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Field theoretical study of a spin-1Õ2 ladder with unequal chain exchanges
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We study the low-energy properties of a Heisenberg spin-1/2 zigzag ladder with different exchange constants
on the two chains. Using a nonlinears-model field theory and Abelian bosonization, we find that the excita-
tions are gapless, with a finite spin-wave velocity, if the values of the chain exchanges are small. If the chain
exchanges are large, the system is gapped, and the energy spectra of the kink and antikink excitations are
different from each other.
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I. INTRODUCTION

For the last several decades, one-dimensional and qu
one-dimensional quantum spin systems have been stu
extensively. Experimentally, many such systems are kno
to present a wide range of unusual properties, and a va
of analytical and numerical techniques exist for study
these systems theoretically. The three observations w
make the low-dimensional spin systems particularly inte
ing are~i! Haldane’s conjecture for one-dimensional antife
romagnetic spin systems,1 ~ii ! the discovery of high-
temperature superconductivity and its magnetic propertie
low doping,2 and ~iii ! the discovery of ladder materials.3

In spin ladders, two or more spin chains interact with ea
other. For ladders with a railroad geometry, it has been
served that spin-1/2 systems with an even number of legs
gapped, while systems with an odd number of chains h
gapless excitations.4,5 However, the frustrated zigzag ladd
shows a gapless spin liquid state or a gapped dimer s
depending on the ratio of the exchanges of the rungs to
chains.7

Another interesting kind of system is the spin-Peierls s
tem such as CuGeO3. The ground state and the low
temperature thermodynamic properties of this have b
studied in great detail, and it has been shown that there
spontaneous dimerization of the nearest-neighbor interac
below a particular temperature.6

Relatively less is known about a spin ladder with asy
metry in the chains. An extreme case of this situation, i
when a chain is absent from the Fig. 1~sawtooth chain!, has
been studied by two groups.8 The ground state is like that o
the Majumdar-Ghosh model,9 except that the two kinds o
low-energy excitations~kinks and antikinks! which interpo-
late between the two degenerate ground states have diffe
excitation spectra.

In this paper, we study a two-chain ladder system w
unequal exchange constants of the chains, rather tha
dimerization in the rungs. Recently, Chenet al.10 studied this
problem. We will discuss their results below. The plan of t
paper is as follows. In Sec. II, we will analyze the proble
using the nonlinears-model ~NLSM! field theory. Section
III will discuss the Abelian bosonization approach.
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II. NONLINEAR s-MODEL STUDY

In this section we study the NLSM theory of our mode
which is shown schematically in Fig. 1. The system can
viewed either as a ladder with unequal exchanges on the
chains, or as a single chain with unequal next-near
neighbor exchanges. The Hamiltonian is

H5(
n

@J1SW n•SW n111J2~12~21!nd!SW n•SW n12#, ~1!

where n is the site index,J1 , J2>0, and 0<d<1. If we
view the system as two chains, then the lower~upper! chain
contains the odd~even! numbered sites.

To begin the analysis, we first find the configuration of t
spins in the classical ground state of the model. For sm
values ofJ2 /J1, neighboring spins are aligned antiparallel
each other; this is called the Neel phase. We can then de
a NLSM field theory which describes the low-energy a
long-wavelength excitations. In the Neel phase, this is giv
by anO(3) NLSM with a topological term. We define two
fields fW n and lWn as a linear combination of two spins as

fW n5
SW 2n212SW 2n

2S
, ~2!

lWn5
SW 2n211SW 2n

2a
,

where a is the lattice spacing. One can check thatfW n• lWn
50, and

FIG. 1. Schematic diagram of a spin ladder with unequal ch
exchanges.
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fW n
2511

1

S
2

a2 lWn
2

S2
. ~3!

ThusfW n becomes a unit vector in the large-S limit; note that
this fact depends crucially on the antiparallel arrangemen
neighboring spins in the classical ground state in the N
phase. The unit cell of this ground state is labeled by
integer n, and it contains the sites 2n21 and 2n, respec-
tively; the length of a unit cell is 2a.

The fieldsfW n and lWn satisfy the commutation relations

@ lWma ,fW nb#5
i

2a
dmn(

c
eabcfW nc , ~4!

wherem andn are the unit cell labels;a, b, andc denote the
x, y, andz components of the field; andexyz is the completely
antisymmetric tensor withexyz51. This relation enables u
to write lWn5fW n3PW n , where the vectorPW is canonically
conjugate tofW , namely,

@fma ,Pnb#5
i

2a
dmndab . ~5!

To define the continuum limit of this theory, we introduce
spatial coordinatex which is equal to 2na at the location of
thenth unit cell. Summations are then replaced by integr
i.e., (n→*dx/(2a).

SincefW n is a unit vector,fẆ andfW 8 are orthogonal tofW .
In the low-energy and long-wavelength limit, the domina
terms in the Hamiltonian are those which have second-o
space-time derivatives offW and first-order derivatives oflW

~sincelW contains first-order derivatives offW ).11,12We expand
the fieldsfW n115fW (x12a) and lWn115 lW(x12a), wherex
52na, as

fW ~x12a!5fW ~x!12afW 8~x!12a2fW 9~x!1•••, ~6!

lW~x12a!5 lW~x!12a lW8~x!1•••.

