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Effects of nonlinear thermoelastic damping in highly stressed fibers
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We present an analysis of thermoelastic damping in materials arising from the temperature dependence of
the elastic moduli. We show that this form of damping can cancel thermoelastic damping arising from thermal
expansion for a suitably chosen operating stress. For the case of the suspension fibers used in the gravitational
wave detectors, this loss mechanism can be the dominant one.
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I. INTRODUCTION

Brownian motion in the suspension wires of the mirrors
interferometric gravitational-wave detectors is one of
fundamental limitations to gravitational wave detec
sensitivity.1 For this reason they are fabricated from mate
als with very low internal friction, since this friction is re
lated to the displacement noise through application of
fluctuation-dissipation theorem.2 In order to reduce the dis
placement noise still further by means of the dilution facto3

these wires are so thin that the weight of the mirror stres
them to a significant fraction of their breaking strength.

However, in general the diameter can only be made
small due to the specific strength of the material and in so
cases due to thermoelastic damping,4 which has a frequency
dependence which is related to the diameter of the wire.
the fused silica suspension wires currently preferred forGW
detectors, thermoelastic damping dominates the intrin
damping of the material in the frequency bandwidth of t
detector at about 200 MPa. The mechanism of linear th
moelastic damping is well understood. When a rod of ma
rial is flexed, the material to the inside of the bend is co
pressed and that to the outside of the bend is expan
Because of its nonzero thermal expansion coefficient,
material will change temperature with the sign depending
whether it is compressed or expanded. Thus there will b
temperature gradient across the bend. Heat will flow irreve
ibly across this gradient and dissipate energy.

It can be easily seen how the thermal expansion resp
sible for thermoelastic damping can also cause thermal fl
tuations in the position of a mass suspended from a
elastic wire. If we consider the wire as having a front h
and a back half, it is obvious that a thermal fluctuation in
temperature of the front half of the wire will lead to an e
pansion or contraction of that part of the wire and therefor
bend in the wire, thus moving the mass.

Now consider what happens if this wire is under fix
tension and the Young’s modulus is a function of tempe
ture. A thermal fluctuation in one-half of the wire will als
change the Young’s modulus, and thereby the strain of
segment under the tension. This also will bend the wire. I
easy to show that this bending will exactly cancel that due
thermal expansion if the tension is such that the static st
0163-1829/2002/65~17!/174111~9!/$20.00 65 1741
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is u05aE0 /E8, wherea is the linear expansion coefficien
andE0 andE8 are the Young’s modulus and its temperatu
derivative.

We will show here that, like the thermal-expansion co
ficient, the dependence of the elastic modulus on tempera
also causes a temperature change upon expansion or con
tion of the material, and so causes dissipation in a bent
We will also show that the amount of temperature chan
depends nonlinearly on the amount of strain, and that
sign of the temperature change depends on the sign of
strain. Therefore, the strain can be chosen, taking into
count both the thermal expansion coefficient and the te
perature dependence of the Young’s modulus, such th
small additional strain will result in no net temperatu
change, and therefore no net thermoelastic damping. Non
ear thermoelasticity~NTE! has been discussed in th
literature,5,6 but the internal damping that results from NT
has—to our knowledge—not been explored prior to t
work.

II. DAMPING IN A HOMOGENEOUSLY STRETCHED
FIBER

We begin by treating a wire under simple extension. T
free energy for our nonlinear thermoelastic solid is7

F~T!5F0~T!1
E~T!

2@11n~T!# Fui j ui j 1
n~T!

122n~T!
~ull !

2G
2a~T!

E~T!

@122n~T!#
~T2T0!ull , ~1!

where F0 is the undeformed free energy,ui j is the strain
tensor,T is the temperature,a(T) is the linear thermal ex-
pansion coefficient,E(T) is Young’s modulus, andn(T) is
Poisson’s ratio.T0 is an arbitrary temperature at which w
define the unstressed deformation to be zero. It is unders
that repeated indices are summed over. This formula as w
ten explicitly recognizes thatE, a, andn are functions ofT.
For simple extension of a thin beam in thez direction (szz
Þ0,sall other50, wheres i j is the stress tensor! we have

uxx5uyy52n~T!uzz1a~T!@11n~T!#u, ~2!
©2002 The American Physical Society11-1
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whereu[(T2T0). We substitute this into the free energy
obtain

F~T!5F0~T!1
E~T!

2
uzz

2 2a~T!uE~T!uzz

2E~T!
11n~T!

