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Nonadiabatic detection of the geometric phase of the macroscopic quantum state with
a symmetric SQUID
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We propose a type of nonadiabatic scheme to detect the geometric phase for the macroscopic state of a
Josephson-junction system. After extending the scheme to the two-qubit cases, we provide a type of nonadia-
batic geometric C-NOT gate that can play an important role in quantum computation.
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Testing the laws of quantum mechanics at the macrothe Berry phase seriously. On the other hand, for the purpose
scopic scale is an important and interesting dgidhe geo-  of quantum computation, any quantum gate should be run as
metric phas&® plays an important role in quantum interfer- fast as possible. Besides the adiabatic condition, both of the
ometry and many other disciplines. It is of potential interestprevious proposals take an extra operation to eliminate the
to detect the geometric phase of a macroscopic quantumtynamic phase. This extra operation is unwanted for a fault
state. Recently, after a proposal of a geometric C-NOT®gatetolerate C-NOT gate because if we cannot eliminate the dy-
with nuclear magnetic resonan@éMR) in another work, it namic phase exactly, the fault tolerance property is weak-
was shown how to adiabatically detect the Berry phase in thened. For these reasons one is tempted to setup a new
Josephson junction of an asymmetric superconducting quascheme that does not rely on the adiabatic condition and
tum interference devicéSQUID), and, also, how to make a which does not involve any dynamic phase in the whole
fault tolerant C-NOT gate through a conditional Berry phaseprocess.
shift.” However, one should overcome two drawbacks in The geometric phase also exists in nonadiabatic process.
such suggestions for performing the geometric quantunit was shown by Aharonov and Anandahat the geometric
computation or detecting the Berry phase only. One is th@hase is only dependent on the area enclosed by the loop of
adiabatic condition that makes such a gate impractical witlihe state on the Bloch sphere. In nonadiabatic case, the path
current technology, the other is the extra operations needeaf the state evolution in general is different from the path of
to eliminate the dynamic phase. These drawbacks may serihe parameters in the Hamiltonian. The external field need
ously weaken the fault tolerant property. The experimentahot always follow the evolution path of the state like that in
results with systematic errors were obtained on NMR.  the adiabatic case. So it is possible to let the external field be
this paper, we give a simple scheme to detect the geometriastantaneously perpendicular to the evolution path so that
phase or realize the C-NOT gate nonadiabatically on the zerthere is no dynamic phase involved in the whole process.
dynamic phase evolution curve with a symmetric SQUID. Consider a superconducting electron box formed by a
By this scheme, both the detection and the realization can bg&ymmetric SQUID(see Fig. 1, pierced by a magnetic fluk
done faster and more easily. The above-mentioned drawand with an applied gate voltagk, . The device is operated
backs of previous suggestions are removed. We believe oum the charging regime, i.e., the Josephson coupligsare
scheme can help to make the idea of a geometric C-NOTuch smaller than the charging enefgy,. Also, a tempera-
gate more practical than before. ture much lower than the Josephson coupling is assumed.

For a two-level system, the geometric phase is equal tdhe Hamiltonian for this system &1°
half of the solid angle subtended by the area in the Bloch
sphere enclosed by the closed evolution loop of an eigen- H=Eg(n—n,)>—Ey(P)cosy,

state. Recentl§, it was shown to make a fault tolerate where E ,(®) = 2E, cod m{(®/®y)], Eqy, is the charging en-

C-NOT gate using Berry’s phase, i.e., an adiabatic and cycli ;
geometric phase. It is well knoWrthat, together with the ‘érgy, andn, can be tuned by the applied voltay through

single qubit rotation operations, a C-NOT gate can be used to E C

carry out all quantum computation tasks. Very recently, there . C

was a new proposal to test the geometric phase and the idea ;

of the conditional geometric phase shift with an asymmetric ] b —‘ Hl—
SQUID. This is rather significant because testing the geomet- Vi

ric phase on a macroscopic quantum state itself is important
in quantum mechanics, and also, a C-NOT gate through a
Josephson junction is undoubtedly a regalantumC-NOT FIG. 1. SQUID with symmetric Josephson junctions. It consists
gate. However, both propos&fsstrongly rely on the adia- of a superconducting box formed by a symmetric SQUID pierced
batic process. This is a bit unrealistic because the macrdy the magnetic voltage. V, is the applied voltage, which deter-
scopic state of Josephson junction dephases®fadie  mines the offset charge,. The device operates in the charge re-
dephasing effects may distort the laboratory observation ofime, i.e.,E;q<Eg,.

E, C
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z respectively. If the initial state is/(0))=|0), at time 2ritis

l4(27))=U(27)[0),

whereU(27) is the time evolution operator from time 0 to
27. It has the property that

U2n|+)=e+).

