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Gap generation in the XXZ model in a transverse magnetic field
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The ground-state phase diagram of the one-dimensi¥né& model in a transverse magnetic field is
obtained. It consists of the gapped phases with different types of long-range(loRi®@r and critical lines at
which the gap and the LRO vanish. Using scaling estimations and a mean-field approach as well as numerical
results we found critical indices of the gap and the LRO in the vicinity of critical lines.
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The study of the one-dimension&lD) spin-1/2 XXZ Thus, we expect that the phase diagram of the m@el
model in a transverse magnetic field has been drawn mudm®on the(A, h) plang has a form s_hown on Fig. 1. It contains
attention last years. The Hamiltonian of this model is four regions corresponding to different phases and separated

by the transition lines at which the gap vanishes. Each phase

is characterized by its own type of the LRO: théeNerder
H=2 (S8 1+ S8 TASS,,)—h> Si. (1) along theZ axis in the region(1); the ferromagnetic order

along theZ axis in the regior(2); the Neel order along th¥

The spectrum of th&XZ model for—1<A<1 is gapless. aXis in the region(3); and in the regior{4) there is no LRO
When the transverse magnetic field is applied, a gap in th§*Cept magnetization along the field directXiiwhich, cer-
excitation spectrum seems to open up. It is suppbteat  (@inly, exists in all above regions .
this effect can explain the peculiarity of low temperature " this paper we investigate the behavior of the gap and
specific heat in YhAs;.2 The magnetic properties of this f[hehLRO. nealr the transnmfcntme;}l) I|ne|§ We are interested
compound is described by théXZ Hamiltonian with A In the critical exponents along these lines.
~0.98 and it was showhrthat the magnetic field in an easy The line h=0, |A|<1
plain induces a gap in the spectrum leading to a dramatic
decrease of the linear term in the specific heat.

At h=0 the model1) is the well-knownXXZ model. In
the Ising-like regiom\>1 the ground state of théXZ model
has the Neel long-range ordérRO) along theZ axis and
there is a gap in excitation spectrum. In the regioh<A<1
system is in the so-called spin-liquid phase with a power-lo
decay of correlations. Finally, fak<<—1 the ground state is
the classical ferromagnet with the gap above the ferromag- (—1)*A, A,
netic state. (S*(x,t)S*(0,0))~ 5

At h# 0 the totalS? is not conserving and the modd)) is (x
not integrable, except some special cages1 andA— o, @
In addition, there is a “classical” lineny(A)=+2(1+A), 7
where the quantum fluctuations of tXe<XZ model are com- 27 //
pensated by the transverse field and the exact ground state of 1
Eqg. (1) is a classical on@The excited states on the classical
line are generally unknowfexcept some of thefy though it
is assumed that the spectrum is gapped.

In the limits A—=*c the model(1) reduces to the 1D A
Ising model in the transverse fie(tlF), for which the phase
transition occurs alt,=|A|/2. At this field the gap is closed
and the LRO in theZ direction vanishes.

It was shown that the phase transition of this type takes
place for anyA>0. One can expect also that such a transition
exists for any finiteA at some critical valué&nv=h.(A) and
there is the transition line connecting two limiting points
A— =+, Besides, there are other transition lines charactered
by vanishing both the gap and the LRO. These lineshare
=0, |A|<1; A=1,h<2; A=—1, h<h(—1). However, the FIG. 1. Phase diagram of the modd). The thick solid lines
critical properties in the vicinity of these transition lines are denote the critical lines, thin solid line is the “classical” line, and
not known yet. dashed line denotes the limg(A) (see texk

Low-energy properties of th&XZ model are described
by a free boson field theory. Therefore, to study the behavior
of the system near the line=0, |A|<1, we use conformal
estimations of small perturbatidn<1.

