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Double resonant Raman phenomena enhanced by van Hove singularities
in single-wall carbon nanotubes
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The behavior of the disorder-inducdal band in the Raman spectrum of single-wall carbon nanotubes
(SWCNT’s) was investigated both theoretically and experimentally. The measured maximum positiorbof the
band for SWCNT bundles exhibits an oscillation superimposed on a linear shift, when the laser excitation
energyE,,ser varies in the range of 1.6-2.8 eV. We have shown theoretically by explicit integrations for the
resonant Raman cross section that Breand intensity of an isolated SWCNT has a sharp maximum when
E|aser Of either the incoming or the scattered photon matches a van Hove singularity in the joint density of
states. This “resonance” must be considered in addition to the double resonance from a scattering by an
impurity. Calculating theD band of a superposition of all the 114 SWCNT’s within a given diameter range,
both the shift and the oscillation in the experimentally observed spectra were reproduced.
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[. INTRODUCTION perfect single crystal of graphit8.The intensity of theD
band increases with increasing disorder. In contrast to the

Single-wall carbon nanotubdSWCNT's) are targets of strongest Raman band of graphit& (band at around
intense research in materials science nowaddssonance 1582 cm !, the position of theD band depends on the
Raman spectroscopy is one of the most powerful tools t@, ., laser excitation energy** The dispersion of th®
obtain useful information about both the electronic and vi-band is nearly linear with a slope ef50 cmi /eV, shifting
bronic properties of the tubésThe strongest Raman bands to higher wave numbers with increasifg,se,. In addition,
of SWCNT's are the RBM bandradial breathing mode in there is always a band even for pure, defect-free graphite at
the range of 100-300 cnt), and theG band[tangential  about twice the frequency of th® band, also showing a
modds) at around 1600 cm']. Two more, characteristic dispersion with a slope of about twice the slope of ithe
but weak bands are thH2 band(disorder-induced band in the band. There is some confusion about the nomenclature of the
range of 1300-1400 cnt) and theG’ band at around latter band: it is called eitheD* band emphasizing that it
2600-2800 cm?, which is the overtone fronD band, seems to be the first overtone of tBeband, orG’ band
sometimes also calle®* band. Among these modes the emphasizing that it is an intrinsic feature of the Raman spec-
RBM, which is the only one with no counterpart in graphite, trum of graphite that needs no disorder.
proved to be very useful for giving information on the diam-  The origin of theD band in graphite was not understood
eter distribution. We have found an oscillatory behavior infor several decades. Several approaches were pursued focus-
the position and the intensity of the RBM band of SWCNT ing on different aspects of the phenomenon. Either a band-
bundles as a function of the laser excitation endfgy.,.>*  structure picture was used with the introduction of quasi-
The careful analysis of this oscillation makes it possible toselection-rules for electrons and phontn*or theD band
determine the distribution of diameters in such samples.was treated as a result of a “breathinglike” motion of finite
Furthermore, Joricet al. have shown that measuring the clustersi®>®All suggested descriptions have weak points.
RBM band of individual isolated tubes allows the assign-The shortcoming of the former approach is that it is based on
ment of their f,m) chirality indices® anad hocassumption that the wave number of the phonon is

Recently, we have found that an oscillation superimposethe same as the wave number of the excited electron. The
on a linear shift can be observed also for the position of theatter treatment has its importance for highly amorphous ma-
D and G’ bands of SWCNT’$:” A similar anomalous dis- terials, but it is not adequate for describing lightly disordered
persion has also been reported in Refs. 8,9 for the depemystems such as the SWCNT's, where a solid-state approxi-
dence of wp and wg: on the laser energyE zser iN mation is more appropriate.

SWCNT's. The main problem in the solid-state approximation for

To understand the anomalous dispersion of Bhéand  graphite with only a small amount of defects lies in the fact
G’) bands in SWCNT bundles, a detailed analysis of thethat for this material nd -point phonons exist in the fre-
similarities to and the differences from the case of graphenguency range between 1300—1400 Cnat all}”*8The only
(a single sheet of graphijtés needed. phonons with appropriate frequency are aroundkhgoint,

The appearance of tH2 band in the Raman spectrum of near the Brillouin zone(BZ) boundary, therefore, these
disordered graphite has been well known for a long tifhe. phonons are silent in the usual first-order Raman process.
The band has its maximum position for visible excitation atThis long-standing problem was solved recently by Thomsen
around 1350 cm!, where no peak can be observed in aand Reich based on the idea of double resondhte fact,
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Ref. 14 was the first work to state that the double-resonance [. 1I.

