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Double resonant Raman phenomena enhanced by van Hove singularities
in single-wall carbon nanotubes
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The behavior of the disorder-inducedD band in the Raman spectrum of single-wall carbon nanotubes
~SWCNT’s! was investigated both theoretically and experimentally. The measured maximum position of theD
band for SWCNT bundles exhibits an oscillation superimposed on a linear shift, when the laser excitation
energyElaser varies in the range of 1.6–2.8 eV. We have shown theoretically by explicit integrations for the
resonant Raman cross section that theD-band intensity of an isolated SWCNT has a sharp maximum when
Elaser of either the incoming or the scattered photon matches a van Hove singularity in the joint density of
states. This ‘‘resonance’’ must be considered in addition to the double resonance from a scattering by an
impurity. Calculating theD band of a superposition of all the 114 SWCNT’s within a given diameter range,
both the shift and the oscillation in the experimentally observed spectra were reproduced.
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I. INTRODUCTION

Single-wall carbon nanotubes~SWCNT’s! are targets of
intense research in materials science nowadays.1 Resonance
Raman spectroscopy is one of the most powerful tools
obtain useful information about both the electronic and
bronic properties of the tubes.2 The strongest Raman band
of SWCNT’s are the RBM band~radial breathing mode in
the range of 100–300 cm21), and theG band @tangential
mode~s! at around 1600 cm21#. Two more, characteristic
but weak bands are theD band~disorder-induced band in th
range of 1300–1400 cm21) and the G8 band at around
2600–2800 cm21, which is the overtone fromD band,
sometimes also calledD* band. Among these modes th
RBM, which is the only one with no counterpart in graphi
proved to be very useful for giving information on the diam
eter distribution. We have found an oscillatory behavior
the position and the intensity of the RBM band of SWCN
bundles as a function of the laser excitation energyElaser .

3,4

The careful analysis of this oscillation makes it possible
determine the distribution of diameters in such sample5

Furthermore, Jorioet al. have shown that measuring th
RBM band of individual isolated tubes allows the assig
ment of their (n,m) chirality indices.6

Recently, we have found that an oscillation superimpo
on a linear shift can be observed also for the position of
D and G8 bands of SWCNT’s.4,7 A similar anomalous dis-
persion has also been reported in Refs. 8,9 for the de
dence of vD and vG8 on the laser energyElaser in
SWCNT’s.

To understand the anomalous dispersion of theD ~and
G8) bands in SWCNT bundles, a detailed analysis of
similarities to and the differences from the case of graph
~a single sheet of graphite! is needed.

The appearance of theD band in the Raman spectrum o
disordered graphite has been well known for a long time10

The band has its maximum position for visible excitation
around 1350 cm21, where no peak can be observed in
0163-1829/2002/65~16!/165433~9!/$20.00 65 1654
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perfect single crystal of graphite.10 The intensity of theD
band increases with increasing disorder. In contrast to
strongest Raman band of graphite (G band! at around
1582 cm21, the position of theD band depends on th
Elaser laser excitation energy.11–13 The dispersion of theD
band is nearly linear with a slope of'50 cm21/eV, shifting
to higher wave numbers with increasingElaser . In addition,
there is always a band even for pure, defect-free graphit
about twice the frequency of theD band, also showing a
dispersion with a slope of about twice the slope of theD
band. There is some confusion about the nomenclature o
latter band: it is called eitherD* band emphasizing that i
seems to be the first overtone of theD band, orG8 band
emphasizing that it is an intrinsic feature of the Raman sp
trum of graphite that needs no disorder.

The origin of theD band in graphite was not understoo
for several decades. Several approaches were pursued f
ing on different aspects of the phenomenon. Either a ba
structure picture was used with the introduction of qua
selection-rules for electrons and phonons12–14 or theD band
was treated as a result of a ‘‘breathinglike’’ motion of fini
clusters.10,15,16All suggested descriptions have weak poin
The shortcoming of the former approach is that it is based
anad hocassumption that the wave number of the phonon
the same as the wave number of the excited electron.
latter treatment has its importance for highly amorphous m
terials, but it is not adequate for describing lightly disorder
systems such as the SWCNT’s, where a solid-state appr
mation is more appropriate.

