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Comparison of two non-primitive methods for path integral simulations:
Higher-order corrections versus an effective propagator approach

F. R. Krajewski and M. H. Mu¨ser
Institut für Physik, Johannes Gutenberg-Universita¨t, D-55099 Mainz, Germany

~Received 10 August 2001; revised manuscript received 2 January 2002; published 18 April 2002!

Two methods are compared that are used in path integral simulations. Both methods aim to achieve faster
convergence to the quantum limit than the so-called primitive algorithm~PA!. One method, proposed by
Takahashi and Imada, is based on a higher-order approximation~HOA! of the quantum-mechanical density
operator. The other method is based upon an effective propagator~EPr!. This propagator is constructed such
that the correct quantum properties are obtained even at finite Trotter numbersP in the limit of small densities.
We discuss the conceptual differences between both methods and compare their convergence rate. While the
HOA method converges faster than the EPr approach, EPr gives good estimates of thermal quantities already
for P51. Despite a significant improvement with respect to PA, neither HOA nor EPr overcome the need to
increaseP linearly with inverse temperature. We also derive the proper estimator for radial distribution func-
tions for HOA based path integral simulations and show that the 1/P4 convergence in the HOA approach also
applies if the interatom repulsion is treated realistically. The case studies include an HOA based virial expan-
sion of 4He and a Lennard-Jones model of solid argon.

DOI: 10.1103/PhysRevB.65.174304 PACS number~s!: 31.15.Kb, 67.90.1z
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I. INTRODUCTION

Path integral Monte Carlo~PIMC! ~Ref. 1! and path inte-
gral molecular dynamics~PIMD! ~Ref. 2! have proven usefu
in the atomistic simulation of quantum effects occurring
condensed matter at low temperatures. The broad rang
applications includes among other things superfluid4He,3

isotope effects in crystalline rare gas solids,4,5 as well as
phase transitions with strong quantum-mechanical effect
Josephson junctions6,7 and molecular solids.8,9 Recently, path
integral methods have also been applied to calculate l
temperature material properties of systems that are comp
tionally less easily tractable than Lennard-Jones type
tems: solid germanium,10 crystalline polyethylene,11

diamond,12 silica,13 and even Wigner crystals,14 to name a
few.

A disadvantage of PIMC and PIMD is the increase
necessary computing timetCPU with decreasing temperatur
T at a given required accuracy. Using the so-called primit
approximation together with the most efficient sampling
gorithms that completely eliminate critical slowing dow
~see Refs. 2 and 15 for a thorough discussion!, it is not pos-
sible to overcometCPU}1/T. Different improvements on the
primitive algorithms have been suggested that render p
integral simulations more efficient. One may subdivide
bulk of such attempts into three categories:~i! methods that
are based on higher-order approximants~HOA! of the high-
temperature density matrix,16 ~ii ! methods that use effectiv
propagators~EPr! that automatically yield the proper two
particle behavior,3,17 and ~iii ! methods that decompose th
Hamiltonian into a harmonic and an anharmonic contribut
before applying the Trotter formula.18,19 The latter category,
also referred to as the effective potential~EP! method, will
not be discussed any further in this study, mainly due to
unfavorable scaling oftCPU with particle numberN. Addi-
tionally, harmonic approximations are problematic for ma
0163-1829/2002/65~17!/174304~9!/$20.00 65 1743
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systems of interest, in particular those involving3He and
4He. Yet, another advantage of HOA and EPr methods o
the EP method is that the pathological behavior of the attr
tive Coulomb potential is overcome automatically.17,20–22

In this study, we want to compare the convergence of
HOA method, the EPr method, and the primitive algorith
~PA! for a simple model system. As long as the interacti
potentials are well behaved, the convergence generally d
not depend on the specific form of the potential.23 The test
model system should of course be chosen such that it d
not favor intrinsically one approach over the other, e.g.,
may not choose a two-particle system, because then the
model would be exact per definition. As we are not interes
in the EP approach, we can choose a simple monoato
chain with harmonic next-neighbor coupling. This choice
system enables us to do the bulk of the calculations ana
cally so that statistical error bars are eliminated complet
We also want to investigate how the Trotter numberP nec-
essary to keep the systematic errors below a well-defi
percentage scales with inverse temperature for the diffe
approaches investigated in this study.

The HOA approach may become problematic if the int
action potentials are not well behaved. For example,
Lennard-Jones~LJ! potential has a 1/r 12 singularity at small
interatomic distancesr. In such a situation the prefactor o
the 1/P4 correction term may be ill defined, resulting in
convergence that is less favorable than that of well-beha
potentials. We therefore extend our study by also analyz
the HOA convergence of expectation values of observab
in realistic systems.

