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Computer simulation of tension experiments of a thin film using an atomic model
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Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi, Taiwan
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The stress and strain induced in a very thin film under uniaxial tension are analyzed by an atomic-scale
model approach that is based on the nonlinear finite element formulation. Certain aspects of the dependence of
material properties on their size are addressed. This method is quasistatic, thereby greatly reducing required
computation time. The numerical results show that the tension varies nonlinearly with the elongation and the
stiffness of the thin film decreases with the decrease of the thickness. Evidence reveals that the variation of the
distribution of the stress near the free surfaces is one of the causes of the decrease in the stiffness of the thin
film.
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[. INTRODUCTION the molecular point of view. Molecular dynamics has wide
applicability such that it can simulate, in principle, at least,
The manufacturing and application techniques of thinthe phenomena at a molecular level, including diffusion, mo-
films are being widely used in various fields, such as sensoriéon of dislocation, and fractuf:*® However, it requires ex-
and actuators, semiconductor, and triboldgyThe thin film  tensive computing time. For example, if a physical phenom-
is such an important basic element for advanced functiong#non is to be simulated for 1 sec by 6 time resolution,
materials and devices that knowledge concerning its mecomputation for 18 time increments is needed for each
chanical properties becomes more and more important. Thatom. It is a high computational cost even for a supercom-
values of physical quantities, such as the coefficient of elagPuter.
ticity and thermal expansion obtained from the bulk material In this work, instead of MD simulation, we adopt an al-
are used for the thin film because of experimental difficul-ternative approach. Based on the fact that in condensed sys-
ties. tems, atoms or molecules always oscillate around the
The most fundamental mechanical properties of the thirfminimum-energy positions. We are to follow the changes of
film, which are defined on the precepts of continuum methe minimum-energy positions that are the mean positions of
chanics, are assumed to be independent of size. Howevedach oscillating atom. The computation in this way is quasi-
with a nanoscale dimension, that the properties of a materiditatic, thereby greatly reducing the computing time. The ob-
depend on the size of the system is commomy expected adgctive of this StUdy is to Clarify that how the stress and strain
observed. Obviously, the physical properties of the bulk distribute in the thin film qualitatively. We utilized the finite
cannot be applied to the thin film with the nanometer dimen-€lement method with atomic model to study the size depen-
sion in the thickness. Furthermore, the nature of this sizélence of elastic properties.
dependence will further depend on the material in question.
The atomic-scale simulation of the solid argon thin film
under uniaxial tension was carried out by Iwaki, who calcu- Il. COMPUTER SIMULATION
lated the stress and strain induced in the film under tension
by means of two-dimensional molecular-dynami@dD)
simulation, and found that more than 130 particles are nec- The thin-film configuration consisting of particles of cop-
essary in the region for the stress concept to be applicable iper atoms is shown in Fig.(4). This is a two-dimensional
continuum mechanicsMehrez and Ciraci had investigated model. The arrangement of atoms can be viewed as one of
the yielding and fracture mechanisms of copper nanowireshe family of close-packed planef 11}, in a face-centered
which are pulled by an external agent using MD simulafion. cubic monocrystalline copper. Theaxis is taken to point to
Their study clarified that the yielding and fracture mecha-one of the family of close-packed directio10. It is in
nisms depend on the size, atomic arrangement, and tempeithe direction of the thickness. The tension loads alongythe
ture. Miller and Shenoy proposed a simple theoretical modexis, i.e., the direction of the length. In Fig(b}, the profile
that may predict the size dependence of effective stiffnesef the thin film could be considered to lie in the oblique
properties of nanosized structural eleméntsliller and  plane shown in the three-dimensional sketch of the copper
Shenoy investigated the size dependence of elastic propertiegystal. Unlike the MD simulation, the periodic boundary
by virtue of evaluating the surface modulus, which is differ- condition cannot be employed to simulate the infinite domain
ent from that of the bulk. Thus, effective stiffness propertiescondition. Therefore, the boundary conditions in the lower
of nanosized structural elements are studied quantitativelend of the length are that the atoms are fixed in ytrexis
Basically, that was still a macroscopic analytical method. direction but free to move in thedirection, and in the upper
From the relevant researches mentioned above, it is cle@nd the atoms are under the constraint that the displacements
that the MD simulation is the main simulation method from of each of the atoms in theg axis direction are the same.