The main problem in the solid-state approximation f
graphite with only a small amount of defects lies in the fa
that for this material noG-point phonons exist in the fre
quency range between 1300–1400 cm21 at all.17,18The only
phonons with appropriate frequency are around theK point,
near the Brillouin zone~BZ! boundary, therefore, thes
phonons are silent in the usual first-order Raman proc
This long-standing problem was solved recently by Thom
and Reich based on the idea of double resonance.19 In fact,
©2002 The American Physical Society33-1
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Ref. 14 was the first work to state that the double-resona
process is responsible for the dispersion of theD band in
graphite. However, that paper contains some mistakes,
side the lack of the quantitative treatment of the Raman c
section. According to the description of Thomsen and Re
the incoming photon excites an electron-hole pair and
electron~or hole! is subsequently scattered into another po
of the k space. After backscattering and a subsequ
electron-hole recombination a different photon will be em
ted. One of the scattering processes should be mediated
defect for obtaining theD band. The low scattering probabi
ity as a consequence of the small concentration of the def
can be compensated by a double resonance, where besid
incoming or outgoing resonance an intermediate state i
resonance as well.

In the present paper, we apply the concepts outlined
Ref. 19 for SWCNT’s. We show by explicitly carrying ou
the integrations of the usual formulas for a resonant Ram
process20 that the most important contributions to theD band
come from the terms for which not only the doubl
resonance condition is fulfilled but in addition, the scatter
process occurs between electronic states in thek space cor-
responding to van Hove~vH! singularities in the density o
states.21 Summing up the response calculated for theD band
of more than 100 individual SWCNT’s with different diam
eters and chiralities, we show that the resultingD band not
only shifts withElaser but there is also an oscillation supe
imposed on it.22 The intensity of theD band oscillates simi-
larly. We measured the Raman spectrum of a sample
bundles with a given diameter distribution. The calculati
for the same diameter distribution reproduces very well
observed anomalous dispersion. An additional conclus
from our calculations is that the position and the intensity
the D band are even more sensitive to the diameter distr
tion than that of the RBM.

The paper is organized as follows. The following secti
summarizes the basic concepts, and theD band of graphene
is reviewed with some more qualitative insight into the d
tails; in Sec. III we apply the formalism to individua
SWCNT’s; in Sec. IV our experimental results are presen
and are compared to our calculations of theD band for a set
of SWCNT’s with a Gaussian diameter distribution equiv
lent to the sample in the experiment; and in Sec. V we su
marize our conclusions.

II. BASIC CONCEPTS AND EVALUATION OF THE
DOUBLE RESONANCE FOR GRAPHENE

The amplitude of a Raman process can be calculated
perturbation theory and can be visualized by appropr
Feynman diagrams.20 Figure 1 shows four possible fourt
16543
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order Feynman diagrams, relevant in our case for a Sto
process.~The anti-Stokes process can be treated similar!
The vertices 1 and 4 in all four parts of Fig. 1 describe t
electron-hole excitation and recombination, respectively. T
intermediate vertex labeled by open circles~2 in part I and
III, and 3 in part II and IV in Fig. 1! corresponds to a scat
tering of the electron or the hole by a defect. The remain
vertex in the diagrams corresponds to the creation of a p
non. In principle, similar four diagrams should be taken in
account where the first scattering involves a hole instead
an electron. However, such diagrams are equivalent w
those shown in Fig. 1 in the case of electron-hole symme
that is a good approximation at least for the relevant sta
near theK points. We mention that theG8 band can be
treated similarly, the only difference being that both scatt
ing processes~2 and 3! involve phonons with opposite wav
vectors, that is, no defects are needed in that case.

The Raman cross section is the absolute square ofK2 f ,10,
the sum of the complex amplitudes as given by Eqs.~1! and
~2! for the various diagrams.20

FIG. 1. Fourth-order Feynman diagrams for the Raman proc
including interaction of the electron or hole with a defect~open
circle: 2 in part I, III, and 3 in part II, IV! as well as with a phonon
~filled circle: 3 in part I, III, and 2 in part II, IV!. The pairs of
diagrams~I-III ! and ~II-IV ! differ in the time ordering of the scat
tering by a defect or a phonon. Only processes where the first s
tering involves an electron are shown here. The electron is scatt
back in part I and II, whereas in part III and IV the hole is scatter
after the electron. Double resonance occurs when the energie
two of the intermediate virtual states (a,b,c) match the laser exci-
tation energyElas,1[Elas,21\vq .
K2 f ,10
I ,III 5 (

a,b,c

M

~Elas,12Eel
a 2 ig!~Elas,12Eel

b 2 ig!~Elas,12Eel
c 2\vq2 ig!

