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Computer simulation of tension experiments of a thin film using an atomic model

Yeau-Ren Jeng and Chung-Ming Tan
Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi, Taiwan

~Received 24 September 2001; published 23 April 2002!

The stress and strain induced in a very thin film under uniaxial tension are analyzed by an atomic-scale
model approach that is based on the nonlinear finite element formulation. Certain aspects of the dependence of
material properties on their size are addressed. This method is quasistatic, thereby greatly reducing required
computation time. The numerical results show that the tension varies nonlinearly with the elongation and the
stiffness of the thin film decreases with the decrease of the thickness. Evidence reveals that the variation of the
distribution of the stress near the free surfaces is one of the causes of the decrease in the stiffness of the thin
film.
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I. INTRODUCTION

The manufacturing and application techniques of t
films are being widely used in various fields, such as sen
and actuators, semiconductor, and tribology.1–3 The thin film
is such an important basic element for advanced functio
materials and devices that knowledge concerning its
chanical properties becomes more and more important.
values of physical quantities, such as the coefficient of e
ticity and thermal expansion obtained from the bulk mate
are used for the thin film because of experimental diffic
ties.

The most fundamental mechanical properties of the t
film, which are defined on the precepts of continuum m
chanics, are assumed to be independent of size. Howe
with a nanoscale dimension, that the properties of a mate
depend on the size of the system is commonly expected
observed.4 Obviously, the physical properties of the bu
cannot be applied to the thin film with the nanometer dim
sion in the thickness. Furthermore, the nature of this s
dependence will further depend on the material in questi

The atomic-scale simulation of the solid argon thin fi
under uniaxial tension was carried out by Iwaki, who calc
lated the stress and strain induced in the film under ten
by means of two-dimensional molecular-dynamics~MD!
simulation, and found that more than 130 particles are n
essary in the region for the stress concept to be applicab
continuum mechanics.5 Mehrez and Ciraci had investigate
the yielding and fracture mechanisms of copper nanowi
which are pulled by an external agent using MD simulatio6

Their study clarified that the yielding and fracture mech
nisms depend on the size, atomic arrangement, and tem
ture. Miller and Shenoy proposed a simple theoretical mo
that may predict the size dependence of effective stiffn
properties of nanosized structural elements.7 Miller and
Shenoy investigated the size dependence of elastic prope
by virtue of evaluating the surface modulus, which is diffe
ent from that of the bulk. Thus, effective stiffness propert
of nanosized structural elements are studied quantitativ
Basically, that was still a macroscopic analytical method.

From the relevant researches mentioned above, it is c
that the MD simulation is the main simulation method fro
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the molecular point of view. Molecular dynamics has wi
applicability such that it can simulate, in principle, at lea
the phenomena at a molecular level, including diffusion, m
tion of dislocation, and fracture.8–16 However, it requires ex-
tensive computing time. For example, if a physical pheno
enon is to be simulated for 1 sec by 10215 time resolution,
computation for 1015 time increments is needed for eac
atom. It is a high computational cost even for a superco
puter.

In this work, instead of MD simulation, we adopt an a
ternative approach. Based on the fact that in condensed
tems, atoms or molecules always oscillate around
minimum-energy positions. We are to follow the changes
the minimum-energy positions that are the mean position
each oscillating atom. The computation in this way is qua
static, thereby greatly reducing the computing time. The
jective of this study is to clarify that how the stress and str
distribute in the thin film qualitatively. We utilized the finit
element method with atomic model to study the size dep
dence of elastic properties.

