polaron~which could be, for example, inspired for th
5-12
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‘‘pure’’ case ofx@1) in order to investigate the light regio
and gain some extrapolation towards smallerx. Naturally,
the transitionE^ e Jahn-Teller case (x.1) too needs further
considerations.
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APPENDIX A

We shall use the following formulas37,38

D~g!S~r !5S~r !D~ g̃ !, g̃5ge22r , ~A1!

S21~r !bS~r !5b cosh 2r 1b†sinh 2r , ~A2!

^0uS21@r m~n!#D21@gm~n!#Dm~n11!S@r m~n11!#

5exp~2 1
2 @ g̃m~n11!2g̃~n!#2!, ~A3!

whereg̃5ge22r .
For averages obtained by using virtual Fock statesun&, we

use formulas

^0uD21S21~21!b†bSDu0&

[ g^gu~21!b†bug&g5 (
n50

`

~21!nu^nug&u2,

~A4!

whereug&g5SDu0&5Sug& and,

^nug&g5
1

~n!m!1/2S n

2m D n/2

HnS g

~2mn!1/2D
3expS 2

ugu2

2
1

ng2

2m D . ~A5!

Here,m5cosh 2r, n5sinh 2r, m22n251, heren is real.

APPENDIX B

The average of the Hamiltonian in Eq.~6! over the states
~19! referred to one site results in̂H̃L&/N5Hph1Hint ,
where

Hph5
V

2CN2 (
m,n

C1n,m@cosh~4r m~n!!11#I n

1
V

CN2 (
m,n

$11h222e28r m(n)h
17430
d

3exp@22ug̃1m~n!u2#%ug1m~n!u2I n

1
V

CN2 (
n,m

C1m~n!ug2m~n!u2I n , ~B1!

Hint[Ha1Hb5
1

CN2 (
n,m

H a~12h2!g1mszn2
b

2
@~1

1h2!exp~22ug̃1mu2!12h#g2mI nJ 1H.c., ~B2!

and

HT52
T

CN2 (
n,m

C1m~n!exp@2Wm~n!#Mm~n!

[2~HT1I 1HT2isy1HT3sz1HT4sx!. ~B3!

Calculation of the Debye-Waller factor exp(2W)M @Eq.
~23!# and of Eq.~25! is based on the formulas~A3!–~A5!.
We approximated the average of a product in the tran
term by a product of averages. In the continuum limit, fro
Eq. ~A3! we receive forW(n) in Eq. ~B3!,

W~n!5
1

2N (
m

S Udg̃1m~n!

dn
U2

1Udg2m~n!

dn U2D . ~B4!

With the help of Eqs.~A4! and ~A5! one obtains forEm(n)
5^G1,m11G1m&,

Em~n![^0m11 ,0muS21@r m11~n!#S21@r m~n!#

3D21@g1,m11~n!#D21@g1m~n!#~21!b1,m11
† b1,m11

3~21!b1m
† b1mD@g1,m~n11!#D

3@g1,m11~n11!#S@r m~n11!#

S@r m11~n11!#u0m ,0m11&

5exp~2 1
2 @ ug̃1m~n!u21ug̃1m~n11!u21ug̃1,m11~n!u2

1ug̃1,m11~n11!u21g̃1m~n11!g̃1m~n!

1g̃1,m11~n11!g̃1,m11~n!1g̃1m~n!g̃1,m11~n!

1g̃1,m11~n11!g̃1m~n11!# !. ~B5!

In the continuum limit ~B5! yields Em(n)→
exp(22ug̃m(n)u2).
5-13
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