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Nucleation barrier for phase transformations in nanosized crystals
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Department of Materials Science, Shanghai Jiao Tong University, Shanghai 200030, China
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The nucleus of a new phase is considered as an inclusion embedded into a small grain of a polycrystalline
matrix. The calculation of the nucleation barrier of dilatational phase transformation in nanosized crystals is
carried out based on the concepts of surface stress associated with phase equilibria suggested by Cahn and
Larchéand the interface equilibrium given by Gurtin and Murdoch. As an example, the fcc→bcc allotropic
transformation in Fe is calculated. By further addition of the shear energy using the Eshelby’s shear energy
equation, the nucleation barrier of martenstic transformation in nanosized crystals for Fe-30Ni alloy is calcu-
lated. The results indicate that the nucleation barrier and critical size of phase transformation in nanosized
crystals are predominantly dependent on the strain energy, interphase boundary energy from phase transfor-
mation, and the grain size, however, the effect of grain size can be ignored when grain size is more than 100
nm. In the basis of these results, the different behavior of martenstic transformation between nanocrystals of
Fe-Ni and NiTi alloys is reasonably explained. The factors influencing the nucleation barrier and critical sized
of structural phase transformation in nanocrystals are discussed in detail.

DOI: 10.1103/PhysRevB.65.174118 PACS number~s!: 64.70.Nd, 81.30.Kf, 64.60.2i
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I. INTRODUCTION

Many experiments demonstrated that the hig
temperature phase~austenite! in nanosized particles ofte
stabilize at room temperature to a great extent, as obse
for free particles ranging from 10 to 200 nm in Fe-Ni allo
by Kajiwara et al.1 and for particles with diameters of les
than 10 nm in Fe-Ni films by Tadakiet al.2,3 This phenom-
enon of high-temperature phase stabilization is also obse
in many pure metals.4–7 For example, theg-Fe particle with
fcc structure is found at room temperature when the size
particles is less 50 nm,4,6 while g-Fe in normal coarse grain
will transform intoa-Fe with bcc structure at 1185 K. For C
metal, Kitakamiet al.7 proved from experiment that the fc
structure remains stable at room temperature when Co
ticles are as small as,20 nm, while the fcc to hcp transfor
mation takes place at 693 K in the normal coarse grains.
experiment of Zhouet al.8 indicated that each particle~10–
200 nm! in Fe12xNix(19 wt %,x,32 wt %) alloys has a
kind of structure bcc or fcc. The same phenomenon w
found in nanosized Co particles~20–40 nm!.7 The nanosized
particles in NiTi film in contrast to that in Fe-Ni alloy coul
not suppress the martensitic transformation.9,10 Obviously,
there may be a noticeable difference about the effect of
ticle ~grain! size on martensitic transformation~or the stabil-
ity of austenite! between them.

The nanocrystalline materials are structurally charac
ized by ultrafine grains and a large volume fraction of int
face, such as grain boundary, phase, and domain interfa
etc. These interfaces should affect the behavior of ph
transformation in nanocrystals. Cahnet al.11,12 have pro-
posed that the action of the surface stress in solid relate
the work of deforming the surface elastically and affe
strain energy and interfacial energy from phase transfor
tion. But they only considered the equilibria of an inclusi
~such as a new phase nucleus! embedded in an infinite solid
matrix. In the case of an inclusion embedded in a nanos
0163-1829/2002/65~17!/174118~7!/$20.00 65 1741
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grain of polycrystals, the effect of grain boundary stre
should be noted.

The present article attempts to calculate the nuclea
barrier of phase transformations in nanosized crystals ba
on the concepts of surface stress associated with phase
libria suggested by Cahn and Larche´11,12 and the interface
equilibrium given by Gurtin and Murdoch13 for dilatational
transformation as well as addition of shear energy by us
Eshelby’s equation14 for martensitic transformation. As ex
amples, the nucleation barriers of allotropic transformat
of Fe and martensitic transformation of Fe-30Ni in nanosiz
crystals are calculated, and factors influencing the nuclea
barrier of phase transformations in nanocrystals will be d
cussed in detail, from which the difference behavior of pha
transformations between nanosized grains and normal co
grains and that of martensitic transformation between Fe
and NiTi alloys will be reasonably explained.