It should be emphasized that the HOA method and
EPr method are conceptually different. In an EPr path in
gral simulation, one tries to generate radial distribution fun
tions that are in the quantum limit~at least in a low-density
approximation!. Evaluating observables such as the therm
expectation value of the potential energy^V& is done by
©2002 The American Physical Society04-1
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F. R. KRAJEWSKI AND M. H. MÜSER PHYSICAL REVIEW B65 174304
simply evaluating the operator of the potential energy at
given distance. In an HOA path integral simulation, gene
ized estimators have to be defined even for those observa
that are orthogonal in real space. We will comment on this
more depth in the following section. In particular we w
derive an expression for the HOA estimator of the rad
distribution function, which has not been given hither
which might explain the sparse use of the method in
literature. The new estimator will be used to calculate
argon argon radial distribution function in a simple thre
dimensional Lennard-Jones crystal. The different meth
employed in this study will be outlined in Sec. II. In th
section we will also present a simplified approach to the E
approach, which we call reduced effective propagator~r-EPr!
approach. The results are presented in Sec. III, and a s
summary is given in Sec. IV.

II. METHODS

A. Primitive algorithm

The primitive algorithm for path integrals is based
Feynman’s idea to represent the partition function of
quantum-mechanical point particleZ(b) as a partition func-
tion of a classical ring polymer.24,25The potentialVrp($r %) of
the classical ring polymer has the form

Vrp~$r %!5(
t51

P F1

2

mP2

b2\2~r t2r t11!21V~r t!G , ~1!

with b51/kBT. r t represents the position of monomert in
the ring polymer (r t5r t1P), and V is the real ~physical!
potential. t is sometimes interpreted as an imaginary tim
andP is commonly called the Trotter number. The PIMC
PIMD program is then assumed to generate distributi
such that the probability of configuration$r% to occur is pro-
portional to exp@2bVrp($r %)/P#. All thermal expectation
values of observables diagonal in real space can be d
mined directly from the configurations, e.g.,

^V&5 lim
P→`

lim
M→`

1

M P (
i 51

M

(
t51

P

V~r t,i !, ~2!

wherer t,i is the position of thetth monomer in thei th Monte
Carlo step andM is the number of observations in the Mon
Carlo simulation. We refer to Refs. 1–3 for further details
the primitive algorithm.

B. Higher-order approximant method

The HOA method is based on a fourth-order Hermiti
Trotter decomposition of the high-temperature dens
matrix.26 The decomposition was first applied to continuo
degrees of freedom by Takahashi and Imada16 as well as by
Li and Broughton.20 The basic idea of the decomposition
to approximate the high-temperature density matrixr̂

5exp(2bĤ/P) with

r̂'e2bV̂/2Pe2bT̂/2Pe2bV̂cor /Pe2bT̂/2Pe2bV̂/2P, ~3!
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where Ĥ5T̂1V̂ corresponds to the Hamiltonian andVcor

5b2
†@V̂,T̂#,V̂‡/24P2 is a correction term.T̂ and V̂ are usu-

ally chosen to be kinetic and potential energy, respectiv
For this decomposition, the correction energyVcor can be
written as

Vcor5
b2\2

24P2(
n51

N
1

mn
~¹nV!2, ~4!

wheremn corresponds to the mass of particlen. Owing to the
temperature dependence ofVcor, thermal expectation value
of observablesO have to be reevaluated with respect to t
primitive algorithm, e.g., averages of functions diagonal
real space read

^Ô&5
1

M P
lim

P→`

lim
M→`

F(
i 51

M

(
t51

P H O~$r %!

1 (
n51

N
b2\2

12mnP2~¹nV!~¹nO!J G , ~5!

whereV on the right-hand side of Eq.~5! only includes the
original potential and not the correction termVcor. The ac-
curacy of the HOA method outlined above allows one
determine thermal expectation values with a leading corr
tion of 1/P4, while the primitive algorithm has leading co
rections in the order of 1/P2.16,20,23

Equation~5! allows one easily to find the estimator for th
potential energy to beV12Vcor, see Refs. 16 and 20 fo
further details on the calculation of thermal expectation v
ues. To our knowledge, however, it is has not yet been
cussed that even the estimator for radial distribution fu
tions g(r ) needs to be altered with respect to the primiti
approach, for which the estimator can be written as

gprim
estim~r !}d~r 2ur t,i ,n2r t,i ,n8u!/r

2, ~6!

r t,i ,n denoting the position of particlen of the t ’s monomer in
ring polymer~particle! n. Applying Eq.~5! to Eq.~6! leads to
a shift of the estimator for the distance between particlen
and n8. Simply applying Eq.~5! to the operator for the
square of the distance between particlen and n8 yields the
estimatorr n,n8

estim for the distance between particlen and n8,
which is found to be

r n,n8
estim

5$~r t,i ,n2r t,i ,n8!
21Dn,n8%

1/2 ~7!

with

Dn,n85
b2\2

6P2 S ¹nV

mn
2

¹n8V

mn8
D ~r t,i ,n2r t,i ,n8!. ~8!

