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Effects of nonlinear thermoelastic damping in highly stressed fibers
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We present an analysis of thermoelastic damping in materials arising from the temperature dependence of
the elastic moduli. We show that this form of damping can cancel thermoelastic damping arising from thermal
expansion for a suitably chosen operating stress. For the case of the suspension fibers used in the gravitational
wave detectors, this loss mechanism can be the dominant one.
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[. INTRODUCTION is up=aEy/E’, wherea is the linear expansion coefficient
andE, andE’ are the Young’s modulus and its temperature
Brownian motion in the suspension wires of the mirrors inderivative.
interferometric gravitational-wave detectors is one of the We will show here that, like the thermal-expansion coef-
fundamental limitations to gravitational wave detectorficient, the dependence of the elastic modulus on temperature
sensitivity* For this reason they are fabricated from materi-2/S0 causes a temperature change upon expansion or contrac-
als with very low internal friction, since this friction is re- tion of the material, and so causes dissipation in a bent rod.
lated to the displacement noise through application of théVe will also show that the amount of temperature change
fluctuation-dissipation theorefln order to reduce the dis- depends nonlinearly on the amount of strain, and that the
placement noise still further by means of the dilution fadtor, sign of the temperature change depends on the sign of the
these wires are so thin that the weight of the mirror stressestrain. Therefore, the strain can be chosen, taking into ac-
them to a significant fraction of their breaking strength. ~ count both the thermal expansion coefficient and the tem-
However, in general the diameter can only be made s®erature dependence of the Young's modulus, such that a
small due to the specific strength of the material and in somémall additional strain will result in no net temperature
cases due to thermoelastic dampfnghich has a frequency change, and therefore no net thermoelastic damping. Nonlin-
dependence which is related to the diameter of the wire. Fogar thermoelasticity(NTE) has been discussed in the
the fused silica Suspension wires Currenﬂy preferre(ﬁw IiteratUrE?'G but the internal damplng that results from NTE
detectors, thermoelastic damping dominates the intrinsif@s—to our knowledge—not been explored prior to this
damping of the material in the frequency bandwidth of thework.
detector at about 200 MPa. The mechanism of linear ther-
moelastic damping is well understood. When a rod of mate- || DAMPING IN A HOMOGENEOUSLY STRETCHED
rial is flexed, the material to the inside of the bend is com- FIBER
pressed and that to the outside of the bend is expanded. ) ) _ ) _
Because of its nonzero thermal expansion coefficient, the We begin by treating a wire under simple extension. The
material will change temperature with the sign depending ofree energy for our nonlinear thermoelastic solitl is
whether it is compressed or expanded. Thus there will be a
temperature gradient across the bend. Heat will flow irrevers- F(T)=Fo(T)+ E(T) - v(T)
ibly across this gradient and dissipate energy. 0 2[1+»(T)]| "1 1-2u(T)
It can be easily seen how the thermal expansion respon-
sible for thermoelastic damping can also cause thermal fluc- —a(T) E(T) (T-Tou 1)
tuations in the position of a mass suspended from a thin [1-2v(T)] o7
elastic wire. If we consider the wire as having a front half
and a back half, it is obvious that a thermal fluctuation in thevhere Fq is the undeformed free energy;; is the strain
temperature of the front half of the wire will lead to an ex- tensor, T is the temperaturex(T) is the linear thermal ex-
pansion or contraction of that part of the wire and therefore @ansion coefficientE(T) is Young's modulus, and/(T) is
bend in the wire, thus moving the mass. Poisson’s ratioT, is an arbitrary temperature at which we
Now consider what happens if this wire is under fixed define the unstressed deformation to be zero. It is understood
tension and the Young’s modulus is a function of temperathat repeated indices are summed over. This formula as writ-
ture. A thermal fluctuation in one-half of the wire will also ten explicitly recognizes thd, «, andv are functions ofT.
change the Young’s modulus, and thereby the strain of thdtor simple extension of a thin beam in thalirection (o,
segment under the tension. This also will bend the wire. It is* 0,04 other=0, Whereay; is the stress tenspwe have
easy to show that this bending will exactly cancel that due to
thermal expansion if the tension is such that the static strain Uyx=Uyy=—2(T)U,+ a(T)[1+v(T)]0, 2

