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Exact solutions for the two-site Holstein model
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The two-site Holstein model is studied by the analytical method of the coherent-state expansion. We obtain
the recursive relationship among the expansion coefficients, which leads to the exact solutions of the eigenstate
properties. The exact ground-state results in the whole coupling strength region and from antiadiabatic to
adiabatic limits are in perfect agreement with that available by the exact numerical diagonalization technique.
Comparison with the best perturbation results shows the success and shortcoming of the perturbative method.
The coherent-state expansion method is a promising approach in studying electron-phonon (e-ph) coupling
systems.
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The polaron problem presents a highly nonlinear dyna
cal system in which the charge and lattice deformations
intricately coupled together.1,2 The complexity of the system
challenges analytical methods. In the weak electron-pho
(e-ph) coupling adiabatic regime, the system can be
scribed well by the Migdal approximation,3 with renormal-
ized phonon frequencies and electron effective mass. W
the coupling of the electron to the atomic displacement
strong, the electron is self-trapped and produces a small
laron. Small polarons are believed to play an essential rol
some new materials with exceptional properties such as
high-Tc cuprates, the nickelates, and manganites.4–6 As one
of the fundamental models describing interactions of cond
tion electrons with local lattice deformations, the two-s
Holstein model7 is not only instructive for studying feature
of small polarons on the basis of small units, but also app
to true physically relevant situations.

The property of the small polaron has been extensiv
studied,8–10 generally based on the Lang-Firsov~LF!
transformation,11 followed by approximations treating th
fully localized polaron state as the starting point and int
ducing the hopping of the electrons by perturbative mean
is shown, however, that neither the Migdal approximat
nor the LF approximation provides satisfactory quantitat
results for intermediate coupling strength. Recently, Das
co-workers developed a perturbation expansion up to
sixth order using the LF, modified LF~MLF!, and MLF with
squeezing transformations.12,13 Much improved results are
obtained and the sixth-order perturbative MLF is the b
analytical method known to date. Nevertheless, the mos
liable results have to rely upon the numerical diagonalizat
technique.14–18 In this paper, we report an analytical metho
describing the ground state of the Holstein model exactly
the entire range of the coupling strength.

The two-site single-polaron Holstein model describes
electron hopping between two adjacent sites~diatomic mol-
ecules!, each of which exhibits an optical mode with fre
quency v0. The Hamiltonian can be separated into tw
terms.18 One describes a shifted oscillator that does
couple to the electronic degree of freedom. The other
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scribes the effectivee-ph system where phonons couple d
rectly with the electronic degrees of freedom and is defin
by the Hamiltonian12,18

H5(
i

eni2t~c1
†c21c2

†c1!1v0g~n12n2!~d1d†!

1v0d†d, ~1!

where i 51 or 2 denotes the site.ci(ci
†) is the annihilation

~creation! operator for the electron at sitei, ni(5ci
†ci) is the

corresponding number operator,g denotes the on-sitee-ph
coupling strength,t is the usual hopping integral,d(d†) is
the annihilation~creation! operator for the oscillator, ande is
the bare site energy of electron. In the following w
setv051.

From the HamiltonianĤ, we can see that the electro
couples linearly to the oscillator and the number of phono
is nonconservative due to@d†d,Ĥ#Þ0. Therefore it is par-
ticularly appropriate to write the wave function of the tw
site system in the coherent-state space.19 The coherent state
span the whole Fock space. Their overcompleteness ena
any vector of the Fock space to be represented exactly.
eigenstate of the HamiltonianĤ then could be supposed t
have the form

u&5F(
i 50

`

r1,i~d†! i G uA1&u1&1F(
i 50

`

r2,i~d†! i G uA2&u2&, ~2!

wherer1,051, r2,05 f . f and r1,i ,r2,i are parameters to b
determined,u1& and u2& are wave functions for the electro
in site 1 and 2, respectively.uAi&, i 51,2 is the coherent stat
of the phonon at sitei with the form

uAi&5exp~a id
†!u0&, i 51,2, ~3!

whereu0& denotes the vacuum state of the phonon modea i
is the eigenvalue of the operatord with duAi&5a i uAi&, i
51,2. It is not difficult to find thatuA1& and uA2& have rela-
tions

uA1&5exp@~a12a2!d†#uA2&, ~4!
©2002 The American Physical Society03-1
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uA2&5exp@~a22a1!d†#uA1&. ~5!

