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Reentrant phase transitions in the Blume-Emery-Griffiths model on a simple cubic lattice:
The two-particle cluster approximation

O. R. Baran and R. R. Levitskii
Institute for Condensed Matter Physics, Svientsitskii 1, Lviv 79011, Ukraine

~Received 23 October 2001; published 18 April 2002!

The two-particle cluster approximation is applied to study the reentrant and double reentrant behaviors of the
spin-1 Ising model with nearest-neighbor bilinear and biquadratic exchange interactions and single-ion anisot-
ropy on a simple cubic lattice. The phase diagrams are constructed and the temperature dependences of dipolar
and quadrupolar moments are calculated at various values of model parameters~at those when it suffices to
consider a one-sublattice problem!.
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I. INTRODUCTION

The Blume-Emery-Griffiths model~BEG! corresponding
to a spin-1 Ising system is one of the most extensively st
ied models in condensed-matter physics. That is so not o
because of the relative simplicity with which approxima
calculations for this model can be carried out and tested
well as of the fundamental theoretical interest arising fr
the richness of the phase diagram that is exhibited due to
competition of interactions, but also because versions
extensions of the model can be applied for the descriptio
simple and multicomponent fluids,1–3 dipolar and quadrupo
lar orderings in magnets,3–5 crystals with ferromagnetic
impurities,3 ordering in semiconducting alloys,6 etc.

The BEG Hamiltonian is given by

H52(
i 51

N

DSi
22

1

2 (
i ,d

@KSiSi 1d1K8Si
2Si 1d

2 #, ~1!

whereSi50,61, D is a single-ion anisotropy energy,K and
K8 are the constants of bilinear and biquadratic short-ra
interaction, and the summationi ,d is going over nearest
neighbor pairs.

The BEG model has been investigated by different te
niques: using the mean-field approximation~MFA!,1–4,7

effective-field theory,8–11 two-particle cluster approximation
~TPCA!,12–14Bethe approximation,15 high-temperature serie
expansions,16 renormalization-group theory~RG!,17,18 and
Monte Carlo simulations.15,19–21At certain sets of the mode
parameters, the BEG model on three-dimensional lattices
undergo several kinds of reentrant and double reent
phase transitions~PT! against temperature~see Refs. 7, 15
and 21!.

It should be noted that at zero single-ion anisotropy,
TPCA~results of which coincide with results of the consta
coupling and Bethe approximations!, unlike the MFA, cor-
rectly responds to the competition between ferromagnetic
linear and antiferromagnetic biquadratic interactions. T
phase diagrams obtained within TPCA for different latti
types12,15 qualitatively agree with the Monte Carlo simula
tions results.19,21 We would like to mention that the phas
diagrams presented in Refs. 12 and 21 in the temperatur
biquadratic interaction plane at zero single-ion anisotropy
not complete~the line separating the quadrupole and st
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gered quadrupole phases is absent, since only the
sublattice model was considered!.

In this paper we study the BEG model on a simple cu
lattice within TPCA at such values of antiferromagnetic b
quadratic interaction and a single-ion anisotropy~bilinear in-
teraction is ferromagnetic:K.0), when reentrant and doubl
reentrant phase transitions between the quadrupole phas
the ferromagnetic phase take place. We restrict our consi
ation to those values of the parameters (K8/K.21) at
which it suffices to consider a one-sublattice problem. T
problem has been approached within Bethe approximatio15

MFA,7 and within renormalization-group theory.18 However,
Ref. 15 contains certain errors in numerical calculatio
therefore, the phase diagrams presented there and som
the conclusions drawn are qualitatively incorrect.

II. THE TWO-PARTICLE CLUSTER APPROXIMATION

The expression for free energy within TPCA is co
structed on the basis of a one-particle HamiltonianH1,

H152¸̃S12¸̃8S1
2 , ¸̃5G1zw, ¸̃85D1zw8, ~2!

(z is the number of nearest neighbors, magnetic fieldG→0
is introduced for convenience! and a two-particle Hamil-
tonianH12,

H1252¸M~S11S2!2¸M 8~S1
21S2

2!2KS1S22K8S1
2S2

2 ,
~3!

¸M5G1~z21!w, ¸M 85D1~z21!w8

in a usual way.12,13,22

F52kBTNF ~12z!ln Z11
z

2
ln Z12G , ~4!

Z152eb¸̃8cosh~b¸̃!11, ~5!

Z1252eb(2¸M81K8)@ebKcosh~2b¸M!1e2bK#

14eb¸M8cosh~b¸M!11.
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FIG. 1. The projection of the phase diagra
onto the (d, k8) plane.
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Here b5(kBT)21. The cluster parametersw and w8 are
found by minimizing the free energy with respect to the
The following system of equations forw andw8 is obtained:

eb¸̃8sinh~b¸̃!

