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Two methods are compared that are used in path integral simulations. Both methods aim to achieve faster
convergence to the quantum limit than the so-called primitive algoritRA). One method, proposed by
Takahashi and Imada, is based on a higher-order approxim@tio®\) of the quantum-mechanical density
operator. The other method is based upon an effective propad®or This propagator is constructed such
that the correct quantum properties are obtained even at finite Trotter nubhivetise limit of small densities.

We discuss the conceptual differences between both methods and compare their convergence rate. While the
HOA method converges faster than the EPr approach, EPr gives good estimates of thermal quantities already
for P=1. Despite a significant improvement with respect to PA, neither HOA nor EPr overcome the need to
increaseP linearly with inverse temperature. We also derive the proper estimator for radial distribution func-
tions for HOA based path integral simulations and show that tRé éénvergence in the HOA approach also
applies if the interatom repulsion is treated realistically. The case studies include an HOA based virial expan-
sion of “He and a Lennard-Jones model of solid argon.
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. INTRODUCTION systems of interest, in particular those involvifgle and
“He. Yet, another advantage of HOA and EPr methods over

Path integral Monte Carl@PIMC) (Ref. 1) and path inte-  the EP method is that the pathological behavior of the attrac-
gral molecular dynamic&IMD) (Ref. 2 have proven useful  tive Coulomb potential is overcome automaticafiy®22
in the atomistic simulation of quantum effects occurring in | this study, we want to compare the convergence of the
condensed matter at low temperatures. The broad range pfOA method, the EPr method, and the primitive algorithm
applications includes among other things superfitiide®  (PA) for a simple model system. As long as the interaction
isotope effects in crystalline rare gas soffdsas well as potentials are well behaved, the convergence generally does
phase transitions with strong quantum-mechanical effects ipot depend on the specific form of the potenﬁa‘[he test
Josephson junctioft$ and molecular solid$? Recently, path  model system should of course be chosen such that it does
integral methods have also been applied to calculate lownot favor intrinsically one approach over the other, e.g., we
temperature material properties of systems that are computenay not choose a two-particle system, because then the EPr
tionally less easily tractable than Lennard-Jones type sysmodel would be exact per definition. As we are not interested
tems: solid germaniurf, crystalline polyethylené)  in the EP approach, we can choose a simple monoatomic
diamond;? silica,*® and even Wigner crystaé,to name a  chain with harmonic next-neighbor coupling. This choice of
few. system enables us to do the bulk of the calculations analyti-

A disadvantage of PIMC and PIMD is the increase ofcally so that statistical error bars are eliminated completely.
necessary computing tinep, with decreasing temperature We also want to investigate how the Trotter numBenec-
T at a given required accuracy. Using the so-called primitiveessary to keep the systematic errors below a well-defined
approximation together with the most efficient sampling al-percentage scales with inverse temperature for the different
gorithms that completely eliminate critical slowing down approaches investigated in this study.
(see Refs. 2 and 15 for a thorough discuskidtris not pos- The HOA approach may become problematic if the inter-
sible to overcomecp < 1/T. Different improvements on the action potentials are not well behaved. For example, the
primitive algorithms have been suggested that render pathennard-Jone$LJ) potential has a t/? singularity at small
integral simulations more efficient. One may subdivide theinteratomic distances. In such a situation the prefactor of
bulk of such attempts into three categorié$:methods that the 1P* correction term may be ill defined, resulting in a
are based on higher-order approximafti©A) of the high-  convergence that is less favorable than that of well-behaved
temperature density matrig, (i) methods that use effective potentials. We therefore extend our study by also analyzing
propagatorg EPr that automatically yield the proper two- the HOA convergence of expectation values of observables
particle behavio?;}” and (i) methods that decompose the in realistic systems.
Hamiltonian into a harmonic and an anharmonic contribution It should be emphasized that the HOA method and the
before applying the Trotter formuf&:!° The latter category, EPr method are conceptually different. In an EPr path inte-
also referred to as the effective potent{&BP) method, will  gral simulation, one tries to generate radial distribution func-
not be discussed any further in this study, mainly due to itgions that are in the quantum limiat least in a low-density
unfavorable scaling ofcpy with particle numbemN. Addi-  approximation. Evaluating observables such as the thermal
tionally, harmonic approximations are problematic for manyexpectation value of the potential energy) is done by
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simply evaluating the operator of the potential energy at thgyhere H=T+V corresponds to the Hamiltonian and.,,

given distance. In an HOA path integral simulation, general-_ 2[[\‘/ 1’] \7]/24P2 is a correction ternit andV are usu-
ized estimators have to be defined even for those observablg y chosen to be kinetic and potential energy, respectively.

