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Field theoretical study of a spin-12 ladder with unequal chain exchanges
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We study the low-energy properties of a Heisenberg spin-1/2 zigzag ladder with different exchange constants
on the two chains. Using a nonlinearmodel field theory and Abelian bosonization, we find that the excita-
tions are gapless, with a finite spin-wave velocity, if the values of the chain exchanges are small. If the chain
exchanges are large, the system is gapped, and the energy spectra of the kink and antikink excitations are
different from each other.
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I. INTRODUCTION II. NONLINEAR o-MODEL STUDY

In this section we study the NLSM theory of our model,

For the last several decades, one-dimensional and quasitich is shown schematically in Fig. 1. The system can be
one-dimensional quantum spin systems have been studigtewed either as a ladder with unequal exchanges on the two
extensively. Experimentally, many such systems are know§hains, or as a single chain with unequal next-nearest-
to present a wide range of unusual properties, and a variefjeighbor exchanges. The Hamiltonian is
of analytical and numerical techniques exist for studying
these systems theoretically. The three observations which
make the low-dimensional spin systems particularly interst-
ing are(i) Haldane’s conjecture for one-dimensional antifer-
romagnetic spin systents,(ii) the discovery of high- wheren is the site indexJ;, J,=0, and 0<d<1. If we
temperature superconductivity and its magnetic properties atiew the system as two chains, then the lovigspe) chain
low doping? and (iii ) the discovery of ladder materials. contains the oddeven numbered sites.

In spin ladders, two or more spin chains interact with each  To begin the analysis, we first find the configuration of the
other. For ladders with a railroad geometry, it has been obspins in the classical ground state of the model. For small
served that spin-1/2 systems with an even number of legs anlues ofJ,/J;, neighboring spins are aligned antiparallel to
gapped, while systems with an odd number of chains hav&ach other_; this is called _the Neel phase. We can then derive
gapless excitation’® However, the frustrated zigzag ladder @ NLSM field theory which describes the low-energy and
shows a gapless spin liquid state or a gapped dimer Statgzng-wavelength exc!tatlons. In th.e Neel phase, th|§ is given
depending on the ratio of the exchanges of the rungs to thBY @nO(3) NLSM with a topological term. We define two

H=§[Jlén-§n+1+J2<1—<—1>“5>én~ém], 1)

chains’ fields ¢, and rn as a linear combination of two spins as
Another interesting kind of system is the spin-Peierls sys-

tem such as CuGeQ The ground state and the low- . S-S,

temperature thermodynamic properties of this have been ¢n:2—S, 2

studied in great detail, and it has been shown that there is a
spontaneous dimerization of the nearest-neighbor interaction . -
below a particular temperatufe. i :SZn—l+ Szn

Relatively less is known about a spin ladder with asym- " 2a '
metry in the chains. An extreme case of this situation, i.e.,
when a chain is absent from the Fig(sawtooth chaijj has  wherea is the lattice spacing. One can check thaf- I,
been studied by two groufsThe ground state is like that of =0, and
the Majumdar-Ghosh mod@lexcept that the two kinds of
low-energy excitationgkinks and antikinks which interpo- 2 J(1-9) 4 6
late between the two degenerate ground states have different
excitation spectra.

In this paper, we study a two-chain ladder system with
unequal exchange constants of the chains, rather than a
dimerization in the rungs. Recently, Chenall° studied this

problem. We will discuss their results below. The plan of the 1 5+ 3 5 7

paper is as follows. In Sec. I, we will analyze the problem

using the nonlinear-model (NLSM) field theory. Section FIG. 1. Schematic diagram of a spin ladder with unequal chain
[l will discuss the Abelian bosonization approach. exchanges.
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Thustn becomes a unit vector in the lar@imit; note that

this fact depends crucially on the antiparallel arrangement o
neighboring spins in the classical ground state in the Nee}'
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arrangement of neighboring spins. The order parameter of
the NLSM in the spiral phase is a $&) matrix instead of a
unit vector!
One can find the energy-momentum dispersion relation of
e formw=c|k|, where c is the spin-wave velocity, by con-

dering small fluctuations arounﬁz(o,o,l), and expand-

phase. The unit cell of this ground state is labeled by arf"d the Hamiltonian in Eq(7) to second order in those fluc-

integern, and it contains the sitesn2-1 and 2h, respec-
tively; the length of a unit cell is &.

The fieldsJ)n and fn satisfy the commutation relations

[rma1(2’nb]: é_aamnz Gabc‘;anu (4)

wherem andn are the unit cell labelsg, b, andc denote the
X, ¥, andz components of the field; ang,,, is the completely

antisymmetric tensor witle,,,= 1. This relation enables us

to write I,,= &, x11,,, where the vectodl is canonically

tuations. Similarly one can find the strength of the interaction
between the spin waveg?, by expanding the Hamiltonian
to fourth order in the fluctuations.