Z1

5
exp@b~2¸M 81K81K !#sinh~2b¸M!1eb¸M8sinh~b¸M!

Z12
,

~6!

eb¸̃8cosh~b¸̃!

Z1

5
eb(2¸M81K8)@ebKcosh~2b¸M!1e2bK#1eb¸M8cosh~b¸M!

Z12
.

Using Eqs.~6! we can write simple expressions for magn
tization m5^S& and quadrupolar momentq5^S2&,

m5
2eb¸̃8sinh~b¸̃!

Z1
, q5

2eb¸̃8cosh~b¸̃!

Z1
. ~7!

Hereafter we shall use the terminology of Ref. 15:F, the
ferromagnetic phase (mÞ0, qÞ 2

3 ); Q, the quadrupolar
17240
.
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phase (m50, qÞ 2
3 ); SQ, the staggered quadrupole pha

~two-sublattice ordering;m of the both sublattices are zero
whereas the quadrupolar moments of the sublattices are
ferent!. We also introduce the notationsk85K8/K, d
5D/K, andt5kBT/(zK).

It should be remembered7,15,17–19that the equations pre
sented above~with a singleq and singlem for the whole
lattice! cannot be used in the entire space of the model
rameters, since at certain sets ofk8, d, t the SQ ordering
takes place~with different q for different sublattices!. Thus,
for a simple cubic lattice this happens15 at the sets of the
parameters from the regionsk8,21 and d1,d,26k8
26 (d1 depends onk8: d150,20.6,21.2 for k8521,
22.25, 23.85, respectively!. The line d526k826 at k8
,21 separates theF andSQorderings in the ground stat
(d,k8) phase diagram.15 This accords with the (k8,t) phase
diagrams obtained within Bethe approximation15 at those
values of the model parameters when the transitionsQ→F
→Q→SQ, Q→F→SQ, Q→SQ take place upon lowering
temperature. The valuesd150,20.6,21.2 ~and the corre-
spondingk8521, 22.25,23.85) are found from the (k8,t)
phase diagrams15 at different values ofd as the points where
the reentrant PT’s,Q→SQ→Q, emerge~Bethe approxima-
tion result!.

Let us consider results of our numerical calculations. T
projection of the phase diagram obtained within the TPCA
e

rst-
les
FIG. 2. Thek8 vs reduced temperature phas
diagrams for several values ofd. The dashed and
solid lines represents the second-order and fi
order phase transitions, respectively. The circ
denote the tricritical points.
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FIG. 3. The temperature de
pendences ofm ~a! and q ~b! at
d521.8 for different values of
parameterk8: ~1! k8520.38; ~2!
k8520.385; ~3! k8520.39; ~4!
k8520.395;~5! k8520.405.
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the BEG model on a simple cubic lattice on the (d, k8) plane
at 21,k8<0 ~see Fig. 1! consists of six regions:I, the Q
→F phase transition of the second order~which takes place
in the system upon lowering temperature!; II, the reentrant
Q→F→Q PT’s, both being of the second order; III, theQ
→F PT of the first order; IV, the PT is absent; V, the doub
reentrantQ→F→Q→F PT’s and only the lower transition
is of the first order; VI, the double reentrantQ→F→Q
→F PT’s and only the upper transition is of the second
der. Let us note that the regions III and IV, as well as
regions V and II are separated by the linek85212d/3 ~the
same line that separates the perfect zero ordering and f
magnetic ordering regions in the ground state15!.

The phase diagrams in thek8 vs reduced temperatur
plane for several values ofd are shown in Fig. 2. One can se
the general aspect of the phase transitions against the
perature considered in the model at21,k8<0 ~within
TPCA!. Let us consider, for instance, the case ofd521.8
~see also Fig. 3!. At k8.20.384 there is only one second
order PTQ→F in the system. Atk8P] 20.4,20.384] there
are double reentrant PT’s,Q→F→Q→F, and at k8P
@20.392,20.384# only the upper transition is of the secon
order, while atk8P] 20.4,20.392@ only the lower PT is of
the first order.k8520.392, t50.155 are tricritical point co-
ordinates (kTCP8 , tTCP, where the line of the second-orde
phase transitions meets a line of the first-order phase tra
tions!. At k8P@20.411,20.4# there are reentrant PT’s,Q
→F→Q, in the system, both being of the second order.

The analogous (k8,t) phase diagrams presented in Ref.
obtained within the Bethe approximation are qualitative
different from ours in the vicinity of the tricritical points. A
the tricritical point, the line of the phase transitions obtain
17240
-
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d

in Ref. 15 has a cusp, while both second-order and first-o
parts of the phase boundary come to the tricritical point fr
the left @at k85kTCP8 10 only one second-order PT,Q→F
occurs in the system#. The authors of Ref. 15 concluded th
at those sets of model parameters, when the double reen
PT’s, Q→F→Q→F, against the temperature took place
the system, only the lower PT could be of the first ord
Since the self-consistent equations obtained in Ref. 15 wi
the Bethe approximation in a single-sublattice case coinc
with relations~6! and~7! obtained within TPCA, an error in
numerical calculations performed in Ref. 15 must have b
made.