In nanosized crystals, nucleation for diffusional pha
transformation on grain boundaries may also be preferen
to that inside a grain. In the present work, we will on
consider the homogeneous nucleation within a grain, but
discuss the nucleation on grain boundaries. For the mar
sitic transformation, the nucleation on grain boundaries
be ignored due to the displacive character of martens
transformation.

II. THE NUCLEATION BARRIER FOR DIL ATATIONAL
PHASE TRANSFORMATION IN NANOSIZED

CRYSTAL

The nucleus of a new phase~a! in nanosized crystals ca
be considered as an inclusion embedded in a small sphe
grain ~g! of a polycrystal matrix~M! as shown in Fig. 1.
Obviously, an interphase boundary betweena and g and a
grain boundary betweeng andM exists.

The change in free energy for phase transformation can
written as

DG5VDGg2a1Esto, ~1!
©2002 The American Physical Society18-1
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whereDGg2a is the change in free energy per unit volum
accompanyingg→a, V is the volume of the new phase, an
Esto is the store energy arising from strain energy and in
facial energy produced by phase transformation, gener
including strain energy in individuala, g, M and interface
energiesEa2g andEg2M betweena2g andg2M , respec-
tively. The calculation of strain energy and interfacial ene
in the nanosized crystals is different from the normal b
materials because the influence of interface stress on g
boundary cannot be ignored.

Accompanying reconstructive transformation, the chan
of volume in new phase relative to a parent phase is usu
produced, while in displacive transformation the shear str
must also be added. In this section, only the dilation case
be referred to. In Fig. 1 we choose the stress-free statesa
andg as their respective reference state at zero pressure
assume that the infinite matrix phase and the new phase
isotropic. In this statea has a radiusR0

a and g a hole of
radiusR0 , with

R0
a5~11«!R0 , ~2!

where« represents the dilatational strain ofa relative tog.
According to the method of Eshelby14 and the symmetry

of sphere, we know that the stress field is only a function
radius r. Therefore, the equations of displaceme
equilibrium15 is

]2v

]r 2 1
2

r

]v

]r
2

2v

r 2 50. ~3!

Its general solution is

v5Ar1B/r 2. ~4!

The values ofA and B can be determined from bounda
conditions. In the new phase~a!, B50, because displace
mentv should be finite whenr→0, and for the same reaso
A50 in the matrix (M ), while in a small grain~g!, both A
and B are not equal to zero. Thev in a, g, and M are,
respectively,

va85C1«r ~r ,R0!, ~5!

vg5C2r 1C3 /r 2 ~R0,r ,R1!, ~6!

FIG. 1. Schematic illustration of a new phase~a! embedded in a
small spherical grain~g! of polycrystal matrix~M!.
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vM5C4 /r 2 ~r .R1!, ~7!

where the superscriptsa, g, andM stand for the new phase
small grain, and matrix, respectively.R1 is the radius of the
small grain. From Eq.~5!, the contracting displacement o
the free expansiona phase resulting from the constrain o
the g phase isva5«(C121)r , and for this state the stres
~pressure!12,16 in a is

P53Ka~C121!«, ~8!

the stress ing is determined as follows:

s rr
g 5

3lgC2r 312mgC2r 324mgC3

r 3 , ~9!

suu
g 5sww

g 5
3lgC2r 312mgC2r 312mgC3

r 3 , ~10!

and the stress inM is

s rr
M524

mgC4

r 3 , ~11!

suu
M 5sww

M 52
mgC4

r 3 , ~12!

whereKa, lg, andmg are the bulk modulus ofa and Lame´
constants ofg, respectively.C1 , C2 , C3 , and C4 are ob-
tained by the following boundary conditions.

Gurtin and Murdoch13 deduced the mechanical balance
forces at the interface

sa
•na1sb

•nb2div f50, ~13!

where superscriptsa andb show, respectively, two differen
phases~or grains! in the sides of an interface,sa andsb are
the stress tensors of these two phases~or grains!, respec-
tively, na and nb are the exterior normal toa and b (na5
2nb), respectively,f is the surface stress tensor, and div
the surface divergence. In the spheric symmetry case,
components off are f uu5 f rr 5 f ~Ref. 12! and

div f522 f nb/R, ~14!

whereR is the radius of interface. The equations of mecha
cal balance ofa2g andg2M interfaces are obtained from
Eq. ~13!,

3lgC2R0
312mgC2R0

324mgC3

R0
3 53Ka«~C121!12 f 1 /R0 ,

~15!