122n~T!
a2~T!u2 ~3!

and use the thermodynamic relations ik5dF/duik to obtain
the stress-strain equation:

szz5E~T!@uzz2a~T!u# ~4!

Note that this equation correctly models the free thermal
pansion of a beam, for, on settingszz50, the result isuzz
5a(T)u. It is also clear upon inspection that this stres
strain equation is correct in the isothermal limit, when t
strain changes so slowly that the material is always in th
mal equilibrium.

If the strain changes very rapidly, there is not sufficie
time for the material to exchange energy with its enviro
ment or between its parts, and so the transformation is a
batic: the entropy remains constant. The entropy is relate
the free energy by

S~T!52~]F/]T!ui j
. ~5!

In Appendix A, where we expandE(T)5E01E8u, a(T)
5a01a8u, andn(T)5n01n8u, we show that if the mate
rial is taken from the unstressed state to a large strainumax,
then

uad5
T0

CV
F2a0E0umax1

E8umax
2

2 G , ~6!

whereuad is the adiabatic temperature change. In the sa
appendix we show that if the material is initially at a lar
strainu0 to which is added a relatively small straindu, then

uad5
T0

CV
@2a0E01E8u0#du. ~7!

Substituting the adiabatic temperature change into
stress-strain equation to find how the stress varies with
strain, we obtain:

szzad5E0uzz2a0E0uad1E8uaduzz, ~8!

where we have dropped the terms proportional touad
2 , which

are small so long asuad!E0 /E8 and uad!a0 /a8. This is
justifiable becauseuad at the yield strength of most material
including fused silica, satisfies these conditions. We will u
szziso to refer to the stress whenu50. Note the remarkable
fact that Poisson’s ration does not appear in Eqs.~6!, ~7!, or
~8!.

We now estimate the strength of the nonlinear thermoe
tic damping by considering the energy lost as the materia
cycled through a closed loop in stress-strain space.
closed loop consists of~1! an adiabatic extension from th
initial state to the extended state,~2! thermalization at fixed
strain with a surrounding reservoir, so slow that the mate
17411
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temperature can be considered essentially uniform; and~3!
an isothermal return to the initial state. This process frees
from the considerations of the timescale of dissipation t
would follow from inhomogeneous thermal gradients.

The work done in this process is

DW5 R szzduzz5E
umin

umax
szzadduzz1E

umax

umin
szzisoduzz,

~9!

where there is no work done during the thermalization st
since duzz50. We first consider the case whereumin50.
Here both the adiabatic temperature change@Eq. ~6!# and the
stress-strain relation@Eq. ~8!# are nonlinear inuzz. There are
two interesting values of the strain. Foruzz5u15a0E0 /E8,
the last two terms in Eq.~8! cancel, with the result tha
szzad5szziso, and atuzz5u252a0E0 /E8, the adiabatic tem-
perature change is zero so that againszzad5szziso. The
closed loop in stress-strain space forumax.u2 is shown in
Fig. 1. For small values ofuzz, the stress follows the asymp
tote szz5Eaduzz, where Ead5E0(11a0

2E0T0 /CV) is the
adiabatic Young’s modulus from the linear thermoelas
theory ~LTE!. The dissipation in cycling through the close
loop is equal to the area circled by the curve in the clockw
sense. The integrals in Eq.~9! are easily solved, with the
result for the total dissipation being

DW5
T0

CV
Fa0

2E0
2

2
umax

2 2
a0E0E8

2
umax

3 1
E82

8
umax

4 G . ~10!

Inspection shows that the dissipation takes a minimum
umax5u2; in fact the dissipation is exactly zero at this poin
Therefore the dissipation is never negative, and thus satis
the laws of thermodynamics. This latter statement is t
regardless of the sign ofE8, a0, or umax.

We next consider the case whereumin5u0 and umax5u0
1duzz. This time the integral equation~9! is over the variable
d(duzz), and Eq. ~7! is used for uad. In this case both
szzad5szziso anduad50 atu05u1. In addition both the adia-
batic temperature and stress equations are quasilinear in
for duzz very small,szzad and uad depend onduzz to first

FIG. 1. The closed loop in stress-strain space for large ex
sions from zero strain. The value of the thermal expansion coe
cient has been set to 1 to better show the difference betweensad

ands iso .
1-2
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EFFECTS OF NONLINEAR THERMOELASTIC DAMPING . . . PHYSICAL REVIEW B65 174111
order only. Closed loops in stress-strain space foru0 less
than, equal to, and greater thanu1 are shown in Fig. 2. The
dissipation is now

DW5
1

2

T0

CV
~a0E02E8u0!2~dumax!