From Eq.(8), we see that the coefficient of the topologi-
cal termé@= 7r for S=1/2. This implies that there is no gap in
the low-energy excitation spectrum. This result is different
from that of the zigzag ladder with a dimerization in the
nearest-neighbor interaction, i.e., with a term like
J1(—1)"S,-S,4 1. In this cased=27S(1-6) is different
from  for S=1/2121 and the the low-energy excitations
are gapped.

conjugate tod, namely,
I1l. ABELIAN BOSONIZATION STUDY

[DmarIlnp]= iamnaab_ (5 We now study the low-energy spectrum using Abelian
bosonization. We write the Hamiltonian as

To define the continuum limit of this theory, we introduce a

spatial coordinatex which is equal to Ba at the location of

the nth unit cell. Summations are then replaced by integralsynhere

ie., 2,—fdx/(2a).

Sinced, is a unit vectorg and ¢’ are orthogonal tap.
In the low-energy and long-wavelength limit, the dominant n
terms in the Hamiltonian are those which have second-order

space-time derivatives Qf) and first-order derivatives df
(sincel contains first-order derivatives df).**?We expand

the fields ¢, . 1= ¢(x+2a) and [ ,,,=1(x+2a), wherex
=2na, as

H:H1+H2+H25, (9)

H2=Jz§ SHISHPS (10

H25=—J25; (—1)"Sy-Shiz.
7 7 7 27n L
d(x+2a)=o(x)+2a¢’'(x)+2a¢"(x)+---, (6) We then convert this to a Hamiltonian of spinless fermions
using the Jordan-Wigner transformation. The relations be-
tween the spin and the electron creation and annihilation
operators are

[(x+2a)=T(x)+2al’(X)+---.
Using Egs.(2), (3), and(6), we obtain the Hamiltonian

cg’(. 6.\% ¢ ., SE= o ha— 112,
H= | dX —| [+ -—¢' | + —¢'?|, (7
2 4ar 292 n—1
where Srf:(—l)”(ﬂnexr{irrj; ”J} (1)
C=2J1$a\/1—4JZ/J1, n-1
) Sh=( 1)”1//gexr{—i7r > nj},
2_ j=—c
' ="F—
SV1-4J,/3, wheren; = w;(lﬂj is the fermion number at sife The Hamil-
tonians in Eqs(10) then become
0=27S. (8)

Note that the values of, g2 and 6 turn out to be indepen-
dent of § in this approach. Further, this NLSM is valid only

if J,/3,<1/4. ForJ,/J,>1/4, a different NLSM is required
because the configuration of the spins in the classical ground
state is then a spiral in a plane rather than an antiparallel

J
Hi= =5 2 (st Uline)

+J1§ (W= U2 (P 01— 112),  (12)
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To derive this, we have used Taylor expansions such as

Hy=352 (s o+ NCY(WUh, 11— 1/2)
n R(n+2)=R(n)+2aR’(n)+2a°R"(n)+--- (20

F0,35 (W= VD oo 12, 13 OME

A R'(n+2)R(n)+R'(N)R(n+2)
_pt T 2

Has= =326 (=¥} otnt N.C) (s 1tner—1/2) =RIN+2)RM+2)+RIMRI)+0(@). (2D

" On keeping only the terms which do not oscillate asl()"

(which would give zero in the continuum limiand then
— 3,82 (=)™ (Whba— L2 (4 thns0—112). expressing the operatogsand M in the bosonic language,

" the above expression becomes
(14

We will assume below that;>J,. In the absence of a mag- HZZUZJ dxl — i(&x¢>)2+ cog 7o) |,
netic field, the two Fermi points lie &= *+ 7/2. We linear- ™ 2(ma)?

ize the energy spectrum around these points, and express the (22
lattice operators in terms of two continuum fielBsand L

: ; X wherev,=J,a. Both terms in Eq(22) have a scaling dimen-
which vary slowly on the scale of a lattice spacing, sion 2, and they are marginal. It is known that they have no
= o effect in the RG sense as longhg J;<0.2411 Finally, we

Yn= ‘/E[' R(n)+(=1)"L(n)], (19 consider the bosonized expression fbys. The nonoscilla-

whereR andL describe the second-quantized fields of right-tory terms in this are given by

and left-moving fermions, respectively. Now we bosonize

our Hamiltonian following the standard procedure. The basicyy  _ _ j_ 552 M. +M _ M-+ M

relations used to obtain the bosonized Hamiltoniari‘are 2o T2 ; LoaMus2+ Mopns 2= pnra(Mat Mas2)

SH(x)=a[p(x)+(—1)M(x)], (16) +Mpi1(pntpns2)]- (23)
where the fermion density p(x)=:RT(X)R(x): Nowwe perform an operator product expansion of the above
+:LT(x)L(x):, and the mass operatdd (x)=:R(x)L(x): ~ Hamiltonian. In the limitz—w, we can use the expansion
+:LT(x) R(?():. (The dOL_JbIe dots denote n_ormal ordeping ' ig ' '

