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Gap generation in theXXZ model in a transverse magnetic field
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The ground-state phase diagram of the one-dimensionalXXZ model in a transverse magnetic field is
obtained. It consists of the gapped phases with different types of long-range order~LRO! and critical lines at
which the gap and the LRO vanish. Using scaling estimations and a mean-field approach as well as numerical
results we found critical indices of the gap and the LRO in the vicinity of critical lines.
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The study of the one-dimensional~1D! spin-1/2 XXZ
model in a transverse magnetic field has been drawn m
attention last years. The Hamiltonian of this model is

H5( ~Sn
xSn11

x 1Sn
ySn11

y 1DSn
zSn11

z !2h( Sn
x . ~1!

The spectrum of theXXZ model for21,D<1 is gapless.
When the transverse magnetic field is applied, a gap in
excitation spectrum seems to open up. It is supposed1 that
this effect can explain the peculiarity of low temperatu
specific heat in Yb4As3.2 The magnetic properties of thi
compound is described by theXXZ Hamiltonian with D
'0.98 and it was shown1 that the magnetic field in an eas
plain induces a gap in the spectrum leading to a dram
decrease of the linear term in the specific heat.

At h50 the model~1! is the well-knownXXZ model. In
the Ising-like regionD.1 the ground state of theXXZ model
has the Neel long-range order~LRO! along theZ axis and
there is a gap in excitation spectrum. In the region21,D<1
system is in the so-called spin-liquid phase with a power-l
decay of correlations. Finally, forD,21 the ground state is
the classical ferromagnet with the gap above the ferrom
netic state.

At hÞ0 the totalSz is not conserving and the model~1! is
not integrable, except some special cases:D51 andD→6`.
In addition, there is a ‘‘classical’’ linehcl(D)5A2(11D),
where the quantum fluctuations of theXXZ model are com-
pensated by the transverse field and the exact ground sta
Eq. ~1! is a classical one.3 The excited states on the classic
line are generally unknown~except some of them4!, though it
is assumed that the spectrum is gapped.

In the limits D→6` the model~1! reduces to the 1D
Ising model in the transverse field~ITF!, for which the phase
transition occurs athc5uDu/2. At this field the gap is closed
and the LRO in theZ direction vanishes.

It was shown5 that the phase transition of this type tak
place for anyD.0. One can expect also that such a transit
exists for any finiteD at some critical valueh5hc(D) and
there is the transition line connecting two limiting poin
D→6`. Besides, there are other transition lines characte
by vanishing both the gap and the LRO. These lines arh
50, uDu,1; D51, h,2; D521, h,hc(21). However, the
critical properties in the vicinity of these transition lines a
not known yet.
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Thus, we expect that the phase diagram of the model~1!
@on the~D, h! plane# has a form shown on Fig. 1. It contain
four regions corresponding to different phases and separ
by the transition lines at which the gap vanishes. Each ph
is characterized by its own type of the LRO: the Ne´el order
along theZ axis in the region~1!; the ferromagnetic orde
along theZ axis in the region~2!; the Neel order along theY
axis in the region~3!; and in the region~4! there is no LRO
except magnetization along the field directionX ~which, cer-
tainly, exists in all above regions!.

In this paper we investigate the behavior of the gap a
the LRO near the transition~critical! lines. We are interested
in the critical exponents along these lines.

The line hÄ0, zDzË1

Low-energy properties of theXXZ model are described
by a free boson field theory. Therefore, to study the beha
of the system near the lineh50, uDu,1, we use conformal
estimations of small perturbationh!1.

The time-dependent correlation functions of theXXZ
chain show the power-law decay atuDu,1 and have the
asymptotic form6

^Sx~x,t !Sx~0,0!&;
~21!xA1

~x22v2t2!u/2
2

A2

~x22v2t2!u/211/2u

~2!