Using Eqs.~2!, ~3!, and~6!, we obtain the Hamiltonian

H5E dxFcg2

2 S lW1
u

4p
fW 8D 2

1
c

2g2
fW 82G , ~7!

where

c52J1SaA124J2 /J1,

g25
2

SA124J2 /J1

,

u52pS. ~8!

Note that the values ofc, g2 andu turn out to be indepen
dent ofd in this approach. Further, this NLSM is valid on
if J2 /J1,1/4. ForJ2 /J1.1/4, a different NLSM is required
because the configuration of the spins in the classical gro
state is then a spiral in a plane rather than an antipar
17240
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arrangement of neighboring spins. The order paramete
the NLSM in the spiral phase is a SO~3! matrix instead of a
unit vector.11

One can find the energy-momentum dispersion relation
the formv5cuku, where c is the spin-wave velocity, by con
sidering small fluctuations aroundfW 5(0,0,1), and expand-
ing the Hamiltonian in Eq.~7! to second order in those fluc
tuations. Similarly one can find the strength of the interact
between the spin waves,g2, by expanding the Hamiltonian
to fourth order in the fluctuations.

From Eq.~8!, we see that the coefficient of the topolog
cal termu5p for S51/2. This implies that there is no gap i
the low-energy excitation spectrum. This result is differe
from that of the zigzag ladder with a dimerization in th
nearest-neighbor interaction, i.e., with a term li
J1(21)nSW n•SW n11. In this caseu52pS(12d) is different
from p for S51/2,12,13 and the the low-energy excitation
are gapped.

III. ABELIAN BOSONIZATION STUDY

We now study the low-energy spectrum using Abeli
bosonization. We write the Hamiltonian as

H5H11H21H2d , ~9!

where

H15J1(
n

SW n•SW n11 ,

H25J2(
n

SW n•SW n12 , ~10!

H2d52J2d(
n

~21!nSW n•SW n12 .

We then convert this to a Hamiltonian of spinless fermio
using the Jordan-Wigner transformation. The relations
tween the spin and the electron creation and annihila
operators are

Sn
z5cn

†cn21/2,

Sn
25~21!ncnexpF ip (

j 52`

n21

nj G , ~11!

Sn
15~21!ncn

†expF2 ip (
j 52`

n21

nj G ,

wherenj5c j
†c j is the fermion number at sitej. The Hamil-

tonians in Eqs.~10! then become

H152
J1

2 (
n

~cn11
† cn1cn

†cn11!

1J1(
n

~cn
†cn21/2!~cn11

† cn1121/2!, ~12!
8-2
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H25J2(
n

~cn12
† cn1h.c.!~cn11

† cn1121/2!

1J2(
n

~cn
†cn21/2!~cn12

† cn1221/2!, ~13!

H2d52J2d(
n

~21!n~cn12
† cn1h.c.!~cn11

† cn1121/2!

2J2d(
n

~21!n~cn
†cn21/2!~cn12

† cn1221/2!.

~14!

We will assume below thatJ1@J2. In the absence of a mag
netic field, the two Fermi points lie atkF56p/2. We linear-
ize the energy spectrum around these points, and expres
lattice operators in terms of two continuum fieldsR and L
which vary slowly on the scale of a lattice spacing,

cn5Aa@ i nR~n!1~2 i !nL~n!#, ~15!

whereR andL describe the second-quantized fields of rig
and left-moving fermions, respectively. Now we boson
our Hamiltonian following the standard procedure. The ba
relations used to obtain the bosonized Hamiltonian are14

Sz~x!5a@r~x!1~21! jM ~x!#, ~16!

where the fermion density r(x)5:R†(x)R(x):
1:L†(x)L(x):, and the mass operatorM (x)5:R†(x)L(x):
1:L†(x)R(x):. ~The double dots denote normal ordering!.
The bosonized expressions forr andM are given by

r~x!52
1

Ap
]xf~x!, ~17!

M ~x!5
1

pa
cos@2Apf~x!#.

The bosonized version ofH1 is known to be

H15E dxFv1K

2
P21

v1

2K
~]xf!21

v1

~pa!2
:cos~4Apf!:G ,

~18!

wherev15pJ1a/2 is the spin-wave velocity, andK51/2 is
the bosonization interaction parameter for the isotropic sp
1/2 antiferromagnet. The last term in Eq.~18! is marginal,
and is known to have no effect at long distances in the se
of the renormalization group~RG!.14 Using Eqs.~13!, ~15!,
and ~16!, we obtain the following expression forH2, where
we have ignored terms of the order ofa4 and higher:

H25J2a2(
n

$2@rn112~21!nMn11#

3@rn1rn121~21!nMn1~21!nMn12#

1~rn1~21!nMn!~rn121~21!nMn12!%. ~19!
17240
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To derive this, we have used Taylor expansions such as

R~n12!5R~n!12aR8~n!12a2R9~n!1••• ~20!

to write

R†~n12!R~n!1R†~n!R~n12!