24
mgC4

R1
3 5

3lgC1R0
312mgC2R1

324mgC3

R1
3 12 f 2 /R1 ,

~16!

where f 1 and f 2 are, respectively, the interface stresses
a2g andg2M . In the isotropic case, their values are equ
to their interfacial energy.17,18 The equations of the norma
8-2
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displacement continuum ofa2g and g2M interfaces can
be obtained from equations~5!–~7!:

C2R01
C3

R0
2 5C1«R0 , ~17!

C2R11
C3

R1
2 5

C4

R1
2 . ~18!
e

ca
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17411
Solving equations~15!–~18!, C1 , C2 , C3 , and C4 are,
respectively,

C152
2 f 1R123R0R1«Ka12R0f 2

R0R1«~4mg13Ks!
, ~19!

C252
2 f 2

3R1~lg12mg!
, ~20!
C352
1

3

R0
2@6R1f 1~lg12mg!29R0R1«Ka~lg12mg!12R0f 2~2mg13lg!26R0f 2Ka#

R1~lg12mg!~4mg13Ks!
, ~21!

C452
1

3

2 f 2R1
3~3Ka14mg!12R0

3f 2~2mg13lg23Ka!13R0
2R1~2 f 123R0«Ka!~lg12mg!

R1~lg12mg!~3Ka14mg!
. ~22!
on

ary
e
in
re-
d

the
The strain energy densities ofa, g, andM can be calcu-
lated from the basic formula of elastic mechanics, resp
tively,

ea5
3

2
Ka~C121!2«2, ~23!

eg5
3

2
C2

2~3lg12mg!16mgC3
2/r 6, ~24!

eM5
6mgC4

2

r 6 . ~25!

The strain energies stored in an individual solid can be
culated by a volume integration of their strain energy den

Ea52pKa~C121!2«2R0
3, ~26!

Eg52
2p@R1

3R0
3C2

2~3lg12mg!14mgC3
2#~R0

32R1
3!

R0
3R1

3 ,

~27!

EM5
8pmgC4

2

R1
3 . ~28!

The total strain energy from the dilatational strain of t
new phase is

Es5Ea1Eg1EM. ~29!

Cahn and Larche´7 gave the calculated formula of interfaci
energy~interfaces are assumed to be coherent!:

g5g01 f i j « i j , ~30!

where g0 is the interfacial energy when the strain is ze
f i j 5 f d i j in the isotropic case, then the interfacial energy
a2g or g2M becomes
c-

l-
y

.
f

Ea2g5Sa2g~g0
a2g12 f 1C1«!54pR0

2~g0
a2g12 f 1C1«!,

~31!

Eg2M5Sg2MS 2C2f 21
2C3f 2

R1
3 D 58pR1

2S C2f 21
C3f 2

R1
3 D ,

~32!

whereSa2g and Sg2M are the interface areas ofa2g and
g2M , respectively.

Accordingly, the store energy produced by the formati
of a new phase can be written as

Esto5Es1Ea2g1Eg2M. ~33!

Prior to phase transformation, the stress of grain bound
betweeng2M also brings about the strain energy in th
small grain and polycrystalline matrix, and the change
grain boundary energy due to elastic strain in the solids
sulting from f 2 . By using the same method mentione
above, the strain energyEpri

g in g, Epri
M in M, and the change

of grain boundary energyEpri
g2M from the stress of grain

boundary are deduced as

Epri
g 5

8p

9

R1f 2
2~3lg12mg!

~lg12mg!2 , ~34!

Epri
M 5

32p

9

R1f 2
2mg

~lg12mg!2 , ~35!

Epri
g2M52

16p

3

R1f 2
2

lg12mg . ~36!

