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Reentrant phase transitions in the Blume-Emery-Griffiths model on a simple cubic lattice:
The two-particle cluster approximation

O. R. Baran and R. R. Levitskii
Institute for Condensed Matter Physics, Svientsitskii 1, Lviv 79011, Ukraine
(Received 23 October 2001; published 18 April 202

The two-particle cluster approximation is applied to study the reentrant and double reentrant behaviors of the
spin-1 Ising model with nearest-neighbor bilinear and biquadratic exchange interactions and single-ion anisot-
ropy on a simple cubic lattice. The phase diagrams are constructed and the temperature dependences of dipolar
and quadrupolar moments are calculated at various values of model parataethisse when it suffices to
consider a one-sublattice problgm
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I. INTRODUCTION gered quadrupole phases is absent, since only the one-
sublattice model was considejed
The Blume-Emery-Griffiths modglBEG) corresponding In this paper we study the BEG model on a simple cubic

to a spin-1 Ising system is one of the most extensively studlattice within TPCA at such values of antiferromagnetic bi-
ied models in condensed-matter physics. That is so not onlguadratic interaction and a single-ion anisotrdépyinear in-
because of the relative simplicity with which approximateteraction is ferromagneti¢{>0), when reentrant and double
calculations for this model can be carried out and tested, agentrant phase transitions between the quadrupole phase and
well as of the fundamental theoretical interest arising fromthe ferromagnetic phase take place. We restrict our consider-
the richness of the phase diagram that is exhibited due to thation to those values of the parametei§’[K>—1) at
competition of interactions, but also because versions andhich it suffices to consider a one-sublattice problem. This
extensions of the model can be applied for the description ofroblem has been approached within Bethe approximation,
simple and multicomponent fluids? dipolar and quadrupo- MFA,” and within renormalization-group theotyHowever,

lar orderings in magnefs® crystals with ferromagnetic Ref. 15 contains certain errors in numerical calculations;

impurities? ordering in semiconducting alloysetc. therefore, the phase diagrams presented there and some of
The BEG Hamiltonian is given by the conclusions drawn are qualitatively incorrect.
N 1
H= _iZl DSZ_E % [KSSi, s+ K’SIZS|2+ sl (1) II. THE TWO-PARTICLE CLUSTER APPROXIMATION

The expression for free energy within TPCA is con-
whereS§=0,+1, D is a single-ion anisotropy energg,and  structed on the basis of a one-particle Hamiltortity)
K’ are the constants of bilinear and biquadratic short-range
interaction, and the summatiané is going over nearest- Hi=-%S,—-%'S?, %=D+zp, %' =D+z¢', (2
neighbor pairs.

The BEG model has been investigated by different teCh(z is the number of nearest neighbors, magnetic fleld0
niques: using the mean-field approximatiéMFA),"~*” s introduced for conveniengeand a two-particle Hamil-
effective-field theory, ™ two-particle cluster approximation tonianH.,,

(TPCA),lZ‘;;‘Bethe approximatior high—tempera}yrlg series

expansions, renormalization-group theoryRG),""* and __= =, 2, 2 r 22
M(?nte Carlo simulationé?'lg‘zgé\t cgrtain sgts of the model Hip= =% (S S) =% (514 %) ~KS$S-K'SS,,
parameters, the BEG model on three-dimensional lattices can

undergo several kinds of reentrant and double reentrant

()

phase transitionsPT) against temperaturesee Refs. 7, 15, x=T+(z-1)¢, x»'=D+(z-1)¢’
and 2J. i 2,13,22
It should be noted that at zero single-ion anisotropy, thdn @ usual way=™
TPCA (results of which coincide with results of the constant-
coupling and Bethe approximationanlike the MFA, cor- z
rectly responds to the competition between ferromagnetic bi- F=—kgTN|(1-2)InZ,+ 5'” Z12|, (4)
linear and antiferromagnetic biquadratic interactions. The
phase diagrams obtained within TPCA for different lattice ”
types?15 qualitatively agree with the Monte Carlo simula- Z,=2&" coshi %) +1, 5
tions results??* We would like to mention that the phase B
diagrams presented in Refs. 12 and 21 in the temperature vs 212:266(2;’+K’)[86Kco3y(237)+efﬁK]
biguadratic interaction plane at zero single-ion anisotropy are _ .
not complete(the line separating the quadrupole and stag- +4e3"'cosr(/3}?)+l.
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FIG. 1. The projection of the phase diagram
onto the @, k') plane.