Thusr n,n8
estimshould replacer in the argument of thed function

on the right-hand side of Eq.~6! in order to calculateg(r ).
Based on this relation, one may say that the HOA meth
does not correspond strictly to an importance sampling a
rithm in the sense that the probability for a configuration
occur in the simulation is proportional to the diagonal e
ments ofr̂ in a real-space representation.
4-2
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Note that the choice of the distance estimator in Eq.~7! is
by no means unique, because one can add correction term
higher orders ofb2\2/mP2 without affecting the conver-
gence rate for well-behaved potentials. Such generalizat
may prove important ifV has strongly repulsive parts a
small distances. Equation~7! can then result in imaginary
values ofr n,n8

estim if the distance between two interacting pa
ticles is sufficiently small, even though the probability of t
configuration to occur is nonzero. We did not observe suc
situation in any of our simulations, because such small se
rations are extremely unlikely. However, the issue becom
relevant if one does a quantum virial expansion in terms
numerical matrix multiplication~NMM !.27–30 See Sec. III C
for some more details on NMM. One possibility to reme
this situation is to replace Eq.~7! with

r n,n8
estim

5r n,n8exp~Dn,n8 /2r n,n8
2

!. ~9!

C. Effective propagator approach

An alternative nonprimitive method to the HOA method
to construct effective potentials such that the two-parti
propagators are reflected accurately, e.g., it is correct in
orders of\. This effective potential is then used in a mul
particle simulation and hence produces the proper ther
behavior in the low-density limit. No effective estimato
have to be defined for observables diagonal in real space
in this sense, the approach is an importance sampling a
rithm. The effective propagator~EPr! method is particularly
useful for ill-behaved potentials such as the attractive C
lomb potential.17 One may write the high-temperature tw
particle density operator in the following way:

^r1r2ue2bĤ/Pur18r28&}expF2
b

P
VeffGexpF2

b

P

mP2

2b2\2

3$~r12r18!21~r22r28!2%G . ~10!

Veff is a function that depends onr1 ,r18 ,r2, andr28 . Therefore
the interaction can be said to be nonlocal in imaginary tim
e.g., in the primitive decompositionr1 does not couple di-
rectly to r28 . The calculation of both the diagonal and th
nondiagonal elements in more than one dimension is
trivial for nonharmonic potentials and we refer to Ref. 3 f
an in-depth discussion of that problem. For our on
dimensional model system, however, the approach can
simplified significantly, i.e., it can be solved analytically u
to a summation over a finite number of terms. This will
done in Sec. III.

1. r-EPr method

In general the implementation of the full two-particle pa
propagator with correct diagonal and nondiagonal eleme
is difficult, because one has to use the two-particle hi
temperature density matrix~HTDM! ^r1r2ue2bĤ/Pur18r28&. In
principle one can evaluate this expression prior to the sim
lation. However, this is tedious due to the dimensionality
the matrix, in particular for anharmonicd53-dimensional
17430
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systems. Even if one expresses the HTDM in the center
mass system of the coordinatesr1 ,r2 ,r18 ,r28 and even if one
uses an appropriate orientation of the axes within
molecular-fixed frame, one is a left with a three-dimensio
table and transformations between molecular-fixed fram
and laboratory system. It is also difficult to find good
functions for the effective potentialVeff .

The main idea of a reduced effective potential approa
~r-EPr! is to only incorporate those corrections to the prim
tive decomposition that are local or in other words only t
corrections on the diagonal of the density matrix. The ter
in the high-temperature density matrix that involve coor
nates at different Trotter indices are neglected. This mean
one carries out a simulation at inverse temperatureb with
Trotter numberP, one uses an effective classical potent
that reproduces the correct two-particle distribution funct
in the low-density limit at inverse temperatureb/P. For
well-behaved potentials, the method must converge to
proper quantum limit, because the leading differences
tween the r-EPr effective potential and the true potential v
ish with 1/P2.

The r-EPr approach is similar to an idea suggested
Thirumalaiet al.,31 who constructed effective interaction po
tentials from the diagonal elements of the high-temperat
density matrix, see also a related paper by Pollock a
Ceperley.29

III. RESULTS

A. Linear, harmonic chain

In order to analyze the convergence of primitive alg
rithm, HOA and EPr method respectively, we choose a o
dimensional linear chain with harmonic next-neighbor co
pling,

V5
1

2 (
n51

N

k~r n2r n11!2. ~11!

