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Correlations in the sine-Gordon model with finite soliton density

D. N. Aristov* and A. Luther
NORDITA, Blegdamsvej 17, DK-2100, Copenhagen, Denmark

~Received 31 August 2001; published 4 April 2002!

We study the sine-Gordon~SG! model at finite densities of the topological charge and small SG interaction
constant, related to the one-dimensional Hubbard model near half filling. Using the modified Wentzel-Kramers-
Brillouin approach, we find that the spectrum of the Gaussian fluctuations around the classical solution repro-
duces the results of the Bethe ansatz studies. The modification of the collective coordinate method allows us to
write down the action, free from infrared divergencies. The behavior of the density-type correlation functions
is nontrivial and we demonstrate the existence of leading and subleading asymptotes. A consistent definition of
the charge-raising operator is discussed. The superconducting-type correlations are shown to decrease slowly at
small soliton densities, while the spectral weight of right~left! moving fermions is spread over neighboring
‘‘4 kF’’ harmonics.
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I. INTRODUCTION

In this paper we study the sine-Gordon~SG! model at
finite densities of the topological charge and small SG in
action constant. The exactly solvable sine-Gordon model
a large number of applications in different subfields of co
densed matter physics and statistical mechanics. The par
lar case of the SG model of our interest below arose pr
ously in various studies of the one-dimensional Hubb
model close to half filling,1 commensurate-incommensura
transition,2 strongly correlated systems in high
dimensions,3 collective excitations in a multifluxon Joseph
son junction,4 superconducting5 or quantum Hall6 double-
layer systems in parallel magnetic field, and phase exc
tions in ferroelectric liquid crystals.7

Theoretical investigations of the quantum SG model w
the finite density of topological excitations~kinks! were un-
dertaken by Haldane,8 Caux and Tsvelik,9 and Papa and
Tsvelik.10 These studies, employing the analysis of the Be
ansatz equations, established the dispersion of low-lying
citations and the so-called Luttinger parameter, defining
asymptotic behavior of the correlation functions.

In the present work, we use an alternative method to
vestigate this problem, which was introduced by Dash
Hasslacher, and Neveu,11 and is usually called the modifie
Wentzel-Kramers-Brillouin ~WKB! or semiclassical ap
proach. In this method, one first finds the classical solution
the equation of motion and then analyzes the quantum fl
tuations around this solution.12 It is known that this method
gives excellent agreement with the available exact soluti
of several models, and particularly the SG model.

With the use of the modified WKB approach, we find th
the spectrum of Gaussian fluctuations in our model gives
spectrum coinciding with the one obtained earlier by the B
the ansatz method.8,10 At the same time, applying the stan
dard semiclassical treatment, we encounter strong infra
divergencies in higher orders of perturbation theory. The
ficulties arise also with the definition of the so-called du
field associated with the charge-raising operator of
theory. It is known that a troublesome difficulty with th
semiclassical approach is the existence of fluctuations b
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ing zero energy, which corresponds in our case to the tra
lational symmetry of the problem. The treatment of the
‘‘zero modes’’ is best done by the collective coordina
method,13 whose straightforward application, though, do
not cure our problem. It is shown below, however, that it
possible to use a somewhat modified collective coordin
method, to arrive at the action, free from the infrared div
gencies. Technically it is done by allowing the fluctuatin
field to enter the argument of the classical solution. T
stable infrared action is achieved at the expense of a m
complicated form of the correlations.

Proceeding this way, we obtain the leading and sublead
asymptotic terms in the density-density correlation functio
in agreement with earlier predictions by Haldane.8 The defi-
nition of the charge-raising operator now becomes free fr
ambiguities and we can calculate the leading behavior of
superconducting-type correlations. Remarkably, the deca
the latter correlations is slow at small densities of kinks,
observation which confirms earlier results.8,10

We demonstrate a nonzero quantum average of the f
fermion umklapp operator in the Hubbard model away fro
half filling. Particularly, it results in the spectral density
the right-moving fermions being distributed over the neig
boring 4kF harmonics of the density.