Substituting Eq.~2! into the Schro¨dinger equationĤu&
5Eu& and utilizing Eqs.~4!, ~5!, and the commutation rela
tion @d,d†#51, we get

E8F(
i 50

`

r1,i~d†! i uA1&u1&1(
i 50

`

r2,i~d†! i uA2&u2&G
52tF (

i , j 50

`

r1,i

~a12a2! j

j !
~d†! i 1 j uA2&u2&

1 (
i , j 50

`

r2,i

~a22a1! j

j !
~d†! i 1 j uA1&u1&G

1gH (
i 50

`

r1,i@~d†! i 111 i ~d†! i 211a1~d†! i #uA1&u1&

2(
i 50

`

r2,i@~d†! i 111 i ~d†! i 211a2~d†! i #uA2&u2&J
1(

i 50

`

r1,i@ i ~d†!1a1~d†! i 11#uA1&u1&

1(
i 50

`

r2,i@ i ~d†!1a2~d†! i 11#uA1&u1&, ~6!

where E85E2e. From Eq. ~1!, it can be seen that th
Hamiltonian is invariant under the transformatio
c1

†(c1)↔c2
†(c2) and d†(d)↔2d†(2d). This means that

(E8, f, a1 , a2 , r1,i , r2,i) and (E8, 1/f , 2a2 , 2a1 ,
(21)ir2,i / f , (21)ir1,i / f ) are both the solutions for the sys
tem. Generally, this leads to the double degeneration, wh
is caused by the symmetric nature of the two-site syst
However, the two solutions are identical whenf 51/f , lead-
ing to the singlet states of the system witha152a2 and
r1,i5(21)ir2,i / f . The ground state is expected to be a bon
ing singlet withf 51.18 Equating the coefficients ofnth level
correlation effect (d†)nuAi&u i & (n51,2, . . . ), wehave a set
of nonlinear equations, which determine the parameter
the system, leading to the recurrence equation forr1,n

r1,n5
1

ngH ~2t f 2n11!r1,n212~g1a1!r1,n22

1~21!n21t f (
i 1 j 5n21

i , j 50

`
~2a1! j

j !
r1,iJ , n52, . . . ,̀

~7!

and

E85ga12t f , ~8!

r1,15r2,150. ~9!
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Considering the fact that the high-order correlation eff
contributes relatively little to the system, we could approa
the real system with the omission of high-level correlati
effects, for example, omitting the terms (d†)nuAi& with n
.nt , wherent is the truncation order. The truncation of th
(nt11)th-order recurrence equation gives

r1,nt
5

21

t f 1nt1~21!nt11t f H ~g1a1!r1,nt21

1~21!nt11t f (
i 1 j 5nt

i 50,j 51

`
~2a1! j

j !
r1,iJ . ~10!

For a given a1, all correlation coefficientsr1,i , i
50, . . . ,nt can be obtained from Eq.~7! . Substitutingr1,i to
the truncated equation~10! provides a nonlinear equation fo
determininga1. This equation can be easily solved by th
bisection method,20 yielding a set of solutions correspondin
to the ground and excited states of the system. All phys
properties are then available with the resulting wave fu
tions.

Obviously, one can include in the above calculation ar
trarily high order phonon correlations by taking the corr
sponding truncation ordernt , and the results with arbitrarily
high precision can be obtained. The calculation needs
than 1 CPU sec of a PIII 833 PC computer to obtain
result with the 50th order correlation effects, which is mu
more than necessary to achieve the machine accuracy fo
the cases tested. Therefore, the analytical coherent-state
pansion~CE! described above provides a simple method
get the exact solutions for the two-site system.