These energy items should be added to Eq.~1! for dealing
with phase transformation in nanosized grains. Therefore,
change in free energy accompanying theg→a transforma-
tion in small grain can be written as

DG5VDGg2a1Esto2~Epri
g 1Epri

M 1Epri
g2M ! ~37!
8-3
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TABLE I. The required parameters of Fe and Fe-30Ni.

Parameters Notation Unit Fe Fe-30Ni

Lattice parameter fcc structure ag Å 3.56a 3.5854e

Lattice parameter bcc structure aa Å 2.86a 2.8635e

Elastic constant of fcc structure C11 1010 Pa 14.1b 14.75f

C12 1010 Pa 10.0b 8.92f

C44 1010 Pa 10.8b 11.31f

Laméconstant of fcc structure m 1010 Pa 4.00i 5.26i

l 1010 Pa 8.70i 8.04i

Poisson’s ratio of fcc structure n 0.34i 0.30i

Young’s modulus of bcc structure E 1010 Pa 21.14c 15.3g

Shear modulus of bcc structure m 1010 Pa 8.18c 5.50g

Bulk modulus of bcc structure K 1010 Pa 16.98c 19.7i

Free energy difference~at 0 K! DGg2a 108 J/m3 4.08d 2.88h

Dilation of fcc→bcc transformation « 0.037 0.018
Shear strain of martensitic transformation «sh 0.22

aRef. 23. fRef. 28.
bRef. 24. gRef. 29.
cRef. 25. hRef. 30.
dRef. 26. iCalculated values from other elastic constants.
eRef. 27.
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III. THE CALCULATION OF NUCLEATION BARRIER FOR
DILATATIONAL PHASE TRANSFORMATION IN

NANOSIZED CRYSTAL

In reconstructive transformations, the appearance o
new phase will produce the change of volume and will bu
a new interface. For example, the dilation of volume in f
→bcc allotropic change of Fe is 3.7%, which is calculat
by the lattice parameters ofa-Fe andg-Fe. As an application
of Sec. II, the nucleation barrier of fcc→bcc transformation
in Fe will be calculated. The required parameters for cal
lation of the nucleation barrier in Fe are listed in Table I.

The grain boundary energy in nanosized crystals is u
ally larger than that in bulk materials,19–21 but the actual
value has not been reported. In the present article the en
of the high-angle grain boundary in coarse grains is appr
mately taken as that of grain boundary in nanocryst
Wolf22 calculated the energy of high-angle grain boundary
a-Fe and obtained the energy of~100! boundary is about 1.6
J/m2. Since the interface is assumed to be isotropic, the
merical value of specific interface energy~per unit area! is
equal to that of interface stress.17,18The interphase boundar
energy is usually lower than grain boundary energy.
though the different approximate values of interfacial ene
will be employed in our calculations, it does not affect t
correctness of the calculated results except for its precis

Figure 2, the result of calculation by Eq.~37!, shows the
free energy change of fcc→bcc (DG) with the radius of bcc
embryos (R0) in Fe. It can be found from Fig. 2 that with
decrease of the grain radius, the nucleation barrier for
→bcc DGc and critical radius of nucleationR0

c ~the R0 cor-
responding to peak value in Fig. 2! will increase. It indicates
that the decrease of the grain size is favorable for the sta
ity of g-Fe with fcc structure. It is worthy noting that critica
17411
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radius of nucleationR0
c is larger than grain radiusR1 when

R1 is enough small, the result can be deduced that in so s
nano-sized crystal, once phase transformation occurs
whole grain ofg-Fe will transform into that ofa-Fe, that is,
in this case the bcc and fcc phase cannot coexist in the s
grain.

FIG. 2. Relationship between the free energy of fcc→bcc trans-
formation and the bcc phase nuclear size in iron with different gr
radius R1 , interphase boundary energyf 1 , and a given grain
boundary energyf 251.6 J/m2. The squares represent Cahn a
Larché work. ~a! f 15g0

a2g50.8 J/m2, R1510 nm; ~b! f 15g0
a2g

50.8 J/m2, R1550 nm; ~c! f 15g0
a2g50.8 J/m2; ~d! f 15g0

a2g

50.5 J/m2, R1510 nm; ~e! f 15g0
a2g50.5 J/m2, R1550 nm; ~f!

f 15g0
a2g50.5 J/m2.
8-4
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IV. THE NUCLEATION BARRIER OF MARTENSITIC
TRANSFORMATION IN NANOSIZED Fe-Ni ALLOYS