2. ~11!

The dissipation is clearly always positive, independent of
sign ofdumax, as shown in Fig. 2. In both the above cases
we setE850, we obtain the familiar thermoelastic dampin
strength. Therefore, we may generalize to nonlinear th
moelasticity in the quasilinear case by making the subst
tion a→a2E8u0 /E0. In particular, note that if we set th
strain u05E0a0 /E8, there is no net thermoelastic dampin
for small additional strains. Note that ifu0 is much larger
than this value, then the damping increases asu0

2.

III. CASE OF A BENT WIRE UNDER TENSION

The previous example demonstrated in a simple way h
nonlinear thermoelasticity manifests itself in internal dam
ing of a homogeneously strained material where the h
flow is through contact with a thermal reservoir. We no
consider a more complicated, but in practice more relev
case of nonlinear thermoelastic damping due to the tra
verse thermal currents that are generated in a bent
which is under tension. We derive the frequency depende
of the dissipation using two complementary approaches
both derivations we ignore the presence of other forms
damping not associated with thermoelasticity.

Assume, as is usual in dealing with the bending of th
rods, that any external forces required to cause the ben
are negligible compared with internal stresses. As a resul
need only consider theszz component of stress and the no
zero strain components, which areuxx , uyy , and uzz. We
model the wire as a thin beam of lengthL and rectangular
cross section of widtha and thicknessb, held under a static
tensionP and deformed along thex axis with a radius of
curvatureR(z) that can vary along the beam length.~See
Fig. 3.! We make no assumptions aboutR(z) except that it is

FIG. 2. The closed loops in stress-strain space for small ex
sions around three different large initial strains. The value of
thermal expansion coefficient has again been set to 1 to better s
the difference betweensad ands iso.
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large~the bending is moderate!. The strain distribution inside
the beam is then given by

uzz5
P

E0
1~x2q!/R5u01~x2q!/R, ~12!

with uxx and uyy related touzz by Eq. ~2!. Here q is the
coordinate of the neutral surface of the bending, which, c
trary to what is usually done, cannot be assumed to
through the center of the beam because the temperature
dient as well as other nonlinearities will cause the Youn
modulus to vary across the beam. This neutral surface m
be treated with some care, because the work required
move it during bending is comparable to the dissipation
duced by NTE.

A. Quasiperiodical analysis approach

It is possible to apply the closed-loop analysis of the p
vious section to this case in a way that explicitly consid
the dynamics of the damping. We take 1/R(t)5(1/R0)eivt,
and allowu(t) andq(t) to be quasiperiodic functions of tim
with period 2p/v, wherev is the fundamental frequency o
oscillation of the beam. For example,q(t1)5q(t2) where
t22t152p/v. We may then express the closed-loop integ
in stress-strain space as the time integral

W5E
t1

t2
szz

duzz

dt
dt, ~13!

where szz obeys Eq.~4! as in the case of homogeneou
stretching and whereu now depends upon time and positio
within the beam through the heat equation

du

dt
5x¹2u2

T0

CV
~a0E02E8u0!

duzz

dt
, ~14!

n-
e
ow FIG. 3. Model for the bent beam under tension, showing
variables used in the quasiperiodical analysis and dynamic b
equation derivation.~a! Diagram showing the variablesX, Z, andR.
~b! Diagram showing how a uniform stretchingZ8 superimposed on
an extension which varies linearly across the beam due to the b
ing deflects the neutral surface from the center toq.
1-3
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FIG. 4. Calculated thermal noise spectra f
fused silica ribbons of three different cros
sectional areas in a gravitational wave detect
The peaks at high frequency are due to vio
mode resonances of the ribbons.
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wherex is the thermal diffusivity. The final term of Eq.~14!
can be seen to be the time derivative of Eq.~7!. In using Eq.
~4! we make the same approximation used in arriving at
~8!, namely, that terms of second order inu are negligible. In
Appendix B we show how Eq.~14! and the quasiperiodicity
requirement lead to a simple form for the dissipation, p
vided that we require the neutral surface to obey the pa
requirementq(2R)52q(R). This parity requirement sim
ply asks that the neutral surface moves as far to the right
a rightward bend as it does to the left for a leftward be
and if it is satisfied the neutral surface makes no contribu
to the damping.