Periodic boundary conditions,r N115r 1, are applied and the
massesm are identical for all atoms.

HOA and EPr invoke correction terms in the potent
energy of the ring polymers with respect to the original e
pression of the primitive approach that is given in Eq.~1! for
a one-particle problem. All three approaches can be re
sented as the limiting case of a (111)-dimensional solid
with harmonic coupling between nearest neighbors, ne
nearest, and next-next-nearest neighbors. A graphical il
tration is given in Fig. 1.

The new effective energyṼrp that enters the Boltzmann
factor reads

Ṽrp5
1

2 (
n51

N

(
t51

P

(
6

@~k1k̃1!~r t,n2r t11,n!2

1~k1 k̃1!~r t,n2r t,n11!21k̃2~r t,n2r t61,n11!2

1 k̃2~r t,n2r t,n12!2#. ~12!
4-3
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The expressionṼrp can be diagonalized in terms of Fouri
modes,

r̃ q,v5A 1

PN(
t51

P

(
n51

N

r t,ne2p iqn/Ne2p ivt/P. ~13!

It is convenient to introducek85k1 k̃1 andk85k1k̃1 with
k5mP2/(b2\2) in order to reexpressṼrp as

Ṽrp5
1

2 (
v51

P

(
q51

N

kq,vu r̃ q,vu2 ~14!

with

k̃q,v5k84 sin2S p

P
v D1k84 sin2S p

N
qD

1k̃24$sin2@p~q/N1v/P!#1sin2@p~q/N2v/P!#%

1 k̃24 sin2S p

N
2qD . ~15!

The partition functionZc for the classical system illustrate
in Fig. 1 can then be reduced toNP Gaussian integrals.Zc is
proportional to

Zc5 )
q51

N

)
v51

P A2\2b2

mP2 k̃q,v
21. ~16!

For the different algorithms we find different functions f
k̃1 ,k̃2 ,k̃1, and k̃2. The expressions for these effective co
pling coefficients are summarized in Table I. The expressi
A andC used in Table I for the EPr treatment will be give
and derived below.

FIG. 1. Illustration of coupling between atoms. Atoms can on
oscillate in the horizontal direction. Vertical springs also act in
horizontal direction. The straight horizontal lines represent spri
between nearest neighbors of stiffnessk, the solid vertical lines
springs of stiffnessmkb

2T2P2/\2.

TABLE I. Expressions for the effective coupling coefficien
that are represented in Fig. 1.

PA HOA EPr r-EPr

k̃1
0 (\bk)2/(3mP2) k(A2C21) k(A21)

k̃2
0 2(\bk)2/(12mP2) 0 0

k̃1
0 0 2kC 0

k̃2
0 0 1

2 kC 0
17430
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We will now calculate the thermal expectation value
the potential energŷVP& for a given Trotter numberP. One
can expect that the errors in different observables van
with the same power ofP, which is why it is sufficient to
only investigatê VP&. The prefactor of the corrections ca
certainly depend on the observable, for example if the s
tem has many different energy scales. The calculations
the three approaches will be separated into three subchap

1. Solution for the primitive method

In the primitive method, the usual thermodynamic re
tionships can be used in a straightforward way without mo
fication, albeit their use can be impractical for technical re
sons. In order to calculate the thermal expectation value
^VP&, one can use the relation

^VP&52
k

b

d

dk
ln~Zc!, ~17!

where all effective coupling coefficients vanish. This re
tionship simply follows from the formal expression for th
quantum-mechanical partition function of a linear, mon
atomic harmonic chain. The final expression for^VP& then is

^VP&5
k

2b (
q51

N

(
v51

P
4 sin2~pq/N!

k̃q,v

. ~18!

This equation can be interpreted as follows: Equipartit
requires thatk̃q,v^uxq,vu2& 5 kBT. Hencek̃q,v appears in the
denominator. The amount ofreal potential energy in these
modes, however, is onlyk̃quxq,vu2/2, wherek̃q is the stiffnes
that can be associated with the modeq in a classical linear
chain.

2. Solution for the HOA method

Equation~17! also holds for the HOA method, becaus
the only modification with respect to the primitive approx
mation ~PA! is that a better approximant for the high
temperature density matrix is employed. However, the c
rect coupling coefficientsk̃1 and k̃2 have to be used. The
expressions fork̃1 and k̃2 stated in Table I are obtained in
straightforward way by inserting Eq.~11! into Eq. ~4!. This
leads to the expression

^VP&5
k

2b (
q51

N

(
v51

P H F11
2

3

\2

m S b

PD 2

kG4 sin2S p

N
qD

2
2

3

\2

m S b

PD 2

k sin2S p

N
2qD J / k̃q,v

HOA , ~19!