, ~1!

K2 f ,10
II ,IV5 (

a,b,c

M

~Elas,12Eel
a 2 ig!~Elas,12Eel

b 2\vq2 ig!~Elas,12Eel
c 2\vq2 ig!

. ~2!
3-2
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DOUBLE RESONANT RAMAN PHENOMENA ENHANCED BY . . . PHYSICAL REVIEW B65 165433
In these formulas 0 andf refer to the initial~ground! and
the final states of the material system~graphene!, respec-

tively. There is one phonon created, with wave vectorqW , in
the final state. The total initial and final states contain a p
ton with Elas,1 and Elas,2 , respectively.M is a symbolical
abbreviation for the transition matrix elements that
together with the damping parameterg— were assumed to
be constant in our calculations, independently of the e
tronic states.

The ‘‘intermediate’’ states~labeled bya, b andc in Fig. 1!
may consist of two parts: an electronic and a phononic
~the latter of course only if the phonon already exists:c for
all diagrams and alsob for diagrams II and IV of Fig. 1!.
Eel

a , Eel
b , andEel

c give the electronic part of the energies
the intermediate states. In the case of graphene the treat
of the electronic part is simple: to a good aproximation it
enough to take into account only one electron and one h
state per eachK point in the two-dimensional~2D! Brillouin
zone. These states are in thep-electron conduction and va
lence bands, with the one-electron energies of«c(kW ) and
«v(kW ), respectively. All other states are too far away from t
Fermi level and cannot contribute to the resonance with
visible light.

As it is well known, for interaction with visible light, the
wave number of the electron and the hole should be pra
cally the same both for the excitation and the recombina
processes. The interaction with a phonon, on the other h
changes the wave number of the electron~or the hole! by
DkW5qW . It follows that for all four diagrams in Fig. 1,Eel

a

5«c(kW )2«v(kW ) and Eel
b 5«c(kW8)2«v(kW ), wherekW82kW5qW .

Eel
c is different for the different diagrams: it is«c(kW )

2«v(kW )[Eel
a in the case of I and II, whereas it is«c(kW8)

2«v(kW8) in the case of III and IV.
The Raman cross section for given initial and final sta

can be obtained by a summation over all possible interm
ate states according to the formulas~1! and ~2!. For a given
phonon wave vectorqW , this means an integration overkW and

FIG. 2. Schematic equi-excitation-energy~EEE! contours for
electrons~a! and equifrequency contours for phonons~b! in 2D
graphene. The hexagonal symmetry point (G) and the symmetry
inequivalent trigonal points (K and K8) of the Brillouin zone are
indicated in the figure. In the case of double resonance, the w

vector of the phononqW connects twoK points in the electronic
Brillouin zone in the neighborhood ofK andK8, respectively. Note

that only phonons withqW vectors not too far away fromqW 0ªK8KW

[GKW 8 have the right frequencies needed for theD band.
16543
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kW8, with kW82kW5qW . Whereas the energies of the measura
initial (Elas,1) and final (Elas,21\vq) states are equal, th
energy conservation does not hold for the intermediate
tual states. The energy denominator depresses the cont
tion of the intermediate states for which the violation of t
energy conservation is large. Resonance occurs on the o
hand if an energy denominator is very small. We speak ab
doubleresonance if the real part oftwo energy denominators
become zero at the same time, in at least one term of
sum.19

Figure 2 shows schematically a process that can con
ute to double resonance, in the reciprocal space of graph
The phonon wave vectorqW describes a scattering betwee
two points in thek space of the electrons. Because of t
double-resonance condition these twoK points have to lay
on equi-excitation-energy~EEE! contours with either the
same energy or with energies that differ only by\vq
'0.16 eV. For example, both of these energies areElas,1 for
incoming resonance in the case of process I in Fig. 1,
Elas,2 for outgoing resonance in the case of process II of F
1, etc. In all cases this means that bothkW andkW8 should be
close to one of the trigonal points (K or K8) of the BZ.
Furthermore, one has to keep in mind that only phonons w
qW vectors close toqW 0ªK8KW [GKW 8 have the right frequencie
to contribute to theD band.