In the above calculation only the strain energy and int
facial energy of the spherical symmetry are considered. M
tensitic transformation usually produces the dilation of v
ume as well as shear strain. Therefore, the shear s
energyEsh must be added in the store energyEsto for calcu-
lation of nucleation barrier. The shear strain energy of m
tensitic transformation is dependent on the shape of the m
tensitic nuclei. However, the shape of martensitic nuc
strongly depends on the composition of an alloy. For
ample, in steels with,0.2% carbon and,29% nickel con-
tent, the shape of martensite is the lath, while in high car
and high nickel steels it is lenticular.31 For the martensitic
transformation, the spherical symmetry will disappear, a
the calculation will become very complicated if the influen
of interface stress on shear strain is considered. For the s
as a rough approximation, which can give a tendency
nucleation barrier of martensitic transformation with stra
energy, the formula of shear strain energy given
Chistian32 based on Eshelby inclusion theory14 is directly
expressed as

Esh5
p~22n!G

8~12n!

c

a
«sh

2 , ~38!

wheren is Poisson’s ratio,«sh is the shear strain of marten
sitic transformation,c/a is the semithickness/radius ratio o
the oblate spheroidal nuclei of martensite. The shear en
is linearly proportional toc/a, thus the maximal shear en
ergy corresponds to the sphere shape, the minimal doe
lath. The small value ofc/a significantly decreases the she
energy, but somewhat increases the interfacial energy.

The shape of martensite in a bulk Fe-30Ni alloy was o
served as to be lenticular, and itsc/a is about 1

50.
33 While in

Fe-Ni alloys with a low Ni content~,29 at. %! the lath mar-
tensite appears, and itsc/a is much smaller than that o
lenticular martensite.

The parameters of Fe-30Ni alloy for calculating the nuc
ation barrier of martensitic transformation also are listed
Table I, in which the dilation of volume and shear stra
value of martensitic transformation is calculated by the
tice parameter and WLR theory,34 respectively.

The curvea in Fig. 3 shows that the free energy chan
(DG) accompanying the martensitic transformation rela
with the martensitic embryo radiusR0 when the shear strain
energy is added into the store energy in Eq.~33!. In order to
emphasize the effect of shear strain, the curveb that ex-
cluded the shear strain is also drawn in Fig. 3. Figure
indicates that the nucleation barrierDGc and critical radius
of nucleationR0

c rapidly increase with the increase of she
strain energy.

V. DISCUSSION

A. Effect of the grain size on nucleation barrier and critical
radius of nucleation

Figure 2 shows that the change in Gibbs free ene
(DG) depends on the size of nuclei (R0) in Fe with grains of
17411
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50 and 10 nm radius (R1) and for a given value of the inter
phase boundary energy. The change in Gibbs free energ
dilatational phase transformation in infinite grain from Ca
and Larche´12 are also shown in Fig. 2 for comparison. It ca
be found from Fig. 2 that our calculated results are alm
the same as Cahn and Larche´’s work when the grain radius
exceeds 50 nm.DGc increases evidently with the decrease
the grain radius from 50 to 10 nm, butR0

c increases slightly.
The effect of grain size on free energy is not so evident wh
a grain radius is more than 50 nm in Fe.

B. Effect of interphase boundary energy on nucleation barrier
and critical radius of nucleation

There is an interphase boundary between a new phase
a parent phase. The magnitude of the interphase boun
energy depends on several factors, such as the structu
interface, coherence degree of interface and the shape
new phase etc. It can be found from Fig. 2 that theDG
2R0 curve is intensively affected by the interphase bound
energy.DGc andR0

c increase rapidly with the slight increas
of interphase boundary energy from 0.5 to 0.8 J/m2 for a
given grain size~10 or 50 nm!. It indicates that the inter-
phase boundary energy plays an important part in ph
transformation of nanosized grains.