where k̃q,v
HOA refers to that expression fork̃q,v in Eq. ~15!

which is obtained by inserting the HOA values fork̃1 andk̃2.
The same result for̂VP& could have been obtained by ca
culating the second moments of the eigenmodes^ux̃q,vu2&
from equipartition. The resultinĝux̃q,vu2& could then have
been used to calculate the proper HOA potential energy
timator V12Vcor.

s

4-4
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3. Solution for the EPr method

In the EPr approach,Zc does not follow from a Hermitian
decomposition of the high-temperature density mat
Therefore Eq.~17! cannot be employed for the calculation
^VP&. However, we can use the fact that EPr is an imp
tance sampling method. Since we can obtain^ux̃q,vu2& from
equipartition and since the real potential energy of modeq in
a ~classical! linear chain is proportional tok sin2(pq/N), it is
possible to use Eq.~18! where the denominatork̃q,v is taken
from the EPr column in Table I. Hence,

^VP&5
k

2b (
q51

N

(
v51

P
4 sin2~pq/N!

k̃q,v
EPr

. ~20!

We are now concerned with the derivation of the expr
sions forA andC in Table I. To do this, one has to consid
a dimer in which the two atoms are coupled by a harmo
spring of stiffnessk. One then transforms the dimer Ham
tonian into the center-of-mass system withR5(r 11r 2)/2 the
center-of-mass coordinate andDR5(r 12r 2) the reduced
distance between the two atoms. These two coordinates
be associated with two modes, the center-of-mass mode
massM52m and the internal oscillator mode with stiffnesk
and reduced massm5m/2. Both the free particle densit
matrix and the high-temperature density matrix~HTDM! of
an oscillator with spring constantk and massm are known
exactly. The free particle HTDM is simply proportional t
exp@2MP(R2R8)2/2\2b# @see Eq.~1!# while the oscillator’s
HTDM is given by25

r~DR,DR8,b/P!5A Amk

2p\sinh~2 f !
expH 2

b

P

k

f sinh~ f !

3@~DR21DR82!cosh~ f !22DR DR8#J .

~21!

The prefactor on the right-hand side of Eq.~21! provides an
irrelevant offset inVeff , which will be neglected in the fol-
lowing treatment. One then needs to transform the produc
the free HTDM and the internal oscillator HTDM back in
the laboratory system and express the effective potentia
cording to Eq.~10!. With the definition of

f 5
b

P
\A2k

m
~22!

we obtain the parametersA andC

A5
2

f
tanhS f

2D , ~23!

C5
2

f 2 H 12
f

sinh~ f !J ~24!

that were introduced in Table I.
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4. Solution for the r-EPr approach

According to Sec. II C 1, we need to know the quantu
mechanical radial distribution functiong(r ) at inverse tem-
peratureb/P for the reduced harmonic oscillator in order
construct the r-EPr effective potentialVeff . For this purpose,
it is sufficient to know the internal energy of the reduc
harmonic oscillator, sinceg(r ) is a simple Gaussian at a
temperatures. Hence we need to find the effective coup
constantk8 which generates a second moment^x2& in a clas-
sical treatment at temperaturePT such that the the real po
tential energyk^x2&/2 corresponds to the quantum limit a
temperaturePT. This condition, which definesk8, can be
written as

^V~b/P!&exact5
1

2

k

k8
kBTP, ~25!

where^V(b/P)&exact is the correct thermal potential energ
for an oscillator at temperaturePT. For a harmonmic oscil-
lator, ^V(b/P)&exact is half the internal energyU, given by
U50.5\v coth(b\v/2) with frequencyv5Ak/m5A2k/m.
We solve fork8 and findk85A k. The parameterA is given
in Eq. ~23! and k̃15k(A21) as stated in Table I follows.

5. Comparison of the methods

The main issue of this study is the analysis of the conv
gence of thermal expectation values such as the pote
energy ^VP& to the proper quantum limit as a function o
Trotter numberP. We consider a linear chain consisting
N55 atoms and periodic boundary conditions. The conv
gence does not depend onN in a qualitative way. It is exam-
ined at a fixed thermal energy well below the Debye f
quency of the chain, namely at inverse temperatureb
564/(\Ak/m). A linear plot of ^VP& is shown in Fig. 2.

It can be seen that atP51 the EPr and the r-EPr method
start off with estimates that are very close to the quant
limit while PA and HOA start off with an estimate near th
classical value. Upon increasingP the EPr approaches th
proper value from below, while for the r-EPr method th
deviation between estimate and proper result first increa
before it decreases again. At a Trotter numberP'64, the

FIG. 2. Thermal expectation value of the potential energy^VP&
as a function of Trotter numberP; b\Ak/m564.
4-5
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HOA method becomes similarly good as the EPr approa
In order to address the convergence in a more quantita
way, it is convenient to analyze the relative deviation of^VP&
from the exact valuêVE& as a function ofP in a double
logarithmic plot, which is done in Fig. 3.