process is responsible for the dispersion of Bévand in “bg

graphite. However, that paper contains some mistakes, be 2 S g
side the lack of the quantitative treatment of the Raman cros: Lolel Py
section. According to the description of Thomsen and Reich__ ' ¢ ' 4
the incoming photon excites an electron-hole pair and the g ; E E ‘ E
electron(or hole is subsequently scattered into another point ' & fas.2 el fas.2
of the k space. After backscattering and a subsequent |
electron-hole recombination a different photon will be emit- [ a R
ted. One of the scattering processes should be mediated by I v
defect for obtaining th® band. The low scattering probabil- T R
ity as a consequence of the small concentration of the defect P N
can be compensated by a double resonance, where beside t I P2 e
incoming or outgoing resonance an intermediate state is ir 1,77 ™\ 4 Ve .
resonance as well. 0

In the present paper, we apply the concepts outlined in Eisi "t E a2 B et E a2

Ref. 19 for SWCNT’s. We show by explicitly carrying out A B

the integrations of the usual formulas for a resonant Ramar e S
proces$’ that the most important contributions to theband ab ¢ ab e
come from the terms for which not only the double-
resonance condition is fulfilled but_ in additi(_)n, the scatteringinCIUIding interaction of the electron or hole with a deféapen
process occurs between electronic states irktBpace cor-  iycle: 2in part I, lll, and 3 in part Il, IV as well as with a phonon
reSponld'ng to van HovevH) singularities in the density of = (fjjeq circle: 3 in part I, Ill, and 2 in part II, IV. The pairs of
states’* Summing up the response calculated forthband  giagrams(I-Iil ) and(II-IV) differ in the time ordering of the scat-
of more than 100 individual SWCNT's with different diam- tering by a defect or a phonon. Only processes where the first scat-
eters and chiralities, we show that the resultiddand not  tering involves an electron are shown here. The electron is scattered
only shifts withE ¢, but there is also an oscillation super- back in part | and Il, whereas in part Il and IV the hole is scattered
imposed on i£? The intensity of theD band oscillates simi- after the electron. Double resonance occurs when the energies of
larly. We measured the Raman spectrum of a sample dfvo of the intermediate virtual statea,p,c) match the laser exci-
bundles with a given diameter distribution. The calculationtation energyEas1=Ejas 2t fiwg.
for the same diameter distribution reproduces very well the ] )
observed anomalous dispersion. An additional conclusiorder Feynman diagrams, relevant in our case for a Stokes
from our calculations is that the position and the intensity ofProcess.(The anti-Stokes process can be treated similarly.
the D band are even more sensitive to the diameter distribul he vertices 1 and 4 in all four parts of Fig. 1 describe the
tion than that of the RBM. electron-hole excitation and recombination, respectively. The
The paper is organized as follows. The following sectionintermediate vertex labeled by open circl@sin part I and
summarizes the basic concepts, andBhband of graphene !ll, and 3 in part Il and IV in Fig. 1 corresponds to a scat-
is reviewed with some more qualitative insight into the de-tering of the electron or the hole by a defect. The remaining
tails; in Sec. Il we apply the formalism to individual Vertexin t_he_dlagrgms corresppnds to the creation of a.pho—
SWCNT'’s; in Sec. IV our experimental results are presentedion- In principle, similar four diagrams should be taken into
and are compared to our calculations of Bdand for a set account where the first scatterl_ng involves a hol_e mstead_of
of SWCNT'’s with a Gaussian diameter distribution equiva-an €lectron. However, such diagrams are equivalent with
lent to the sample in the experiment; and in Sec. V we sumthose shown in Fig. 1 in the case of electron-hole symmetry

FIG. 1. Fourth-order Feynman diagrams for the Raman process

marize our conclusions. that is a good approximation at least for the relevant states
near theK points. We mention that th&' band can be
Il. BASIC CONCEPTS AND EVALUATION OF THE treated similarly, the only difference being that both scatter-
DOUBLE RESONANCE FOR GRAPHENE ing processef2 and 3 involve phonons with opposite wave

vectors, that is, no defects are needed in that case.
The amplitude of a Raman process can be calculated by The Raman cross section is the absolute squake,pfy,
perturbation theory and can be visualized by appropriatehe sum of the complex amplitudes as given by Edgsand
Feynman diagran®. Figure 1 shows four possible fourth (2) for the various diagrant.