For the explicit calculation of the formulas~1! and~2! the
usual tight-binding approximation witht052.9 eV and ne-
glecting the asymmetries between electron and hole ba
was used, which is accepted as a good approximation for
electronic dispersion relation:

«c~kx ,ky!52«v~kx ,ky!

5t0A114cosS kx

2
D F cosS kx

2
D 1cosS A3ky

2
D G .

~3!

The phonon dispersion is not known experimenta
around theK ~or K8) points. Therefore, we used a mod
dispersion of the same kind as the previous formula, for s
plicity:

vph~qx ,qy!

5A1BA114cosS qx

2
D F cosS qx

2
D 1cosS A3qy

2
D G ,

~4!

where A and B are fitting parameters. We usedA
51200 cm21 and B5230 cm21 based on the experimen
tally known linear dispersion of theD band of graphite:A
was obtained from the extrapolation of the dispersion wh
the laser excitation energy goes to zero, andB was obtained
from the fitting of the slope of the linear dispersion of abo
50 cm21/eV.

Figure 3 shows the results of the integration of the form
las ~1! and~2! for graphene, for two different laser excitatio

ve
3-3
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J. KÜRTI, V. ZÓLYOMI, A. GRÜNEIS, AND H. KUZMANY PHYSICAL REVIEW B 65 165433
energies 2.0 eV and 2.5 eV. For the reciprocal lifetime of
electronic statesg50.03 eV was used in this case. Th
spectra consist of several peaks. The origin of these pe
can be understood qualitatively as illustrated in Fig. 4. T
main contributions to theD band come from the integration
along the two boldface dashed curves that are EEE cont
aroundK andK8, according to the double resonance. Fo
given phonon wave-vector transitions between parallel p
of these contours result in local maxima in the integral. T
highest intensity occurs for the parts with lowest curvatu
labeled by 1 in Figs. 3 and 4. Another local maximum b
with lower intensity is obtained for the transitions betwe
the parallel parts with highest curvature, labeled by 2 in F
3 and 4. The difference in the wave vectors for the transiti
1 and 2 depends on the anisotropy~trigonal warping! of both
the electron and phonon dispersion relation. For exampl
both the electron and the phonon dispersions would be
tropic, the two maxima, 1 and 2 would coincide, because
that case the wave vector for transition 2 is less thanq0 by
the same amount by which the wave vector for transition
larger thanq0, and the phonon frequency depends on
absolute value of the deviation ofq from q0. This is the basis

FIG. 3. CalculatedD band in the Raman spectrum of graphe
for Elaser52.0 eV ~solid line! and Elaser52.5 eV ~dashed line!.
The integration forK2 f ,10

I and K2 f ,10
II was carried out using appro

priate electron- and phonon-dispersion relations@formulas ~3! and
~4!#.

FIG. 4. Simple qualitative interpretation of the maxima 1, 2, a
3 in Fig. 3 ~see text!. The highest intensity occurs for wave vecto
between parallel parts of the EEE contours with lowest curvatu
~labeled by 1!.
16543
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for the uqW 2qW 0u52k approximation, wherek is the radius of
the corresponding EEE contour.15 This approximation works
of course only in the case of isotropic dispersion relatio
Furthermore, the wave vectors for the transitions labeled
3a and 3b would be exactlyq0 for an isotropic electron
dispersion relation, independently from the phonon disp
sion. In fact, they are slightly upshifted due to the trigon
warping of the contours. It should be mentioned that
anisotropy is not too large for excitations in the visible, wh
Elaser is in the range of 2–3 eV. All the statements above c
be directly verified by comparing the maximum positions
the curves shown in Fig. 3 with the phonon frequencies
tained by the formula~4! using the corresponding wave ve
tors calculated analytically according to Fig. 4.

The peaks in Fig. 3 shift towards higher wave numb
with increasing laser excitation energy. The reason for thi
obvious from Fig. 4. It originates from two facts: First, in
creasing the laser excitation energy means EEE cont
with larger ‘‘radius’’ around theK andK8 points. Second, the
transition between the parallel parts of the EEE conto
with increasing ‘‘radius’’ leads to reduction~2 in Fig. 4! or to
an extension~1 in Fig. 4! of the phonon wave vector. Th
phonon frequency increases in both cases, because the
non dispersion has a local minimum forqW 0, corresponding to
a transition between theK andK8 points. The upshift of the
position of the strongest peak~1! has a slope of 50 cm21/eV
in accordance with the experiments.