(uy)?
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where=(T—T,). We substitute this into the free energy to
obtain

E(T)

F(T)=Fo(T)+ —— U~ a(T) 0E(T)uy,

1+ »(T)
1—2u(T)

and use the thermodynamic relatiot), =dF/du;, to obtain
the stress-strain equation:

—E(M a?(T)6? )

0,,=E(T)[U,,— a(T) 0] (4)

Note that this equation correctly models the free thermal ex- F|G. 1. The closed loop in stress-strain space for large exten-
pansion of a beam, for, on setting,,=0, the result isu,,  sions from zero strain. The value of the thermal expansion coeffi-
=a(T)6. It is also clear upon inspection that this stress-cient has been set to 1 to better show the difference betwggn
strain equation is correct in the isothermal limit, when theand o, .
strain changes so slowly that the material is always in ther-
mal equilibrium. temperature can be considered essentially uniform; (&nd

If the strain changes very rapidly, there is not sufficientan isothermal return to the initial state. This process frees us
time for the material to exchange energy with its environ-from the considerations of the timescale of dissipation that
ment or between its parts, and so the transformation is adiavould follow from inhomogeneous thermal gradients.
batic: the entropy remains constant. The entropy is related to The work done in this process is
the free energy by

Umin
S(T):_(‘?F/(ﬂ-)uij- 5 AW= % Uzzduzz:f a'zzaaduzz"_f 024564z 7,

Umin Umax

In Appendix A, where we expan&(T)=Ey+E'6, a(T) 9)
=agta’f, andv(T)=vy+ v’ 6, we show that if the mate-
rial is taken from the unstressed state to a large strgip,

Umax

where there is no work done during the thermalization stage
since du,,=0. We first consider the case wheug,,=0.

then Here both the adiabatic temperature chafigs (6)] and the
T = ﬁqax stress-strain relatiofEq. (8)] are nonlinear iru,,. There are
0ad=c—v _aOEOumax+T , (6)  two interesting values of the strain. Fay,=u;= agEy/E’,

the last two terms in Eq(8) cancel, with the result that
where 6,4 is the adiabatic temperature change. In the same,»d— 07450, aNd atu,,=U,=2aoEy/E’, the adiabatic tem-
appendix we show that if the material is initially at a large perature change is zero so that agaip,q— 0,45- The
strainug to which is added a relatively small stradiu, then  closed loop in stress-strain space fgf,,>U, is shown in
Fig. 1. For small values af,,, the stress follows the asymp-
tote 0,,=Eadly,, Where E = Eq(1+ a3EoTo/Cy) is the
adiabatic Young’s modulus from the linear thermoelastic
theory (LTE). The dissipation in cycling through the closed
Substituting the adiabatic temperature change into thgoop is equal to the area circled by the curve in the clockwise
stress-strain equation to find how the stress varies with thgense_ The integra|5 in EQQ) are eas”y solved, with the

To
Hadzc_v[_a0E0+ E,U0]5U. (7)

strain, we obtain: result for the total dissipation being
0 22ad= EoUzz— @oEoOagt E' 0adu; 7, 8 AW To a%E% - @oEoE’ s E'2 . 0
where we have dropped the terms proportiona#3g which “Cy| 2 Umax 2 Umax™ g7 Umax|- (10

are small so long a®,<Ey/E’ and 0,q<aq/a’. This is
justifiable becausé,4 at the yield strength of most materials, Inspection shows that the dissipation takes a minimum at
including fused silica, satisfies these conditions. We will uselma—Uy; in fact the dissipation is exactly zero at this point.
0,40 10 refer to the stress whefi=0. Note the remarkable Therefore the dissipation is never negative, and thus satisfies
fact that Poisson’s ratio does not appear in Eq&), (7), or  the laws of thermodynamics. This latter statement is true
(8). regardless of the sign &', «g, O Upax-