It can be seen that at large Trotter numbers the H
method converges withP24 to the quantum limit, while all
other methods only converge withP22. The prefactor for the
EPr, however, is much smaller than for r-EPr and PA. T
value of P at which convergence starts is similar in all a
proaches, e.g.,kBTP is larger than but in the order o
\Ak/m. The accuracy where HOA becomes better than E
is 1.7%. For this particular model system, this value of 1.7
was found to be independent of temperature. We expect
be similar for all systems that are dominated by harmo
interactions. We will now address the question of how
have to increaseP for the various approaches if we lowerT
and require the relative accuracy to be constant, e.g.,
The results are shown in Fig. 4.

In order for the relative error to be constant, all metho
require thatP increases linearly with inverse temperatureb.
The r-EPr approach, which is a little more difficult to impl
ment than the PA method, requires slightly reduced Tro
numbers with respect toPA. We want to emphasize that th
behavior shown in Fig. 4 is qualitatively similar if the acc
racy criterion forP is changed, however, the stricter the c
terion the larger the gap between EPr and HOA. This tre
can be seen in Fig. 4~b!, where we require one time 0.1%
accuracy instead of 1% as shown in Fig. 4~a!. Only if one is
confined to the use of very smallP might EPr be the bette
choice. One may conclude that the optimal method depe
on the desired accuracy.

B. Quartic oscillator

The HOA 1/P4 corrections are not only valid for the ha
monic oscillator. They also apply to other well-behaved p
tentials such as the quartic oscillator. Its potential energy
the form

V~x!5
1

4
k4x4. ~26!

FIG. 3. Relative error of the potential energy for anN55 chain
at b\v564 as a function of Trotter numberP.
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We have confirmed the HOA 1/P4 convergence for the one
dimensional quartic oscillator and the double well poten
by means of numerical matrix multiplication~NMM !.27–30

~See Sec. III C for some more details on NMM.! Both po-
tential energy and kinetic energy show the same converge
rate. One may conjecture that similar behavior is found
more generalF4 potentials, i.e., double well or multiwel
potentials. Indeed, the HOA treatment of a linear rotor i
purity in a three-dimensional multiwell potential showe
similar behavior as that found for our simple on
dimensional quartic oscillator.32 In that HOA study, the De-
bye anomaly in the specific heat~due to tunneling between
equivalent minima in the potential energy! could be observed
at much smaller Trotter numbers than if the primitive a
proach had been used.

C. Gaseous helium

The proof for the 1/P4 convergence of the HOA approac
relies on the assumption that the thermal expectation valu
the commutator@ T̂,V̂# and higher-order commutators such
†V̂,@ T̂,V̂#‡ are well-defined.16,23,26 More realistic potentials
like the Lennard-Jones potentialV54e@(s/r )122(s/r )6#
may not satisfy this assumption. Hence it is important to t
how higher-order approximants perform for this class of p
tentials in particular in a situation where the system is
from being harmonic. The study of gaseous helium c
therefore elucidate the convergence of HOA methods,

FIG. 4. Necessary Trotter numberP to reach a relative accurac
of ~a! 1022 and ~b! 1023 in the potential energŷVP& at different
inverse temperatures 1/T for the linear chain consisting ofN55
atoms. All parameters other than temperature (\, k, m) are set to
unity.
4-6
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cause quantum effects are strong even in the dilute gas p
as discussed recently, for example, by Mu¨ser and Luijten.30

Moreover, gaseous helium satisfies the condition of be
strongly anharmonic.

In the low-density limit, noble gases are approximat
rather well in terms of the second-order virial coefficientB2.
The calculation ofB2 for quantum systems can be done
terms of numerical matrix multiplication~NMM !. NMM ex-
ploits the idea that squaring of the thermal density ma
r(T) at temperatureT results inr(T/2).27–30This procedure
can be repeatedn times so that one can easily calculate t
low-temperature density matrixr(T/2n) from a high-
temperaturer(T), for which the actions are reasonably a
proximated either by the decomposition underlying t
primitive approach or that leading to the higher-order a
proximants. The squaring procedure allows one to estim
the systematic error due to the finiteness ofP without con-
ducting explicit simulations. NMM can also be used to in
tialize the proper effective interactions underlying the E
simulations.