A. The thin-film model
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FIG. 2. Potential energy curve used in the experiment.

B. The method of simulation

The process of the tension experiment is simulated by
increasing the displacements of the atoms in the upper end of
the thin film. During the process, the copper atoms in the
film always move to the minimum-energy positions under
the equilibrium condition. Thus, we establish a computation-
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ally more efficient procedure in the following, based on the
nonlinear finite element formulatiohf.As shown in Fig. 3,
the arbitrary two atoms i” and

j” are regarded as two

nodes, and their potential as one element. Assume that the
atom “i” is located at the positionx ,y;) with displacement

(b)

Ui, v; in thex,ydirections, respectively. Then by defining the
nodal displacement vectgu};; and the corresponding nodal
force vector{F};; = (f;,0;.f; ,gj)T for thei andj atoms, the
total pair potential energy is formulated as

Eij=o(rij) —{u}{{F} 2

where the superscriptT™ means transpose, while the atomic
distancer;; is given by

Fiy={ G+ U =X —up 2+ (i + v =y — vp) Y2

©)

so that its differential with respect fa};; is

FIG. 1. The atomic model of the thin film.

drij:[xi+ui_Xj_Uj 1yi+Vi_yj_Vj ,_(Xi+ui_Xj_Uj),

—(yi+vi—y;—v)ld{u};;=[Bld{u};; .

The interatomic potential energy is assumed to be de-
scribed as the sum of the pairwise empirical potentials that
depend only on the distance of the atoms. “Morse” potential
is employed to be the pairwise potential in this study. It has
the following form:

@(rij)=D{exd —2a(rjj—ro)]—2 exg — a(rj; _rO)]},(l)

wherer;; is the distance between atoms and “j,” and D,

a, andr are constants to be determined based on the physi-
cal properties of the corresponding material. This potential

produces a repulsive force in a short range, attractive force in
a medium range, and decays smoothly to zero in a long
range, as shown in Fig. 2. The appropriate constant values
for copper metal are given in Fig.2.
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FIG. 3. Finite element model on atomic scale.
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Then the principle of minimum work enforces the minimiza-
tion of E;; with respect to{u};; such that

a¢
ari;

ﬁ{u}”

)[B]T {F}ij={0}. ©)

Equation(5) is the element equilibrium equation that repre-

sents the equilibrium of forces acting on the atonadj.
Then we define a residual forgé};; by

d¢

i ©®

{‘f}ij ( [B]T {F}IJ

And when the equilibrium equation is achieved by iteration
procedure, it would converge to zero with an acceptable tol-
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In this study, the prescribed boundary conditions are that the
components ofdu, are constrained to zero, and this is
achieved by altering Eq12) to become

i

Kt
K

dus
du,

8= 4| ~rratu)- | a2

pf

Kff duy

d{g= 0

) [Keld{u}= ) (13

In addition, the satisfaction of the constraints is written in the
form

[Cld{u}={0}. (14

erance. In order to solve the nonlinear equilibrium equationVe modify the tangent stiffness matrpk] by adding a

by iteration procedure, we differentiafg};; with respect
to {u};;

2
arij

d¢
m)d[B]T

)[B]T+
>

IJ

=([KTjj +[K,Jij)d{u};

d{f}.,—d<

=[B] ( dr;; +(af)d[B]T
ij

=[Krlijd{ul;, (7)
where
(92
[K]ij= [B]( r¢)[B] (8
ij
and
d[B]" d[B]" 4[B]" 4[B]
[Kolij= (rl) aui ' ody T oaup T oau ©

Equation(8) can be obtained by substituting Eg) for
the dr;; in Eq. (7). Then according to the usual assembly
procedure of the finite element formulation, element &j9.
is assembled to obtain the total system equation

d{g=[Kr]d{u}.