that are orthqgonal n reaI' space. We will comment on th'? or this decomposition, the correction enefdy,, can be
more depth in the following section. In particular we will written as
derive an expression for the HOA estimator of the radial

distribution function, which has not been given hitherto, B2h2 N
which might explain the sparse use of the method in the Vo= =32 —(VV)2, (4
literature. The new estimator will be used to calculate the 24P%i=1 my

argon argon radial distribution function in a simple three-Wheremn corresponds to the mass of partioleOwing to the
dimensional Lennard-Jones crystal. The different methOd&mperature dependence \¢f.,, thermal expectation values

employed in this study will be outlined in Sec. II. In this f ghservable® have to be reevaluated with respect to the
section we will also present a simplified approach to the EP[)rimitive algorithm, e.g., averages of functions diagonal in
approach, which we call reduced effective propaget@Pn (o space read

approach. The results are presented in Sec. Ill, and a short

summary is given in Sec. IV. R 1 P
(O)=1rplim lim ;2}1 {0({@)
Il. METHODS P
N 232
o A. Pr.lmltlve algorlthml | n z 1§m Pz(VnV)(VnO)} }, )
The primitive algorithm for path integrals is based on n=1 n

Feynman's idea to represent the partition function of a,nhereV on the right-hand side of Eq5) only includes the
quantum-mechanical point partich 8) as a partition func- o jginal potential and not the correction teih,,. The ac-
tion of a classical ring polyméf:**The potential/({r}) of curacy of the HOA method outlined above allows one to
the classical ring polymer has the form determine thermal expectation values with a leading correc-
P m tion of 1/P4, while the prir;itg\gtgzaallgorithm has leading cor-
_ P rections in the order of B~.-><>
Vi(ir}) _;1 2 W(rt_ M) F V)|, @ Equation(5) allows one easily to find the estimator for the
potential energy to b&'+2V,,, see Refs. 16 and 20 for
with B=1/kgT. r, represents the position of monontein  further details on the calculation of thermal expectation val-
the ring polymer (,=r,.p), andV is the real(physica)  ues. To our knowledge, however, it is has not yet been dis-
potential.t is sometimes interpreted as an imaginary timecussed that even the estimator for radial distribution func-
andP is commonly called the Trotter number. The PIMC or tions g(r) needs to be altered with respect to the primitive
PIMD program is then assumed to generate distributionsipproach, for which the estimator can be written as
such that the probability of configuratidn} to occur is pro- '
portional to exp—pAV({r})/P]. All thermal expectation Iprm () S(r=|rei n=reinDIr?, (6)

values of observables diagonal in real space can be deterr-. denoting the position of particieof thet’s monomer in
mined directly from the configurations, e.g., tin g P P

ring polymer(particle n. Applying Eq.(5) to Eq.(6) leads to
M P a shift of the estimator for the distance between particle
(V)= lim lim i >3 Vi), 2) and n’. Simply applying Eq.(5) to the operator for the
MP =1 =1 ’ square of the distance between particlandn’ yields the
estimatorr &> for the distance between particieandn’,

which is found to be

P—oM—w

wherer ; is the position of théth monomer in theéth Monte
Carlo step an_tM is the number of observations in the M_onte _
tcr12r|8risr:1rir;$:t£36¥\tlﬁr;?fer to Refs. 1-3 for further details on rﬁ,srglpq:{(rt,i,n_rt,i,n’)2+An,n’}1/2 @)
with
B. Higher-order approximant method ,82ﬁ2

V.V V.V
87 | m,

mn mnr

The HOA method is based on a fourth-order Hermitian Apn= (rein—rtin)- (8
Trotter decomposition of the high-temperature density
matrix?® The decomposition was first applied to continuousTh s &stim ; ;

; usr “, should replace in the argument of thé function
degrees of freedom by Takahashi and Infdds well as by on the right-hand side of Ed6) in order to calculate(r).