Here B=(kgT) 1. The cluster parameterg and ¢’ are

found by minimizing the free energy with respect to them. (two-sublattice orderingm of the both sublattices are zero,
The following system of equations fgr and ¢’ is obtained:

e#*'sinh B%)
Zy
e B(2% ' +K'+K)Isinh(28%) + & sinh( B
B ZlZ ,
(6)
%' cosh{ Bx)
Zy

P K efReost28% ) + & PK]+ e costi Bx)
a ZlZ .

phase (=0, q+32); SQ the staggered quadrupole phase

whereas the quadrupolar moments of the sublattices are dif-
feren). We also introduce the notationk’'=K’/K, d
=D/K, andt=kgT/(zK).

It should be rememberéd®’~'%that the equations pre-
sented abovéwith a singleq and singlem for the whole
lattice) cannot be used in the entire space of the model pa-
rameters, since at certain setsldf d, t the SQ ordering
takes placewith different g for different sublattices Thus,
for a simple cubic lattice this happénst the sets of the
parameters from the regions'<—1 and d;<d< -6k’

—6 (d; depends ork’: d;=0,-0.6,—-1.2 for k'=—1,
—2.25, —3.85, respectively The lined=—-6k’—6 atk’

< —1 separates thE and SQ orderings in the ground state
(d,k’) phase diagrarf® This accords with thel(,t) phase
diagrams obtained within Bethe approximafiorat those
values of the model parameters when the transitiQrsF

Using Egs.(6) we can write simple expressions for magne- - Q—SQ, Q—F—SQ Q— SQtake place upon lowering

tization m=(S) and quadrupolar moment=(S?),

26%%'sinh B%) 26%% cosh{ Bx)
m=———, g=——5———

Zl ! Zl ' (7)

Hereafter we shall use the terminology of Ref. E5:the
ferromagnetic phasen(#0, q+3); Q, the quadrupolar

temperature. The valuesd;=0,—0.6,—1.2 (and the corre-
spondingk’ = —1, —2.25, — 3.85) are found from thek(,t)
phase diagrant3at different values ofl as the points where
the reentrant PT'sQ—SQ— Q, emerge(Bethe approxima-
tion resul}.

Let us consider results of our numerical calculations. The
projection of the phase diagram obtained within the TPCA of

0.4

FIG. 2. Thek’ vs reduced temperature phase
diagrams for several values df The dashed and
solid lines represents the second-order and first-
order phase transitions, respectively. The circles
denote the tricritical points.
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the BEG model on a simple cubic lattice on thit k') plane in Ref. 15 has a cusp, while both second-order and first-order
at —1<k’=<0 (see Fig. 1 consists of six regiond; theQ  parts of the phase boundary come to the tricritical point from
—F phase transition of the second ordeich takes place the left [at k' =k -p+0 only one second-order PQ—F

in the system upon lowering temperatyr#l, the reentrant  occurs in the systemThe authors of Ref. 15 concluded that
Q—F—Q PT's, both being of the second order; Ill, te  at those sets of model parameters, when the double reentrant
—F PT of the first order; IV, the PT is absent; V, the double pT's 9 F—Q—F, against the temperature took place in
reentranQ—F—Q—F PT's and only the lower transition  the system, only the lower PT could be of the first order.
is of the first order; VI, the double reentra@—F—Q  gjnce the self-consistent equations obtained in Ref. 15 within
—F PT's and only the upper transition is of the second Or+ne Bethe approximation in a single-sublattice case coincide
der. Let us note that the regions IIl and IV, as well as the i relations(6) and(7) obtained within TPCA, an error in

regions V-and |l are separated by the lile= _l_.d/3 (the numerical calculations performed in Ref. 15 must have been
same line that separates the perfect zero ordering and ferrﬂ1

magnetic ordering regions in the ground st3te ade.
9 g regions g Let us briefly compare the results obtained above with the
The phase diagrams in the vs reduced temperature

plane for several values dfare shown in Fig. 2. One can see results OT other methods. First of all, at.1<k <0, .th,e
; I:r:lr_langes in the topology of thel ) phase diagrams witk