We now estimate the strength of the nonlinear thermoelas- We next consider the case whaug;,=Uy and Upa="Ug
tic damping by considering the energy lost as the material is- dU,,. This time the integral equatid®) is over the variable
cycled through a closed loop in stress-strain space. Thd(du,,), and Eq.(7) is used for6,4. In this case both
closed loop consists dfl) an adiabatic extension from the ;4= 0450 @8Nd 0,0 atug=u4. In addition both the adia-
initial state to the extended stai®) thermalization at fixed batic temperature and stress equations are quasilinear in that
strain with a surrounding reservoir, so slow that the materiafor éu,, very small, o,,,4 and 6,4 depend ondu,, to first
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FIG. 2. The closed loops in stress-strain space for small exten-
sions around three different large initial strains. The value of the
thermal expansion coefficient has again been set to 1 to better show F1. 3. Model for the bent beam under tension, showing the
the difference between,q and oriso - variables used in the quasiperiodical analysis and dynamic beam

equation derivation(a) Diagram showing the variable§ Z, andR.
order only. Closed loops in stress-strain spaceugress  (b) Diagram showing how a uniform stretchidg superimposed on
than, equal to, and greater thap are shown in Fig. 2. The an extension which varies linearly across the beam due to the bend-

dissipation is now ing deflects the neutral surface from the centeg.to
1T, large(the bending i d Th in distribution insid
_>1o a2 2 g ing is moderateThe strain distribution inside
AW=3 C\,(aOEO E"U0)™( OUmad” 1D the beam is then given by

The dissipation is clearly always positive, independent of the p

sign of Sup,ax, s shown in Fig. 2. In both the above cases, if uZZ=E—+(x—q)/R=uo+(x—q)/R, (12

we setE’ =0, we obtain the familiar thermoelastic damping 0

strength. Therefore, we may generalize to nonlinear therwith u,, and uy, related tou,, by Eq. (2). Hereq is the
moelasticity in the quasilinear case by making the substitucoordinate of the neutral surface of the bending, which, con-
tion a—a—E'ug/Ey. In particular, note that if we set the trary to what is usually done, cannot be assumed to run
strainuy=Eoag/E’, there is no net thermoelastic damping through the center of the beam because the temperature gra-
for small additional strains. Note that ify is much larger dient as well as other nonlinearities will cause the Young’s

than this value, then the damping increaseﬂéis modulus to vary across the beam. This neutral surface must
be treated with some care, because the work required to
IIl. CASE OF A BENT WIRE UNDER TENSION move it during bending is comparable to the dissipation in-

_ . _ duced by NTE.
The previous example demonstrated in a simple way how

nonlinear thermoelasticity manifests itself in internal damp-
ing of a homogeneously strained material where the heat
flow is through contact with a thermal reservoir. We now It is possible to apply the closed-loop analysis of the pre-
consider a more complicated, but in practice more relevant/ious section to this case in a way that explicitly considers
case of nonlinear thermoelastic damping due to the tranghe dynamics of the damping. We takeR{) = (1/R)e' ",
verse thermal currents that are generated in a bent wirand allowd(t) andq(t) to be quasiperiodic functions of time
which is under tension. We derive the frequency dependencith period 2m/w, wherew is the fundamental frequency of
of the dissipation using two complementary approaches. l@scillation of the beam. For examplg(t,)=q(t,) where
both derivations we ignore the presence of other forms of,—t;=27/w. We may then express the closed-loop integral

A. Quasiperiodical analysis approach

damping not associated with thermoelasticity. in stress-strain space as the time integral
Assume, as is usual in dealing with the bending of thin
rods, that any external forces required to cause the bending [tz dug,
i g W= | o,,——dt, (13
are negligible compared with internal stresses. As a result we 4 dt

need only consider the,, component of stress and the non- .

zero strain components, which avg,, u,y, andu,,. We  Where g,, obeys Eq.(4) as in the case of homogeneous
model the wire as a thin beam of lengthand rectangular ~stretching and wheré now depends upon time and position
cross section of widtka and thicknes®, held under a static Within the beam through the heat equation

tensionP and deformed along the axis with a radius of

curvatureR(z) that can vary along the beam lengilsee do 2z

To du
_ = 29 Y _E _¢¢
Fig. 3) We make no assumptions abdr(z) except that it is at XVe Cv(aoEo E"Uo) 5t (14
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wherey is the thermal diffusivity. The final term of E¢14) B. Dynamic beam equation approach