M
Kfho= > — b 5 —, (1)
ab,c (Elas,l_ Eoi—i 7)(Elas,l_ Eoi—i 7)(Elas,1_ Eei— hwq_ iy)
M
Klzlf',%: > @

abe (Ejas1—Egi—i ¥)(Ejas1— Egl_ﬁwq_ 1Y) (Ejas 1~ Egl_ﬁwq_ iy) .
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In these formulas 0 antirefer to the initial(ground and k', with k' —k=gq. Whereas the energies of the measurable
the final states of the material systelgrapheng respec- initial (Eas) and final € a2t iw,) States are equal, the
tively. There is one phonon created, with wave vemipin energy conservation does not hold for the intermediate vir-
the final state. The total initial and final states contain a photual states. The energy denominator depresses the contribu-
ton with Ej,s1 and E s, respectivelyM is a symbolical tion of the intermediate states for which the violation of the
abbreviation for the transition matrix elements that—energy conservation is large. Resonance occurs on the other
together with the damping parametgr— were assumed to hand if an energy denominator is very small. We speak about
be constant in our calculations, independently of the elecdoubleresonance if the real part ofo energy denominators
tronic states. become zero at the same time, in at least one term of the

The “intermediate” state¢labeled bya, b andc in Fig. 1) sum?®®
may consist of two parts: an electronic and a phononic one Figure 2 shows schematically a process that can contrib-
(the latter of course only if the phonon already existfor ~ ute to double resonance, in the reciprocal space of graphene.
all diagrams and alsb for diagrams Il and IV of Fig. L~ The phonon wave vectoy describes a scattering between
E2,, EY,, andES, give the electronic part of the energies of two points in thek space of the electrons. Because of the
the intermediate states. In the case of graphene the treatmegnuble-resonance condition these tWopoints have to lay
of the electronic part is simple: to a good aproximation it ison equi-excitation-energyEEE) contours with either the
enough to take into account only one electron and one holeame energy or with energies that differ only By,
state per eacK point in the two-dimensiongRD) Brillouin ~0.16 eV. For example, both of these energiestagg, for
zone. These states are in theelectron conduction and va- incoming resonance in the case of process | in Fig. 1, and

lence bands, with the one-electron energiess®fk) and  Eias2 for outgoing resonance in the case of process Il of Fig.
£°(K), respectively. Al other states are too far away from thel, €tc. In all cases this means that bétiandk’ should be
Fermi level and cannot contribute to the resonance with th€lose to one of the trigonal point(or K') of the BZ.
visible light. Furthermore one has to keep in mind that only phonons with
As it is well known, for interaction with visible light, the q vectors close tmro =K’K=IK' have the right frequencies
wave number of the electron and the hole should be practito contribute to théd band.
cally the same both for the excitation and the recombination For the explicit calculation of the formuld$) and(2) the
processes. The interaction with a phonon, on the other handsual tight-binding approximation witty=2.9 eV and ne-
changes the wave number of the electfon the hole by  glecting the asymmetries between electron and hole bands
Ak=q. It follows that for all four diagrams in Fig. 1£2, ~ Wwas used, which is accepted as a good approximation for the
_SC(E)_sv(E) and Eb _ C(E,)_ ”(IZ) wherek’ —|2=ﬁ- electronic dispersion relation:
ES, is different for the different diagrams: it is°(k) £%(Ky  ky) = —£(Ky , Ky)
—&¥(k’) in the case of Ill and IV. \/ Ky Ky \/gky
The Raman cross section for given initial and final states =to '\ 1+4cos 51 % +co 5
can be obtained by a summation over all possible intermedi-
ate states according to the formuld$ and(2). For a given (3

—e¥(k)=E? a1 in the case of | and Il, whereas it rs“(k )
phonon wave vectorﬁ, this means an integration ovkrand

The phonon dispersion is not known experimentally
around theK (or K') points. Therefore, we used a model
a b dispersion of the same kind as the previous formula, for sim-

wph(Qx:Qy)

plicity:
\/ (qx) S(qx E(\qu)
=A+B 1+4cos| —||cog —|+co
2 2 2
(4)