Liand Broughtort® The basic idea of the decompositiqn s Based on this relation, one may say that the HOA method
to approximate the high-temperature density matpx goes not correspond strictly to an importance sampling algo-

=exp(— ,8I3|/P) with rithm in the sense that the probability for a configuration to
R R i A X occur in the simulation is proportional to the diagonal ele-
p~e BVIPe=FTI2Pe=NeolPe=FTI2Pe=pVI2P — (3)  ments ofp in a real-space representation.
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Note that the choice of the distance estimator in®&gjis  systems. Even if one expresses the HTDM in the center-of-
by no means unique, because one can add correction termsrifass system of the coordinatesr,,r;,r; and even if one
higher orders ofg42/mP? without affecting the conver- uses an appropriate orientation of the axes within a
gence rate for well-behaved potentials. Such generalizationsiolecular-fixed frame, one is a left with a three-dimensional
may prove important ifV has strongly repulsive parts at table and transformations between molecular-fixed frames
small distances. EquatiofY) can then result in imaginary and laboratory system. It is also difficult to find good fit
values ofresrﬁ'fﬂ if the distance between two interacting par- functions for the effective potentiady;.
ticles is sufficiently small, even though the probability of the ~ The main idea of a reduced effective potential approach
configuration to occur is nonzero. We did not observe such &-EP is to only incorporate those corrections to the primi-
situation in any of our simulations, because such small sepdive decomposition that are local or in other words only the
rations are extremely unlikely. However, the issue becomesgorrections on the diagonal of the density matrix. The terms
relevant if one does a quantum virial expansion in terms ofn the high-temperature density matrix that involve coordi-
numerical matrix multiplicatiofNMM).2’3°See Sec. IIIC  nates at different Trotter indices are neglected. This means, if

for some more details on NMM. One possibility to remedy one carries out a simulation at inverse temperajgiraith

this situation is to replace E@7) with Trotter numberP, one uses an effective classical potential
_ that reproduces the correct two-particle distribution function
rﬁ’s;'?‘zrn,n,exp(An’n,/2r§’n,). (9) in the low-density limit at inverse temperatug@P. For

well-behaved potentials, the method must converge to the

proper quantum limit, because the leading differences be-

tween the r-EPr effective potential and the true potential van-
An alternative nonprimitive method to the HOA method is jsh with 1/P2.

to construct effective potentials such that the two-particle The r-EPr approach is similar to an idea suggested by

propagators are reflected accurately, e.g., it is correct in atfhirumalaiet al,>* who constructed effective interaction po-

orders offi. This effective potential is then used in a multi- tentials from the diagonal elements of the high-temperature

particle simulation and hence produces the proper thermalensity matrix, see also a related paper by Pollock and

behavior in the low-density limit. No effective estimators Ceperley?®

have to be defined for observables diagonal in real space and

in this sense, the approach is an importance sampling algo-

rithm. The effective propagatdEPH method is particularly IIl. RESULTS

useful for ill-behaved potentials such as the attractive Cou- A. Linear. harmonic chain

lomb potential” One may write the high-temperature two- ’

particle density operator in the following way:

C. Effective propagator approach

In order to analyze the convergence of primitive algo-
rithm, HOA and EPr method respectively, we choose a one-

P B B mP? dimensional linear chain with harmonic next-neighbor cou-
(raroleP"Plrir;)cex — b Ver|ex ~ P 252 pling,
2 1
X{(ry=rp)?+(rp=rp? . (10 =5 2 F—rneq) (11)

Vi is a function that depends @R,r 1 ,r,, andr, . Therefore

the interaction can be said to be nonlocal in imaginary timePeriodic boundary conditionsy . ,=r,, are applied and the
e.g., in the primitive decomposition, does not couple di- massesn are identical for all atoms.

rectly tor,. The calculation of both the diagonal and the HOA and EPr invoke correction terms in the potential
nondiagonal elements in more than one dimension is nognergy of the ring polymers with respect to the original ex-
trivial for nonharmonic potentials and we refer to Ref. 3 for pression of the primitive approach that is given in Eg.for

an in-depth discussion of that problem. For our one-2 one-particle problem. All three approaches can be repre-
dimensional model system, however, the approach can bgented as the limiting case of a {1L)-dimensional solid
simplified significantly, i.e., it can be solved analytically up With harmonic coupling between nearest neighbors, next-
to a summation over a finite number of terms. This will benearest, and next-next-nearest neighbors. A graphical illus-
done in Sec. Il tration is given in Fig. 1.

The new effective energ)~/rp that enters the Boltzmann
1. r-EPr method factor reads
In general the implementation of the full two-particle pair
propagator with correct diagonal and nondiagonal elements _ ¢ N P
is difficult, because one has to use the two-particle high- Vrp=§ Z Z E (k+ K1 )(Fen— rt+1n)2
temperature density matritHTDM) (rr,/e #P|rir}). In -

principle one can evaluate this expression prior to the simu- +(k+~k1)(ft n— Ty n+1)2+7<2(ft n—Tie1nse1)?
lation. However, this is tedious due to the dimensionality of B ' ' ' '
the matrix, in particular for anharmoni¢= 3-dimensional +k2(rt,n—rt'n+2)2]. (12
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h= N We will now calculate the thermal expectation value of
the potential energyVp) for a given Trotter numbeP. One
B 7 N can expect that the errors in different observables vanish
with the same power oP, which is why it is sufficient to
K= ) only investigate(Vp). The prefactor of the corrections can
N certainly depend on the observable, for example if the sys-
Ra= N, tem has many different energy scales. The calculations for
b the three approaches will be separated into three subchapters.