Let us briefly compare the results obtained above with
results of other methods. First of all, at21,k8,0, the
changes in the topology of the (d,t) phase diagrams withk8
are similar~as can be readily seen in Fig. 1! to the changes in
the topology of the (k8,t) diagrams withd ~Fig. 2!. Within
the TPCA at21,k8,kR,TPCA8 (kR,TPCA8 '20.16), the (d,t)
phase diagrams are of a double reentrant topology wit
tricritical point @Fig. 4~c!#. In contrast, within the MFA,7 the
(d,t) phase diagrams are of a double reentrant topology w
a tricritical point only at20.18,k8,kR,MFA8 (kR,MFA8 ,0,
the value ofkR,MFA8 is not given in Ref. 7!. Within both the
TPCA and MFA, the middle PT can be either of the first or
the second order. At21,k8,20.18, the phase diagram
within the MFA are of a topology@Fig. 4~a!# that is not
predicted by the TPCA: the second-order phase transi
line terminates at the critical end pointE at the first-order PT
line, the latter terminating at the critical pointC inside the
ferromagnetic phase.7 This result is somewhat similar to tha
of the renormalization-group theory.18 In the (d,t) phase dia-
ts
r

y.
d

FIG. 4. Thed vs reduced tem-
perature phase diagrams fork85
20.5 within MFA ~Ref. 7! ~a!,
renormalization-group theory
~Ref. 18! ~b!, and TPCA~c!. The
dashed and solid lines represen
the second-order and first-orde
phase transitions, respectivel
The circles denote the critical en
point E, critical pointC ~inside the
ferromagnetic phase!, and tricriti-
cal point ~TCP!.
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BRIEF REPORTS PHYSICAL REVIEW B 65 172407
gram obtained in Ref. 18 atk8520.5 @see Fig. 4~b!#, the
line of the second-order phase transitions also terminate
the critical end pointE on the line of the first-order PT’s
which, in its turn, terminates at the critical pointC inside the
ferromagnetic phase. However, the topologies of the fi
order PT lines obtained with the MFA and RG methods18 are
qualitatively different@Fig. 4~a,b!#. Thus, within the MFA the
part of this line corresponding to theF→Q transitions~with
decreasing temperature! lies above the part corresponding
the Q→F PT’s. In contrast, with the RG method18 the F
→Q part lies below theQ→F part. The critical pointC lies
to the left from the critical end pointE within the MFA and
to the right within the RG method. That is, atk8520.5 and
fixed d at which the system undergoes the first-order PT
the MFA and RG methods18 predict qualitatively different
cascades of the PT’s with changing temperature.

At k8521, the (d,t) phase diagrams obtained within th
RG method,18 MFA,7 and within the TPCA are of a singl
reentrant topology~see Fig. 5!. At d50, the temperature o
the second-order PT,Q→F, obtained within the TPCA is
much closer to the corresponding temperature calculate
Monte Carlo simulations21 than those found within the RG
method18 or MFA.7

III. CONCLUSIONS

The phase diagrams of the Blume-Emery-Griffiths mo
on a simple cubic lattice have been constructed at those
of model parameters for which the double reentrant ph
transitionsQ→F→Q→F against the temperature occur
the system. It was shown that within TPCA the middle
on
ac

n
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can be of the first and of the second order@similarly as within
the MFA ~Ref. 7! at those sets of the model parameters wh
analogous phase transitions occur#. Let us recall that Ref. 15
~Bethe approximation! contains errors in numerical calcula
tions. As a result, an incorrect conclusion has been dra
that at those sets of the parameters when theQ→F→Q
→F phase transitions take place in the system, only
lower PT can be of the first order. We also show that
(d,k8,t) phase diagram at 0.k8.21 obtained within the
TPCA, MFA,7 and renormalization-group theory18 are quali-
tatively different.

FIG. 5. Thed vs reduced temperature phase diagrams fork85
21.0 within MFA ~Ref. 7!, renormalization-group theory~Ref. 18!
and TPCA. The dashed line represents the second-order phase
sitions. The triangles denote the phase-transition temperature
k8521.0, d50 within Monte Carlo simulations~Ref. 21!.
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20D. Peňa Lara and J.A. Plascak, Int. J. Mod. Phys. B12, 2045

~1998!.
21O.F. De Alcantara Bonfim and C.H. Obcemea, Z. Phys. B: C

dens. Matter64, 469 ~1986!.
22J.S. Smart,Effective Field Theories of Magnetism~Saunders,

Philadelphia, 1996!.
7-4