The exact ground-state energies for systems witht/v0
50.5, 1.1, and 2.1 are shown in Fig. 1. These valuest
cover the crossover region from the antiadiabatic limit to
adiabatic limit. Our ground-state energies show very go
convergence with the truncation order. It is noticed, howev
that when the coupling strengthg increases, the correlatio
effects become strong and higher-order correlation effe

FIG. 1. Ground-state energy versusg for t/v050.5, 1.1, and
2.1.
3-2
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have to be included in order to obtain results with simi
precisions. The results by the exact numerical diagonal
tion technique fort/v051.1 ~Ref. 18! are indistinguishable
from our results in the whole coupling region, confirming t
validity of our approach. The sixth-order perturbation ML
method also provides excellent results, with energies alm
identical to ours fort/v050.5 and t/v051.1.12 With our
method, we could also conveniently obtain excited states
an example, Fig. 2 shows the eight lowest energies for
t/v051.1 system. All curves show very good agreem
with the results of the numerical diagonalization method.

The polaronic character of the electrons are usually s
ied by the static correlation functionŝn1u1& and ^n1u2&,
which indicate, respectively, the strength of polaron induc
lattice deformations and their ranges, whereu1 and u2 are
the lattice deformations at site 1 and 2, respectively, p
duced by an electron at site 1. The ground-state correla
functions could be written as12

^n1u1,2&5^n1/2 @6~d1d†!22gn#&, ~11!

wheren1 is the number operator for the electron at site 1 a
n51 is the total electron number. The positive and nega
sign correspond tô n1u1& and ^n1u2&, respectively. The
functions^n1u1& and^n1u2& versusg for the ground state o
t/v050.5, 1.1, and 2.1 systems are plotted in Figs. 3~a! and
3~b!. For small g, i.e., in the weake-ph coupling region,
2^n1u1& and2^n1u2& increase linearly withg, as expected
In the strong e-ph coupling region,2^n1u1& increases
monotonically whereas2^n1u2& gradually decreases to zer
with increasingg. This indicates that the deformation is larg
and tends to be localized at site 1, a clear sign of a s
trapped small polaron. Notice that for a givene-ph coupling
strengthg, the larger hopping parameter~t! increases the
amplitude of off-site deformation (^n1u2&) while it reduces
that of the on-site correlation (^n1u1&). The transition from a
large polaron~quasifree electron! to a small polaron~self-
trapped electron! is thus driven by a competition between th
kinetic and potential energy of the electron. Our static cor

FIG. 2. Eight lowest-energy levels for thet/v051.1 system as a
function of the coupling strengthg.
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lation functions fort/v051.1 agree very well with that by
the exact numerical diagonalization technique in the wh
coupling range.18

The nature of the crossover from a delocalized~large! to a
localized~small! polaron can also be studied by the corre
tion function^n1(u12u2)&/g. The exact results againstg for
t/v050.5, 1.1, and 2.1 systems are plotted in Fig. 3~c!. No
abrupt crossover from a large to small polaron is seen. T
is consistent with Lowen’s conclusion that there cannot
any abrupt crossover in the ground state of ane-ph system
for a finite phonon frequency.21 The plot, however, does

FIG. 3. Correlation functions versusg for the systems with
t/v050.5, 1.1, and 2.1.~a! 2^n1u1&, ~b! 2^n1u2&; ~c! 2^n1(u1

2u2)&/g.
3-3
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show a more abrupt crossover in the adiabatic region~larger
t), though the coupling strength for the crossover is lar
than that for smallert. All polarons are localized with suffi-
ciently stronge-ph coupling. There is no unique quantitativ
criterion for the crossover from a delocalized to localiz
polaron. A plausible criteria is with the coupling strengthg0,
at which ^n1(u12u2)&/g0 reaches half of its maximum
value. That is,2^n1(u12u2)&/g051. In this sense, all po
larons in the antiadiabatic limit, witht/v0<0.5, are localized
ones for anye-ph coupling strength. The crossover coupli
strength is about 0.9 and 1.4 fort/v051.1 andt/v052.1,
respectively.