can be seen to be the time derivative of Eq. In using Eq. We may also derive the dynamic beam equation obeyed
(4) we make the same approximation used in arriving at EQpy the wire under tension by means of a variational ap-
(8), namely, that terms of second orderdrare negligible. In 51550 In Appendix C we derive a Lagrangian for the bent
Appendix B we show how Eq14) and the quasiperiodicity peam under tension and apply the Euler-Lagrange equations
requirement lead to a simple form for the dissipation, pro, it Thereafter we follow Lifshitz and Rouk&i deriving
vided that we require the neutral surface to obey the parityhe heam equation as a function of several thermal moments
requirement(—R)=—q(R). This parity requirement Sim-  sf jnertia, which are determined by solving the heat equation

ply asks that the neutral surface moves as far to the right fofy; the bending beam in the frequency domain. The result is
a rightward bend as it does to the left for a leftward bend,

and if it is satisfied the neutral surface makes no contribution . , To B
to the damping. ApX—PX'+IEo| 1+ = (aoEo—E'Up)" 1
: : v
The final result is
T EoE'ug)? kb/2—tan(kb/2) )X(i 0 ar
— /u I v = ,
AW:j Wdxdy= C—O(“‘”’TO (kb)3
v 0 whereA=ab is the beam cross sectional areais the den-
1[kb kb sity, andl =ab®12 is the moment of inertia of the beam

X 2mralm 32~ a > (15) cross section. This equation and E#5) strictly hold only

for a beam of rectangular cross secti@uch as a ribbon
wherek=\iw/y and 1R, is the amplitude of the bending. but the equation for a circular beam will be very similar,
The complicated expression involvilkgs shown by Lifshitz ~ differing only slightly in the precise frequency dependence
and Rouketo be the exact solution of the frequency depen-of the elastic modulus of the bending. By comparison to the
dence for Zener damping in a beam of rectangular cross segeneral damped dynamic beam equation,

tion. In addition it is shown that this exact solution for the &

frequency dependence of the damping is closely approxi- o . "

mated by the Zener formula. Using this we may then ap- ApX= ﬁ[_IEO(lﬂcﬁ)x +PX], (18
proximate the NTE damping in the bent beam in the mor

e
o _ _ : this formula gives rise to a losg identical to Eq.(16).

familiar form ¢=AW/27W,5x, WhereW, .= anb3/24R§ is . Lo

the energy stored in the bent beam, We see, therefore, that the thermoelastic damping in the

case of a suspension fiber or ribbon such as are used in

ToEo E'up) 2 24 [kb kb gravitational wave detectors is just that of the linear ther-
b= o | @~ ) m: kgbg[?— r(T)H moelastic damping with the substitutian— a—E’"uq/E,.
v 0 In particular, note that for a particular value of tensign(in

ToEo E'ug\? o1 practice realizable with fused silica because—unlike most

ey (ao— Ey | 1t (0r)?’ (16)  materials—its Young’s modulus temperature coefficient is

positive the thermoelastic damping can be canceled exactly.
where r=b?/72y. This shows that NTE has the same fre- This leaves only other sources of dissipation, which can be at
quency dependence as LTE. Note that the parity assumpticmmuch lower level. Thus, since thermal noise increases with
for g is quite general, and applies for many sources of nondamping as a result of the fluctuation-dissipation theorem, it
linearity that may move the neutral surface, such as nonlinis possible to reduce the random noise motion in the detector.
earity of the isothermal Young’s modulus or the nonlinearOf course, ifug is chosen too large, then the thermal noise
increase of tension with bending in a clamped beam. It mustan become much worse, sinag appears in the damping
be remembered that as derived the losses due to NTE may llermula to the second power. Figure 4 shows the calculated
described by a linear loss functigh only in the quasilinear thermal noise for suspension ribbons of fused silfoathree
limit. different levels of static strain, where the suspension mass
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was held fixed and the strain varied by changing the ribbongerformance. This conclusion might have to be modified,
cross-sectional area. The damping in the material is the noritowever, at cryogenic temperatures.
linear thermoelastic damping plus a frequency-independent

structural damping term. It is seen that the minimum thermal ACKNOWLEDGMENTS
noise is obtained wheny= aoE/E’, as expected. Figure 5
shows, for comparison, the thermal noise wh&nis set to We acknowledge useful discussions with Vladimir Bra-

zero for the strain that gives the lowest noise and for anotheginsky, Kip Thorne, Stan Whitcomb, and especially Jim
much larger, strain. In this case, generally, the greater thEaller and Jim Hough, who both strongly supported this
static strain the less the thermal noise. We see, therefore, th&ork. This work was supported by PPARC and by the U.S.
consideration of nonlinear thermoelasticity leads to very dif-National Science Foundation under Award PHY-9986274,
ferent conclusions about the optimum fiber thickness thafPHY-9801158, PHY-9700601 and PHY-9210038.

those from consideration of linear thermoelasticity albhe.