The fact that the most important features of the expl
integration can be reproduced by qualitative considerati
will be valid also in the case of SWCNT’s. This will be ver
helpful for the interpretation of the anomalous dispersion
bundles of more than 100 different SWCNT’s.

III. APPLICATION OF THE THEORY
FOR INDIVIDUAL SWCNT’S

The ideas described in the preceding section can be
plied to SWCNT’s as well. However, there is one essen
difference: the 1D nature of the nanotubes results in the
singularities in the density of states of both the electrons
the phonons. These singularities have an important eff
comparable to the resonance effect due to the zero den
nators. As an example, we demonstrate this for the~11,9!
nanotube that can be regarded as a typical nanotube in
sample that we measured. Its diameter is very close to
maximum of the diameter distribution obtained from t
RBM spectra.4 Furthermore, it is a chiral nonmetallic tube a
most of the tubes in the sample are. However, the con
sions drawn are similar for any other SWCNT.

To evaluate the Raman cross section for the proce
shown in Fig. 1, we integrated the formulas~1! and ~2! in k
space. We used the same tight-binding dispersion relation~3!
for electrons as was used for graphene. The only differenc
that due to the confinement of the electrons along the
cumference of the tube the perpendicular component of
wave vectors is quantized. The wave-vector component
allel to the tube axis remains quasicontinuous. Thus, negl
ing the curvature effects, one can use the 2D dispersion
s

3-4
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DOUBLE RESONANT RAMAN PHENOMENA ENHANCED BY . . . PHYSICAL REVIEW B65 165433
lation of graphene for SWCNT’s but restricting theK points
to the allowed parallel straight lines with uniform distanc
between them. The direction of the lines depends on
chirality angle and the distance between two neighbor
lines is 2/d, whered is the diameter of the tube.1 Figure 5
shows several discrete lines for the~11,9! chiral tube to-
gether with some EEE contours aroundK andK8 points of
the BZ. Atmost four of these straight lines can contribute
a resonance process in the visible range. The lines fur
away fromK andK8 points do not cross any EEE contou
of energies less than 3 eV. Figure 5 shows a situation wh
an EEE contour touches one of these lines in the neigh
hood of bothK and K8 points. These touching points—
labeled by filled black circles in Fig. 5—define the positio
of one of the vH singularities in thek space. The correspond
ing excitation energy isE3352.382 eV for a~11,9! tube us-
ing t052.9 eV.

Some complications arise concerning the phon
dispersion relation. According to our experiments, SWC
bundles have an anomalous dispersion: an oscillation su
imposed on the linear upshift~see following section!. Al-
though the linear part of the dispersion can be well descri
by the model formula~4!, the oscillating component is mor
sensitive to the actual phonon-dispersion relation. It turn
out that the anisotropy of Eq.~4! is too large and we had to
use another model phonon dispersion, where we could
the amount of the anisotropy~trigonal warping! in order to fit
the details of the oscillations quantitatively. The followin
model dispersion was used:

vph~ q̃r ,q̃w!5A81B8q̃r@12dcos~3q̃w!#, ~5!

whereq̃r and q̃w are the polar coordinates ofqW̃ 5qW 2qW 0, the
deviation of the phonon wave vector fromGKW 8. A8
51220 cm21, B85120 cm21, andd50.06 proved to be a
good combination to describe the measured anomalous
persion of bundles~see following section!. Therefore, the
same parameters were used in this section, as well.