The final result is

DW5E Wdxdy5
T0

CV

~a0E02E8u0!2

R0
2

32paImH 1

k3 Fkb

2
2tanS kb

2 D G J , ~15!

wherek5Aiv/x and 1/R0 is the amplitude of the bending
The complicated expression involvingk is shown by Lifshitz
and Roukes8 to be the exact solution of the frequency depe
dence for Zener damping in a beam of rectangular cross
tion. In addition it is shown that this exact solution for th
frequency dependence of the damping is closely appr
mated by the Zener formula. Using this we may then
proximate the NTE damping in the bent beam in the m
familiar form f5DW/2pWmax, whereWmax5E0ab3/24R0

2 is
the energy stored in the bent beam,

f5
T0E0

CV
S a02

E8u0

E0
D 2

ImH 24

k3b3 Fkb

2
2tanS kb

2 D G J
;

T0E0

CV
S a02

E8u0

E0
D 2 vt

11~vt!2 , ~16!

wheret5b2/p2x. This shows that NTE has the same fr
quency dependence as LTE. Note that the parity assump
for q is quite general, and applies for many sources of n
linearity that may move the neutral surface, such as non
earity of the isothermal Young’s modulus or the nonline
increase of tension with bending in a clamped beam. It m
be remembered that as derived the losses due to NTE ma
described by a linear loss functionf only in the quasilinear
limit.
17411
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B. Dynamic beam equation approach

We may also derive the dynamic beam equation obe
by the wire under tension by means of a variational a
proach. In Appendix C we derive a Lagrangian for the be
beam under tension and apply the Euler-Lagrange equat
to it. Thereafter we follow Lifshitz and Roukes8 in deriving
the beam equation as a function of several thermal mom
of inertia, which are determined by solving the heat equat
for the bending beam in the frequency domain. The resu

ArẌ2PX91IE0S 11
T0

CV
~a0E02E8u0!2F1

124
kb/22tan~kb/2!

~kb!3 G DX( iv)50, ~17!

whereA5ab is the beam cross sectional area,r is the den-
sity, and I 5ab3/12 is the moment of inertia of the beam
cross section. This equation and Eq.~15! strictly hold only
for a beam of rectangular cross section~such as a ribbon!,
but the equation for a circular beam will be very simila
differing only slightly in the precise frequency dependen
of the elastic modulus of the bending. By comparison to
general damped dynamic beam equation,

ArẌ5
d2

dz2 @2IE0~11 if!X91PX#, ~18!

this formula gives rise to a lossf identical to Eq.~16!.
We see, therefore, that the thermoelastic damping in

case of a suspension fiber or ribbon such as are use
gravitational wave detectors is just that of the linear th
moelastic damping with the substitutiona→a2E8u0 /E0.
In particular, note that for a particular value of tensionu0 ~in
practice realizable with fused silica because—unlike m
materials—its Young’s modulus temperature coefficient
positive! the thermoelastic damping can be canceled exac
This leaves only other sources of dissipation, which can b
a much lower level. Thus, since thermal noise increases w
damping as a result of the fluctuation-dissipation theorem
is possible to reduce the random noise motion in the detec
Of course, ifu0 is chosen too large, then the thermal noi
can become much worse, sinceu0 appears in the damping
formula to the second power. Figure 4 shows the calcula
thermal noise for suspension ribbons of fused silica9 for three
different levels of static strain, where the suspension m
1-4
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FIG. 5. Calculated thermal noise spectra f
fused silica ribbons of two different cross se
tional areas in a gravitational detector, with an
without NTE.
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was held fixed and the strain varied by changing the ribbo
cross-sectional area. The damping in the material is the n
linear thermoelastic damping plus a frequency-independ
structural damping term. It is seen that the minimum therm
noise is obtained whenu05a0E0 /E8, as expected. Figure
shows, for comparison, the thermal noise whenE8 is set to
zero for the strain that gives the lowest noise and for anot
much larger, strain. In this case, generally, the greater
static strain the less the thermal noise. We see, therefore,
consideration of nonlinear thermoelasticity leads to very d
ferent conclusions about the optimum fiber thickness t
those from consideration of linear thermoelasticity alone10

Note that the optimum strain for fused silica (u050.003) is
much less than the breaking strainu050.07, and accordingly
is achievable in practice. In the case of ribbons the thickn
may be varied independently of the width for best perf
mance. Here nonlinear thermoelastic considerations se
product of thickness and width so that the static strain sa
fies u05a0E0 /E8.