The time-dependent correlation functions of tKeXZ
wehain show the power-law decay gt|<1 and have the
asymptotic forrf
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with #=1—arcco$A)/m, v is the spin-wave velocity, and ¢ m  [h\Va-a2
A;,A, are constantb. A=T=—= (F)
The nonoscillating term in Eq2) gives scaling dimen- &g m

sion for operatorS*—d= 6/2+1/26 and from the common

we find that the mass gap is proportional to
formuld® for mass gapm one has: gap 1s prop

1
B 1 B 2 m~h7?, 7= . (6)
T 2—d 4-06-1/6 ©) 1-012

m~h?, v

Actually, the oscillating factor £ 1)" in the correlator in
some sense eliminates one singular integration ayemnd
into common conformal formulan~h®~9 whereD is

From Eq.(3) one could conclude that the magnetic field
becomes irrelevant fok < — cog /3]=—0.67 and the gap

disappears fon < —0.67. This does not look physically rea- the dimension of space ardlis the scaling dimension of

sonable, since the magnetic field destroys continuous SynBerturbation operator, one should (Be-1 instead of con-
metry of theXXZ model and must produce the gap. In fact, ventionalD = 2 '

due to nonzero conformal spi®=1 of the non-oscillating The comparison of the expressions E®, (4), and (6)

part of the operatoS* it is necessary to consider higher- ; PR
g ; : shows that for 8B2A <1 the leading term is given by E¢RB),
order effects inh.” The analysis shows that in the perturba- while for —1<A<0 by Eq.(6). Thus, one has

tion series another critical exponent appears, giving for the
mass gap m~h”, 0<A<1

1
m~h?, y=-—. (4) m~h", —1<A<O. (7)

>

o For examplem~h, whenA— =1 andm~ h*3for A=0. In
It turns out that the oscillating part of the opera®t  thjs respect the modél) is different from thex XZ model in

gives another, more relevant index for the gapAat0. Let  the staggered transverse field for which-h?“=9 for all
us reproduce the usual conformal line of arguments for thiga | <1 10

oscillating part. _ _ The staggered magnetizatiobRO) along theY axis be-
The perturbed action for the model is haves as

S=S+ hj dtdx S(x,t), (5) (S~ (= 1) €02~ (— 1)"mP”2, ®

) _ ) Therefore, the LRO has also two different critical indices:
where S, is the Gaussian action of théXZ model. Let us

perform an infinitesimal renorm-group step with a scale fac- (|9))~ho4-0-10)  g<A<1
tor \=1-6L/L, so thatx=Ax', t=At’. The correlation
length changes a&=\¢'. Then, the action becomes (|9)~h?@=0  —1<A<O. (9)
S = +hj dOvt))dOAX)SY X D). The_ criticz_il indicesy and 7 can be also fo_und fr(_)m _the
S (A AT ST ) analysis of divergences of terms of perturbation seridsah

) ) o N—o (N is the system sige As showr at N—ox the
Now let us estimate the large-distance contribution to theyround-state energy has a form

action of the oscillating part of the operatsf(x,t):

(—1)" e (10)
hf dt dx SX(x,t)~hf dt; (o2 N 2
where v and 7 are given by Eqs(3) and (6) anda,b are
on some constants.

”hf dthZm m One can see from Eg&3) and(6) thatv—1 atA—1 and
=2m ("= v 7—1 atA— —1. Hence, in both limits one of the singular
Ox terms becomes proportional t*, and, therefore, gives a
~hf dtdx CERCNTTTER contribution to the susceptibility. It implies that in the sym-
(X*=vt9) metric pointsA= =1 the susceptibility has a jump. For ex-

ample,y=1/4 atA=—1 andy=1/8 atA——12
So, after rescaling we get Pie.x X -

The lineA=1

hj dtdx 8<(x,t)—>h)\1‘9/2J dt’dx’ S(x’,t") In the vicinity of the lineA=1 it is convenient to rewrite
the Hamiltonian(1) in the form
and, therefore, the magnetic field scaleshas ha'= %2,

Expressing\ as H=Hy+V,
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Ho=2> Sy Sis1—h>X S (12)

_—92 SZ n+1

where the parametey=(1—A)<1 is small. On the isotro-

pic line A=1 the model(1) is exactly solvable by Bethe
ansatz. The ground state df, remains a spin-liquid one up
to the transition pointh,=2, where the phase transition of

PHYSICAL REVIEW B 65 172409

In(1/h)

m~g for \/ﬁln(llh)<1.