The phonon wave vector is determined by the change
the electron wave vector according to momentum conse

FIG. 5. Dominant transition shown by boldface arrow on t
example of a chiral nonmetallic tube~11,9! as plotted in the 2Dk
space. The zig-zag lines in the center of the figure separate the
ranges of the Brillouin zone around two inequivalent trigonal poi
(K andK8). The straight lines are the discrete allowedK points for
the electrons of the tube. The boldface contours are the EEE
tours that touch one of the discrete lines. The positions of the
singularities in thek space are labeled by filled black circles.
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tion (qW 5DkW ). We calculated the Raman cross secti
uK2 f ,10

I 1K2 f ,10
II 1K2 f ,10

III 1K2 f ,10
IV u2 by integrating along all dis-

crete lines in the neighborhood of theK andK8 points, tak-
ing into account all possible transitions between them. T
results of the integrations can be seen in Fig. 6 for fo
different laser excitation energies,Elaser52.360, 2.385,
2.390, and 2.400 eV, just below and aboveE3352.382 eV,
the third vH singularity in the joint density of states~JDOS!.
The reciprocal lifetime of the electronic states wasg
50.01 eV in these calculations. The finite lifetime of th
phonons was taken into account by a convolution with
Lorentzian curve with 3-cm21 half width at half maximum.

There are several important conclusions that can be dr
from Fig. 6. First of all, as it is clearly seen in the figure, t
D band consist of several subbands, the strongest one b
around 1340 cm21. The origin of the subbands is the fo
lowing. For an arbitraryElaser that is larger than the secon
vH singularity in the JDOS (E2251.197 eV) the number of
the phonon wave vectorsqW for which the double-resonanc
condition is fulfilled is at least 434516. The actual phonon
wave vectors depend on how the discrete lines are cut by
EEE contours in Fig. 5. Even in the case when, due to sy
metry reasons, some of the corresponding phonon frequ
cies are equal, this results in many differentD subbands at
different positions with different intensities. Some of the
subbands may overlap each other. The intensity of the in
vidual components depends on the actual values of the
sity of states for the electrons in theK points, where the EEE
contour cuts the discrete lines. Obviously, at least one
singularity is involved in the case of the strongest subban
around 1340 cm21.

The most important conclusion from Fig. 6 is that th
intensity of theD band has a sharp maximum when the e
citation energyElaser matches a vH singularity. TheD band
is always determined by the phonons with which the doub
resonance condition is fulfilled, but obviously the singula
ties in the JDOS of the electrons have a comparable effec
this. The explanation for this is straightforward. The stro
gest possible effect occurs when—besides the dou
resonance—two vH singularities are matched at the sa

wo
s

n-
H

FIG. 6. CalculatedD bands by integrating the formulas~1! and
~2! for an ~11,9! tube in the case of four different laser excitatio
energies. Note that the third vH singularity in JDOS is atE33

52.382 eV. The inset shows the change of the maximum heigh
the band as a function ofElaser . The two maxima in this ‘‘excita-
tion profile’’ correspond to the incoming and outgoing resonanc
3-5
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time: before as well as after the scattering of an electron~or
a hole!. This is only possible if the two EEE contours arou
K and K8, for which the double-resonance condition is fu
filled, have the same energy. This can happen only eithe
process I or III of Fig. 1 in the case of incoming resonan
or in process II or IV of Fig. 1 in the case of outgoin
resonance. The inset in Fig. 6 clearly shows the effect of b
the incoming and outgoing resonances in the excitation p
file for the strongest band at around 1340 cm21. The ratio of
the maximum peak intensity at 2.385 eV to the intensities
2.35 eV, 2.50 eV, and 2.70 eV are'39, '15, and'20,
respectively.

The above conclusions hold for any SWCNT’s. This w
checked for several tubes with different chiralities. We ju
mention that the armchair tubes are special in the sense
they have an additional subband at a frequency very clos
that corresponding to theK point, with comparable intensity
to the other band at higher frequencies. The reason for th
the fact that for armchair tubes there exist always pairs of
singularities lying on a line that is parallel to the line co
necting the pointsK and K8 in the BZ. The wave vector
connecting these vH singularities is almost identical toqW 0, in
fact it is slightly larger due to the trigonal warping effect.

We summarize the main conclusions of this section
follows. The calculatedD band of a SWCNT for an arbitrary
excitation energy consist of many subbands, some of th
overlapping each other. The positions and intensities of th
subbands depend onElaser . The intensity of theD band has
a sharp maximum if either the incoming or the outgoing lig
matches a vH singularity in the JDOS. This behavior can
assigned as a ‘‘triple resonance,’’ which is the combined
fect of a double resonance plus an enhancement by matc
the singularities in the density of states.