NMM becomes increasingly more complex with increa
ing dimensionality of the Hilbert space, i.e., exponentia
more complex with the number of particles. As describ
previously in Refs. 27–29, the calculations can be simplifi
for systems whose description can be reduced to the cas
one particle moving in a central potential. We do not want
repeat the details of method, but we would like to comm
on an issue that is relevant to our case. To analyze the
vergence withP in dimensions larger than 1, it is necessa
to use the proper modified Bessel functions for the fr
particle kernel at given angular momentuml; see Eq.~4.43!
in Ref. 3. Otherwise the leading corrections cannot van
faster than with 1/P2. Moreover, it is necessary to chose t
discretization of the real space sufficiently small.

We have analyzed the convergence rate ofB2 for argon
gas ~Lennard-Jones potential! and gaseous4He ~Aziz
potential33!. We found that the convergence of the high
order approximants remain 1/P4 like for well-behaved poten-
tials, however, the crossover to the regime in which the le
ing correction is in the order of 1/P4 happens at values ofP
that are larger than those values ofP where the crossove
takes place for the primitive approach. The reason why
singularity does not affect the convergence rate at largP
lies in the fact that there is no wave function in the singul
ity and its statistical weight near the singularity vanish
sufficiently fast. We note in passing that the situation is l
clear cut for the repulsive Coulomb potential.

In Fig. 5 we show exemplarily the relative error of th
second virial coefficient of one-dimensional Lennar
Jonesium at two different temperatures. The choice ofd51
is motivated in part by the argument that the effect o
singularity is particularly large for a small-dimensional sy
tem. Moreover the numerical stability and the range of Tr
ter numbers that can be investigated are larger ind51 than
in d53. In Fig. 5, results are shown for Lennard-Jonesi
characterized by a de Boer parameterl5h/AMs2e of l
52.7, which reflects approximately4He. The two thermal
energies emploied in Fig. 5 correspond toT52 K and T
520 K if we interpretl52.7 Lennard-Jonesium as4He.
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The convergence of the virial coefficient ind51 is similar to
that described above in the previous paragraph ford53:
Despite the singularity the HOA approach converges w
1/P4 to the proper quantum limit. The convergence starts
values ofP that are slightly larger than those of the primitiv
approach.

We have also analyzed the kinetic and potential energ
the dilute gas phase as a function of Trotter numberP. Both
observables converge in a similar way asB2, that is to say,
the leading corrections are in the order of 1/P4 for HOA and
of order 1/P2 for PA. Note that the EPr approach is exact
construction for dilute gases.

D. Crystalline argon

It has been pointed out in Sec. II B that in order to calc
late radial correlation functions, it is necessary to correct
estimator forg(r ). An important question to address is ho
well the HOA approach allows one to calculateg(r ). In or-
der to examine this issue we apply the HOA method@making
use of the proper estimator, see Eq.~7!# to crystalline argon.
We model the system with the same Lennard-Jones pote
as one of us5 previously, namelye5120 kBK and s
53.405 Å. The number of atoms used in the simulation c
was N5500. The geometry and the size of the simulati
cell was allowed to fluctuate. The initial state was chos
such that the average geometry was cubic. Since our in
tion is to study the convergence with respect toP, we do not
discuss finite-size effects ing(r ). The results are presente
in Fig. 6.

It is interesting to note thatg(r ) is too broadened for the
HOA approach while it is too narrow using the PA algorithm
Obviously, the agreement of theP512 HOA calculation is
already very close to the quantum limit. This is a little su
prising as the product ofkBTP is still far below the thermal
energy of the Debye temperature, which is aboutTD
'85 K. We want to note that if theg(r ) are obtained with-
out corrections, the agreement is distinctly reduced. T
might be the reason why the convergence ofg(r ) reported

FIG. 5. Relative error of the virial coefficientB2 of Lennard-
Jonesium with de Boer parameterl52.7, an approximate descrip
tion of 4He. The PA method and the HOA method are compared
two different temperatures, where the dimensionless temperat
T50.2 andT51.6 correspond to 2 and 16 K, respectively, in t
case of4He.
4-7
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by Li and Broughton for the attractive Coulomb potent
was so slow.20 In our case, omitting the corrections to th
g(r ) estimator leads to peaks ing(r ) that are even sharpe
than those obtained with PA using identical Trotter numbe

Similar to the second virial coefficient, kinetic and pote
tial energy both cross over~individually! to the 1/P4 conver-
gence if the HOA is employed. The crossover to the val
of P, where the leading corrections 1/Pn dominate the finite
P error, is larger for HOA than for PA. Hence this behavi
ressembles that of theB2 expansion~discussed in Sec. III C!,
despite the fact that the argon crystal is relatively harmo
that is to say, the harmonic approximation is stable and
counts for most of the ground-state energy.

Although it is necessary to alter the distance estima
there is no need to alter the volume estimator, see Eq.~5!.
This is because the volume per atom is entirely determi
by the periodic boundary conditions and thus independen
the atomic positions. Similar comments apply to second~and
higher!-order distribution functions of the strain tensor fro
which the elastic constants follow.