II. COMPUTER SIMULATION

A. The thin-film model

The thin-film configuration consisting of particles of co
per atoms is shown in Fig. 1~a!. This is a two-dimensiona
model. The arrangement of atoms can be viewed as on
the family of close-packed planes,$111%, in a face-centered
cubic monocrystalline copper. Thex axis is taken to point to
one of the family of close-packed directions,^110&. It is in
the direction of the thickness. The tension loads along thy
axis, i.e., the direction of the length. In Fig. 1~b!, the profile
of the thin film could be considered to lie in the obliqu
plane shown in the three-dimensional sketch of the cop
crystal. Unlike the MD simulation, the periodic bounda
condition cannot be employed to simulate the infinite dom
condition. Therefore, the boundary conditions in the low
end of the length are that the atoms are fixed in they axis
direction but free to move in thex direction, and in the uppe
end the atoms are under the constraint that the displacem
of each of the atoms in they axis direction are the same.
©2002 The American Physical Society07-1
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The interatomic potential energy is assumed to be
scribed as the sum of the pairwise empirical potentials
depend only on the distance of the atoms. ‘‘Morse’’ poten
is employed to be the pairwise potential in this study. It h
the following form:

f~r i j !5D$exp@22a~r i j 2r 0!#22 exp@2a~r i j 2r 0!#%,
~1!

wherer i j is the distance between atoms ‘‘i’’ and ‘‘ j,’’ and D,
a, andr 0 are constants to be determined based on the ph
cal properties of the corresponding material. This poten
produces a repulsive force in a short range, attractive forc
a medium range, and decays smoothly to zero in a l
range, as shown in Fig. 2. The appropriate constant va
for copper metal are given in Fig. 2.17

FIG. 1. The atomic model of the thin film.
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B. The method of simulation

The process of the tension experiment is simulated
increasing the displacements of the atoms in the upper en
the thin film. During the process, the copper atoms in
film always move to the minimum-energy positions und
the equilibrium condition. Thus, we establish a computatio
ally more efficient procedure in the following, based on t
nonlinear finite element formulation.17 As shown in Fig. 3,
the arbitrary two atoms ‘‘i’’ and ‘‘ j’’ are regarded as two
nodes, and their potential as one element. Assume that
atom ‘‘i’’ is located at the position (xi ,yi) with displacement
ui , v i in thex,ydirections, respectively. Then by defining th
nodal displacement vector$u% i j and the corresponding noda
force vector$F% i j 5( f i ,gi , f j ,gj )

T for the i and j atoms, the
total pair potential energy is formulated as

Ei j 5f~r i j !2$u% i j
T $F% i j ~2!

where the superscript ‘‘T’’ means transpose, while the atom
distancer i j is given by

r i j 5$~xi1ui2xj2uj !
21~yi1n i2yj2n j !

2%1/2 ~3!

so that its differential with respect to$u% i j is

dr i j 5@xi1ui2xj2uj ,yi1n i2yj2n j ,2~xi1ui2xj2uj !,

2~yi1n i2yj2n j !#d$u% i j 5@B#d$u% i j . ~4!

FIG. 2. Potential energy curve used in the experiment.

FIG. 3. Finite element model on atomic scale.
7-2
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Then the principle of minimum work enforces the minimiz
tion of Ei j with respect to$u% i j such that

]Ei j

]$u% i j
5S ]f

]r i j
D @B#T2$F% i j 5$0%. ~5!

Equation~5! is the element equilibrium equation that repr
sents the equilibrium of forces acting on the atomsi and j.
Then we define a residual force$j% i j by

$j% i j 5S ]f

]r i j
D @B#T2$F% i j . ~6!

And when the equilibrium equation is achieved by iterati
procedure, it would converge to zero with an acceptable
erance. In order to solve the nonlinear equilibrium equat
by iteration procedure, we differentiate$j% i j with respect
to $u% i j

d$j% i j 5dS ]f

]r i j
D @B#T1S ]f

]r i j
Dd@B#T

5@B#TS ]2f

]r i j
2 Ddr i j 1S ]f

]r i j
Dd@B#T

5~@K# i j 1@Ks# i j !d$u% i j

5@KT# i j d$u% i j , ~7!

where

@K# i j 5@B#TS ]2f

]r i j
2 D @B# ~8!

and

@Ks# i j 5S f

r i j
D F]@B#T

]ui
,
]@B#T

]n i
,
]@B#T

]uj
,
]@B#T

]uj
G . ~9!