IV. COMPARISON OF THE THEORETICAL RESULTS TO
THE EXPERIMENTS

A. Experiment

In this section the comparison of the experimental a
theoretical results is presented for samples grown by la
ablation at the Rice group. Raman measurements were
ried out using 22 different laser excitations in the range
tween 1.6 eV and 2.8 eV.

The measured intensities were corrected for power of
cident laser and for detector sensitivity. The latter was c
brated in a standard way by comparing the response of
F2g line of silicon with reported results.23

The diameter distribution was obtained from the analy
of the Raman spectra of the RBM. The oscillation of t
position and intensity of the RBM as a function of the las
excitation energy could be described by a Gaussian distr
tion w(d);exp@2(d2d0)

2/2s2# with a mean tube diamete
of d051.3260.01 nm and a distribution width~variance! of
s50.14 nm.4

Figure 7 shows the measuredD-band spectra. A shift and
an oscillation in the position and an oscillation in the inte
sity of the D band can be clearly seen. Figure 8 shows
dispersion of the maximum position of theD band, extracted
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from these spectra. For comparison, the behavior of theG
band and theG8 band are also shown in the figure.

The least-squares fit for the linear part of the measu
dispersion of theD band is

vmax5~121963!1~51.861.3!Elaser , ~6!

wherevmax andElaser are measured in cm21 and eV, respec-
tively.

The G8 band also has an oscillation superimposed o
linear shift, similarly to theD band. The slope of the linea
part for theG8 band is about twice the slope of that of theD
band. TheG band has no dispersion.

The maximum intensity of theD band oscillates as well
showing two peaks at about 1.9 eV and 2.4 eV.

B. Comparison to theory

There are 114 different SWCNT’s with diameters fallin
into the 3s interval (1.326330.14 nm) corresponding to
the measured sample. In principle, we had to carry out
necessary integrations for the 114 tubes to fit the measureD
band of the sample. However, as we have shown in the
ceding section, the position of the dominant peak in theD
band of one single SWCNT is determined by the wave v

FIG. 7. D-band spectra measured by 22 different laser exc
tions for a sample of SWCNT’s with Gaussian diameter distribut
with a mean value ofd051.32 nm and a width ofs50.14 nm.
3-6
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tor~s! satisfying the ‘‘triple resonance’’ condition. It is
quick and easy task to find these wave vectors and the
responding phonon frequencies for any given SWCNT.
obtain the resultingD band of the whole sample, the ind
vidual contributions for these vectors were summed up us
the appropriate Gaussian weight factor of the diameter
tribution. Due to the ‘‘triple resonance’’ condition, only tube
for which Elaser (Elas,1 or Elas,2) matches or nearly matche
a vH singularity in the JDOS have a non-negligible con
bution. This was taken into account by a square ‘‘resona
window’’ with a width of 60.1 eV centered aroundElaser of
both the incoming and outgoing laser light: only tubes
which a vH singularity fell into one of these ‘‘resonanc
windows’’ were considered for a given laser excitation e
ergy. The smearing of the sharp ‘‘stick’’ frequency spectru
was carried out by a convolution with a Lorentzian cur
with a half width of 10 cm21.

It turned out from the calculations that the oscillation
the maximum peak position of the resultingD band is very
sensitive to the phonon-dispersion relation. Using form
~4! resulted in an oscillation with too large amplitude and
addition with too high frequency, obviously due to the t
large anisotropy of the phonon dispersion. That was the
son for changing the phonon dispersion to the formula~5!,
where the amount of the anisotropy could be tuned, star
from zero. The anisotropy ofd50.06 was found to result in
a good fit of the measured oscillation. Note that an osci
tion still remains even for the case ofd50.! However, the
details of this oscillation did not agree satisfactorily wi
those of the measured one.