FIG. 2. Schematic equi-excitation-energ§) EE) contours for where A and B are fitting parameters. We used
electrons(a) and equifrequency contours for phonof® in 2D =1200 cm* andB=230 cm ! based on the experimen-
graphene. The hexagonal symmetry poify (and the symmetry tally known linear dispersion of th® band of graphiteA
inequivalent trigonal points andK") of the Brillouin zone are a5 obtained from the extrapolation of the dispersion when
indicated in the figure. In the case of double resonance, the wavg e |aser excitation energy goes to zero, 8nas obtained
vector of the phonorg connects twoK points in the electronic  from the fitting of the slope of the linear dispersion of about
Brillouin zone in the neighborhood & andK’, respectively. Note 50 cmi Y/eV.
that only phonons witly vectors not too far away fromg:=K'K Figure 3 shows the results of the integration of the formu-
=T'K' have the right frequencies needed for fdand. las (1) and(2) for graphene, for two different laser excitation
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1 for the|q—qo| =2k approximation, wheré is the radius of
the corresponding EEE contotirThis approximation works
of course only in the case of isotropic dispersion relations.
Furthermore, the wave vectors for the transitions labeled by
3a and D would be exactlyq, for an isotropic electron
dispersion relation, independently from the phonon disper-
X sion. In fact, they are slightly upshifted due to the trigonal
3 R warping of the contours. It should be mentioned that the
L T , anisotropy is not too large for excitations in the visible, when
1200 1250 1300 1350 1400 1450 E|aseris in the range of 2—3 eV. All the statements above can
be directly verified by comparing the maximum positions of
the curves shown in Fig. 3 with the phonon frequencies ob-
tained by the formul&4) using the corresponding wave vec-
tors calculated analytically according to Fig. 4.

intensity (arb. units)

3

o, (cm)’

FIG. 3. Calculated band in the Raman spectrum of graphene

for Ejase;=2.0 eV (solid lin€) and Ejaser=2.5 eV (dashed ling The peaks in Fig. 3 shift towards higher wave numbers
The integration forK'2le0 and K'z'fle was carried out using appro- i

. : . ; with increasing laser excitation energy. The reason for this is
zﬁte electron- and phonon-dispersion relatipismulas (3) and obvious from Fig. 4. It originates from two facts: First, in-

creasing the laser excitation energy means EEE contours

with larger “radius” around th&k andK’ points. Second, the
energies 2.0 eV and 2.5 eV. For the reciprocal lifetime of theransition between the parallel parts of the EEE contours
electronic statesy=0.03 eV was used in this case. The with increasing “radius” leads to reductiaf® in Fig. 4 or to
spectra consist of several peaks. The origin of these peakf extension1 in Fig. 4 of the phonon wave vector. The
can be understood qualitatively as illustrated in Flg 4, Thq)honon frequency increases in both cases, because the pho_
main contributions to th® band come from the integrations non dispersion has a local minimum fﬁ)@ corresponding to
along the two boldface dashed curves that are EEE contouts, . «ition between thé and K’ points. ,The upshift of the

, ,
aroundl:] andK’, accordtmgtto th.‘:‘. doulglet resonance". llzor ? osition of the strongest pe&k) has a slope of 50 cnt/eV
given phonon wave-vector transitions between parallel partg, ", qance with the experiments.

of these contours result in local maxima in the integral. The " 1.4 fact that the most important features of the explicit

highest intensity occurs for the parts with lowest CurV‘"‘tureintegration can be reproduced by qualitative considerations

Ia_bﬁlled by .1 in F_igs_. 3 End. 4.dA}notr;1er Iocal_r_naxint;um bUtwiII be valid also in the case of SWCNT’s. This will be very
with lower intensity Is obtained for the transitions betweeny .| for the interpretation of the anomalous dispersion of

the parallel parts with highest curvature, labeled by 2 in Figs ; ;
3 and 4. The difference in the wave vectors for the transitionst?undles of more than 100 different SWCNTs.