Equation~8! can be obtained by substituting Eq.~4! for
the dr i j in Eq. ~7!. Then according to the usual assemb
procedure of the finite element formulation, element Eq.~7!
is assembled to obtain the total system equation

d$j%5@KT#d$u%. ~10!

Similarly, Eq. ~5! is assembled to obtain the equilibriu
equation of the total system

(
iÞ j

S ]f

]r i j
D @B#T2$F% i j 5$f% internal$F%external5$0%. ~11!

In terms of finite element formulation, Eq.~10! is the
tangent stiffness equation, and$f% internal and$F%external in Eq.
~11! are the internal force vector and the external force v
tor, respectively. Before proceeding to solve the nonlin
equilibrium Eq.~5! by iteration procedure, we would like t
explain how the boundary conditions and the constraints
achieved.18 The tangent stiffness equation can be assume
be of the form
17410
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d$j%5S dj f

djp
D5@KT#d$u%5F K f f K f p

Kp f Kpp
G S duf

dup
D . ~12!

In this study, the prescribed boundary conditions are that
components ofdup are constrained to zero, and this
achieved by altering Eq.~12! to become

d$j%5S dj f

0 D5@KT#d$u%5FK f f 0

0 I G S duf

0 D . ~13!

In addition, the satisfaction of the constraints is written in t
form

@C#d$u%5$0%. ~14!

We modify the tangent stiffness matrix@KT# by adding a
penalty matrix@C#Ta@C#, then the tangent stiffness equatio
becomes

d$j%5~@KT#1@C#Ta@C# !d$u% ~15!

wherea is a very large number compared with any eleme
of the matrix@KT#. After imposing the boundary condition
and constraints, we adopt the Newton-Raphson itera
technique to solve the equilibrium Eq.~11! using a suitable
displacement control scheme in the following. Assume t
the external force vector$F% keeps a specified form durin
the process of iteration

$F% i5$F% i 211l i$F̂%, i 51,2, . . . , ~16!

where$F̂% is the reference load vector. Substituting Eq.~16!
into Eq. ~10!, the iterative tangent stiffness equation beco

@KT#d$u% i5l i$F̂%1d$j% i , i 51,2, . . . . ~17!

Consequently, the iterative displacement increment can
written in a similar form

d$u% i5l I$u%a
i 1d$u%b

i , i 51,2, . . . ~18!

where fori 51,2, . . . ,

@KT#$u%a
i 5$F̂%,

@KT#d$u%b
i 5d$j% i . ~19!

The ‘‘displacement’’ control scheme means that we ke
the qth component of the increment displacement vec
constant during the process of iteration as follows:

l iuaq
i 1dubq

i 5duq
i

duq
i 5H duq , i 51

0, i .1
. ~20!

By the iterative solution strategy mentioned above,
can obtain the whole equilibrium path of the tensi
experiment.
7-3
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III. RESULTS AND DISCUSSION

A. Tension vs deformation relation

A typical particle representation of the thin film after th
deformation observed in the simulation is shown in Fig. 4.
the figure, except at both ends in the longitudinal directi
there is no change in the arrangement of the atoms. T
implies that no dislocation or slip has occurred at this h
strained level. The finite length effect will be examined in t
following section. To illustrate the effect of the nanome
dimension in the thickness of the film and the efficiency
the finite element approach on atomic scale, the tension
elongation curves of three different thicknesses are show
Fig. 5. Usually, the tension experiment proceeds at the q
sistatic condition. This is unavailable in the MD simulatio
in the literature.6 Owing to the high time resolution require
in MD simulation, the stretching velocity ranges from 0.4
0.5 m/sec. Since the approach established in this stud
quasistatic, our simulation need not consider the stretch
velocity. The computing time to obtain the variation of elo
gation with tension is about 8 min on a personal compu
with a 1.2 G AMD CPU, which is about two orders of ma

FIG. 4. The arrangement of the atoms before and after defor
tion.

