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Exact solutions for the two-site Holstein model
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The two-site Holstein model is studied by the analytical method of the coherent-state expansion. We obtain
the recursive relationship among the expansion coefficients, which leads to the exact solutions of the eigenstate
properties. The exact ground-state results in the whole coupling strength region and from antiadiabatic to
adiabatic limits are in perfect agreement with that available by the exact numerical diagonalization technique.
Comparison with the best perturbation results shows the success and shortcoming of the perturbative method.
The coherent-state expansion method is a promising approach in studying electron-p&qmncéupling
systems.

DOI: 10.1103/PhysRevB.65.174303 PACS nunider71.38—-k, 63.20.Kr, 71.10-w

The polaron problem presents a highly nonlinear dynamiscribes the effective-ph system where phonons couple di-
cal system in which the charge and lattice deformations areectly with the electronic degrees of freedom and is defined
intricately coupled togethér> The complexity of the system by the Hamiltoniaf?'8
challenges analytical methods. In the weak electron-phonon

e-ph) coupling adiabatic regime, the system can be de- _ it T _ t
(scrliobe)d weII[IJ by? the Migdal agproximaticﬁq}\//vith renormal- H_Ei €M (e CoC1) + wog(ny —nz)(d+ )

ized phonon frequencies and electron effective mass. When T
the coupling of the electron to the atomic displacements is +wod'd, 1)
strong, the electron is self-trapped and produces a small pavherei=1 or 2 denotes the site;(c/) is the annihilation
laron. Small polarons are believed to play an essential role ifcreation operator for the electron at SitEni(:CiTCi) is the
some new materials with exceptional properties such as th@orresponding number operatgy,denotes the on-site-ph
high-T. cuprates, the nickelates, and mangarﬁfé?s%s one  coupling strengtht is the usual hopping integraﬂ(dT) is

of the fundamental models describing interactions of conducthe annihilationcreation) operator for the oscillator, aneis

tion electrons with local lattice deformations, the two-sitethe bare site energy of electron. In the following we
Holstein model is not only instructive for studying features setwy=1.

of small polarons on the basis of small units, but also applies From the HamiltonianH, we can see that the electron
to true physically relevant situations. couples linearly to the oscillator and the number of phonons

The property of the small polaron has been extensivelys nonconservative due fa’d,H]#0. Therefore it is par-
studied? ™ generally based on the Lang-FirsotF) ticularly appropriate to write the wave function of the two-
transformatiot;” followed by approximations treating the site system in the coherent-state spicehe coherent states
fully localized polaron state as the starting point and intro-span the whole Fock space. Their overcompleteness enables
ducing the hopping of the electrons by perturbative means. lany vector of the Fock space to be represented exactly. The
is shown, however, that neither the Migdal approximationeigenstate of the Hamiltoniaf then could be supposed to
nor the LF approximation provides satisfactory quantitativenhgye the form
results for intermediate coupling strength. Recently, Das and
co-workers developed a perturbation expansion up to the
sixth order using the LF, modified LEMLF), and MLF with )=
squeezing transformation$!® Much improved results are
obtained and the sixth-order perturbative MLF is the beswherep; =1, p,o=f. f andp,;,p,; are parameters to be
analytical method known to date. Nevertheless, the most redetermined|1) and|2) are wave functions for the electron
liable results have to rely upon the numerical diagonalizatiorin site 1 and 2, respectivelpA;), i =1,2 is the coherent state
techniquet*~8In this paper, we report an analytical method of the phonon at sité with the form
describing the ground state of the Holstein model exactly for

;0 p2i(dN1[[A)]2), (2)

;0 pl,i<d*>‘}|A1>|1>+

_ t P

the entire range of the coupling strength. [A)=exp(a;d")[0), =12, G
The two-site single-polaron Holstein model describes anwhere|0) denotes the vacuum state of the phonon mage,

electron hopping between two adjacent sitéistomic mol- s the eigenvalue of the operatdrwith d|A;)=aj|A;), i

eculeg, each of which exhibits an optical mode with fre- =1 2 |t is not difficult to find thaiA,) and|A,) have rela-
guency wg. The Hamiltonian can be separated into twoOtjgns

terms'® One describes a shifted oscillator that does not
couple to the electronic degree of freedom. The other de- |A1>=exp[(a1—a2)dT]|A2>, 4
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|Az)=exd (az— ay)d"]|Ay). (5
Substituting Eq.(2) into the Schrdinger equationH|)

=E|) and utilizing Eqgs.(4), (5), and the commutation rela-
tion[d,d']=1, we get

izo pl,i(dT)i|Al>|1>+Zo Pz,i(dT)i|A2>|2>}

E/
S ) tyi+j
P1| (d") |A >|2>
|J:O
) tyi+]j

+|12— P2| (d)'A[1)

+g{2 prl (AN i (dh) T 4 g (dN)']|A[1)

=2 o[ (dN) T E+i(dN) T+ ay(dD) ]| A)[2)

i=0

2, puli(d")+ay(d) A1)