FIG. 1. lllustration of coupling between atoms. Atoms can only
oscillate in the horizontal direction. Vertical springs also act in the
horizontal direction. The straight horizontal lines represent springs |n the primitive method, the usual thermodynamic rela-
between nearest neighbors of stiffndssthe solid vertical lines  tionships can be used in a straightforward way without modi-
springs of stiffnessigT2P/#i. fication, albeit their use can be impractical for technical rea-

sons. In order to calculate the thermal expectation value of
The expressmr\/rp can be diagonalized in terms of Fourier (V;), one can use the relation
modes,

1. Solution for the primitive method

k d
(Vp)=- In(Z,), 17)
rqw PN2 2 re 271'IC1n/N 277|wt/P (13) P :8 dk

t=1n=1 where all effective coupling coefficients vanish. This rela-

tionship simply follows from the formal expression for the
guantum-mechanical partition function of a linear, mono-
atomic harmonic chain. The final expression o) then is

It is convenient to introduck’ =k+k; andx’ = k+ x; with
x=mP?(B%h2) in order to reexpres¥,, as

P N
v 1 ~ N P
_ 2 4 sirf(mwq/N
rp_z 2: 21 kq,w|rq,w| (14 <VP>_ Z 2 M (18
" 1671 kg
wit This equation can be interpreted as follows: Equipartition
_ T o m requires thaky ,(|Xq../%) = ksT. Hencek, , appears in the
Kg,o=K'4sir? po|tk 4 sir? Nd denominator. The amount aéal potential energy in these
~ modes, however, is onlig|X, ,|?/2, wherek, is the stiffnes
+ Kk 4{sirf[ w(q/N+ w/P) ]+ sirf[ w(q/N— w/P)]} that can be associated with the maglén a classical linear
chain.
+ky4 sinz(zz (15)
2 N q)- 2. Solution for the HOA method
The partition functionZ,, for the classical system illustrated  Equation(17) also holds for the HOA method, because
in Fig. 1 can then be reduced &P Gaussian integral. is  the only modification with respect to the primitive approxi-

proportional to mation (PA) is that a better approximant for the high-
temperature density matrix is employed. However, the cor-

- N ﬁ 2h? 2T< _ 16 rect coupling coefficientk, andk, have to be used. The

¢ 1 am1 ¥ mP?ae (16 expressions fok, andk, stated in Table | are obtained in a

straightforward way by inserting Eq11) into Eq. (4). This
For the different algorithms we find different functions for |gads to the expression
k1.kz, k1, and'k,. The expressions for these effective cou-
pling coefficients are summarized in Table I. The expressions k il 2 1% B\2
A andC used in Table | for the EPr treatment will be given (Vp)= 2,6’21 Z 1+2 E(E) k
and derived below. -

4sinz(%q)

2 1? T HOA
TABLE I. Expressions for the effective coupling coefficients “3mp ksm2 —2q IKgw s (29
that are represented in Fig. 1.
oA HOA Epr EPr wherekfS* refers to that expression fdt, ,, in Eq. (15)

which is obtained by inserting the HOA values farandk,.

k 0 (1 BK)*1(3mP?) k(A-C-1)  k(A-1) The same result fofVp) could have been obtained by cal-

ks 0 —(hBK)*I(12mP?) 0 0 culating the second moments of the eigenmoges ,|?)

K1 0 0 —kC 0 from equipartition. The resulting[x, /%) could then have

%o 0 0 ikC 0 been used to calculate the proper HOA potential energy es-
timator V+2V,,.
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3. Solution for the EPr method

In the EPr approacly,. does not follow from a Hermitian
decomposition of the high-temperature density matrix.
Therefore Eq(17) cannot be employed for the calculation of
(Vp). However, we can use the fact that EPr is an impor-
tance sampling method. Since we can obtdig, ,|%) from
equipartition and since the real potential energy of mpde
a (classical linear chain is proportional tk siré(mg/N), it is
possible to use Eq18) where the denominat&q,w is taken
from the EPr column in Table I. Hence,

0‘ - ‘50‘ - ‘100‘ - ‘150‘ - ‘200
k & & 4sid(mg/N) P
(Vey=52 2 2 ——=gor— (20 . _
2B =1 o=1 kq . FIG. 2. Thermal expectation value of the potential endigy)

as a function of Trotter numbé?; B k/m=64.