Similarly, Eq. (5) is assembled to obtain the equilibrium
equation of the total system

(10

2 ( jl'” ) [B]T {F}IJ {f}lnterna{ I:}external_ {O} (11)

In terms of finite element formulation, Eq10) is the
tangent stiffness equation, afi}iyema @Nd{F}extermain EQ.

(11) are the internal force vector and the external force vec-
tor, respectively. Before proceeding to solve the nonlinear

equilibrium Eq.(5) by iteration procedure, we would like to

penalty matri{ C]"a[ C], then the tangent stiffness equation
becomes

d{& = ([K7]+[CT a[CDd{u} (15

wherea is a very large number compared with any element
of the matrix[ K;]. After imposing the boundary conditions
and constraints, we adopt the Newton-Raphson iterative
technique to solve the equilibrium E¢L1) using a suitable
displacement control scheme in the following. Assume that
the external force vectaff} keeps a specified form during
the process of iteration
(FU={F~ 1+ \{F}, i=12,..., (16)
where{F} is the reference load vector. Substituting Etf)
into Eq. (10), the iterative tangent stiffness equation become

[Krld{u}'=\'"{F}+d{&, (17)

Consequently, the iterative displacement increment can be
written in a similar form

i=12,....

d{uf =A"{ull+dful,, i=12,... (18)
where fori=1,2, ...,
[Krl{ut,={F},
[Krld{u},=d{&'. (19

The “displacement” control scheme means that we keep

the qth component of the increment displacement vector

constant during the process of iteration as follows:
iy i _ i
N'Ugqtdup=du,

dug, i=
0, i>1

dui —

; (20

explain how the boundary conditions and the constraints are By the iterative solution strategy mentioned above, we
achieved® The tangent stiffness equation can be assumed toan obtain the whole equilibrium path of the tension
be of the form experiment.
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T e T e nitude less in computing time compared with the MD simu-
Pleslo s eeeeeeees e lation. As shown in Fig. 5, the applied external force in-
COC0CO0000000000
FO o eeie e s ool od creases nonlinearly with the increase in elongation. The
?9%38029?980%8080?%3;080890)%08 nonlinearity can be attributed to the pairwise potentials of the
égcé@goooooooo(%%%o(%oooo atoms. The arrangement of particles, as shown in the Fig. 4,
SESTEEAESEESSEEES is unaltered until the applied force becomes maximum. After
530%3OOOOOOOQCQ&O%%%SO%%% that the arrangement of particles is disordered because the
.Oﬁ.. eleel cg@ogoSoSo@o%%c%oSoSdé@Sogoéé structure is unstable. Consequently, the iteration process
%‘@ﬁ&'ﬁ. $1010[0/060:010100 10100 00:0) from Eq.(16) to Eq.(20) diverges as soon as the structure is
SARHA $16016/0/010 0160101001000 " ; .
0/01010.0.0.0.6.0 QOOVOOOOOOOTONOT0 unstable. In addition, the effect of the decrease in the thick-
SSI s o0 ei0 6, OO0000UTUO0CUT00 . _ * _ _ :
o A A T ness is obvious from the curves in the Fig. 5. The stiffness of
g(gogog)%gc%@gogo%;g%%g%ogog the thin film decreases with the decrease of the thickness.
ooodo%oooooo@oooo The reasons of this phenomenon will be clear after the in-
QOO OTE00 o L e et
oSO e me e secsioN vestigation of the stress and strain distribution in the cross
SOCOTV000 i i
S S S EEEESSESSEEES section of the thickness.
FIG. 4. The arrangement of the atoms before and after deforma- B. Stresgstrain analysis

tion. . . . .
A general idea to derive values of continuum mechanics

from those of an atomic model should be mentioned. Al-
. RESULTS AND DISCUSSION though the displacement in the atomic model can be defined
A. Tension vs deformation relation only at the points of each atom, the displacement in the con-
tinuum model exists even at a point between two atoms. This
. ) ) o . implies that the displacement at one point in the continuum
deformanon observed in the S|m_u|at|on IS shown In F.'g‘ 4.' Inmodel should be defined as a kind of interpolation of those of
the figure, except at both ends in the longitudinal d|rec:t|on,[he surrounding atoms. In this study, we generalize this idea