Note that the optimum strain for fused silicagE 0.003) is APPENDIX A: DERIVATION OF THE ADIABATIC

much less than the breaking straig=0.07, and accordingly TEMPERATURE CHANGE

is achievable in practice. In the case of ribbons the thickness ) ) ) )
may be varied independently of the width for best perfor- e find the entropy by using the thermodynamic relation
mance. Here nonlinear thermoelastic considerations set the~ — /F/dT,
product of thickness and width so that the static strain satis-

ﬁeSUO:aoEolE,. — _ E' — V,E U
S(T) SO(T) 2(1+V) 2(1+1})2 u|Ju|J
IV. CONCLUSIONS
E'v+Ev’ Ev'v

We have shown in this paper how the existence of a tem- -
perature dependence of the elastic modulus lédtu®ugh
nonlinear thermoelasticifyto dissipation in strained materi- ,

. . 2Ev'v
als. In particular, we have shown that nonlinear thermoelas- +
ticity can be the dominant source of thermal noise in fused 2(1+v)(1—2v)?
silica suspension fibers, or instead may cancel the linear ther-
moelastic damping. It is therefore of importance to interfero- E+E'0 N 2EV' 0
metric gravitational wave detectors, where suspension ther- (1-2v)  (1-2v)2
mal noise can limit the ultimate sensitivity at certain
frequencies. whereSy(T)=—dFy(T)/dT.

Recently the important role of linear thermoelasticity in ~ We consider two types of adiabatic extension. First, an
the thermal noise of the test mass mirrors for gravitationakxtension of the material from the unstressed stafg,ab
wave interferometers has been pointed ‘duEhermoelastic some large extension,,, at T. Using Egs.(2) for simple
noise may in fact be the dominant thermal noise source in thextension, if we seS(T)=S(T,) and use the relatiolC,,
case of sapphire test masses. It is natural to ask whetherT(dSdT),, whereC, is the heat capacity per unit vol-
nonlinear thermoelasticity could be used to reduce thisime, we find after some tedious but straightforward algebra
source of noise as well, for example by putting the mirrorthat the temperature change upon adiabatic extension is
under a static strain. This seems to the authors to be unlikely,
for, on inspection of the material properties of sapphire, it is To E’uﬁw
seen that cancellation of the thermal noise occurs at a com- Oad=_ | ~ ®oEoUmaxt —5—|- (A2)
pression of 5%. Even if sapphire could survive such com- v
pression without fracture, we see no way to compress a mitn deriving this formula we have dropped as negligibly small
ror to such a high level without compromising its optical all terms proportional t@ in the entropy equation except for

21+ v)(1-2v)  2(1+1)2(1-2v)

(uy)?

+(C(0+ a'@) U|| (Al)
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that of Sy(T). This approximation is justified for all the ma- * _ * _ Tow _

terials we consider in this paper and in particular for fused iwY, ngeniet=y > v2g ety —(xeth
silica. Note thate’ drops from the equation due to this ap- n=1 n=1 Ro
proximation. IfE’' — 0, then the formula is just that for linear ® n+1

thermoelasticity and is linear i, However, forE’#0 — E ——q,entDiet

the temperature change is quadratiaujp,,. This is similar rodd| 2

to the formula derived by Wongt al® to explain observed

nonlinearities in the thermal emission of strained wires. If + Eq e(n—Djiwt ) (B4)
Umax=2a9Eo/E’, then the total temperature change is zero. 2 " '

If instead we consider an extension of the material from _ , : .
the strainu, at temperaturel, to ug+ éu at T, whereu, wherel" = (agEo—E'Ug)To/Cy . Assuming that there is no

heat flow out the surface of the beam and that heat flow
> du, the temperature change becomes :

along the beam is much less than heat flow across the beam,
the solution to Eq(B4) is®

xTk  sin(kx)

-
gadzc_o[—aoEoJrE’uO]éu. (A3) L
v Ry cogkb/2)’