perature considered in the model atl<k’'=0 (within are similar(as can be readi!y seenin I.:ig.tbt'he change; in
TPCA). Let us consider, for instance, the casedef—1.8  the topology of theK’,t) diagrams withd (Fig. 2). Within
(see also Fig. B At k’>—0.384 there is only one second- the TPCA at—1<k’<kg1pca (Kg rpcs~ —0.16), the ()
order PTQ—F in the system. Ak’ €] —0.4,—0.384] there Phase diagrams are of a double reentrant topology with a
are double reentrant PT'Q—F—Q—F, and atk’'e tricritical point[Fig. 4(c)]. In contrast, within the MFA| the
[ —0.392;-0.384 only the upper transition is of the second (d,t) phase diagrams are of a double reentrant topology with
order, while atk’ €] —0.4,—0.397 only the lower PT is of a tricritical point only at—0.18<k’'<kgyea (Kgwea<O,
the first orderk’ = —0.392,t=0.155 are tricritical point co-  the value ofkg e is Not given in Ref. ¥. Within both the
ordinates kicp, trcp, Where the line of the second-order TPCA and MFA, the middle PT can be either of the first or of
phase transitions meets a line of the first-order phase trandihe second order. At-1<k’'<—0.18, the phase diagrams
tions). At k' e[ —0.411-0.4] there are reentrant PT'E)  within the MFA are of a topologyFig. 4@] that is not
—F—Q, in the system, both being of the second order.  predicted by the TPCA: the second-order phase transition
The analogousk’,t) phase diagrams presented in Ref. 15line terminates at the critical end poiBtat the first-order PT
obtained within the Bethe approximation are qualitativelyline, the latter terminating at the critical poift inside the
different from ours in the vicinity of the tricritical points. At ferromagnetic phaskThis result is somewhat similar to that
the tricritical point, the line of the phase transitions obtainedof the renormalization-group theol§In the (d,t) phase dia-

________ FIG. 4. Thed vs reduced tem-
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gram obtained in Ref. 18 &’=—0.5 [see Fig. 4b)], the K=-10
line of the second-order phase transitions also terminates at 0.4 A =—1. J
the critical end pointE on the line of the first-order PT’s, 1
which, in its turn, terminates at the critical poi@tinside the Q 0.3 MFA,/ S/
ferromagnetic phase. However, the topologies of the first- N RG Pr
order PT lines obtained with the MFA and RG methi§dse =~ 1,/ [ad
qualitatively differen{Fig. 4(a,b]. Thus, within the MFA the x 02-/ d

part of this line corresponding to tle— Q transitions(with I R
decreasing temperatyrkes above the part corresponding to TPCA{ \
the Q—F PT’s. In contrast, with the RG methBtthe F 017 . Y\, MC
—Q part lies below th&@—F part. The critical poinC lies 1 N\ /
to the left from the critical end poir within the MFA and 004 — e W

to the right within the RG method. That is, kt=—0.5 and 1.0 0.5 0.0

fixed d at which the system undergoes the first-order PT's,
the MFA and RG method® predict qualitatively different
cascades of the PT’s with changing temperature.

At k'=-1, the d,t) phase diagrams obtained within the
RG method'® MFA,” and within the TPCA are of a single
reentrant topologysee Fig. 5. At d=0, the temperature of
the second-order PTQ—F, obtained within the TPCA is
much closer to the corresponding temperature calculated byan be of the first and of the second orfmilarly as within
Monte Carlo simulatiorfs than those found within the RG the MFA (Ref. 7) at those sets of the model parameters when
method® or MFA.’ analogous phase transitions odclet us recall that Ref. 15
(Bethe approximationcontains errors in numerical calcula-
tions. As a result, an incorrect conclusion has been drawn
that at those sets of the parameters when @he F—Q

The phase diagrams of the Blume-Emery-Griffiths model-F phase transitions take place in the system, only the
on a simple cubic lattice have been constructed at those sdtswver PT can be of the first order. We also show that the
of model parameters for which the double reentrant phaséd,k’,t) phase diagram at®k’>—1 obtained within the
transitionsQ—F—Q—F against the temperature occur in TPCA, MFA,” and renormalization-group thedfare quali-
the system. It was shown that within TPCA the middle PTtatively different.

FIG. 5. Thed vs reduced temperature phase diagramskfer
—1.0 within MFA (Ref. 7), renormalization-group theorfRef. 18
and TPCA. The dashed line represents the second-order phase tran-
sitions. The triangles denote the phase-transition temperatures at
k’=—1.0, d=0 within Monte Carlo simulation§Ref. 21).
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