(17

The transition line h=h(A)

Now we consider the behavior of the model in the vicinity
of the transition linen.(A). For this we have used the Fermi
representation of Eql). At first, in Eqg. (1) we perform a
rotation of the spins around thé axis by 7/2 (so that the
magnetic field will be directed along tteaxis) followed by
the Jordan-Wigner transformation to the Fermi operators

the Pokrovsky-Talapov type takes place and the ground stag.an- As a result, we obtain the Fermi Hamiltonian in the
becomes completely ordered ferromagnetic state. Thereforé&Qrm

for h<2 and for small perturbatiow we can use conformal
estimations.

The large distance asymptotic of the correlation function

on this line is

(="

e (12

<S|ZS|Z+n>~
where a(h) is the known function obtained from the Bethe
ansatz! and having the following limits:

a(h)~1 h—0 (13

~ 2In(1Mh)’
and a(2)=1/2.

So, the scaling dimension of operat8t is d,= a(h)/2,
and the scaling dimension of operat8fS/. ,; is d,,=4d,
=2a(h). Sincea(h)<1, then the perturbatio¥ is relevant

hN N 1+A
-5+t 2 |h-1-

He 2

cosk |ajay
1-A
+ > sink(aja’ . +a_ay)

+2 alanan.18n1- (18)
Treating the HamiltoniarHg in the mean-field approxima-
tion we find the ground-state ener@y and the excitation
spectrume (k).

The main results following from the mean-field consider-
ation are

(1) The functione(k) has a minimum ak,,;,, which is
changed frommr/2 at h=0 to zero ath=h,(A) and K,
=0 forh>h;(A). The gap in the spectrus(k) vanishes at

and leads to the mass gap and the staggered magnetizating(A) (h.>h;) and forh>h, is m~|h—h.|. The depen-

along theY axis

m~ g2~ dz) = gU(2-2) (14)

(|9])~ Lgte~ g7, (15
The above consideration is valid also for the casel
(region 1 with the same exponents for the gap and the LRO

pears in this case along tizeaxis.

From the general expressions for the mass @pin the
limit h—2 we obtainm~g.

The LRO in the vicinity of the point4=1h=2) van-
ishes on both lines: ai=1 from Eq.(14) asg** and ath
=h, as|h,—h|Y8 [see Eq.(19)]. Combining these facts we
arrive at the following formula:

(Sh=(-1)"g"h.~

h| 1/87 (16)

which is in accordance with the exact expression for LRO on
whereh,=2—-g/2—g

the classical liné.

The behavior of the system near the palnt1, h=0 is
more complicated. As it follows from Eq7), for very small
h the mass gap isn~h, while on the other hand from Eq.
(14) one obtains another scalimy~g"*" . Really*!? there

are two regions near this point with different behavior of the

mass gap and a crossover liglg In(1/h)~1:

m~h for \glIn(1/h)>1,

The only difference is that the staggered magnetization ap]!ne h=h

dencies ofh;(A) andh;(A) are shown on Fig. 1. There is
the staggered magnetization aloNgZ) axis for A<1(A
>1) ath<h, and it behaves as |h—h.Y® ath—h.. The
magnetizations=(S}) has a logarithmic singularity al
—h¢. These results show that the transitionhat h (A)
belongs to the universality class of the ITF model.