Fherg IS no chan'ge n 'the arrangement of the atoms' Th'§uch that the displacement at a point in the continuum model
implies that no dislocation or slip has occurred at this high

. . . . ” is the weighted average of the values of the surrounding
stralngd Ievel._The fln@e length effect will be examined 'ntheatom§° Thus, the displacemenii(r,) at the pointr
following section. To illustrate the effect of the nanometer:(X y.) in the continuum model is F:jefined by P
dimension in the thickness of the film and the efficiency of “"P'’P
the finite element approach on atomic scale, the tension vs
elongation curves of three different thicknesses are shown in U(rp) =2 W(ry,reu(ry) (21)
Fig. 5. Usually, the tension experiment proceeds at the qua- a
sistatic condition. This is unavailable in the MD simulation wherer,=(x,,y,) andu(r,) are the position and displace-
in the literaturé. Owing to the high time resolution required ment of the atong in the atomic model, and(r,,r) is the
in MD simulation, the stretching velocity ranges from 0.4— weight function which should satisfy
0.5 m/sec. Since the approach established in this study is
quasistatic, our simulation need not consider the stretching

A typical particle representation of the thin film after the

velocity. The computing time to obtain the variation of elon- Eq: w(rp,rg)=1,
gation with tension is about 8 min on a personal computer
with a 1.2 G AMD CPU, which is about two orders of mag- W(r T ) =W(rq.Tp). (22)

The weight function used here is

2
|rp_rq|

W(rp,rq)chqexr{—T , (23

% where the constar€ is so chosen as to satisfy condition
g af (22), and the constant determines the range of averaging.
S The strain at point, can be defined in the usual manner.
“g’ I | By redefining thex andy components of the displacement of
g 2 * thickness=42 A atomq by u(rq) anduv(rg), respectively, the three compo-
5 O thickness=26 A . .
e o thickness=15A nents of strain are given by
W
_ J
ex(rp)= a—xpg W(rp,Fg)u(rg), (24)
00 5 10 15 20
Elongation (A) 9 2
ey(rp)=——=2, W(rp,rq)v(ry), (25)
FIG. 5. Tension vs elongation curves of the thin film. e dYp 9 pra d
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')’xy(rp)zo-,TE W(rp1rq)u(rq)+a_2 W(rpurq)y(rq)- O'y(rp)zz W(I'p,l’q)()'y(rq), (31
pd Ypa q
(26)
~ The stress at point, is defined in a similar way as the ?Xy(rp)=2 W(Tp,Fg) Tey(Fg)- (32
displacement is. First, we measure the stress at atdim q

summing all the forces passing through the planar faces of

the computational box at which atogris centered according The equations described above have been applied to the

to the following equation$! results of the nanoscale tension experiment simulation as fol-
lows. First, we examine the distribution of stress and strain

1 F(rgs) ) induced in the thin film during the process of the tension
ox(Tg)= qus los (A%)%, (27) experiment. Figure 6 shows the variations of the distribution
a of the stress and strain components in the loading direction,
1 F(rge) at three different_stretched levels. The distribution of the
oy(rg)= A > 9 (Ay)?, (28)  strain components, does not have any abrupt change,
a<s  Tas whereas the distribution of the stress compongnhas ob-
vious changes. The stress componeptnear the free sur-
)= 12 F(rgs) (Ax-Ay) 29 faces decreasesguring the process of pulling. In contrast, the
VYA rgs ’ strain component, does not decrease at the free surfaces,