Using the relation

[
|0>=—‘72(|+>—|—>),

we have

FIG. 2. A scheme for geometric phase detection in a symmetric
SQUID. By suddenly changing the parametefand®, we can get i .
a sudden fictitious field in the-z plane in directions perpendicular lw(27))=— v U(27)(|+)+[—))=—siny|T)—cosy|]).
to the geodesic planes CBA and ADC, respectively. The fictitious 3
field will determine the evolution path of CBADC. The angle be-
tween the geodesic plane ABC and the equat@ Ehe solid angle |n general, suppose that the initial state|iE(O)) =al )
subtended by the area of ABCDA isré. +B|1), with the constraint of a|?+|B|?=1, the evolved

state is given as

V,=2en,/C, (see Fig. L The phase difference across the
junction is y and ¢ is canonically conjugated to the Cooper- |¥(27))=(a cosy—Bsiny)|1)—(asiny+Bcosy)|l).
pair numbern, i.e.,[6,n]=i. ®y=h/2e is the quantum of
flux. So heren, and ® can be tuned externally. As it was
pointed out earlief,>1°whenn, is around only two charge
eigenstated0) and |1) are relevant. The effective Hamil-
tonian in the computational two-dimensional Hilbert space i
H=—31B-o, where we have introduced the fictitious field
B=[E;0E.(1—2n,)] ando are the Pauli matrices. In this
picture, the states of zero Cooper péd)) or one Cooper
pair (|1)) are expressed bly) or |T), respectively, where the
stateg|) and|T) are eigenstates of the Pauli matex. Sup-
pose that initially® = 7/2 andn,=0, so that the initial state
is |o)=|0)=|]). To avoid the dynamic phase, we select the
geodesic curves in the time evolution. We can use the fol
lowing schemgsee Fig. 2

(1) We suddenly chang® from /2 to 0 andn, (note that
n, can be tuned througW,) from 0 tony=3(1—4), 5>0.

(2) Wait for a time

We can see that the nonzeygphase here will cause detect-
able interference effects. Specifically, if we choose an appro-
griateévalue so thaty=7/2, we can observe the flip of the
Initial state. This property can be potentially useful to realize
the fault tolerant NOT gate in geometric quantum
computatiorf:’ Equivalently, we can rotate a state on Bloch
sphere around the axis for the same anglé instead of
changingn, in the scheme. We do so in the following for the
conditional geometric phase shift.

So far we have a simple scheme to detect the nonadiabatic
geometric phase for the macroscopic quantum state of a sym-
metric SQUID. Since it is operated nonadiabatically, the total
time needed here should be comparable to that of one cycle
in the experiment of Ref. 1, that is to say, much shorter than
the decoherence time. We believe that the experimental real-
ization of our scheme can be done with the same setup used
in Ref. 1. Since we have chosen the zero dynamic phase

_ ™ (1) path!, we need not make an additional evolution loop to
\/(Ech5)2+(2EJO)2. cancel the dynamic phase and preserve the geometric phase.
The above scheme for the nonadiabatic detection of a
After this the state is rotated along the geodesic curve CBAJeometric phase in a single qubit system can be easily ex-
by an angler (See Fig. 2 tended to the two-qubit system with a symmetric SQUID.

(3) We suddenly change, to 3 + &, and wait for a timer ~ Suppose we have two capacitively coupled symmetric

again. The state is rotated along the geodesic curve ADC b$QUIDs(see Fig. 31 and 2 with the samE;q andE,. For

an angler (See Fig. 2 simplicity, we call them as qubit 1 and qubit 2, respectively,
(4) Do the measurement to detect the interference effectsind use the subscripts 1 and 2 to indicate the corresponding
(5) Deduce the valuey from the interference pattern. qubits. For qubit 1(the control qubit we set®,= /2 and

In the above operations, the time evolution curve will n, ;=0 during the whole process. For qubittRe target bit,

enclose an area on the Bloch sphere. The eigenstate basie set®,=®,/2 and nX2=% initially. Qubit 1 or 2 can be

|£), which are eigenstates of the Pauli mawixwill acquire  either in the staté0)=|1) or in the staté1)=||). Theweak
a geometric phase of interacting Hamiltonian is given by

T y==+20, (2 Hi=A(n1—ny 1) (N2— Ny ), ®
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rotation around thex axis is completed, we always set the
k4 k4 parametersb; back to #/2. Note that we need not worry
about the case of thig) state for qubit 1. Since in this case
the interaction is 0, qubit 2 is just rotated around an axis that
| | is slightly different from thex axis and is then rotated back
B around the same axis, thus producing no net effect on qubit 2
in the whole process.