IV. CONCLUSIONS

We have shown in this paper how the existence of a te
perature dependence of the elastic modulus leads~through
nonlinear thermoelasticity! to dissipation in strained mater
als. In particular, we have shown that nonlinear thermoe
ticity can be the dominant source of thermal noise in fus
silica suspension fibers, or instead may cancel the linear t
moelastic damping. It is therefore of importance to interfe
metric gravitational wave detectors, where suspension t
mal noise can limit the ultimate sensitivity at certa
frequencies.

Recently the important role of linear thermoelasticity
the thermal noise of the test mass mirrors for gravitatio
wave interferometers has been pointed out.11 Thermoelastic
noise may in fact be the dominant thermal noise source in
case of sapphire test masses. It is natural to ask whe
nonlinear thermoelasticity could be used to reduce
source of noise as well, for example by putting the mir
under a static strain. This seems to the authors to be unlik
for, on inspection of the material properties of sapphire, i
seen that cancellation of the thermal noise occurs at a c
pression of 5%. Even if sapphire could survive such co
pression without fracture, we see no way to compress a
ror to such a high level without compromising its optic
17411
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performance. This conclusion might have to be modifi
however, at cryogenic temperatures.
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APPENDIX A: DERIVATION OF THE ADIABATIC
TEMPERATURE CHANGE

We find the entropy by using the thermodynamic relati
S52]F/]T,

S~T!5S0~T!2F E8

2~11n!
2

n8E

2~11n!2Gui j ui j

2F E8n1En8

2~11n!~122n!
2

En8n

2~11n!2~122n!

1
2En8n

2~11n!~122n!2G ~ull !
2

1~a01a8u!F E1E8u

~122n!
1

2En8u

~122n!2Gull ~A1!

whereS0(T)52dF0(T)/dT.
We consider two types of adiabatic extension. First,

extension of the material from the unstressed state atT0 to
some large extensionumax at T. Using Eqs.~2! for simple
extension, if we setS(T)5S(T0) and use the relationCV
5T(dS/dT)V , whereCV is the heat capacity per unit vol
ume, we find after some tedious but straightforward alge
that the temperature change upon adiabatic extension is

uad5
T0

CV
F2a0E0umax1

E8umax
2

2 G . ~A2!

In deriving this formula we have dropped as negligibly sm
all terms proportional tou in the entropy equation except fo
1-5
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that of S0(T). This approximation is justified for all the ma
terials we consider in this paper and in particular for fus
silica. Note thata8 drops from the equation due to this a
proximation. IfE8→0, then the formula is just that for linea
thermoelasticity and is linear inumax. However, forE8Þ0
the temperature change is quadratic inumax. This is similar
to the formula derived by Wonget al.6 to explain observed
nonlinearities in the thermal emission of strained wires
umax52a0E0 /E8, then the total temperature change is zero

If instead we consider an extension of the material fr
the strainu0 at temperatureT0 to u01du at T, whereu0
@du, the temperature change becomes

uad5
T0

CV
@2a0E01E8u0#du. ~A3!

In this case the temperature change is zero atumax
5a0E0 /E8, and in addition it is linearized with respect todu.

APPENDIX B: DERIVATION OF THE QUASIPERIODICAL
ANALYSIS

If we substitute the stress equation~4! into the formula for
the work done in an integration cycle@Eq. ~13!#, remember-
ing to ignore the small second-order terms inu, we may
integrate by parts to obtain

W5~a0E02E8u0!E
t1

t2
du~ t !

du~ t !

dt
dt, ~B1!

where we have useduzz5u01du as before, withdu5(x
2q)/R as given in Eq.~12!. Because the bending is small w
may assume the additional straindu due to the bending is
small compared to the strainu0 due to tension. This justifies
the use of the quasilinear heat equation~14!. If we substitute
Eq. ~14! into Eq.~B1! and again integrate by parts, the res
is

W5~a0E02E8u0!E
t1

t2
du~ t !x¹2u~ t !dt. ~B2!

We must now solve the heat equation. We restrict 1/R to
vary sinusoidally (1/R51/R0Re@eivt#), and make the expan
sions

u5ReF (
n51

`

un~x!enivtG , q5ReF (
n51

`

qnenivtG . ~B3!