The remaining part of the paper is organized as follow
We obtain and analyze the classical solution in Sec. II. T
fluctuations around it are discussed in Sec. III. The diffic
ties with the standard application of the semiclassical
proach are outlined in Sec. IV. A way of circumventing the
difficulties is discussed in Sec. V, we present the form of
correlation functions here. Concluding remarks are found
Sec. VI. The essence of the collective coordinate metho
given in the Appendix.

II. CLASSICAL SOLUTION

We consider the Lagrangian density of the form

L5
1

2
~] tf!22

1

2
~]xf!22

m2

b2
~12cosbf!1H

b

2p
]xf

~1!
©2002 The American Physical Society12-1
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D. N. ARISTOV AND A. LUTHER PHYSICAL REVIEW B65 165412
on a line of lengthL. The SG interaction constant is assum
to be small,b!1, andm is the first breather mass. The ter
with the chemical potentialH does not enter the equation o
motion and defines the boundary conditions for the fieldf.
We write the topological charge densityr5(1/2p)]x(bf)
and the average densityr̄5Q/L. Using the well-known cor-
respondence between the fermions and bosons in one sp
dimension,14 we associater with the fermionic density. Par
ticularly, cosbf appears as an umklapp term in the cha
sector of the Hubbard model andr̄ measures the deviatio
from half filling, as 2pr̄54kF22p. The total chargeQ is
given by

Q5E
0

L

rdx5
1

2p
bfu0

L , ~2!

which defines the boundary conditions forf.
In what follows, we employ the quasiclassical method

analysis of the quantum system defined by Eq.~1!. This
method arises most naturally in path integral formulation
the problem and basically corresponds to the steepest de
method. As a first step, one finds the classical configura
of the field, delivering the extremum to the exponentia
action, and then analyzes the spectrum of fluctuations aro
it. The general criterion for the applicability of the method
the formally large value of the classical action; it was show
however, that the quasiclassics gives exact results for a
ticular case of sine-Gordon model with a zero density of
topological charge.11

For later convenience we make a shiftbf→bf1p writ-
ing the potential term in the form

U~f!5
m2

b2
~11cosbf!. ~3!

As a first step we seek a static classical solutionf0 by vari-
ating L in df. We have

]x
2f02U8~f0!50. ~4!

Multiplying it by ]xf0 and integrating overx we obtain

~]xf0!252U~f0!1C

with some constant of integrationC, which is integrated
again to give

x5Ef0 dy

A2U~y!1C
.

Letting

C5
4m2

b2

12k2

k2

with yet undeterminedk, we get

x5
k

m
F~bf0/2,k!1const,
16541
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with incomplete elliptic integralF.15 Inverting the last equal-
ity, we have

f052b21am~xm/k,k!, ~5!

where am(x,k) the Jacobi amplitude function15 with the el-
liptic index k. This index is determined by the above tot
variation of the field (bf/2) which results in the equation16

m

2r̄
5kK~k! ~6!

with the complete elliptic integralK. Henceforth we will
omit the index k as a second argument of the ellipt
functions and use the conventionsk15A12k2,K(k)5K,
K(k1)5K8,E(k)5E. From Eq.~6! we have

k1.4e2m/2r̄, r̄!m, ~7!

.1, r̄@m. ~8!

Introducing the soliton massMs58m/b2 and rescaling
the fieldH5Msh we write the energy of this classic solutio
E052L@f0# as follows:

b2

2m2

E0

L
5

2E2k1
2K

k2K
2

2h

kK
. ~9!

The indexk, defining the density~number of kinks!, should
be chosen in order to minimize the energyE0. Differentiating
Eq. ~9! by k, we find that the energy attains its minimum

E/k5h ~10!

and this minimum has a form

E052
2m2L

b2

k1
2

k2
. ~11!

The last expression coincides, up to the sign, with the p
surep52]E0 /]LuQ . The enthalpy of the system is given b
(2m2L/b2)(2E/k2K).