We are now concerned with the derivation of the expres- _
sions forA andC in Table I. To do this, one has to consider 4. Solution for the r-EPr approach

a dimer in which the two atoms are coupled by a harmonic  according to Sec. Il C 1, we need to know the quantum-
spring of stiffnessk. One then transforms the dimer Hamil- mechanical radial distribution functiag(r) at inverse tem-
tonian into the center-of-mass system Wik (ry+r2)/2the  peratures/P for the reduced harmonic oscillator in order to

center-of-mass coordinate antiR=(r,—r) the reduced construct the r-EPr effective potentidly. For this purpose,
distance between the two atoms. These two coordinates cajs syfficient to know the internal energy of the reduced

be associated with two modes, the center-of-mass mode qul']larmonic oscillator, sincg(r) is a simple Gaussian at all

massM =2m and the internal oscillator mode with stifinks  temperatures. Hence we need to find the effective coupling

and reduced masp=m/2. Both the free particle density constank’ which generates a second moméxt) in a clas-
matrix and the high-temperature density matifkiDM) of  gjca) treatment at temperatuRST such that the the real po-

an oscillator with spring constaktand massu are known  tentia| energyk(x2)/2 corresponds to the quantum limit at

exactly. The free particle HTDM is simply proportional to temperaturePT. This condition, which define&’, can be
exd —MP(R—R')?/24°B] [see Eq(1)] while the oscillator's \yritten as

HTDM is given by®

1Kk
\ uk p{ B k <V(,8/P)>exact:§ _,kBTPr (25
p(AR,AR',BIP)= ——exp —— ——— k
27ahsinh(2f) P f sinh(f)

where(V(B/P))exactis the correct thermal potential energy
for an oscillator at temperatuf@T. For a harmonmic oscil-
lator, {V(B/P))exactis half the internal energy, given by
U=0.5%w coth(Bhw/2) with frequencyw= vk/ = y2k/m.
We solve fork’ and findk’ = A k. The parameteA is given

The prefactor on the right-hand side of E81) provides an  in Eq. (23) andk;=k(A—1) as stated in Table | follows.
irrelevant offset inVg, which will be neglected in the fol-

lowing treatment. One then needs to transform the product of 5. Comparison of the methods

the free HTDM and the internal oscillator HTDM back into

the laboratory system and express the effective potential a%'ence of thermal expectation values such as the potential

cording to Eq.(10). With the definition of energy(Vp) to the proper quantum limit as a function of
Trotter numberP. We consider a linear chain consisting of
f= Eh \/§ (22) N=5 atoms and periodic boundary conditions. The conver-
P m gence does not depend bhin a qualitative way. It is exam-
ined at a fixed thermal energy well below the Debye fre-
quency of the chain, namely at inverse temperatgre
5 f =64/(f\k/m). A linear plot of (Vp) is shown in Fig. 2.
A= —tanl‘(—) ' (23 It can be seen that &=1 the EPr and the r-EPr methods
f 2 start off with estimates that are very close to the quantum
limit while PA and HOA start off with an estimate near the

x[(AR2+AR’2)cosr(f)—2ARAR']].

(21)

The main issue of this study is the analysis of the conver-

we obtain the parametefsandC

2 f classical value. Upon increasir®g the EPr approaches the
C:f_2 1‘% (24) proper value from below, while for the r-EPr method the
deviation between estimate and proper result first increases
that were introduced in Table I. before it decreases again. At a Trotter numPer 64, the
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FIG. 3. Relative error of the potential energy forldr5 chain
at Bhw=064 as a function of Trotter numbé.
100 £
HOA method becomes similarly good as the EPr approach. i
In order to address the convergence in a more quantitative o
way, it is convenient to analyze the relative deviatioq\df)
from the exact valu€Vg) as a function ofP in a double 107
logarithmic plot, which is done in Fig. 3.
It can be seen that at large Trotter numbers the HOA ,
method converges witR~# to the quantum limit, while all 1 e

other methods only converge wih 2. The prefactor for the 1 10 100

EPr, however, is much smaller than for r-EPr and PA. The
value of P at which convergence starts is similar in all ap-  FIG. 4. Necessary Trotter numberto reach a relative accuracy
proaches, e.g.kgTP is larger than but in the order of of (a) 1072 and(b) 1072 in the potential energyVp) at different
#i.\k/m. The accuracy where HOA becomes better than EPinverse temperatures Tiffor the linear chain consisting dfi=>5

is 1.7%. For this particular model system, this value of 1.7%atoms. All parameters other than temperature K, m) are set to
was found to be independent of temperature. We expect it tonity.