FIG. 5. Tension vs elongation curves of the thin film.
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nitude less in computing time compared with the MD sim
lation. As shown in Fig. 5, the applied external force i
creases nonlinearly with the increase in elongation. T
nonlinearity can be attributed to the pairwise potentials of
atoms. The arrangement of particles, as shown in the Fig
is unaltered until the applied force becomes maximum. Af
that the arrangement of particles is disordered because
structure is unstable.19 Consequently, the iteration proces
from Eq.~16! to Eq.~20! diverges as soon as the structure
unstable. In addition, the effect of the decrease in the th
ness is obvious from the curves in the Fig. 5. The stiffness
the thin film decreases with the decrease of the thickn
The reasons of this phenomenon will be clear after the
vestigation of the stress and strain distribution in the cr
section of the thickness.

B. StressÕstrain analysis

A general idea to derive values of continuum mechan
from those of an atomic model should be mentioned.
though the displacement in the atomic model can be defi
only at the points of each atom, the displacement in the c
tinuum model exists even at a point between two atoms. T
implies that the displacement at one point in the continu
model should be defined as a kind of interpolation of those
the surrounding atoms. In this study, we generalize this i
such that the displacement at a point in the continuum mo
is the weighted average of the values of the surround
atoms.20 Thus, the displacementū(r p) at the point r p
5(xp ,yp) in the continuum model is defined by

ū~r p!5(
q

w~r p ,rq!u~r q! ~21!

wherer p5(xp ,yp) andu(rq) are the position and displace
ment of the atomq in the atomic model, andw(r p ,r q) is the
weight function which should satisfy

(
q

w~r p ,rq!51,

w~r p ,rq!5w~rq ,r p!. ~22!

The weight function used here is

w~r p ,rq!5Cpq expF2
ur p2rqu2

2s2 G , ~23!

where the constantCpq is so chosen as to satisfy conditio
~22!, and the constants determines the range of averaging

The strain at pointr p can be defined in the usual manne
By redefining thex andy components of the displacement
atom q by u(r q) and v(r q), respectively, the three compo
nents of strain are given by

«̄x~r p!5
]

]xp
(

q
w~r p ,rq!u~rq!, ~24!

«̄y~r p!5
]

]yp
(

q
w~r p ,rq!n~rq!, ~25!

a-
7-4
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FIG. 6. The variations of the
distributions of the stress an
strain during the process o
stretching.
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ḡxy~r p!5
]

]xp
(

q
w~r p ,rq!u~rq!1

]

]yp
(

q
w~r p ,rq!n~rq!.

~26!

The stress at pointr p is defined in a similar way as th
displacement is. First, we measure the stress at atomq by
summing all the forces passing through the planar face
the computational box at which atomq is centered according
to the following equations:21

sx~rq!5
1

A (
q,s

F~rqs!

rqs
~Dx!2, ~27!

sy~rq!5
1

A (
q,s

F~rqs!

rqs
~Dy!2, ~28!

txy~rq!5
1

A (
q,s

F~rqs!

rqs
~Dx•Dy!, ~29!

whereA is the area of the side of the cubic computation
box, rqs is the distance between atomq ands, F(rqs) is the
force between atomsq ands.

Then the stress componentss̄x , s̄y , and t̄xy in the con-
tinuum model are defined in the weighted mean manner s
that

s̄x~r p!5(
q

w~r p ,rq!sx~rq!, ~30!
17410
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s̄y~r p!5(
q

w~r p ,rq!sy~rq!, ~31!

t̄xy~r p!5(
q

w~r p ,rq!txy~rq!. ~32!