It is worth noting that the correlation functions are sen
tive to the high-order correlation effects. Though it is n
difficult for our CE method to provide accurate results f
any combination oft and g, they are not easy to calculat
accurately by other analytical approximation methods, es
cially whent is large. For comparison, the fifth-order pertu
bation MLF results are also plotted in Fig. 3~b!.12 For t/v0
50.5, the results by the fifth-order perturbation MLF meth
are virtually the same as ours in the whole coupling ran
For t/v051.1 and 2.1, the fifth-order perturbation MLF als
gives very accurate results in both strong- and we
coupling regions. However, in the intermediate-coupling
gion, the fifth-order perturbation MLF results deviate fro
the accurate ones. The deviation is most significant
t/v052.1 in the vicinity of the crossover from a delocalize

FIG. 4. Logarithmic error versus truncation order for the grou
state with (t/v050.5, g50.8), (t/v051.1, g51.1), and (t/v0

52.1, g51.4). ~a! Logarithmic error for energy ln(uDEu), ~b! loga-
rithmic error for the correlation function ln(uD^n1u2&u).
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to a localized polaron. The good energy results by the p
turbation MLF are due to the fact that higher-order corre
tions are successively smaller in magnitude and are of a
nate signs, resulting in a fast converging perturbation ser
However, this is not the case for the correlation functions
the intermediate-coupling region. Therefore, a converg
energy does not necessarily mean convergent correla
functions. In the CE method, however, the wave functi
~expansion coefficients! is determined accurately, resulting i
accurate correlation functions. Figure 4 shows the logar
mic errors of the ground-state energy ln(uDEu) and the corre-
lation function ln(uD(^n1u2&)u) calculated by different trunca
tion ordersnt for (t/v050.5, g50.8), (t/v051.1, g51.1),
and (t/v052.1, g51.4), which are representative (t, g)
combinations of the slowest convergency in the perturba
MLF method. Clearly, all the CE energies and correlati
functions converge very rapidly, and the machine accur
for (t/v050.5, g50.8) can be achieved easily.

The ground-state wave functions for thed oscillator as a
function of x5(u12u2)/A2 for different values of thee-ph
coupling strength when the electron is located at site 1
plotted in Fig. 5 fort/v051.1. For a weake-ph coupling
(g50.1), the electron rapidly hops between the two mole
lar sites without inducing a local deformation. The groun
state wave function shows a Gaussian-like behavior cent
nearx50. As g increases, the center position of the wa
function shifts towardsx,0 gradually, and a shoulder atx
.0 develops and becomes apparent at aroundg51.3–1.4.
This indicates that a significant polaronic effect sets in a
the correlations between the position of the electron and
deformation on the sites become strong. The growth of
shoulder asg increases also illustrates the enhancemen
the retardation effects between the motion of the electron
the molecular deformation created by the electron. The
sults agree completely with the known fact.12,18

To summarize, we have demonstrated that an analyt
method, i.e., the coherent-state expansion method, can
vide the exact solutions for the two-site Holstein model. A
though the achievement is so far limited to a two-site syste

FIG. 5. Ground-state wave function fort/v051.1 system with
g50.1, 1.4, 1.6, and 1.8.
3-4
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we hope it would facilitate better progress for analytic
studies of many-site systems. It is worth noting that the
method with truncations up to the third order has been s
cessfully used to find solutions of somee-ph coupling
d

17430
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problems.22–24We expect that the CE method with a suitab
order of correlation effects can be applied to a variety
e-ph coupling systems, and it provides a promising alter
tive to the variational and perturbation methods.
-
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