be similar for all systems that are dominated by harmonic

interactions. We will now address the question of how weWe have confirmed the HOARf convergence for the one-
have to increas® for the various approaches if we low&r dimensional quartic oscillator and the double well potential
and require the relative accuracy to be constant, e.g., 199y means of numerical matrix multiplicatiotNMM ).*~%
The results are shown in Fig. 4. (See Sec. Il C for some more details on NMMBoth po-

In order for the relative error to be constant, all methodstential energy and kinetic energy show the same convergence
require thatP increases linearly with inverse temperatyte ~ rate. One may conjecture that similar behavior is found for
The r-EPr approach, which is a little more difficult to imple- more generakb® potentials, i.e., double well or multiwell
ment than the PA method, requires slightly reduced Trottepotentials. Indeed, the HOA treatment of a linear rotor im-
numbers with respect tBA. We want to emphasize that the purity in a three-dimensional multiwell potential showed
behavior shown in Fig. 4 is qualitatively similar if the accu- similar behavior as that found for our simple one-
racy criterion forP is changed, however, the stricter the cri- dimensional quartic oscillatdf. In that HOA study, the De-
terion the larger the gap between EPr and HOA. This trendye anomaly in the specific hedue to tunneling between
can be seen in Fig.(8), where we require one time 0.1% equivalent minima in the potential enejgyould be observed
accuracy instead of 1% as shown in Figa)4Only if one is ~ at much smaller Trotter numbers than if the primitive ap-
confined to the use of very smdl might EPr be the better Proach had been used.
choice. One may conclude that the optimal method depends
on the desired accuracy. C. Gaseous helium

The proof for the 1P* convergence of the HOA approach
B. Quartic oscillator relies on the assumption that the thermal expectation value of

The HOA 1P* corrections are not only valid for the har- tfle commutatof T,V] and higher-order commutators such as

monic oscillator. They also apply to other well-behaved poLV.[T,V1] are well-defined??*?° More realistic potentials

tentials such as the quartic oscillator. Its potential energy halike the Lennard-Jones potentiad=4e[ (o/r)**—(a/r)°]

the form may not satisfy this assumption. Hence it is important to test
how higher-order approximants perform for this class of po-

tentials in particular in a situation where the system is far

V(x)=£k 4 (26) from being harmonic. The study of gaseous helium can

474" therefore elucidate the convergence of HOA methods, be-
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cause quantum effects are strong even in the dilute gas phase
as discussed recently, for example, by $duand Luijters®
Moreover, gaseous helium satisfies the condition of being
strongly anharmonic.

O+

Ox

In the low-density limit, noble gases are approximated o +
rather well in terms of the second-order virial coeffici@nt x O 3
The calculation of8, for quantum systems can be done in TPA T-02 oot
terms of numerical matrix multiplicatiotNMM). NMM ex- 4 CHOA, T= 0.2 E
ploits the idea that squaring of the thermal density matrix :E’S'A ;: ;jg
p(T) at temperaturd results inp(T/2) 2~°This procedure 107 Jp—
can be repeated times so that one can easily calculate the NG
low-temperature density matrixp(T/2") from a high- 1 10 100 1000
temperaturep(T), for which the actions are reasonably ap- P

proximated either by the decomposition underlying the FIG. 5. Relative error of the virial coefficie®, of Lennard-
primitive approach or that leading to the higher-order aP~3onesium with de Boer parameter2.7, an approiimate descrip-
proximants. The squaring procedure allows one to estimatg,, of 44e. The PA method and the HOA method are compared at
the systematic error due to the finitenessPofvithout con- o gitferent temperatures, where the dimensionless temperatures

ducting explicit simulations. NMM can also be used to ini- T—0.2 andT=1.6 correspond to 2 and 16 K, respectively, in the
tialize the proper effective interactions underlying the EPrcase of4He.

simulations.