C. Effect of the shear energy on nucleation barrier and
critical radius of nucleation

As mentioned above, the shear energy strongly depe
on the shape of martensitic nucleus. Figure 4 shows the
lationship among the nucleation barrierDGc, critical radius
of nucleationR0

c , and thec/a ratio of ellipsoid nucleus in
the Fe-30Ni alloy. In Fig. 4,DGc and R0

c greatly increase

FIG. 3. Relationship between the free energy of martens
transformation and the martensitic nuclear size in Fe-30Ni a
with a given grain radiusR1550 nm, interphase boundary energ
f 15g0

a2g50.8 J/m2 and grain boundary energyf 251.6 J/m2. The
shear strain energy withc/a5

1
50 is considered in curve a, not in

curve b.
8-5
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with the slight increase ofc/a ratio due to the increase of th
shear strain energy. As a consequence, the increase of thc/a
ratio of ellipsoid nucleus will strongly suppress the marte
sitic transformation.

D. The comparison of martensitic transformation of nanosized
crystal in Fe-Ni alloy within NiTi alloy

From the above discussion both the nucleation bar
DGc and critical radius of nucleationR0

c depend on the in-
terphase boundary energy and strain energy produced
the phase transformation as well as the parent grain s
DGc andR0

c increase slightly with the decrease of grain siz
but theDGc andR0

c obviously increase with the increase
the interphase boundary energy or the strain energy as sh
in Figs. 2–4. The strain energy arising from phase trans
mation relates to the difference of physical and mechan
parameters between new and parent phases as well as
nitude of strain. Since the dilatational stain in martens
transformation of NiTi shape memory alloy is very sma
~,1%!,35 and thec/a of martensite is also very small, mean
while, in NiTi alloy the total shear stain tends to be zero d
to the self-accommodation of martensite variants, the nu
ation barrier of martensitc transformation is too small to su
press the occurrence of martensitic transformation in na
sized NiTi, which has been verified by the experiments.9,10 In

FIG. 4. Dependence of the critical nucleation sizeR0
c and nucle-

ation barrierDGc with martensitic transformation on an increase
strain energy in Fe-30Ni alloy forR1550 nm, interphase boundar
energy f 15g0

a2g50.5 J/m2 and grain boundary energyf 2

51.6 J/m2. ~a! c/a2R0
c ; ~b! c/a2DGc.
o

r.
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contrast, in Fe-Ni alloys such as Fe-30Ni, the volume dil
tion ~near 2%! of martensite is much larger than that of N
alloy, accordingly, it is conceivable that the martensitic tra
formation in nanocrystalline Fe-30Ni becomes difficult, a
the same behavior occurs in martensitic transformatio
nano-ZrO2 ceramic with about 5% volume dilation.36

VI. CONCLUSIONS

The nucleus of a new phase is considered as an inclu
embedded into a small grain of a polycrystalline matrix. T
calculation of nucleation barrier for dilatational phase tra
formation, such as allotropic transformation of Fe, and
critical radius of nucleation in nanosized crystals was car
out based on the concepts of surface stress associated
phase equilibria suggested by Cahn and Larche´ and the in-
terface equilibrium given by Gurtin and Murdoch. By furth
addition of the shear energy using the Eshelby’s shear en
equation the nucleation barrier of martenstic transforma
in nanosized crystals for Fe-30Ni as an example was ca
lated. The conclusions are summarized as follows.

~1! The nucleation barrier and the critical nucleation s
of new phase depend on the parent grain size for a g
grain boundary energy, as well as a given interphase bo
ary energy and strain energy arising from phase transfo
tion. The effect of grain size on the nucleation barrier
critical nucleation size cannot been ignored when the g
diameter is less than 100 nm. The effect of interphase bo
ary energy and strain energy on the nucleation barrier as
as the critical size of nucleation is evident, so the low ph
interface energy and strain energy are favorable for p
transformation in nanocrystalline materials, from which
can be explained the fact that the occurrence of marten
transformation in nanosized NiTi alloys is easier than tha
Fe-Ni alloys.

~2! In nanocrystalline materials, the critical nucleat
size of the new phase will be larger than the grain size
parent phase when the grain size is enough small. In
case, once phase transformation takes place, the whole
will transform from parent phase into new phase, indica
the two phases can not coexist in such a small grain.
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