5R†~n12!R~n12!1R†~n!R~n!1O~a2!. ~21!

On keeping only the terms which do not oscillate as (21)n

~which would give zero in the continuum limit! and then
expressing the operatorsr and M in the bosonic language
the above expression becomes

H25v2E dxF2
1

p
~]xf!21

3

2~pa!2
cos~4Apf!G ,

~22!

wherev25J2a. Both terms in Eq.~22! have a scaling dimen
sion 2, and they are marginal. It is known that they have
effect in the RG sense as long asJ2 /J1,0.2411.7 Finally, we
consider the bosonized expression forH2d . The nonoscilla-
tory terms in this are given by

H2d52J2da2(
n

@rnMn121Mnrn122rn11~Mn1Mn12!

1Mn11~rn1rn12!#. ~23!

Now we perform an operator product expansion of the ab
Hamiltonian. In the limitz→w, we can use the expansion15

]zf~z!:eibf(w):52
ib

2K~z2w!
:eibf(w):1:]zf~z!eibf(z): .

~24!

(b52Ap andK51/2 for us.! The first term in Eq.~24! has
a scaling dimension ofb2K/(4p)51/2, and is therefore rel-
evant. However, due to the denominatorz2w which takes
the values6a or 62a, we see that the various releva
terms in Eq.~23! cancel each other; for instance, there a
cancellations in rnMn121Mnrn12 , rn11Mn1Mn11rn ,
andrn11Mn121Mn11rn12. If this cancellation had not oc
curred, the bosonized version ofH2d would have contained
the relevant operator cos(2Apf) with a scaling dimension of
1/2. However, due to the cancellation,H2d contains no rel-
evant operators with scaling dimensions less than 2. The
ond term in Eq.~24! is a total derivative, and its contributio
therefore vanishes in the Hamiltonian where it appears ins
an integral over allx. Thus the system continues to rema
gapless~and lies in the same spin-liquid phase as the mo
described by the nearest-neighbor HamiltonianH1) even if
dÞ0, provided thatJ2!J1. This is in contrast to a dimeriza
tion in J1; in this case Abelian bosonization correctly pr
duces a relevant term which leads to a gapped phase.

Recently Chenet al.10 studied the same model as ou
using Abelian bosonization followed by a perturbati
renormalization-group analysis. They claim that the pert
bation due to theJ2d terms is relevant, but that it does no
lead to a gapped phase; instead, they argue that it leads
different and unusual fixed point where the system is gap
8-3
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and has a vanishing spin velocity. Our study shows that
to some cancellations, theJ2d terms donot lead to any rel-
evant terms in the continuum theory; namely, the pertur
tion which might have led to the unusual fixed point of Ch
et al. has a coefficient of zero in the present model. The
fore, the system remains gapless with a finite spin velocit
J2 is small.

Finally, let us discuss the low-energy excitations of th
model whenJ2 becomes larger. In particular, we find th
these are given by kinks and antikinks whenJ25J1/2, for all
values ofd lying in the range@0,1#. ~The Majumdar-Ghosh
model is a special case of this whered50). Then the Hamil-
tonian in Eq.~1! can be written, up to a constant, as

H5
J1

4 (
n

@~11d!~SW 2n211SW 2n1SW 2n11!2

1~12d!~SW 2n1SW 2n111SW 2n12!2#. ~25!

Hence the ground state is given by a configuration in wh
the total spin of each triangle is 1/2. Since this can be d
either by forming a singlet with the pair of spins (2n
21,2n) for all values ofn, or by forming a singlet with the
pair of spins (2n,2n11) for all values ofn, we see that the
ground state is doubly degenerate. Let us denote these
ground states byA and B respectively. The lowest-energ
excitations~kink and antikink! are formed by interpolating
between these two states. The kink has the ground stateA on
s

C

.

.
.
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the left and the ground stateB on the right, while the antikink
has the ground stateB on the left and the ground stateA on
the right. For general values ofd, we find that the kink and
antikink dispersions are nondegenerate in contrast with
Majumdar-Ghosh model.8 A simple variational calculations
gives the kink and antikink dispersions to beJ1(12d)(5
14 cosk)/8 andJ1(11d)(514 cosk)/8, respectively. Hence
the minimum gap for the kink and antikink excitations a
J1(12d)/8 andJ1(11d)/8 respectively, occurring atk5p.
This result was also obtained by Chenet al.10

To summarize, we have studied the low-lying excitatio
of a zigzag ladder with unequal chain exchanges. Both
NLSM and the Abelian bosonization show that the syst
remains gapless ifJ2!J1. We have also shown that the sy
tem is gapped~with two degenerate ground states! for J2
5J1/2. It would be interesting to use numerical techniqu
like the density-matrix renormalization group16 to study the
phase diagram of the ground state as a function of the
parametersJ2 /J1 andd.
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