1 and 2 depends on the anisotrgfygonal warping of both

the electron and phonon dispersion relation. For example, if
both the electron and the phonon dispersions would be iso-
tropic, the two maxima, 1 and 2 would coincide, because in
that case the wave vector for transition 2 is less thgmy The ideas described in the preceding section can be ap-
the same amount by which the wave vector for transition 1 iplied to SWCNT'’s as well. However, there is one essential
larger thanqg, and the phonon frequency depends on thedifference: the 1D nature of the nanotubes results in the vH
absolute value of the deviation gffrom qq. This is the basis singularities in the density of states of both the electrons and
the phonons. These singularities have an important effect,
comparable to the resonance effect due to the zero denomi-
nators. As an example, we demonstrate this for (ttle9
nanotube that can be regarded as a typical nanotube in the
sample that we measured. Its diameter is very close to the
maximum of the diameter distribution obtained from the
RBM spectra Furthermore, it is a chiral nonmetallic tube as
most of the tubes in the sample are. However, the conclu-
sions drawn are similar for any other SWCNT.

To evaluate the Raman cross section for the processes
shown in Fig. 1, we integrated the formul@y and(2) in k
space. We used the same tight-binding dispersion relésjon
for electrons as was used for graphene. The only difference is
that due to the confinement of the electrons along the cir-

FIG. 4. Simple qualitative interpretation of the maxima 1, 2, andcumference of the tube the perpendicular component of the
3in Fig. 3(see text The highest intensity occurs for wave vectors wWave vectors is quantized. The wave-vector component par-
between parallel parts of the EEE contours with lowest curvaturegllel to the tube axis remains quasicontinuous. Thus, neglect-
(labeled by 1. ing the curvature effects, one can use the 2D dispersion re-

Ill. APPLICATION OF THE THEORY
FOR INDIVIDUAL SWCNT'S
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FIG. 5. Dominant transition shown by boldface arrow on the ob(cm_l)
example of a chiral nonmetallic tulié1,9 as plotted in the 20k
space. The zig-zag lines in the center of the figure separate the two F|G. 6. Calculated bands by integrating the formulds) and
ranges of the Brillouin zone around two inequivalent trigonal points<2) for an (11,9 tube in the case of four different laser excitation

(K andK"). The straight lines are the discrete allowegboints for  energies. Note that the third vH singularity in JDOS isEag
the electrons of the tube. The boldface contours are the EEE con=2 382 eV. The inset shows the change of the maximum height of

tours that touch one of the discrete lines. The positions of the VHhe pand as a function d,.e,. The two maxima in this “excita-
singularities in thek space are labeled by filled black circles. tion profile” correspond to the incoming and outgoing resonances.

lation of graphene for SWCNT's but restricting thepoints  tjgn (ﬁ=AIZ). We calculated the Raman cross section

to the allowed parallel straight lines with uniform distances| ! 4 Il =~ lll 4 @IV 12 b integrating alona all dis-
between them. The direction of the lines depends on the 210 210 20,10 212d" by integrating along

S I he di i“hbori rete lines in the neighborhood of theandK’ points, tak-
qh|ral|_ty angle and t € d|st§1nce between two neg borlnqng into account all possible transitions between them. The
lines is 26, whered is the diameter of the tubeFigure 5

) . X results of the integrations can be seen in Fig. 6 for four
shows several discrete lines for thi&l,9 chiral tube to- different laser excitation energie€ cor=2.360, 2.385,

gether with some EEE contours aroukddand K’ points of 2.390, and 2.400 eV, just below and abd¥g=2.382 eV,

the BZ. Atmost four of these straight lines can contribute e third vH singularity in the joint density of staté¥DOS.

a resonance process i.n the visible range. The lines furthelrhe reciprocal lifetime of the electronic states was
away fromK andK" points do not cross any EEE contours =0.01 eV in these calculations. The finite lifetime of the

of energies less than 3 eV. Figure 5 shqws a situation_ wher honons was taken into account by a convolution with a
an EEE contour touches one of these lines in the neighboi- .+ ia curve with 3-cmt half width at half maximum.

hood of bthK and K,. point_s. These tou.ching poinf[s.— There are several important conclusions that can be drawn
labeled by filled black circles in Fig. 5—define the positions¢. ) - Fig. 6. First of all, as it is clearly seen in the figure, the