FIG. 1. Phase diagram of the model~1!. The thick solid lines
denote the critical lines, thin solid line is the ‘‘classical’’ line, an
dashed line denotes the lineh1(D) ~see text!.
©2002 The American Physical Society09-1
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with u512arccos~D!/p, v is the spin-wave velocity, and
A1 ,A2 are constants.7

The nonoscillating term in Eq.~2! gives scaling dimen-
sion for operatorSx–d5u/211/2u and from the common
formula8 for mass gapm one has:

m;hn, n5
1

22d
5

2

42u21/u
. ~3!

From Eq.~3! one could conclude that the magnetic fie
becomes irrelevant forD,2cos@pA3#.20.67 and the gap
disappears forD,20.67. This does not look physically rea
sonable, since the magnetic field destroys continuous s
metry of theXXZ model and must produce the gap. In fa
due to nonzero conformal spinS51 of the non-oscillating
part of the operatorSx it is necessary to consider highe
order effects inh.9 The analysis shows that in the perturb
tion series another critical exponent appears, giving for
mass gap

m;hg, g5
1

12u
. ~4!

It turns out that the oscillating part of the operatorSx

gives another, more relevant index for the gap atD,0. Let
us reproduce the usual conformal line of arguments for
oscillating part.

The perturbed action for the model is

S5S01hE dt dx Sx~x,t !, ~5!

whereS0 is the Gaussian action of theXXZ model. Let us
perform an infinitesimal renorm-group step with a scale f
tor l512dL/L, so thatx5lx8, t5lt8. The correlation
length changes asj5lj8. Then, the action becomes

S85S01hE d~lt8!d~lx8!Sx~lx8,lt !.

Now let us estimate the large-distance contribution to
action of the oscillating part of the operatorSx(x,t):

hE dt dx Sx~x,t !;hE dt(
n

~21!n

~n22v2t2!u/4

;hE dt (
n52m

un

~n22v2t2!u/411

;hE dt dx
ux

~x22v2t2!(u/4)11
.

So, after rescaling we get

hE dt dx Sx~x,t !→hl12u/2E dt8dx8 Sx~x8,t8!

and, therefore, the magnetic field scales ash85hl12u/2.
Expressingl as
17240
-
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e

l5
j

j8
5

m8

m
5S h8

h D 1/(12u/2)

we find that the mass gap is proportional to

m;ht, t5
1

12u/2
. ~6!

Actually, the oscillating factor (21)n in the correlator in
some sense eliminates one singular integration overx, and
into common conformal formulam;h1/(D2d), where D is
the dimension of space andd is the scaling dimension o
perturbation operator, one should useD51 instead of con-
ventionalD52.

The comparison of the expressions Eqs.~3!, ~4!, and ~6!
shows that for 0,D,1 the leading term is given by Eq.~3!,
while for 21,D,0 by Eq.~6!. Thus, one has

m;hn, 0,D,1

m;ht, 21,D,0. ~7!

For example,m;h, whenD→61 andm;h4/3 for D50. In
this respect the model~1! is different from theXXZ model in
the staggered transverse field for whichm;h2/(42u) for all
uDu,1.10

The staggered magnetization~LRO! along theY axis be-
haves as

^Sn
y&;~21!n/ju/2;~21!nmu/2. ~8!

Therefore, the LRO has also two different critical indices

^uSyu&;hu/(42u21/u) 0,D,1

^uSyu&;hu/(22u) 21,D,0. ~9!

The critical indicesn and t can be also found from the
analysis of divergences of terms of perturbation series inh at
N→` (N is the system size!. As shown4 at N→` the
ground-state energy has a form

dE

N
52

x

2
h21ah2n1bh2t, ~10!

where n and t are given by Eqs.~3! and ~6! and a,b are
some constants.