A. Number of kinks

At smaller fields,h,1, there are no solutions to Eq.~10!.
The critical value of the field for the appearance of the ‘‘kin
condensate’’Hcr5Ms was found earlier in Ref. 10. At fields
slightly exceeding this critical value, we have for the dens
(m/ r̄)e2m/ r̄.(h21)/4. Upon further increase of the field
we have approximately linear relation between the field a
the density of kinks

r̄.mS ln
4Hcr

H2Hcr
D 21

, H.Hcr , ~12!

.Hb2/~4p2!, H@Hcr . ~13!

Numerically, the asymptotic expression for large kink den
ties ~13! holds with a good accuracy already atH>2Hcr .
2-2
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B. Susceptibility

Consider now the susceptibility defined asx
52L21]2E0 /]H2. A simple calculation gives

x5
b2

16

E

k1
2K3

~14!

.
b2

8~h21! S ln
8

h21D 22

, h.1 ~15!

.~b/2p!2, h@1. ~16!

Our expressions for the kink densityr̄ and susceptibilityx
are identical with those obtained earlier10 in the large-field
limit, Eqs.~13!,~16!. At the fieldsH.Hcr our expressions for
r andx coincide with their counterparts in Ref. 10 up to a
overall factorp/2.

Near its minimum atr5 r̄, the energy can be expanded
follows:

E0.
L

2x
~r2 r̄ !2 ~17!

or, 1/x5pvN , in the notations by Haldane.8

Another important parametervJ , according to Haldane, is
given by the coefficient in the total HamiltonianH
5vJP

2/(2pL r̄2), at small values of the total field momen
tum P5*0

Ldx ḟf8. It can be easily shown, thatH
5P2/2Mtot with the mass of the kinks’ condensateMtot

5*0
Ldx (]xf0)25LE/K(2m/bk)25QH. As a result, one

findsvJ5pr̄/H5pb2/(16KE). Therefore, one expects8 the
Fermi velocity vF5AvNvJ5k1K/E and the Luttinger pa-
rameter K5AvJ /vN5pb2/(16k1K2), both expectations
verified below.

III. FLUCTUATIONS AROUND
THE CLASSICAL SOLUTION

A. Lame equation

Now we consider the fluctuations around the classical
lution f0. We write f5f01h and expand the Lagrangia
into Taylor series12

L5L@f0#1L1 ~18!

L15
1

2
~] th!22

1

2
~]xh!21

1

2
m2~cosbf0!h2

1higher orders inh. ~19!

The term linear-in-h drops out from this expression and th
higher orders inh contain additional powers ofb, and we
will neglect them for the moment. We look for the solutio
h in the form h(x,t)5(ci(t)h i(x), obeying cyclic bound-
ary conditions. Integrating by parts, we write

L15
1

2
h~2] t

21]x
21m2cosbf0!h. ~20!
16541
-

Next, we seek the ‘‘normal modes,’’ satisfying

~2]x
22m2cosbf0!h i~x!5v i

2h i~x!. ~21!

The dynamics of these normal modes is simple,c(t)
5e6 ivtc. Introducing the variablez5xm/k we rewrite Eq.
~21! in the form4

d2

dz2
h5~A12k2sn2z!h, ~22!

with A52k2(v2/m211) and sn(x) Jacobian elliptic func-
tion. This is the Jacobi form of the Lame´ equation and the
solutions to it are described in the literature~Ref. 17, Chap.
23.71!. These solutions are parametrized by an indexa and
are explicitly written as

h~z,a!5
H~z2a!

Q~z!
exp@zZ~a!# ~23!

with Jacobi functions H(u)5q1@pu/(2K)#, Q(u)
5q4@pu/(2K)#, andZ(u)5d ln Q(u)/du; the nome of theq
functions q̃5exp(2pK8/K).15 The structure of Eq.~23!
shows thatH/Q is the modulating Bloch function andZ
corresponds to a wave vector. The energyv is given by

v56~m/k!dn~a!. ~24!