(2) The mean field approximation is exact on the classical
al(4).
(3) In the vicinity of the pointh=2, A=1 the fermion
density is small and the mean field approximation gives the
accuracy in the energy, at least, upgtbor (2—h)4. For this
case the gap is

m=lh—h,, h>h,
g 9°
m—m hc—h—s—z, h<h; (19

2132, h;=h,—g?/16.

It is mterestmg to compare Eqg&19) with the conformal
estimation of the gapn~g. The conformal approach deter-
minesg dependence only, while Eq19) gives a prefactor
depending orh.

The magnetic susceptibility(h) is

|

2 2

—In
g

9
he—h

) , 9g>+h.—h

X=
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1 1 m=\(1+A)(1+A—-h?%2), A<-1. (23
X= "= , g<yhc—h. (20) . . T
V2 vhe—h The validity of the spin-wave approximation is quite natu-

As follows from Eq.(20) there is a crossover from square ral because in the V'C'n'.ty of the poink = _1'.h:O the
number of magnons forming the ground state is small.

root to logarithmic divergence of. We note that the gaf23) for A=—1 coincides with the
The line A=—1 confprmal theory resul{7) and provides us with preexpo-
. ) ~nential factor for the gap.

On the ImeAz —1 the model1) red'uce_s to the.lsotroplc ~ Onthe lineA=—1 the model22) is theXXZ model and
ferromagnet in a staggered magnetic field. This model ighe correlation functions have the power-law decay. The scal-
nonintegrable, but it was suggestéthat the system is gov- ing dimensions of operatorS’ and S, S? on this line are
erned by ac=1 conformal field theory up to some critical dy=B(h)/2 and d,=d,=1/28(h). The function B(h) is
value h=hg,, where the phase transmqn of the quterlltz- generally unknown, but dt<1, where the mapping t§Y Z
Thouless type takes place. In the vicinity of the lide= model is valid,3(h)~ m/h.

—1 the Hamiltonian(1) becomes Strictly on the lineA=—1 at some value oh=h, the
gap appears. It means that the magnetic field term is irrel-

H=—> S, Sys1—h> (—1)”S§+(1+A)2 rS evant ath<h, (B(h)>4) and becomes margingl_ htz_ho,
where B(hg)=4. So, at the poinh=h the transition is of

21 the Kosterlitz-Thouless type, and fae>h, the mass gap is
where (1+A)<1 is a small parameter. exponentially small.
It can be showhthat athy(A)<h<1 low energy states Using the conformal invariance of the mod@1) at A
of Eq. (21) is described by th&XY Z Hamiltonian =—1 andh<h, we carried out finite-size calculation of the

exponentB(h). The extrapolated functio@(h) agree well
H=— 1— —|eXs* 4y _ASISE. | with the dependence/h ath<1 andB=4 athy=0.52. On
2 H 2) St SiShe1m A%Shi the other hand, the mean-field approach gives the rather

(22 crude valuehg=h,(—1)=0.69.
I . L In summary, we have studied the DOXZ model in the

The de_r_lvatlon of this mapnp '?g Is based on the fac_:t thattransverse magnetic field. It is shown that the spectrum of the
the tran_smon operatoE_(—l_) Sn conr_1ects the Iow—ly_mg model is gapped except critical lines on the 4) plane,
states with the states with high energie& only. The coin- a6 the | RO vanishes. We found the critical exponents of
cidence of the low-energy spectra of E¢81) and (22) for o gap and the LRO in the vicinity of these lines.

hy(A)<h<1 has been checked numerically. The spectrum
of low-lying excitations of theXY Z model* as well as the The authors would like to thank Professor P. Fulde and

initial model (1) in the vicinity of the pointA=—1h=0 can  Dr. A. Langari for many useful discussions. The authors

be described asymptotically exactly by the spin-waveare also grateful to Max-Planck-Institut "rfu Physik
theory! which gives Komplexer Systeme for kind hospitality. This work was sup-
ported under RFFR Grants No. 00-03-32981 and No. 00-15-

m=hy(1+A)/2, A>-1 97334.
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