One can see from Eqs.~3! and~6! thatn→1 atD→1 and
t→1 at D→21. Hence, in both limits one of the singula
terms becomes proportional toh2, and, therefore, gives a
contribution to the susceptibility. It implies that in the sym
metric pointsD561 the susceptibility has a jump. For ex
ample,x51/4 atD521 andx51/8 atD→21.4

The line DÄ1

In the vicinity of the lineD51 it is convenient to rewrite
the Hamiltonian~1! in the form

H5H01V,
9-2
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H05( Sn•Sn112h( Sn
x , ~11!

V52g( Sn
zSn11

z ,

where the parameterg5(12D)!1 is small. On the isotro-
pic line D51 the model~1! is exactly solvable by Bethe
ansatz. The ground state ofH0 remains a spin-liquid one up
to the transition pointhc52, where the phase transition o
the Pokrovsky-Talapov type takes place and the ground s
becomes completely ordered ferromagnetic state. There
for h,2 and for small perturbationV we can use conforma
estimations.

The large distance asymptotic of the correlation funct
on this line is

^Si
zSi 1n

z &;
~21!n

na(h)
, ~12!

wherea(h) is the known function obtained from the Beth
ansatz11 and having the following limits:

a~h!;12
1

2 ln~1/h!
, h→0 ~13!

anda(2)51/2.
So, the scaling dimension of operatorSz is dz5a(h)/2,

and the scaling dimension of operatorSi
zSi 11

z is dzz54dz

52a(h). Sincea(h),1, then the perturbationV is relevant
and leads to the mass gap and the staggered magnetiz
along theY axis

m;g1/(22dzz)5g1/(222a), ~14!

^uSyu&;1/jdz;ga/(424a). ~15!

The above consideration is valid also for the caseD.1
~region 1! with the same exponents for the gap and the LR
The only difference is that the staggered magnetization
pears in this case along theZ axis.

From the general expressions for the mass gap~3!, in the
limit h→2 we obtainm;g.

The LRO in the vicinity of the point (D51,h52) van-
ishes on both lines: atD51 from Eq.~14! asg1/4; and ath
5hc as uhc2hu1/8 @see Eq.~19!#. Combining these facts we
arrive at the following formula:

^Sn
y&.~21!ng1/4uhc2hu1/8, ~16!

which is in accordance with the exact expression for LRO
the classical line.3

The behavior of the system near the pointD51, h50 is
more complicated. As it follows from Eq.~7!, for very small
h the mass gap ism;h, while on the other hand from Eq
~14! one obtains another scalingm;gln(1/h). Really,4,12 there
are two regions near this point with different behavior of t
mass gap and a crossover lineAg ln(1/h);1:

m;h for Ag ln~1/h!@1,
17240
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m;gln(1/h) for Ag ln~1/h!!1. ~17!

The transition line hÄhc„D…

Now we consider the behavior of the model in the vicin
of the transition linehc(D). For this we have used the Ferm
representation of Eq.~1!. At first, in Eq. ~1! we perform a
rotation of the spins around theY axis by p/2 ~so that the
magnetic field will be directed along theZ axis! followed by
the Jordan-Wigner transformation to the Fermi operat
an

† ,an . As a result, we obtain the Fermi Hamiltonian in th
form

HF52
hN

2
1

N

4
1( S h212

11D

2
coskDak

†ak

1
12D

4 ( sink~ak
†a2k

† 1a2kak!

1( an
†anan11

† an11 . ~18!

Treating the HamiltonianHF in the mean-field approxima
tion we find the ground-state energyE0 and the excitation
spectrum«(k).

The main results following from the mean-field conside
ation are

~1! The function«(k) has a minimum atkmin , which is
changed fromp/2 at h50 to zero ath5h1(D) and kmin
50 for h.h1(D). The gap in the spectrum«(k) vanishes at
hc(D) (hc.h1) and for h.h1 is m;uh2hcu. The depen-
dencies ofh1(D) and hc(D) are shown on Fig. 1. There i
the staggered magnetization alongY(Z) axis for D,1(D
.1) at h,hc and it behaves as;uh2hcu1/8 at h→hc . The
magnetizations5^Sn

x& has a logarithmic singularity ath
→hc . These results show that the transition ath5hc(D)
belongs to the universality class of the ITF model.