.Of one (.)f the vH singullarities in thespace. The correspond- D band consist of several subbands, the strongest one being
ing excitation energy i€35=2.382 eV for a11,9 tube us- around 1340 cm!. The origin of the subbands is the fol-

ing t;=2.9 ev. lowing. For an arbitranE ., that is larger than the second

Some complications arise concerning the - phonony,, singularity in the JDOSKE,,=1.197 eV) the number of

dispersion relation. According to our experiments, SWCNT h s hich the doubl
bundles have an anomalous dispersion: an oscillation supei?€ Phonon wave vectog for which the double-resonance

imposed on the linear upshifsee following section Al- condition is fulfilled is at least # 4=16. The actual phonon
though the linear part of the dispersion can be well describely/@ve vectors d_epe_nd on how 'Fhehdlscrete I|rr11es a(rje cut by the
by the model formuld4), the oscillating component is more EEE contours in Fig. 5.fE\;]en In the Casc‘f_ w er?' ue ]EO Sym-
sensitive to the actual phonon-dispersion relation. It turned €ty reasonsi, shqme 0 It € correspg_r;f In(ghp ggondrequen-
out that the anisotropy of E4) is too large and we had to C€'€S are equal, this results in many differéntsubbands at

use another model phonon dispersion, where we could turdifferent positions with different intensities. Some of these
the amount of the anisotrog§rigonal warping in order to fit subbands may overlap each other. The intensity of the indi-

the details of the oscillations quantitatively. The following v@dual components depends on the agtual values of the den-
model dispersion was used: sity of states for the electrons in tiepoints, where the EEE

contour cuts the discrete lines. Obviously, at least one vH
~ o~ ~ ~ singularity is involved in the case of the strongest subband at
wph(qr quo):A,+BIQr[1_5C05(3q¢)]a (5) around 1340 le_
~ ~ ) ~ L . The most important conclusion from Fig. 6 is that the
whereq, andg, are the polar coordinates q=q—do, the intensity of theD band has a sharp maximum when the ex-
deviation of the phonon wave vector fromK’. A’ citation energyE,,ser matches a vH singularity. The band
=1220 cm!, B'=120 cni'!, and§=0.06 proved to be a is always determined by the phonons with which the double-
good combination to describe the measured anomalous disesonance condition is fulfilled, but obviously the singulari-
persion of bundlegsee following section Therefore, the ties in the JDOS of the electrons have a comparable effect to
same parameters were used in this section, as well. this. The explanation for this is straightforward. The stron-
The phonon wave vector is determined by the change ofiest possible effect occurs when—besides the double
the electron wave vector according to momentum conservaesonance—two vH singularities are matched at the same
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time: before as well as after the scattering of an electoon

a hole. This is only possible if the two EEE contours around WMM
WMMM

K andK’, for which the double-resonance condition is ful- 2.71

filled, have the same energy. This can happen only either in 266 e e
process | or Il of Fig. 1 in the case of incoming resonance, W
or in process Il or IV of Fig. 1 in the case of outgoing 2,57

resonance. The inset in Fig. 6 clearly shows the effect of both M
the incoming and outgoing resonances in the excitation pro- 550

file for the strongest band at around 1340 ¢niThe ratio of

the maximum peak intensity at 2.385 eV to the intensities at 247

2.35 eV, 2.50 eV, and 2.70 eV are39, ~15, and~=20, 2.41

respectively. M
The above conclusions hold for any SWCNT’s. This was :

checked for several tubes with different chiralities. We just 2.34

mention that the armchair tubes are special in the sense that 2.18M
they have an additional subband at a frequency very close to 213 M

Intensity

that corresponding to thié point, with comparable intensity 2.05 T
to the other band at higher frequencies. The reason for this is 1.96 M
the fact that for armchair tubes there exist always pairs of vH 1902 M/\\M‘”
singularities lying on a line that is parallel to the line con-
necting the pointK and K’ in the BZ. The wave vector 1.83 MM
connecting these vH singularities is almost identicaigoin 177 WM
fact it is slightly larger due to the trigonal warping effect. 1.73 WMM
We summarize the main conclusions of this section as 1.68 mmw
follows. The calculate® band of a SWCNT for an arbitrary 1~6M
excitation energy consist of many subbands, some of them 1.69M%
overlapping each other. The positions and intensities of these . . .
subbands depend df),s.,- The intensity of theD band has 1250 1300 1350 1400

a sharp maximum if either the incoming or the outgoing light . “

matches a vH singularity in the JDOS. This behavior can be Raman shift (cm™)

assigned as a “triple resonance,” which is the combined ef— FIG. 7. D-band spectra measured by 22 different laser excita-
fect qf a douple resonance plus an enhancement by matching s for a sample of SWCNT's with Gaussian diameter distribution
the singularities in the density of states. with a mean value oflo=1.32 nm and a width o&=0.14 nm.

from these spectra. For comparison, the behavior ofGhe
band and thé&’ band are also shown in the figure.