The second independent solution forh with the same energy
~24! is obtained from Eq.~23! by changinga→2a which
corresponds to the symmetry of Eqs.~22!,~23! with respect
to reflectionz→2z.

B. Properties of h„z…

One can show that the whole family of linearly indepe
dent solutions~23!, which possess the real-valued energ
and are periodic on a length of the chain, is exhausted by
values of a belonging to segments (K22iK 8,K# and
@22iK 8,0) in the complex plane. We will refer to these se
ments as I and II, respectively. The energies~24! and the
normalized solutions~23! are doubly periodic ina with the
periods 2K,2iK 8.

The solutions~23! are quasiperiodic in 2K, and

h~z12K,a!52h~z,a!exp@2KZ~a!#. ~25!

Introducing the Floquet indexn by e22inK52e2KZ(a), we
have

n[ iZ~a!1
p

2K
5

pn

QK
~26!

with integern. Returning to the original variablex5zk/m,
we find the allowable wave vectors in the form

q52pr̄@ i ~K/p!Z~a!11/2#52pn/L. ~27!

Consider first the variation of the indexa on segment I, the
correspondingn in Eq. ~27! in the range

2Q/2,n<Q/2, ~28!
2-3
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which meansQ allowed values ofn. The energies~24! of
solutionsh(z,a), with a from segment I, lie between

v50, q50 at a5K6 iK 8,

and

v5v1[mk1 /k, q5pr̄ at a5K. ~29!

This part of the spectrum is interpreted as a band, origina
due to hybridization of the bound states related to individ
kinks.

In order to see this, we note that for one kink,Q51, the
only valuen50 is allowed in segment I. It is the quantize
bound state withv50 for the single-kink solution of the
sine-Gordon equation. In the limit of low densityr̄!m, the
energies of the lower band are exponentially small,

v.4me2m/2r̄sin
uqu

2r̄
, ~30!

which is the dispersion for a system of weakly coupled h
monic oscillators.

Another branch of the spectrum, parametrized bya from
segment II, has one singular point ata52 iK 8, where both
Z(a) anddn(a) have simple poles. This point correspon
to q→6` andv→`.

The energy of this band has the minima

v5v2[m/k at uqu5pr̄, a522iK 8,0. ~31!

The dispersion atr̄/m50.26 is shown in Fig. 1~a! in the
extended Brillouin zone scheme. The same dispersion sh
in the reduced Brillouin zone scheme is depicted in Fig. 1~b!.

We see that there is an energy gapv22v1 between the
states in the lower and upper band. It is interesting to n
the following relation:

v2
22v1

25m2.

In the low-density limit r̄!m, we write a5 ia8, then
q→2m tana8,v→m/cosa8 so thatv5Am21q2.

At this point it is worthwhile to calculate the Fermi ve
locity vF for low-lying excitations in the large-Q limit. Ex-
pandingv andq near the pointa05K2 iK 8 of sector I, we
have

v.2 im
k1

k
~a2a0!, q.2 i2r̄E~a2a0!, ~32!

and

vF5v/q5k1K/E, ~33!

.A~h21!lnS 8

h21D , h.1, ~34!

.12S p

2hD 4

, h@1, ~35!
16541
d
l

r-

n

te

in agreement with the above estimate and the results in
10. As a result, the Luttinger parameterK5pxvF is found in
the form

K5
pb2

16

1

k1K2
, ~36!

which shows thatK decreases with increasing the densi
and attains its limiting valueb2/(4p) at r̄→`.

The form of the eigenfunctions~23! is somewhat simpli-
fied at the special pointsa5K2 iK 8,K,0, where one has
@see Eqs.~29!,~31!#

h0~x!5~LE/K !21/2dn~xm/k!, a5K2 iK 8, ~37!

h1~x!}cn~xm/k!, a5K, ~38!

h2~x!}sn~xm/k!, a50 ~39!

with the normalization factor inh0(x) made explicit. Hence-
forth, we will call the eigenfunction~37! the zero mode.