~2! The mean field approximation is exact on the classi
line h5hcl(D).

~3! In the vicinity of the pointh52, D51 the fermion
density is small and the mean field approximation gives
accuracy in the energy, at least, up tog3 or (22h)4. For this
case the gap is

m5uh2hcu, h.h1

m5
g

2A2
Ahc2h2

g2

32
, h,h1 ~19!

wherehc522g/22g2/32, h15hc2g2/16.
It is interesting to compare Eqs.~19! with the conformal

estimation of the gapm;g. The conformal approach dete
minesg dependence only, while Eq.~19! gives a prefactor
depending onh.

The magnetic susceptibilityx(h) is

x5
2

pg
lnS g2

hc2hD , g@Ahc2h
9-3
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x5
1

A2p

1

Ahc2h
, g!Ahc2h. ~20!

As follows from Eq.~20! there is a crossover from squa
root to logarithmic divergence ofx.

The line DÄÀ1

On the lineD521 the model~1! reduces to the isotropic
ferromagnet in a staggered magnetic field. This mode
nonintegrable, but it was suggested13 that the system is gov
erned by ac51 conformal field theory up to some critica
value h5h0, where the phase transition of the Kosterlit
Thouless type takes place. In the vicinity of the lineD5
21 the Hamiltonian~1! becomes

H52( Sn•Sn112h( ~21!nSn
x1~11D!( Sn

zSn11
z ,

~21!

where (11D)!1 is a small parameter.
It can be shown4 that athcl(D),h!1 low energy states

of Eq. ~21! is described by theXYZ Hamiltonian

H52( F S 12
h2

2 DSn
xSn11

x 1Sn
ySn11

y 2DSn
zSn11

z G .
~22!

The derivation of this mapping is based on the fact t
the transition operator((21)nSn

x connects the low-lying
states with the states with high energies;2 only. The coin-
cidence of the low-energy spectra of Eqs.~21! and ~22! for
hcl(D),h!1 has been checked numerically. The spectr
of low-lying excitations of theXYZ model14 as well as the
initial model~1! in the vicinity of the pointD521,h50 can
be described asymptotically exactly by the spin-wa
theory,1 which gives

m5hA~11D!/2, D.21
r.

J.

17240
is

t

e

m5A~11D!~11D2h2/2!, D,21. ~23!

The validity of the spin-wave approximation is quite nat
ral because in the vicinity of the pointD521,h50 the
number of magnons forming the ground state is small.

We note that the gap~23! for D>21 coincides with the
conformal theory result~7! and provides us with preexpo
nential factor for the gap.

On the lineD521 the model~22! is theXXZ model and
the correlation functions have the power-law decay. The s
ing dimensions of operatorsSi

x and Si
y ,Si

z on this line are
dx5b(h)/2 and dy5dz51/2b(h). The function b(h) is
generally unknown, but ath!1, where the mapping toXYZ
model is valid,b(h);p/h.

Strictly on the lineD521 at some value ofh5h0 the
gap appears. It means that the magnetic field term is ir
evant ath,h0 (b(h).4) and becomes marginal ath5h0,
whereb(h0)54. So, at the pointh5h0 the transition is of
the Kosterlitz-Thouless type, and forh.h0 the mass gap is
exponentially small.

Using the conformal invariance of the model~21! at D
521 andh,h0 we carried out finite-size calculation of th
exponentb(h). The extrapolated functionb(h) agree well
with the dependencep/h at h!1 andb54 ath0.0.52. On
the other hand, the mean-field approach gives the ra
crude valueh05hc(21)50.69.

In summary, we have studied the 1DXXZ model in the
transverse magnetic field. It is shown that the spectrum of
model is gapped except critical lines on the (h,D) plane,
where the LRO vanishes. We found the critical exponents
the gap and the LRO in the vicinity of these lines.
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