~ NMM becomes increasingly more complex with increas-The convergence of the virial coefficientdr 1 is similar to
ing dimensionality of the Hilbert space, i.e., exponentially{nat described above in the previous paragraphder3:
more complex with the number of particles. As describedpespite the singularity the HOA approach converges with
previously in Refs. 27-29, the calculations can be simplified; p4 1 the proper quantum limit. The convergence starts at

for systems whose description can be reduced to the case gfjyes ofP that are slightly larger than those of the primitive
one particle moving in a central potential. We do not want toapproach.

repeat.the details of method, but we would like to comment " \yie have also analyzed the kinetic and potential energy in
on an issue that is relevant to our case. To analyze the cofe dilute gas phase as a function of Trotter nunfbeBoth
vergence withP in dlmen_s_lons larger than 1 it is necessary gpservables converge in a similar way B that is to say,
to use the proper modified Bessel functions for the freeine leading corrections are in the order dP4for HOA and

particle kernel at given angular momentinsee Eq(4.43  f order 1P2 for PA. Note that the EPr approach is exact by
in Ref. 3. Otherwise the leading corrections cannot vanish,nstruction for dilute gases.

faster than with 2. Moreover, it is necessary to chose the
discretization of the real space sufficiently small.

We have analyzed the convergence ratdBeffor argon
gas (Lennard-Jones potentjaland gaseous*He (Aziz It has been pointed out in Sec. Il B that in order to calcu-
potentiaf’). We found that the convergence of the higher-late radial correlation functions, it is necessary to correct the
order approximants remainf? like for well-behaved poten- estimator forg(r). An important question to address is how
tials, however, the crossover to the regime in which the leadwell the HOA approach allows one to calculaé). In or-
ing correction is in the order of Bf happens at values &f  der to examine this issue we apply the HOA methwoeking
that are larger than those values Pfwhere the crossover use of the proper estimator, see Ef).] to crystalline argon.
takes place for the primitive approach. The reason why th&/e model the system with the same Lennard-Jones potential
singularity does not affect the convergence rate at l&tge as one of uS previously, namelye=120 kgK and o
lies in the fact that there is no wave function in the singular-=3.405 A. The number of atoms used in the simulation cell
ity and its statistical weight near the singularity vanisheswas N=500. The geometry and the size of the simulation
sufficiently fast. We note in passing that the situation is lesell was allowed to fluctuate. The initial state was chosen
clear cut for the repulsive Coulomb potential. such that the average geometry was cubic. Since our inten-

In Fig. 5 we show exemplarily the relative error of the tion is to study the convergence with respecPfave do not
second virial coefficient of one-dimensional Lennard-discuss finite-size effects ig(r). The results are presented
Jonesium at two different temperatures. The choicd=flL.  in Fig. 6.
is motivated in part by the argument that the effect of a It is interesting to note thai(r) is too broadened for the
singularity is particularly large for a small-dimensional sys-HOA approach while it is too narrow using the PA algorithm.
tem. Moreover the numerical stability and the range of Trot-Obviously, the agreement of tie=12 HOA calculation is
ter numbers that can be investigated are larget=ril than  already very close to the quantum limit. This is a little sur-
in d=3. In Fig. 5, results are shown for Lennard-Jonesiumprising as the product dzTP is still far below the thermal
characterized by a de Boer parameter h/\\Mo?e of A energy of the Debye temperature, which is abdyy
=2.7, which reflects approximatelfHe. The two thermal ~85 K. We want to note that if thg(r) are obtained with-
energies emploied in Fig. 5 correspond®e-2 K and T  out corrections, the agreement is distinctly reduced. This
=20 K if we interpret\=2.7 Lennard-Jonesium atHe.  might be the reason why the convergenceg(f) reported

D. Crystalline argon
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FIG. 6. Pair correlation functiog(r) of crystalline argon al  atT=2 K as a function of Trotter numb@ calculated with the PA
=2 K calculated with the PA and HOA algorithm for Trotter num- (¢crossesand HOA(diamond algorithm.
bersP=8 andP=12. As a reference a quasiexact correlation func-
tion (HOA, P=256) is included. coupled atoms. We disregarded methods making explicit use
of a decomposition into a harmonic and an anharmonic part
by Li and Broughton for the attractive Coulomb potential of the Hamiltonian among other reasons due to the unfavor-
was so slow’ In our case, omitting the corrections to the able scaling of the numerical effort with system size.
g(r) estimator leads to peaks @(r) that are even sharper  The three main approaches investigated were the so-
than those obtained with PA using identical Trotter numberscalled primitive algorithm(PA), a method based on a higher-