XV?6, XVZ?0n.1=0  (B5)
In this case the temperature change is zerougy, Wherek=\iw/y. We may then substitute this and the ex-

= aoE,/E', and in addition it is linearized with respectda.  Pression foréu into Eq. (B2), again taking care to multiply
only real quantities; the result is

2
APPENDIX B: DERIVATION OF THE QUASIPERIODICAL W= To (agEo— E'Uo) J'tzRq:eiwt]
ANALYSIS Cy R? ty
If we substitute the stress equati@h into the formula for %
the work done in an integration cycl&qg. (13)], remember- X x—Re{ > gneniet )
ing to ignore the small second-order terms dnwe may n odd
integrate by parts to obtain < Rd vk sin(kx) iot| gt B6
X cog kb/2) € ' (B6)
ty do(t) L . . .
W= (apEq—E'ug) | ~u(t)——dt, (B1) Examination of the terms involving, shows that they in-
ty dt volve products ofe'®!, e'“!, ande"“!. Since onlyq, with

odd n are nonzero, these products are all sinusoidsand
where we have used,,=uy+ du as before, withdu=(x therefore integrate to zero. This means that the work required
—q)/R as given in Eq(12). Because the bending is small we 0 move the neutral surface is reversible and does not con-
may assume the additional strau due to the bending is tribute to the d|_$5|pat|on. Integrating the work over the beam
small compared to the strain, due to tension. This justifies Cr0SS section yields
the use of the quasilinear heat equatitd). If we substitute Ty (aoEg—E'Ug)?
Eq. (14) into Eq.(B1) and again integrate by parts, the result j Wdxdy= C_O %
is v 0

1|kb kb
XZWaIm[F[7—tar<7>”, (B?)

which is the dissipation due to thermoelastic damping.
We have devoted considerable effort to the question of the
We must now solve the heat equation. We restrigt ty ~ neutral surface and its influence on the loss. We now justify

vary sinusoidally (I1R=1/R,Rd €'“']), and make the expan- ©OUr concern. Consider the bending of a thin rod at high fre-
sions guency, when there is is very little heat flow. The tempera-

ture change is then approximately adiabatic.
Because the strain varies linearly across the bent rod, so
will the temperature in the adiabatic limit, as can easily be
. (B3)  seen in Eq(B4) by ignoring the heat flow ternyV26. The
Young’s modulus will therefore also vary linearly across the
bent rod. It is easy to show that for small bendinBgl/if the
The parity requirementj(—R)=—q(R) on g then implies  Young's modulus varies &s(x) =E+ EX, then the neutral
that all the even terms in expansi@B3) for q are zero. surface will move toq=E;b?/12E, in order that the strain
Substituting Eqs(12) and (B3) into heat equatiorfl4) and  averaged over the beam cross section remain equal to the
taking care to multiply only real quantities yields tensionP. In the adiabatic limit,

W= (agEq—E'ug) fttzéu(t)XVza(t)dt. (B2)

QZR%Z an(x)eniwt , q:R%E qnenia)t
n=1 n=1
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dE dEdT dT o (x—Qq) tilt of the beam relative to the coordinateaxis must lead to
Er=gx = a7 &=E’&=E’C—(%EO—E’UO) R stretching if it is not accompanied by a contractiBh<0.
v O(BS) We will see that this term leads to the restoring force due to
tension. This approximation is good for small bending
and therefore angles.

We draw a distinction between the variablesndz and X
andZ. The lower case symbolsandz are independent vari-
ables that represent points within the beam and therefore

dpove with the fiber, as shown in Fig. 3. The upper case
symbolsX and Z are dependent variables that represent the
displacements of points within the beam along khand z
Ja/z b/2 Umnax directions of the undeflected beam. For small deflections the
W= dy J’
—al2

b/zdx o,du,, dynamics may equivalently use fixegz or x,z moving with
- Umin

_ B T E,—E' B9
Q—FOROC—V(CYO 0 Up). (B9)

The energy per unit length required to bend a beam und
tension is given by

the beam. For integrating over the beam cross section it is
a2 b2 Ey ) more convenient to set to move with the midpoint of the
~f dyf dx7(umax—umm), (B10)  beam.