The parity requirementq(2R)52q(R) on q then implies
that all the even terms in expansion~B3! for q are zero.
Substituting Eqs.~12! and ~B3! into heat equation~14! and
taking care to multiply only real quantities yields
17411
d

f

t

iv (
n51

`

nunenivt5x (
n51

`

¹2unenivt1 i
Gv

R0
S xeivt

2 (
n odd

` Fn11

2
qne(n11)ivt

1
n21

2
qne(n21)ivtG D , ~B4!

whereG5(a0E02E8u0)T0 /CV . Assuming that there is no
heat flow out the surface of the beam and that heat fl
along the beam is much less than heat flow across the be
the solution to Eq.~B4! is8

x¹2u15
xGk

R0

sin~kx!

cos~kb/2!
, x¹2unÞ150 ~B5!

wherek5Aiv/x. We may then substitute this and the e
pression fordu into Eq. ~B2!, again taking care to multiply
only real quantities; the result is

W5
T0

CV

~a0E02E8u0!2

R0
2 E

t1

t2
Re@eivt#

3S x2ReF (
n odd

`

qnenivtG D
3ReFxk

sin~kx!

cos~kb/2!
eivtGdt. ~B6!

Examination of the terms involvingqn shows that they in-
volve products ofeivt, eivt, and enivt. Since onlyqn with
odd n are nonzero, these products are all sinusoids int and
therefore integrate to zero. This means that the work requ
to move the neutral surface is reversible and does not c
tribute to the dissipation. Integrating the work over the be
cross section yields

E Wdxdy5
T0

CV

~a0E02E8u0!2

R0
2

32paImH 1

k3 Fkb

2
2tanS kb

2 D G J , ~B7!

which is the dissipation due to thermoelastic damping.
We have devoted considerable effort to the question of

neutral surface and its influence on the loss. We now jus
our concern. Consider the bending of a thin rod at high f
quency, when there is is very little heat flow. The tempe
ture change is then approximately adiabatic.

Because the strain varies linearly across the bent rod
will the temperature in the adiabatic limit, as can easily
seen in Eq.~B4! by ignoring the heat flow termx¹2u. The
Young’s modulus will therefore also vary linearly across t
bent rod. It is easy to show that for small bending 1/R0, if the
Young’s modulus varies asE(x)5E01E1x, then the neutral
surface will move toq5E1b2/12E0 in order that the strain
averaged over the beam cross section remain equal to
tensionP. In the adiabatic limit,
1-6
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E15
dE

dx
5

dE

dT

dT

dx
5E8

dT

dx
5E8

T0

CV
~a0E02E8u0!

~x2q!

R0
,

~B8!

and therefore

q5
E8b2

12E0R0

T0

CV
~a0E02E8u0!. ~B9!

The energy per unit length required to bend a beam un
tension is given by

W5E
2a/2

a/2

dyE
2b/2

b/2

dxE
umin

umax
szzduzz

'E
2a/2

a/2

dyE
2b/2

b/2

dx
E0

2
~umax

2 2umin
2 !, ~B10!

whereumin5u0 is the unbent strain andumax5u01(x2q)/R0
is the bent strain. The work required to move the neu
surface may be estimated by comparing this energy to wh
would be if q50:

Wneutral surface5E
2a/2

a/2

dyE
2b/2

b/2

dx
E0

2 F2
2u0q

R0
1

22xq1q2

R0
2 G .

~B11!

Plugging in Eq.~B9! for q, and dropping terms of highe
order than (1/R0)2 as negligibly small, yields

Wneutral surface52
ab3

12R0
2

T0

CV
u0E8~u0E82aE0!.

~B12!

Dividing by the total energy required to bend the bea
Wmax5E0ab3/24R0

2 gives the fractional energy stored in th
neutral surface motion as

Wneutral surface

Wmax
52

T0E0

CV

u0E8

E0
S a02

u0E8

E0
D . ~B13!

Comparing this formula with the loss fraction in Eq.~16!
shows that the energy stored in the neutral surface mo
caused by NTE is comparable to the dissipated energy
cannot be ignored as small, thus justifying our more care
analysis.

APPENDIX C: DERIVATION OF THE DYNAMIC BEAM
EQUATION

We begin with the strain, where, rather than using E
~12! to model the bending, we note that the motion of t
neutral surface can equally well be modeled by an additio
strain homogeneous over the beam cross section:

uzz'Z8~z!1 1
2 @X8~z!#22xX9~z!. ~C1!