The least-squares fit for the linear part of the measured
A. Experiment dispersion of theD band is

IV. COMPARISON OF THE THEORETICAL RESULTS TO
THE EXPERIMENTS

In this section the comparison of the experimental and _
. . =(1219+3)+(51.8£ 1.3 E , 6
theoretical results is presented for samples grown by laser @max=( )+( )Elaser ©
ablation at the Rice group. Raman measurements wWere Cafherew,,,, andE s, are measured in cit and eV, respec-
ried out using 22 different laser excitations in the range beyjyely,
tween 1.6 eV and 2.8 eV. ~ The G’ band also has an oscillation superimposed on a
The measured intensities were corrected for power of infinear shift, similarly to theD band. The slope of the linear

cident laser and for detector sensitivity. The latter was calipart for theG' band is about twice the slope of that of the
brated in a standard way by comparing the response of thgang. TheG band has no dispersion.

Faq line of silicon with reported resuls. ~ The maximum intensity of th® band oscillates as well,
The diameter distribution was obtained from the a”alys'sshowing two peaks at about 1.9 eV and 2.4 eV.

of the Raman spectra of the RBM. The oscillation of the

position and intensity of the RBM as a function of the laser ,

excitation energy could be described by a Gaussian distribu- B. Comparison to theory

tion w(d) ~exd —(d—dg)¥20%] with a mean tube diameter  There are 114 different SWCNT'’s with diameters falling

of dy=1.32£0.01 nm and a distribution widttvariance of  into the 3 interval (1.3263X0.14 nm) corresponding to

0=0.14 nm? the measured sample. In principle, we had to carry out all
Figure 7 shows the measurBdband spectra. A shift and necessary integrations for the 114 tubes to fit the meadbred

an oscillation in the position and an oscillation in the inten-band of the sample. However, as we have shown in the pre-

sity of theD band can be clearly seen. Figure 8 shows theceding section, the position of the dominant peak in Ehe

dispersion of the maximum position of tleband, extracted band of one single SWCNT is determined by the wave vec-
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0 (cmj1

1.6 1.8 2 22 24 26 28
E (V)
laser
FIG. 8. Measured dispersion of the maximum position ofhe
band. For comparison, the behavior of the meas@ehd theD*
bands are also shown. The inset in the lower part shows the calcu-

lated maximum peak position vs laser excitation energy for a mix- -8 ' : ‘ ! '
ture of 114 different SWCNT's. The parameters of the Gaussian L6 1.8 2 22 2.4 2.6 28
diameter distribution, which reproduced best the measured oscilla- E (V)