—al2 We can then use this form for the extension of the beam to
whereu,,i,=Up is the unbent strain and,,=Uy+(x—q)/R,  9¢et the elastic potential energy by substituting into the free-
is the bent strain. The work required to move the neutraPnergy equatiod) and integrating ovex andy. Because we
surface may be estimated by comparing this energy to what Will vary the Lagrangian only with respect % and Z, we

—b/2

would be ifq=0: drop all terms depending only on the temperatére
a2 bl —2xq+ 2 Eol +E'1?)
Wheutral surface:f dyf dXE - 2o + 2Xq2 A . Ve:u(xﬁ)z""[aOEol(91)+(QOE,+a,E0)|(01(9)]X"
—are o2 2 Ro RS 2
(B1D) EA+El, ., 1 o
Plugging in Eq.(B9) for g, and dropping terms of higher + g (X')" = laoEol y+ (@' + a'Eq)l 4
order than (1R,)? as negligibly small, yields
EA+E'l,
ab® T, X(X')?+ T(Z’)Z—[aoEol o+ (agE’
Wheutral surfacg — W C_UOE,(UOE’ —aEp).
o EGA+E'l
(812) +alE0)|00)]ZI_E/|(01)Z/X//+ %Z,(X/)Z
Dividing by the total energy required to bend the beam
Wiax= anb3/24R§ gives the fractional energy stored in the E’I((})
neutral surface motion as - X"(X")?, (C2

Wheutral surtace_, ToEo UoE' (a _ UOE’) (B13  WhereAis the beam cross sectionz [ [x?dxdyis the bend-
Wiax Cv Eq ° E, ing moment of inertia, and the thermal moments are defined

Comparing this formula with the loss fraction in E{.6) by

shows that the energy stored in the neutral surface motion
caused by NTE is comparable to the dissipated energy and I(,:J f odxdy, (C3
cannot be ignored as small, thus justifying our more careful
analysis.
APPENDIX C: DERIVATION OF THE DYNAMIC BEAM
EQUATION
1)_

We begin with the strain, where, rather than using Eqg. G )—f fxedxdy, (CYH
(12) to model the bending, we note that the motion of the
neutral surface can equally well be modeled by an additional )
strain homogeneous over the beam cross section: % )=f f x26dxdy, (Co)

U7~Z'(2)+3[X' (2)]*—xX(2). (CY
. . . (1) — 2

(See Fig. 3. Here we have made the identitX”(z) Log _j f xg°dxdy. (C7)

=1/R(z) and useZ’ (z)+[X'(z)]%/2 to describe the part of

the stretching that is homogeneous over the cross section. There is in addition to the elastic energy required to
The term[ X' (2)]?%/2 arises because we have chosen a coorstretch the wire the work/p done against the forces at the
dinate system fixed in the beam equilibrium position and and of the fiber which maintain the tension, which is
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Vp=P[Z(L)-Z(0)]. (C8)

The kinetic energy of a section of the beam(ignoring
the small rotational kinetic energy

K=3Ap(X?+2?), (C9

wherep is the density of the beam material.
Forming the Lagrangiah = [5£dz—Vp=[§(K—V.)dz
—Vp and the actior8= [dtL, and settingsS=0, we obtain

daL+d gL d? 4L 0 10
diox Tz a2 o (©
d JL N d JL 0 o1t
dt sz dzaz " (1
where we adopt the boundary conditions
o =0 (C12
28 z=0L
gL d aL o (€13
oxdzaxr)|
JL
— =P. (C14
9z z=0L

While these boundary conditions are fairly arbitrary, they ApZ,—E,A
reduce the nonlinearity of the beam equation to only that

caused by the nonlinear thermoelasticity.

Inserting the explicit form of the Lagrangian yields the

equations

L d?
ApX+ 5 ([Eol + E'1PIX"+ agBol §)+ (o’

d
+a’EO)If910))—d—Z(EOAZ’X’)ZO, (C15

. d
ApZ— dz [Eol +E'14]Z" — aoEql g— (@B’ + a'Eg)l gy

+E’

EQA+E'l
—E' DX+ %(x')2 =0. (C16

We now insert the formula for the strain E@1) into the

heat equation(14) to determine the thermal moments. We
expandZ’'=uy+Z}, whereuy and Z; are the static and
dynamic components, respectively. The solution in the fre-

quency domain f5

0(x,2)=T[f(x)X"(2) +Z}(2)], (C17

wherek=/iw/y andI'=(Ty/Cy)(agEqx—E"uy) as before,
and
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sin(kx)