Similar to the second virial coefficient, kinetic and poten-order approximan(HOA), and an approach in which an ef-
tial energy both cross ovéindividually) to the 1P* conver-  fective potential is constructed such that the one- and two-
gence if the HOA is employed. The crossover to the valuegarticle high-temperature density matrices are reproduced
of P, where the leading correctionsPl/ dominate the finite exactly in the limit of small densities. We called this ap-
P error, is larger for HOA than for PA. Hence this behavior proach the effective propagattEPr method. The latter ap-
ressembles that of tH&, expansior(discussed in Sec. Il proach can be further reduced by only taking into account
despite the fact that the argon crystal is relatively harmonicgertain corrections on the diagonal of the high-temperature
that is to say, the harmonic approximation is stable and acdensity matrix leading to the r-EPr method.
counts for most of the ground-state energy. We emphasized the different spirit of EPr and HOA meth-

Although it is necessary to alter the distance estimatorpds: In the EPr method, observables orthogonal in real space
there is no need to alter the volume estimator, see(Bq. can be evaluated directly, whereas the HOA method requires
This is because the volume per atom is entirely determineéffective estimators. The need to alter estimators even for
by the periodic boundary conditions and thus independent afadial distribution functions obtained in simulations taking
the atomic positions. Similar comments apply to sec@mtl  into account quantum effects in an effective potential are
highen-order distribution functions of the strain tensor from discussed. We showed that the proper estimators lead to a
which the elastic constants follow. very fast convergence to the quantum limit in a simple argon

It is well-known that deviations of théaverage atomic  crystal.
volume(v) from its value in the harmonic approximation are ~ For the linear monoatomic chain investigated in this
due to anharmonicity. Quantum fluctuations often enhancstudy, we found that the corrections based on HOA vanish
anharmonicity. For solid argon @t=2 K, the anharmonic- with P~ while all other methods, PA, EPr, and r-EPr, have
ity is even dominated by quantum fluctuations. Hence theorrections in the order dP 2. The prefactor is similar for
convergence ofv) with P to the quantum-mechanical refer- PA and r-EPr and distinctly smaller for EPr. Both EPr and
ence value is an important test for the HOA method. Results-EPr, however, give rather accurate results at siaé.g.,
are shown in Fig. 7 for crystalline argonBt=2 K.Asinall  the relative error in the thermal expectation value of the po-
other cases discussed above, HOA leads to distinctly reducdential energy is smaller than 10% in those approaches, while
systematic errors with respect to PA. It is possible to confirmPA and HOA differ by nearly 100% at low temperatures and
the 1P* convergence for the HOA algorithm within the sta- P=1. The Trotter number where convergence starts is simi-
tistical error bars. lar in all approaches. If one requires high accuracy, e.g., 1%,
one needs to increase the Trotter numBelinearly in all
approaches.

The 1P* convergence of average potential energy, aver-

In this study we have compared the convergence to thage kinetic energy, and average atomic volume was also ob-
quantum limit for different path integral approaches. As thetained in HOA simulations for anharmonic systems, in which
convergence rate does not depend on the specific model sythe interatomic potentials were singular at the origin. This
tem (as long as the potentials are well behgvesle have  comment applies to cases where the probability density van-
focused our attention to a linear chain of harmonicallyishes in the singularity, which is not the case for the attrac-

IV. SUMMARY
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tive or repulsive Coulomb potential. Our case studies insimulation. While EPr also results in a significant improve-

cluded an HOA based virial expansion of gasefdg and a
Lennard-Jones model of solid argon.

ment with respect to PA, it is plagued with a tedious, non-
trivial implementation procedure. Moreover, HOA is easily

What can we conclude for path integral simulations? Thegeneralized to three-body forces, while the inclusion of
use of HOA is certainly a little more CPU time expensive three-body terms in EPr would require nontrivial generaliza-
than that of EPr, r-EPr, and PA, which all require approxi-tions. Nevertheless, EPr should be the method of choice for
mately the same amount of computing. This is because in afhe simulation of dilute systems like the recently produced
HOA based simulation, we need derivatives of the interacBose-Einstein condensates. For dense systems, however, the

tion potential that are one order higher than those in simulagoOA method seems to be the most efficient method in par-
tions based on EPr, r-EPr, and PA. This makes HOA MontQiCL”ar if h|gh numerical accuracy is required_

Carlo simulations about twice as CPU time expensive than
Monte Carlo simulations that are based on one of the other
schemes discussed here. This factor of 2 can be reduced
close to unity in path integral molecular dynamics by using
multiple time-step algorithms, in which the correction terms We thank Kurt Binder for useful discussions. Support
do not have to be evaluated at every time step. But even in iom the BMBF through Grant 03N6015 and from the Ma-
Monte Carlo simulation, one is rewarded with the best conterialwissenschaftliche Forschungszentrum Rheinland-Pfalz
vergence to the quantum limit in an HOA based path integrals gratefully acknowledged.
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