FIG. 8. Measured dispersion of the maximum position of theD
band. For comparison, the behavior of the measuredG and theD*
bands are also shown. The inset in the lower part shows the ca
lated maximum peak position vs laser excitation energy for a m
ture of 114 different SWCNT’s. The parameters of the Gauss
diameter distribution, which reproduced best the measured osc
tion of theD band were:d051.32 nm ands50.11 nm.
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To improve the fit the diameter distribution had to b
changed as well. A small decrease in the width of the Gau
ian distributions from 0.14 nm, as obtained from the RBM
spectra, to 0.11 nm resulted in a significant improvemen
the fit. Checking the RBM evaluation again we found th
the average standard deviation of the calculateds was esti-
mated to be 0.03 nm.5 Furthermore, comparing thes values
obtained from Raman RBM and from optics for the sam
samples, the deviation between them is in some cases
0.04 nm.4 We concluded from this that the analysis of th
oscillation of theD band is more sensitive to the diamet
distribution than the analysis of the oscillation of the RBM

The inset in Fig. 8 shows the calculated anomalous d
persion of theD band. The least-squares fit for the linear p
of the calculated dispersion is

vmax5~1203.461.1!1~56.962.3!Elaser , ~7!

wherevmax andElaser are measured in cm21 and eV, respec-
tively. This is in reasonable agreement with the measu
values given by the formula~6!.

Also, the measured oscillations can be reproduced wel
our calculations as demonstrated in Fig. 9. The figure sh
a comparison between the measured and calculated os
tions, where the linear progression was subtracted.

Finally, we discuss the qualitative reason for the anom
lous dispersion~oscillation! of theD band of SWCNT’s. The

u-
-
n
a-

FIG. 9. Comparison between the measured~a! and calculated
~b! oscillation in the maximum peak position. A linear progressi
was subtracted from thevD values.
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J. KÜRTI, V. ZÓLYOMI, A. GRÜNEIS, AND H. KUZMANY PHYSICAL REVIEW B 65 165433
origin of the behavior is the finite number of the differe
(n,m) chiralities in a typical sample together with the fa
that the dependence of theD-band frequency on the positio
of a vH singularity in thek space is rather irregular. This i
demonstrated in Fig. 10, where theD-band frequencies ar
plotted versusEvH for only 18 nanotubes that have the lar
est weight factor, having diameters that fall into the ve
center part of the Gaussian distribution. We emphasize
nanotubes with the same diameter but with different chira
can have very differentD-band frequencies; in this point th
situation is different from the case of the RBM. The (n,m)
chirality indices~not shown in the figure! scatter in a com-
pletely disordered manner. The discrete points in Fig. 10
ready show the most important features of the oscillati
For this plot the model phonon dispersion~5! with a small
anisotropy ofd50.06 was used. A much larger anisotro
like in the formula ~4! would result in a plot with much
broader distribution ofvD and as a consequence in an osc
lation with much larger amplitude. On the other hand, fo
very broad diameter distribution the oscillation would be a
eraged out and a linear shift would remain, similarly to t
case of graphene. We mention that a linear shift in the p
tion of theD band with changing the laser excitation ener
can be obtained even for individual tubes if only the tran

FIG. 10. CalculatedD-band frequencies of the individua
SWCNT’s with diameters in the 1.3260.07 nm range as a functio
of the energies of the corresponding vH singularities.
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tions along one discrete line~see e.g. Fig. 5! are taken into
account. This behavior was already shown in Ref. 21 fo
special class of nanotubes.

V. SUMMARY

The cross section of a higher-order Raman process
graphite exhibits a double resonance that results in a lin
upshift of the position of theD band with increasing lase
excitation energy. In this case two of the denominators~one
for either the incoming or the outgoing light, and another o
for an intermediate state of the system! become zero at the
same time. SWCNT’s have an anomalous dispersion rela
as compared to graphite. We measured the dispersion
sample consisting of different SWCNT’s. We observed
oscillation superimosed on the linear upshift in the posit
of the D band. An oscillation in the intensity of theD band
was observed as well. To interpret the experimental res
we calculated the resonant Raman cross section carrying
explicit integrations of the formulas~1! and~2!. We showed
that the D band of a SWCNT is determined not only b
double resonance alone. The intensity of theD band shows a
sharp maximum when a vH singularity is matched by eith
the incoming or the outgoing light, as well— we use t
abbreviation ‘‘triple resonance’’ for this effect. We have ca
culated the resultingD band of a sample consisting of 11
different SWCNT’s with a Gaussian distribution for the d
ameters. Only the processes corresponding to the ‘‘tr
resonance’’ were taken into account in this case, neglec
the contributions with much lower intensity. The calculatio
reproduced the measured anomalous dispersion very w
We have also shown that the analysis of theD band is more
sensitive to the exact diameter distribution than the anal
of the RBM, therefore, it may serve as a useful method
the characterization of the SWCNT samples.
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