=X~ Coqkbi2)

(C19

In solving this equation we assume that only thermal currents

transverse to the beam axis are important, i.e., that the radius
of bending along the beam does not change too rapidly. With

this solution foré the thermal moments take the values

lo=—TA[Zj+(X")?2], (C19
loo=T2{A[Z{+ (X")212]?+h(X")?}, (C20
I(D=rgx”, (C21)

1@ =—TI[z}+(X")?2], (C22

| M= —212gX"[ 24+ (X")?/2]. (C23

Hereg=[xf(x)dx andh= [f?(x)dx. Making these substi-
tutions into Egs.(C15 and (C16) yields the desired equa-
tions

!

E :
ap— —Uo)rlg}x('”)IO,

ApX—PX"+El
Eo
(C24

1+

1+

o —Eu r z”=i(9(x'2 X"? )
0 E, 0 474z ) v )y
(C29

where in the first equation all nonlinear terms are neglected
as small, and in the second equation they are collected to one
side as a driving term. We expamgdandI" in Eq. (C24) to
obtain the desired form

. T
ApX—PX"+I1Eo| 1+ C—O(aOEO—E’u0)2 1
\%
kb/2—tar(kb/2)]\ .
(iv)—
0 X(i) =0, (C26)

If we compare Eq(C26) to the standard form of the beam
equation ApX—PX"+EIX(")=0 and expandE=Ey(1
+i¢), we can extract the loss angfeto be

 ToEo E'ug 2| 24 [kb kb
=, | % B, | Miep3| 2 T 2|

(C27)

which is exactly the same form derived in the quasiperiodical
analysis. By inspection of EqC25) for Z,, we see that the
stretching of the fiber is driven parametrically by the bending
of the fiber, and has a homogeneous solution that is nondis-
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sipative, which indicates that the dynamics of the neutrathe coupling due to NTE, while showing the independence of
surface are nondissipative, as also shown via the quasipetiae dissipation from the homogeneous part of the stretching.
odical analysis. Closer inspection shows the restoring forcén the quasiperiodical analysis we showed that in general the
for Z,4 to be given by the adiabatic Young’s modulus, regard-motion of the neutral surfac@vhich is equivalent to a ho-
less of frequency. This is a consequence of our having igmogeneous stretchingloes not affect the dissipation, re-
nored thermal currents along the beam axis in calculating thgardless of its cause, provided it satisfies the parity require-
thermal moments. This is a good approximation for our pri-ment.

mary application of this theory to gravitational wave detec-

tors, in which the suspension thermal noise is significant at APPENDIX D: MATERIAL PARAMETERS
audio frequencies, because longitudinal thermal currents be- ] i
come significant only well above 1 MHZ. We takeCy to be the heat capacity per unit volume, rather

The beam equation derived here uses admittedly unusupan per unit mass as is more common. The derivative of
boundary conditions. More realistic boundary conditions forYoung's modulus with respect to temperature for fused silica
a beam under tension, such as clamping of both ends of tHeaS various measured values in the published literature,
beam, impose constraints ofiand Z that couple their dy- which may reflect differences in the samples studied or dif-
namics far more strongly than does NTE; for example, if thgferences in the frequency of measurement, but they are clus-
ends of the beam are fixed, then geometric consideratiorigred around 15 MPa/K at room temperattitethe ther-
alone require it to stretch as it bends. This coupling is alsdnoelastic parameters of fused silica and sapphire are given
nonlinear, and relates the net stretching of the whole beam t& Table 1.
the net bending of the whole beam. The situation in a gravi-
tational wave detector, where one or both ends of the suspen-
sion wire are rigidly fixed to heavy suspended masses, will ; ;
be approximate?y tKe same as theyclam%ed—clamped case for Eo (GPa) ao (1/K) E' (MPa/K) uo=aok,/E
frequencies above the pendulum and vertical bounce fregsed silica 75 55107 15 003
quencies. The boundary conditions we have chosen free ugpphire 400 5106 —40 —.05
from consideration of such global constraints, leaving only.

TABLE I. Thermoelastic properties of fused silica and sapphire.
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