~See Fig. 3.! Here we have made the identityX9(z)
51/R(z) and useZ8(z)1@X8(z)#2/2 to describe the part o
the stretching that is homogeneous over the cross sec
The term@X8(z)#2/2 arises because we have chosen a co
dinate system fixed in the beam equilibrium position an
17411
er

l
it

n
nd
l

.

al

n.
r-
a

tilt of the beam relative to the coordinatez axis must lead to
stretching if it is not accompanied by a contractionZ8,0.
We will see that this term leads to the restoring force due
tension. This approximation is good for small bendi
angles.

We draw a distinction between the variablesx andz andX
andZ. The lower case symbolsx andz are independent vari
ables that represent points within the beam and there
move with the fiber, as shown in Fig. 3. The upper ca
symbolsX and Z are dependent variables that represent
displacements of points within the beam along thex and z
directions of the undeflected beam. For small deflections
dynamics may equivalently use fixedx,z or x,z moving with
the beam. For integrating over the beam cross section
more convenient to setx to move with the midpoint of the
beam.

We can then use this form for the extension of the beam
get the elastic potential energy by substituting into the fr
energy equation~3! and integrating overx andy. Because we
will vary the Lagrangian only with respect toX and Z, we
drop all terms depending only on the temperatureu

Ve5
E0I 1E8I u

(2)

2
~X9!21@a0E0I u

(1)1~a0E81a8E0!I uu
(1)#X9

1
E0A1E8I u

8
~X8!42

1

2
@a0E0I u1~a0E81a8E0!I uu#

3~X8!21
E0A1E8I u

2
~Z8!22@a0E0I u1~a0E8

1a8E0!I uu!]Z82E8I u
(1)Z8X91

E0A1E8I u

2
Z8~X8!2

2
E8I u

(1)

2
X9~X8!2, ~C2!

whereA is the beam cross section,I 5**x2dxdy is the bend-
ing moment of inertia, and the thermal moments are defi
by

I u5E E udxdy, ~C3!

I uu5E E u2dxdy, ~C4!

I u
(1)5E E xudxdy, ~C5!

I u
(2)5E E x2udxdy, ~C6!

I uu
(1)5E E xu2dxdy. ~C7!

There is in addition to the elastic energy required
stretch the wire the workVP done against the forces at th
end of the fiber which maintain the tension, which is
1-7
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VP5P@Z~L !2Z~0!#. ~C8!

The kinetic energy of a section of the beam is~ignoring
the small rotational kinetic energy!

K5 1
2 Ar~Ẋ21Ż2!, ~C9!

wherer is the density of the beam material.
Forming the LagrangianL5*0

LLdz2VP5*0
L(K2Ve)dz

2VP and the actionS5*dtL, and settingdS50, we obtain

d

dt

]L

]Ẋ
1

d

dz

]L

]X8
2

d2

dz2

]L

]X9
50, ~C10!

d

dt

]L

]Ż
1

d

dz

]L

]Z8
50, ~C11!

where we adopt the boundary conditions

]L

]X9
U

z50,L

50, ~C12!

S ]L

]X8
2

d

dz

]L

]X9
D U

z50,L

50, ~C13!

]L

]Z8
U

z50,L

5P. ~C14!

While these boundary conditions are fairly arbitrary, th
reduce the nonlinearity of the beam equation to only t
caused by the nonlinear thermoelasticity.

Inserting the explicit form of the Lagrangian yields th
equations

ArẌ1
d2

dz2 ~@E0I 1E8I u
(2)#X91a0E0I u

(1)1~a0E8

1a8E0!I uu
(1)!2

d

dz
~E0AZ8X8!50, ~C15!

ArZ̈2
d

dzS @E0I 1E8I u#Z82a0E0I u2~a0E81a8E0!I uu

2E8I u
(1)X91

E0A1E8I u

2
~X8!2D50. ~C16!

We now insert the formula for the strain Eq.~C1! into the
heat equation~14! to determine the thermal moments. W
expandZ85u01Zd8 , where u0 and Zd8 are the static and
dynamic components, respectively. The solution in the
quency domain is8

u~x,z!5G@ f ~x!X9~z!1Zd8~z!#, ~C17!

wherek5Aiv/x andG5(T0 /CV)(a0E02E8u0) as before,
and
17411
t

-

f ~x!5x2
sin~kx!

k cos~kb/2!
. ~C18!

In solving this equation we assume that only thermal curre
transverse to the beam axis are important, i.e., that the ra
of bending along the beam does not change too rapidly. W
this solution foru the thermal moments take the values

I u52GA@Zd81~X8!2/2#, ~C19!

I uu5G2$A@Zd81~X8!2/2#21h~X9!2%, ~C20!

I u
(1)5GgX9, ~C21!