The equations described above have been applied to
results of the nanoscale tension experiment simulation as
lows. First, we examine the distribution of stress and str
induced in the thin film during the process of the tens
experiment. Figure 6 shows the variations of the distribut
of the stress and strain components in the loading direct
at three different stretched levels. The distribution of t
strain component«̄y does not have any abrupt chang
whereas the distribution of the stress components̄y has ob-
vious changes. The stress components̄y near the free sur-
faces decreases during the process of pulling. In contrast
strain component«̄y does not decrease at the free surfac
but does decrease at both the ends. Hence, we need fu
examination of the effects of the free surfaces and the fi
length.

We took the thickness and length of the thin film as tw
parameters to investigate how they influence the distributi
of the stress components̄y and the strain component«̄y
qualitatively. Thereform, the reason why the stiffness of
thin film decreases with the decrease of its thickness will
illustrated. Figure 7 shows how the distribution of the stre
components̄y changes with variations of the two paramete
7-5
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FIG. 7. The influence of length
and thickness on the distributio
of the stress field.
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at the same stretched level. In this figure, the three colu
represent the distributions of three different thicknesses,
the two subplots in each column represent the distributi
of two different lengths with the same thickness. The
subplots in the figure are so scaled as to be of the same
for the convenience of comparison. Comparing the two s
plots in each column, we find that the magnitude of the fin
length has little influence on the distribution of the stre
components̄y . In contrast, comparing the three columns,
is found that the range of the region adjacent to the f
surfaces in which the stress decreases gradually beco
larger with the decrease of the thin-film thickness. Figur
shows the influence of the two parameters on the distribu
of the strain component«̄y . The six subplots are arrange
and scaled in the same manner as those in Fig. 7. It is c
that at both the free surfaces of the thin film these two
rameters have no influence on the distribution of the str
component«̄y . However, from the six subplots, we see th
the strain component«̄y decreases gradually at the both en
of the length. Figure 8 also depicts that the affected area
about the same size. Therefore, due to the scaling, the ra
of the region where the strain component«̄y decrease in the
lower three subplots look larger than those in the upper th
subplots. From the discussion above, we conclude that
range of the region adjacent to the free surfaces of the
film, where the stiffness of the material decreases, beco
larger as the thickness of the thin film decreases. Theref
17410
ns
nd
s

x
ize
-

e
s
t
e
es

8
n

ar
-

in
t
s
of
es

e
he
in
es
e,

the reason for the phenomenon that the stiffness decre
with decrease in thickness can be clarified. In addition,
influence of the ends of finite length is limited in a speci
distance adjacent to the boundaries. This phenomeno
similar to Saint-Venant’s principle in solid mechanics.

By means of the stress and strain analysis prese
above, we have clarified the mechanism of the degrada
of the stiffness of the thin film as its thickness decreas
This point of view is different from that of the relevant re
search by Miller and Shenoy.7 They only account for the
effect of free surfaces at the skin. In this study, we provid
microscopic viewpoint. Furthermore, we have investiga
further the effect of the region adjacent to free surfaces.

IV. CONCLUSION

In this work, two arbitrary atoms are considered as t
nodes, their potential as one element. Thus, we formulate
atomic thin-film model in the manner that is analogous w
the nonlinear finite element method. The displacement c
trol strategy is adopted to solve the static equilibrium eq
tions. The stress and strain defined in the continuum mech
ics are derived from the weighted average of those in
atomic model. Taking the length and thickness as two par
eters, the distributions of the stress and strain fields indu
in the thin film under uniaxial tension are studied. From o
investigation, the following conclusions can be reached.
7-6
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FIG. 8. The influence of length
and thickness on the distributio
of the strain field.
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~1! Our study shows that the current approach is m
efficient than the conventional MD simulation.

~2! The tension-elongation curves obtained from the sim
lation show that the tension increases nonlinearly with
crease in elongation. The nonlinearity depends on the
ticle potential.
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~3! The tension experiment shows that the stiffness of
thin film decreases with the decrease of its thickness.

~4! From the stress and strain analysis, it is found that
decrease in the stress in the regions adjacent to the free
faces is one of the causes of the decrease in the stiffnes
the thin-film thickness decreases.
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