The bosonized expressions ferandM are given by 3,0(z):€PPW): = — m;elﬁdv(w); +10,¢(2)e'B*@:
1 (24)
p(X)=— \/_;axd’(x)’ 17 (B=2\m andK=1/2 for us) The first term in Eq(24) has

a scaling dimension g8?K/(4)=1/2, and is therefore rel-
1 evant. However, due to the denominatorw which takes
M(x)= —cog 2\/7(x)]. the values*a or =2a, we see that the various relevant
ma terms in Eq.(23) cancel each other; for instance, there are
. . . cancellations inp,M, 2+Mppni2, pPneiMatMy1pon,
The bosonized version ¢, is known to be andpp; 1M, 2+Mpi1pn40. If this cancellation had not oc-
curred, the bosonized version i, ; would have contained
H,= f dx %Hq ﬂ(&x¢)2+ ‘cog4\m): |, the relevant operator cos( ¢) with a scaling dimension of
2 2K (wa)? 1/2. However, due to the cancellatiad,; contains no rel-
(18)  evant operators with scaling dimensions less than 2. The sec-
ond term in Eq(24) is a total derivative, and its contribution

wherev, =mJ;a/2 is the spin-wave velocity, al=1/2iS 0 otore vanishes in the Hamiltonian where it appears inside
the bosonization interaction parameter for the isotropic spin-

g . ) ) an integral over alk. Thus the system continues to remain
1/2 antiferromagnet. The last term in Ed.8) is marginal, o A
i . . aplesqand lies in the same spin-liquid phase as the model
and is known to have no effect at long distances in the sen

o 14y escribed by the nearest-neighbor Hamiltonkdy) even if
of the renormallzatlon grou(R_G). Using _Eqs.(13), (15), 6#0, provided thatl,<J;. This is in contrast to a dimeriza-
and (16), we obtain the following expression fét,, where

we have ignored terms of the order af and higher: tion in Jq; in this case Ab_ellan bosonization correctly pro-
duces a relevant term which leads to a gapped phase.

Recently Cheret all° studied the same model as ours

U1

H2:Jzazz {=[pPn+1—(=1)"M 4] using Abelian bosonization followed by a perturbative
n renormalization-group analysis. They claim that the pertur-
X[pnt prsot(—1)"M+(—1)"M,.,] bation due to thel, 4 terms is relevant, but that it does not

lead to a gapped phase; instead, they argue that it leads to a
+(pnt (D" ) (pri2t(—1)"M 4 0)}. (19 different and unusual fixed point where the system is gapless
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and has a vanishing spin velocity. Our study shows that duéhe left and the ground staBeon the right, while the antikink
to some cancellations, thk 6 terms donot lead to any rel- has the ground stat on the left and the ground stafeon
evant terms in the continuum theory; namely, the perturbathe right. For general values & we find that the kink and
tion which might have led to the unusual fixed point of Chenantikink dispersions are nondegenerate in contrast with the
et al. has a coefficient of zero in the present model. ThereMajumdar-Ghosh modélA simple variational calculations
fore, the system remains gapless with a finite spin velocity ifgives the kink and antikink dispersions to Be(1— 6)(5
J, is small. +4 cosk)/8 andJ(1+ 6)(5+ 4 cosk)/8, respectively. Hence
Finally, let us discuss the low-energy excitations of thisthe minimum gap for the kink and antikink excitations are
model whenJ, becomes larger. In particular, we find that J;(1— 6)/8 andJ;(1+ 5)/8 respectively, occurring &= .
these are given by kinks and antikinks whis=J,/2, forall  This result was also obtained by Chenal°
values of§ lying in the rangd 0,1]. (The Majumdar-Ghosh To summarize, we have studied the low-lying excitations
model is a special case of this whe¥e 0). Then the Hamil- of a zigzag ladder with unequal chain exchanges. Both the
tonian in Eq.(1) can be written, up to a constant, as NLSM and the Abelian bosonization show that the system
remains gapless i#,<J;. We have also shown that the sys-
tem is gappedwith two degenerate ground stakder J,
=J4/2. It would be interesting to use numerical techniques
R R R like the density-matrix renormalization grotigo study the
+(1=6)(Sont Sons 1+ Sons2)2]. (25 phase diagram of the ground state as a function of the two
rParameterslzl\]1 and 6.

J . - -
H=" 2 [(1+8)(Sin1+ Son+ Sonen)?

Hence the ground state is given by a configuration in whic
the total spin of each triangle is 1/2. Since this can be done

either by forming a singlet with the pair of spins n2 ACKNOWLEDGMENTS

—1,2n) for all values ofn, or by forming a singlet with the

pair of spins (&,2n+ 1) for all values ofn, we see that the We would like to thank Marco Ameduri for useful discus-
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