It is well-known that deviations of the~average! atomic
volume^v& from its value in the harmonic approximation a
due to anharmonicity. Quantum fluctuations often enha
anharmonicity. For solid argon atT52 K, the anharmonic-
ity is even dominated by quantum fluctuations. Hence
convergence of̂v& with P to the quantum-mechanical refe
ence value is an important test for the HOA method. Res
are shown in Fig. 7 for crystalline argon atT52 K. As in all
other cases discussed above, HOA leads to distinctly redu
systematic errors with respect to PA. It is possible to confi
the 1/P4 convergence for the HOA algorithm within the st
tistical error bars.

IV. SUMMARY

In this study we have compared the convergence to
quantum limit for different path integral approaches. As t
convergence rate does not depend on the specific model
tem ~as long as the potentials are well behaved!, we have
focused our attention to a linear chain of harmonica

FIG. 6. Pair correlation functiong(r ) of crystalline argon atT
52 K calculated with the PA and HOA algorithm for Trotter num
bersP58 andP512. As a reference a quasiexact correlation fun
tion ~HOA, P5256) is included.
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coupled atoms. We disregarded methods making explicit
of a decomposition into a harmonic and an anharmonic p
of the Hamiltonian among other reasons due to the unfav
able scaling of the numerical effort with system size.

The three main approaches investigated were the
called primitive algorithm~PA!, a method based on a highe
order approximant~HOA!, and an approach in which an e
fective potential is constructed such that the one- and t
particle high-temperature density matrices are reprodu
exactly in the limit of small densities. We called this a
proach the effective propagator~EPr! method. The latter ap-
proach can be further reduced by only taking into acco
certain corrections on the diagonal of the high-temperat
density matrix leading to the r-EPr method.

We emphasized the different spirit of EPr and HOA me
ods: In the EPr method, observables orthogonal in real sp
can be evaluated directly, whereas the HOA method requ
effective estimators. The need to alter estimators even
radial distribution functions obtained in simulations takin
into account quantum effects in an effective potential
discussed. We showed that the proper estimators lead
very fast convergence to the quantum limit in a simple arg
crystal.

For the linear monoatomic chain investigated in th
study, we found that the corrections based on HOA van
with P24 while all other methods, PA, EPr, and r-EPr, ha
corrections in the order ofP22. The prefactor is similar for
PA and r-EPr and distinctly smaller for EPr. Both EPr a
r-EPr, however, give rather accurate results at smallP, e.g.,
the relative error in the thermal expectation value of the
tential energy is smaller than 10% in those approaches, w
PA and HOA differ by nearly 100% at low temperatures a
P51. The Trotter number where convergence starts is si
lar in all approaches. If one requires high accuracy, e.g., 1
one needs to increase the Trotter numberP linearly in all
approaches.

The 1/P4 convergence of average potential energy, av
age kinetic energy, and average atomic volume was also
tained in HOA simulations for anharmonic systems, in whi
the interatomic potentials were singular at the origin. T
comment applies to cases where the probability density v
ishes in the singularity, which is not the case for the attr

-

FIG. 7. Relative error of the atomic volume for crystalline arg
at T52 K as a function of Trotter numberP calculated with the PA
~crosses! and HOA~diamond! algorithm.
4-8
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tive or repulsive Coulomb potential. Our case studies
cluded an HOA based virial expansion of gaseous4He and a
Lennard-Jones model of solid argon.

What can we conclude for path integral simulations? T
use of HOA is certainly a little more CPU time expensi
than that of EPr, r-EPr, and PA, which all require appro
mately the same amount of computing. This is because in
HOA based simulation, we need derivatives of the inter
tion potential that are one order higher than those in sim
tions based on EPr, r-EPr, and PA. This makes HOA Mo
Carlo simulations about twice as CPU time expensive t
Monte Carlo simulations that are based on one of the o
schemes discussed here. This factor of 2 can be red
close to unity in path integral molecular dynamics by us
multiple time-step algorithms, in which the correction term
do not have to be evaluated at every time step. But even
Monte Carlo simulation, one is rewarded with the best c
vergence to the quantum limit in an HOA based path integ
J

.

ev

m
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simulation. While EPr also results in a significant improv
ment with respect to PA, it is plagued with a tedious, no
trivial implementation procedure. Moreover, HOA is eas
generalized to three-body forces, while the inclusion
three-body terms in EPr would require nontrivial generaliz
tions. Nevertheless, EPr should be the method of choice
the simulation of dilute systems like the recently produc
Bose-Einstein condensates. For dense systems, howeve
HOA method seems to be the most efficient method in p
ticular if high numerical accuracy is required.
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