Summarizing, for qubit 2 the final state is changed by the
unitary transformatiotd (27) in the following way:

Ck
FIG. 3. Two capacitively coupled SQUIDs.

where the constamt is the charging energy that derives from D11 | 0 [DIL)
the capacitive coupling. We assume tidats much smaller u(2r) DI :( ) DI , (7)
thanEg,. In our setting, the Hamiltonian also reads iT)il) 0 M 1T>il>
DI DIn
HIZ%A(012+%)0'22- (6)
. . . . I where

That is to say, to qubit 2 the interacting Hamiltonian looks as
an effective conditional Hamiltonian dependent on the spe-
cific state of qubit 1. Explicitly, it issA o, if the state of cosy(6) isiny(6)

o _ ISR N M=| ,
1U|T>t 1is|1)=|1), and it is O if the state of qubit 1 i€) (| siny(6) cosy(6) )

We first rotate qubit 2 around theaxis by an angle-6
(see Fig. 4 Note thatE, is much larger than, so the state  (6) is the geometric phase acquired for the initial sfate
of qubit 1 is(almos} not affected by any operation on qubit +) (point A in Fig. 4), and y(8)=—26. We see that the
2 during the whole process. The interaction Hamiltonian willchoice|y(6)| = 7/4 corresponds t@= =/8 (see Fig. 4 per-
thus determine an evolution path of the geodesic circle ABGorms a C-NOT gate, which is fault tolerant to certain types
on the Bloch spherésee Fig. 4 After time r=m/A, we  of error$'*2 Since the adiabatic requirement is removed in
rotate qubit 2 around the axis by another angle-(m our scheme, the total operation time needed here should be
—26). Again we wait for a timer. Then we rotate qubit 2 comparable to that of a normal C-NOT gate. Therefore we
around thex axis by an angler— 6 to let the state on the believe that our scheme has made the idea of geometric
Bloch sphere go back to the original position. After the quantum computation much closer to the practical applica-
above operations, if qubit 1 was in the sthte the evolution  tion. The various parameters of a normal C-NOT gate for an
path of ABCDA on the Bloch sphere is produced; if qubit 1 inductively coupled system are listed in Refs. 8, 9, 13, where
was in the staté|) instead, nothing happens to qubit 2. it has been estimated that the operation time can be much
In our scheme we have performed a rotation operation tehorter than the decoherence time. Instead of an inductively
qubit 2 around thex axis. This can be done by suddenly coupled system, here we have used a capacitively coupled-
changing®; to 0 andn, ;= 3 to qubit 2. Everytime after the system, however, this should not be an essential modifica-

FIG. 4. Nonadiabatic conditional geometric phase shift acquired through 0 dynamic phase evolution path. These are pictures for the time
evolution on the Bloch sphere of qubitddly in the case that qubit 1 i$). If qubit 1 is||), there is no net change to qubit 2. Pictag
shows that after the Bloch sphere is rotated around tiweis by — 6 angle, the interaction Hamiltonian will rotate the Bloch sphere around
the z' axis. At the time it completes a rotation, i.e.,7=w/A we rotate the bloch sphere around thaxis again by an angle of (=
—26), then we get picturéb). In picture(b) the sphere is rotated around thfeaxis by the interaction Hamiltonian. Note that the pdint
in picture (b) has changed its position now. The geodesic curve CBA is not drawn in pi¢iurafter time 7 we rotate the qubit 2 around
the x axis by an angle ofr— 6. Picture(c) shows the whole evolution path on the Bloch sphere. Phiatolves along the closed curve
ABCDA, a geometric phasg=—26 is acquired. Poin€ evolves along the loop CFAEC, a geometric phase=24 is acquired.
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tion. In a real experiment, one also needs certain readouial state. One can directly borrow the measurement tech-
device. The single electron transistor could be a good candnique used in Ref. 1 for the detection. However, in our case
date(for detailed analysis see Ref.)1The interference pat- the measured interference pattern is totally determined by the
terns have been successfully observed for the quantum stageometric phase. The detailed conditions for the measure-
of the Cooper-pair bok.In a real experiment for detecting ment experiment can be found in Ref. 14

the geometric phase presented by this paper, one can first

detect the interference pattern between the state in(&q.

and the initial state, and then deduce the vajuftom the We thank Professor Imai for support and Dr. Y. Nakamura
observed results. In particular, the valye 7/2 will cause  (NEC) for fruitful discussions. W.X.B. thanks Dr. A. Carlini
the sharpest observation result, since this value flips the iniand T. Sakuragi for various help.
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