2 paili(d) +ap(dD A1), (®)
where E'=E—e€. From Eq. (1), it can be seen that the
Hamiltonian is invariant under the transformation

cl(cy)«cl(c,) and df(d)« —df(—d). This means that
(E', f, @1, @, p1j, p2;) and E’, 1A,

— Oy, T U7,

(—1)'po;/If, (—1)'py;/f) are both the solutions for the sys-

PHYSICAL REVIEW B65 174303

Ground-state Energy

FIG. 1. Ground-state energy versgsor t/wy=0.5, 1.1, and

A,

N

Considering the fact that the high-order correlation effect
contributes relatively little to the system, we could approach
the real system with the omission of high-level correlation
effects, for example, omitting the termsl)"|A;) with n
>n,, wheren; is the truncation order. The truncation of the
(ny+1)th-order recurrence equation gives

= +a -
Pin, et (— 1)t (9+ai)pin -1
5 (2ay)!
(=)W Y o) P (10
i=0j=1
i+j=n;

tem. Generally, this leads to the double degeneration, whickor a given «;, all correlation coefficients py;, i

is caused by the symmetric nature of the two-site system=0,

However, the two solutions are identical whes 1/f, lead-
ing to the singlet states of the system with=—a, and
P1i=
ing singlet withf =118 Equating the coefficients afth level

correlation effect @")"|A))|i) (n=1,2,...), wehave a set

. Ny can be obtained from E@7) . Substitutingp,; to
the truncated equatiorl0) provides a nonlinear equation for
determininga 4. This equation can be easily solved by the

(—1)'py; /. The ground state is expected to be a bond-isection method® yielding a set of solutions corresponding

to the ground and excited states of the system. All physical
properties are then available with the resulting wave func-

of nonlinear equations, which determine the parameters afons.

the system, leading to the recurrence equatiorpfgy

Pin ng (=tf=n+1)p1n1—(9+a1)pip—2
+(_1)n—1tf 2 ( Ja;l) ol n:2, o0
|+Ij’J::nO—l
(7)
and
E,:gal_tf, (8)
p11=p2,1=0. 9

Obviously, one can include in the above calculation arbi-
trarily high order phonon correlations by taking the corre-
sponding truncation order,, and the results with arbitrarily
high precision can be obtained. The calculation needs less
than 1 CPU sec of a PIIl 833 PC computer to obtain the
result with the 50th order correlation effects, which is much
more than necessary to achieve the machine accuracy for all
the cases tested. Therefore, the analytical coherent-state ex-
pansion(CE) described above provides a simple method to
get the exact solutions for the two-site system.

The exact ground-state energies for systems with,
=0.5, 1.1, and 2.1 are shown in Fig. 1. These values$ of
cover the crossover region from the antiadiabatic limit to the
adiabatic limit. Our ground-state energies show very good
convergence with the truncation order. It is noticed, however,
that when the coupling strengthincreases, the correlation
effects become strong and higher-order correlation effects
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have to be included in order to obtain results with similar I //' g‘ ]
precisions. The results by the exact numerical diagonaliza- 2 °°[ A emia, 3« ]
tion technique foit/wy=1.1 (Ref. 18 are indistinguishable S 04l /g’ o ‘“\E\,_‘ . i

from our results in the whole coupling region, confirming the
validity of our approach. The sixth-order perturbation MLF
method also provides excellent results, with energies almost
identical to ours fort/wo=0.5 andt/wy=1.112 With our
method, we could also conveniently obtain excited states. As
an example, Fig. 2 shows the eight lowest energies for the
t/wg=1.1 system. All curves show very good agreement
with the results of the numerical diagonalization method.
The polaronic character of the electrons are usually stud-
ied by the static correlation functions,u;) and {nju,),
which indicate, respectively, the strength of polaron induced
lattice deformations and their ranges, whereand u, are

22 . . . . . ; . ;

the lattice deformations at site 1 and 2, respectively, pro- ﬁ;
duced by an electron at site 1. The ground-state correlation o
functions could be written 3% = ) .
Y oosl -
(nyuy ) =(ny/2[ = (d+d")—2gn]), (11) o ;
[N T - 4
wheren; is the number operator for the electron at site 1 and S ——

n=1 is the total electron nhumber. The positive and negative C)

9
sign correspond tgn,u;) and {nju,), respectively. The
functions(n,u,) and{n,u,) versusg for the ground state of FIG. 3. Correlation functions versug for the systems with
t/wy=0.5, 1.1, and 2.1 systems are plotted in Figa) and  t/0=0.5, 1.1, and 2.1(a) —(nyuy), (b) —(nyuz); (c) —(ny(u;

3(b). For smallg, i.e., in the weake-ph coupling region, —U2))/g.

—(nyu;) and—(n,u,) increase linearly withy, as expected.