. ) ] ) but does decrease at both the ends. Hence, we need further
whereA is the area of the side of the cubic computationalexamination of the effects of the free surfaces and the finite
box, rys is the distance between atagrands, F(rq) is the length.
force between atomgands. - We took the thickness and length of the thin film as two

Then the stress componenty, oy, andy, in the con-  parameters to investigate how they influence the distributions
tinuum model are defined in the weighted mean manner suclf the stress component, and the strain componen,
that qualitatively. Thereform, the reason why the stiffness of the
thin film decreases with the decrease of its thickness will be
;X(rp)zz W(rp,Fq)oy(q), (30) iIIustrated.Eigure 7 shovys hovy tr_]e distribution of the stress
q componentr, changes with variations of the two parameters
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10.00  20.00 ' 26.00 40.00

I=72 A' h=15 A I=72 A’ h=26 A =72 A’ h=42 A FIG. 7. The influence of length

and thickness on the distribution
of the stress field.

10.00  20.00 ' ‘ 20.00 40.00

1=126 A, h=15 A 1=126 A, h=26 A 1=126 A, h=42 A

at the same stretched level. In this figure, the three columnihe reason for the phenomenon that the stiffness decreases
represent the distributions of three different thicknesses, andith decrease in thickness can be clarified. In addition, the
the two subplots in each column represent the distributiongfluence of the ends of finite length is limited in a specific

of two different lengths with the same thickness. The sixdistance adjacent to the boundaries. This phenomenon is
subplots in the figure are so scaled as to be of the same sia@milar to Saint-Venant’s principle in solid mechanics.

for the convenience of comparison. Comparing the two sub- By means of the stress and strain analysis presented
plots in each column, we find that the magnitude of the finiteabove, we have clarified the mechanism of the degradation
length has little influence on the distribution of the stressof the stiffness of the thin film as its thickness decreases.
components, . In contrast, comparing the three columns, it This point of view is different from that of the relevant re-

is found that the range of the region adjacent to the fresearch by Miller and ShendyThey only account for the
surfaces in which the stress decreases gradually becomeffect of free surfaces at the skin. In this study, we provide a
larger with the decrease of the thin-film thickness. Figure 8nicroscopic viewpoint. Furthermore, we have investigated
shows the influence of the two parameters on the distributiofurther the effect of the region adjacent to free surfaces.

of the strain componeng, . The six subplots are arranged
and scaled in the same manner as those in Fig. 7. It is clear
that at both the free surfaces of the thin film these two pa-
rameters have no influence on the distribution of the strain In this work, two arbitrary atoms are considered as two
component, . However, from the six subplots, we see thatnodes, their potential as one element. Thus, we formulate the
the strain component, decreases gradually at the both endsatomic thin-film model in the manner that is analogous with
of the length. Figure 8 also depicts that the affected area is ahe nonlinear finite element method. The displacement con-
about the same size. Therefore, due to the scaling, the rangesl strategy is adopted to solve the static equilibrium equa-
of the region where the strain componeftdecrease in the tions. The stress and strain defined in the continuum mechan-
lower three subplots look larger than those in the upper threis are derived from the weighted average of those in the
subplots. From the discussion above, we conclude that thatomic model. Taking the length and thickness as two param-
range of the region adjacent to the free surfaces of the thieters, the distributions of the stress and strain fields induced
film, where the stiffness of the material decreases, becomes the thin film under uniaxial tension are studied. From our
larger as the thickness of the thin film decreases. Thereforégvestigation, the following conclusions can be reached.

IV. CONCLUSION
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(1) Our study shows that the current approach is more (3) The tension experiment shows that the stiffness of the
efficient than the conventional MD simulation. thin film decreases with the decrease of its thickness.

(2) The tension-elongation curves obtained from the simu- (4) From the stress and strain analysis, it is found that the
lation show that the tension increases nonlinearly with in-decrease in the stress in the regions adjacent to the free sur-
crease in elongation. The nonlinearity depends on the pafaces is one of the causes of the decrease in the stiffness as
ticle potential. the thin-film thickness decreases.
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