I u
(2)52GI @Zd81~X8!2/2#, ~C22!

I uu
(1)522G2gX9@Zd81~X8!2/2#. ~C23!

Here g5*x f(x)dx and h5* f 2(x)dx. Making these substi-
tutions into Eqs.~C15! and ~C16! yields the desired equa
tions

ArẌ2PX91E0I F11S a02
E8

E0
u0DG

g

I GX( iv)50,

~C24!

ArZ̈d2E0AF11S a02
E8

E0
u0DGGZd95

d

dz
O~X82,X92, . . . !,

~C25!

where in the first equation all nonlinear terms are neglec
as small, and in the second equation they are collected to
side as a driving term. We expandg andG in Eq. ~C24! to
obtain the desired form

ArẌ2PX91IE0S 11
T0

CV
~a0E02E8u0!2F1

124
kb/22tan~kb/2!

~kb!3 G DX( iv)50. ~C26!

If we compare Eq.~C26! to the standard form of the beam
equation ArẌ2PX91EIX( iv)50 and expandE5E0(1
1 if), we can extract the loss anglef to be

f5
T0E0

CV
S a02

E8u0

E0
D 2

ImH 24

k3b3 Fkb

2
2tanS kb

2 D G J ,

~C27!

which is exactly the same form derived in the quasiperiodi
analysis. By inspection of Eq.~C25! for Zd , we see that the
stretching of the fiber is driven parametrically by the bend
of the fiber, and has a homogeneous solution that is non
1-8
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sipative, which indicates that the dynamics of the neu
surface are nondissipative, as also shown via the quasi
odical analysis. Closer inspection shows the restoring fo
for Zd to be given by the adiabatic Young’s modulus, rega
less of frequency. This is a consequence of our having
nored thermal currents along the beam axis in calculating
thermal moments. This is a good approximation for our p
mary application of this theory to gravitational wave dete
tors, in which the suspension thermal noise is significan
audio frequencies, because longitudinal thermal currents
come significant only well above 1 MHz.12

The beam equation derived here uses admittedly unu
boundary conditions. More realistic boundary conditions
a beam under tension, such as clamping of both ends o
beam, impose constraints onX and Z that couple their dy-
namics far more strongly than does NTE; for example, if
ends of the beam are fixed, then geometric considerat
alone require it to stretch as it bends. This coupling is a
nonlinear, and relates the net stretching of the whole bea
the net bending of the whole beam. The situation in a gra
tational wave detector, where one or both ends of the sus
sion wire are rigidly fixed to heavy suspended masses,
be approximately the same as the clamped-clamped cas
frequencies above the pendulum and vertical bounce
quencies. The boundary conditions we have chosen fre
from consideration of such global constraints, leaving o
S.
er

.E

c.

lid

eta
, S
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the coupling due to NTE, while showing the independence
the dissipation from the homogeneous part of the stretch
In the quasiperiodical analysis we showed that in general
motion of the neutral surface~which is equivalent to a ho-
mogeneous stretching! does not affect the dissipation, re
gardless of its cause, provided it satisfies the parity requ
ment.

APPENDIX D: MATERIAL PARAMETERS

We takeCV to be the heat capacity per unit volume, rath
than per unit mass as is more common. The derivative
Young’s modulus with respect to temperature for fused sil
has various measured values in the published literat
which may reflect differences in the samples studied or
ferences in the frequency of measurement, but they are c
tered around 15 MPa/K at room temperature.13 The ther-
moelastic parameters of fused silica and sapphire are g
in Table I.

TABLE I. Thermoelastic properties of fused silica and sapph

E0 (GPa) a0 (1/K) E8 ~MPa/K! u05a0E0 /E8

fused silica 75 5.531027 15 .003
sapphire 400 531026 240 2.05
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lso

king
rry,

ag-

in
ide
an

ys.

hen
eam
lt in
D.

,

B

1A. Abramovici, W.E. Althouse, R.W.P. Drever, Y. Gursel,
Kawamura, F.J. Raab, D. Shoemaker, L. Sievers, R.E. Sp
K.S. Thorne, R.E. Vogt, R. Weiss, S.E. Whitcomb, and M
Zucker, Science256, 325 ~1992!; H. Luck, Class. Quantum
Grav. 14, 1471 ~1997!; R. Passaquieti, Nucl. Phys. B, Pro
Suppl.85, 241 ~2000!.

2H.B. Callen and T.A. Welton, Phys. Rev.83, 34 ~1951!.
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