In the stronge-ph coupling region,—(n,u,;) increases lation functions fort/wy=1.1 agree very well with that by
monotonically whereas-(n;u,) gradually decreases to zero the exact numerical diagonalization technique in the whole
with increasingg. This indicates that the deformation is large coupling range®

and tends to be localized at site 1, a clear sign of a self- The nature of the crossover from a delocaliziedge to a
trapped small polaron. Notice that for a givesph coupling localized(small polaron can also be studied by the correla-
strengthg, the larger hopping parametén increases the tion function{n;(u;—u,))/g. The exact results againgtfor
amplitude of off-site deformation(i;u,)) while it reduces t/wy=0.5, 1.1, and 2.1 systems are plotted in Fifc)3No
that of the on-site correlatioqif,u,)). The transition from a abrupt crossover from a large to small polaron is seen. This
large polaron(quasifree electronto a small polaronself- is consistent with Lowen’s conclusion that there cannot be
trapped electronis thus driven by a competition between the any abrupt crossover in the ground state ofeaph system
kinetic and potential energy of the electron. Our static correfor a finite phonon frequendy. The plot, however, does
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- FIG. 5. Ground-state wave function fofwy=1.1 system with
g=0.1, 1.4, 1.6, and 1.8.
§: i to a localized polaron. The good energy results by the per-
3 turbation MLF are due to the fact that higher-order correc-
g 4 tions are successively smaller in magnitude and are of alter-
- nate signs, resulting in a fast converging perturbation series.
. However, this is not the case for the correlation functions in
the intermediate-coupling region. Therefore, a convergent
b) e 2 energy does not necessarily mean convergent correlation
N functions. In the CE method, however, the wave function

o ) (expansion coefficientss determined accurately, resulting in
FIG._4. Logarithmic error versus truncation order for the groundyccyrate correlation functions. Figure 4 shows the logarith-
state with {/wo=05, g=0.8), (lwo=11, g=11), and Uwo  mic errors of the ground-state energy|X|) and the corre-
=2.1,g=1.4).(a) Logarithmic error for energy In4E|), (b) loga- . . . _
Lo ) . lation function In{A({n,u,))|) calculated by different trunca
rithmic error for the correlation function If{(n,u,)|). .
tion ordersn, for (t/wy=0.5,9=0.8), (t/wy=1.1,g=1.1),
show a more abrupt crossover in the adiabatic redemger and (t/wy=2.1, g=1.4), which are representativd, (g)
t), though the coupling strength for the crossover is largecombinations of the slowest convergency in the perturbation
than that for smallet. All polarons are localized with suffi- MLF method. Clearly, all the CE energies and correlation
ciently stronge-ph coupling. There is no unique quantitative functions converge very rapidly, and the machine accuracy
criterion for the crossover from a delocalized to localizedfor (t/w,=0.5, g=0.8) can be achieved easily.
polaron. A plausible criteria is with the coupling strengi The ground-state wave functions for tHeoscillator as a
at which (n;(u;—U,))/go reaches half of its maximum  g,nction of x=(u,—u,)/+2 for different values of the-ph

?/alue. _Th?]t is,—.<n1.(u1—'u7.)>/.go=.1. In<this sensle, all! PO- coupling strength when the electron is located at site 1 are
arons in the antiadiabatic limit, withl w=<0.5, are localized plotted in Fig. 5 fort/wy=1.1. For a weake-ph coupling

ones for anye-ph coupling strength. The crossover coupling(gzo_l), the electron rapidly hops between the two molecu-

strength is about 0.9 and 1.4 fotw,=1.1 andt/we=2.1, lar sites without inducing a local deformation. The ground-
respectively. . S .
; . . . . state wave function shows a Gaussian-like behavior centered
It is worth noting that the correlation functions are sensi- : "
nearx=0. As g increases, the center position of the wave

tive to the high-order correlation effects. Though it is not]c . hif g duall q hould
difficult for our CE method to provide accurate results for lUnction shits towardx<0 gradually, and a shoulder at

any combination ot and g, they are not easy to calculate 0 develops and becomes apparent at arcgind.3-1.4.
accurately by other analytical approximation methods, espelhis indicates that a significant polaronic effect sets in and
cially whent is large. For comparison, the fifth-order pertur- the correlations between the position of the electron and the
bation MLF results are also plotted in Fig(b3!? Fort/w, deformation on the sites become strong. The growth of the
=0.5, the results by the fifth-order perturbation MLF methodshoulder agy increases also illustrates the enhancement of
are virtually the same as ours in the whole coupling rangethe retardation effects between the motion of the electron and
Fort/wy=1.1 and 2.1, the fifth-order perturbation MLF also the molecular deformation created by the electron. The re-
gives very accurate results in both strong- and weaksults agree completely with the known fdét®

coupling regions. However, in the intermediate-coupling re- To summarize, we have demonstrated that an analytical
gion, the fifth-order perturbation MLF results deviate from method, i.e., the coherent-state expansion method, can pro-
the accurate ones. The deviation is most significant forvide the exact solutions for the two-site Holstein model. Al-
t/we=2.1 in the vicinity of the crossover from a delocalized though the achievement is so far limited to a two-site system,
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we hope it would facilitate better progress for analytical problems*2~2*We expect that the CE method with a suitable
studies of many-site systems. It is worth noting that the CEorder of correlation effects can be applied to a variety of
method with truncations up to the third order has been suce-ph coupling systems, and it provides a promising alterna-
cessfully used to find solutions of someph coupling tive to the variational and perturbation methods.
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