tion of theD band weredy=1.32 nm andr=0.11 nm.
FIG. 9. Comparison between the measutedand calculated
tor(s) satisfying the “triple resonance” condition. It is a (b) oscillation in the maximum peak position. A linear progression
quick and easy task to find these wave vectors and the cotvas subtracted from thep values.
responding phonon frequencies for any given SWCNT. To
obtain the resultind band of the whole sample, the indi-  To improve the fit the diameter distribution had to be
vidual contributions for these vectors were summed up usinghanged as well. A small decrease in the width of the Gauss-
the appropriate Gaussian weight factor of the diameter disian distributione from 0.14 nm, as obtained from the RBM
tribution. Due to the “triple resonance” condition, only tubes spectra, to 0.11 nm resulted in a significant improvement of
for which E|,ser (Ejas 1 OF Ejas2) matches or nearly matches the fit. Checking the RBM evaluation again we found that
a vH singularity in the JDOS have a non-negligible contri-the average standard deviation of the calculatedas esti-
bution. This was taken into account by a square “resonancenated to be 0.03 nfiFurthermore, comparing the values
window” with a width of £0.1 eV centered arourfl,ce;0f  obtained from Raman RBM and from optics for the same
both the incoming and outgoing laser light: only tubes forsamples, the deviation between them is in some cases even
which a vH singularity fell into one of these “resonance 0.04 nm* We concluded from this that the analysis of the
windows” were considered for a given laser excitation en-pscillation of theD band is more sensitive to the diameter
ergy. The smearing of the sharp “stick” frequency spectrumdistribution than the analysis of the oscillation of the RBM.
was carried out by a convolution with a Lorentzian curve The inset in Fig. 8 shows the calculated anomalous dis-
with a half width of 10 cm*. persion of theD band. The least-squares fit for the linear part
It turned out from the calculations that the oscillation in of the calculated dispersion is
the maximum peak position of the resultilgband is very
sensitive to the phonon-dispersion relation. Using formula Omax=(1203.4+1.1) + (56.9* 2.3)E | 3cer, (7
(4) resulted in an oscillation with too large amplitude and in
addition with too high frequency, obviously due to the toowherew,,xandE, s are measured in cnt and eV, respec-
large anisotropy of the phonon dispersion. That was the redively. This is in reasonable agreement with the measured
son for changing the phonon dispersion to the form@la  values given by the formuléb).
where the amount of the anisotropy could be tuned, starting Also, the measured oscillations can be reproduced well by
from zero. The anisotropy af=0.06 was found to result in our calculations as demonstrated in Fig. 9. The figure shows
a good fit of the measured oscillation. Note that an oscilla@ comparison between the measured and calculated oscilla-
tion still remains even for the case 6F=0.) However, the tions, where the linear progression was subtracted.
details of this oscillation did not agree satisfactorily with  Finally, we discuss the qualitative reason for the anoma-
those of the measured one. lous dispersiorjoscillation of theD band of SWCNT's. The
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13807 . T o tions along one discrete lingee e.g. Fig. bare taken into
1360 account. This behavior was already shown in Ref. 21 for a
-~ i & special class of nanotubes.
' SOy o
g ,
§ 1340} O O .
‘é’o ¢ V. SUMMARY
1320r <g<‘;>§-o§" I The cross section of a higher-order Raman process in
1300F ] graphite exhibits a double resonance that results in a linear
upshift of the position of théd band with increasing laser
1280 ‘ ' ‘ ‘ ' excitation energy. In this case two of the denominatorse
6 18 2 22 24 26 28 for either the incoming or the outgoing light, and another one
eV) for an intermediate state of the systebecome zero at the

van Hove

same time. SWCNT’s have an anomalous dispersion relation
FIG. 10. CalculatedD-band frequencies of the individual as compared to graphite. We measured the dispersion of a

SWCNT’s with diameters in the 1.320.07 nm range as a function sample consisting of different SWCNT's. We observed an
of the energies of the corresponding vH singularities. oscillation superimosed on the linear upshift in the position

of the D band. An oscillation in the intensity of tHe band
origin of the behavior is the finite number of the different Was observed as well. To interpret the experimental results
(n,m) chiralities in a typical sample together with the fact we calculated the resonant Raman cross section carrying out
that the dependence of tiileband frequency on the position ?ﬁ(zftl'?#égeg;?\t(;og? gf tSrll(\a/éol\Il-$L|”Sa%)e {aer;%(iﬁ)elslvr?o?hgr\:\ll;dby
ggranc\)/r';'stsr :tggl?rqtéilg; Tgk stir)%(rzg !{Eﬁgﬁ; Ifrr:aec?uué?z;igsm;rles double resonance alone. The intensity of thband shows a

sharp maximum when a vH singularity is matched by either
pIotted_versusEUH for o_nly 18 nanotubes that hfave the larg- {he incoming or the outgoing light, as well— we use the
est weight factor, having diameters that fall into the veryappreviation “triple resonance” for this effect. We have cal-

center part of the Gaussian distribution. We emphasize tha{|ated the resultind band of a sample consisting of 114
nanotubes with the same diameter but with different chiralitygitferent SWCNT'’s with a Gaussian distribution for the di-
can have very differerb-band frequencies; in this point the ameters. Only the processes corresponding to the “triple
situation is different from the case of the RBM. The,ify)  resonance” were taken into account in this case, neglecting
chirality indices(not shown in the figunescatter in a com- the contributions with much lower intensity. The calculation
pletely disordered manner. The discrete points in Fig. 10 alreproduced the measured anomalous dispersion very well.
ready show the most important features of the oscillationWe have also shown that the analysis of bvdand is more
For this plot the model phonon dispersith) with a small  sensitive to the exact diameter distribution than the analysis
anisotropy of§=0.06 was used. A much larger anisotropy of the RBM, therefore, it may serve as a useful method for
like in the formula(4) would result in a plot with much the characterization of the SWCNT samples.

broader distribution ofvp, and as a consequence in an oscil-

lation with much larger amplitude. On the other hand, for a ACKNOWLEDGMENTS
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