Analyzing the lowest-energy states witha.K2 iK 8, one
can find a following expression, valid in the leading order
q/pr̄ :

hq~x!5h0~x!expS 2 iqx2 i
qp

4KEr̄

q38~pxr̄ !

q3~pxr̄ !
D . ~40!

FIG. 1. The dispersion in the~a! extended and~b! reduced Bril-

louin zone scheme shown atk50.87 andr̄/m50.26.
2-4
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CORRELATIONS IN THE SINE-GORDON MODEL WITH . . . PHYSICAL REVIEW B65 165412
The second term in the exponential is the phase of
Bloch function. It is 1/r̄ periodic in x, vanishing atx
50,6 r̄21,62r̄21, . . . .

For completeness, we provide here an approximate
pression for the eigenfunctions of the upper band in the lo
density limit r̄!m andk→1. Near the position ofnth kink,
it is given by

h~x!v.m}@ tanhm~x2 r̄n!2 i tana#

3exp@ i ~x2 r̄n!m tana2 inq/ r̄ #, ~41!

q52m tana12ar̄1pr̄, ~42!

in accordance with Ref. 18. Concluding this subsection,
note that Eqs.~33!, ~36!, ~40!, and~41! extend the analysis o
fluctuations performed by previous authors.4,7,5

C. Quantization of fluctuations

The differential operator in Eq.~22! is self-adjoint and,
consequently, the eigenfunctions form an orthonormal se

E
0

L

dxhn~x!hm~x!5dnm . ~43!

There is a well-known property that a continuous functi
F(x) ~with the same boundary conditions! can be expanded
as a generalized Fourier series

F~x!5(
n

hn~x!E
0

L

dyhn~y!F~y! ~44!

which means

(
n

hn~x!hn~y!5d~x2y!. ~45!

Now we may introduce the quantized field, defining

F~x,t !5(
n

1

A2vn

@hn~x!eivntbn
†1hn* ~x!e2 ivntbn#.

~46!

The Bose operatorsbn satisfy the commutation relations

@bn ,bm
† #5dn,m ~47!

and therefore for equal-time fields

@F~x!,] tF~y!#5
i

2 (
n

@hn~x!hn* ~y!1hn* ~x!hn~y!#

~48!

5 id~x2y!. ~49!

Strictly speaking, the zero mode~37! with v50 should be
excluded from the sum~46!, which leads to the extra term
2 ih0(x)h0(y);Q21→0 in Eq. ~48!. The reason for it is a
nonindependent character of the modeh0 in the description
of the field configurationf0(x),$hn(x)%n50

` . Indeed,h0,
16541
e

x-
-

e

bearing the zero energy, corresponds to the translation o
classical solutionf0(x)→f(x1X), while h0(x);]xf0(x).
As a result, the consistent treatment will consist of the fu
tions f0(x1X),$hn(x1X)%n51

` , with h0 replaced by the
displacementX of the system as whole. The quantityX
should be regarded as a dynamical variable in the cor
description of the quantum Hamiltonian.13

We outline this collective coordinate method in the A
pendix and show, that the corrections to the above sim
formula are negligible in the limitQ→`. The only thing
which we should borrow from the collective coordina
method, is the necessity to integrate over the vacuum lo
tion X instead of inclusion ofh0.

It seems that one now has everything to compute vari
correlation functions, describing the quantum fluctuations
the system. Given a set consisting of the classical solu
f0 and the normal modes around it, one calculates the qu
tum averages with the simple rules of bosonic algebra
then integrates over the initial positionX of the soliton lat-
tice. This program, however, reveals many difficulties d
scribed in the next section.

IV. DIFFICULTIES IN THE APPROACH

A. Density-type correlations

Consider the fermionic densityr5]xbf/2p. The classi-
cal contributionr05]xbf0/2p5 r̄w(x), where

w~x![
2K

p
dn

m~x1X!

k
. ~50!

The averaging over the kinks position gives a simple res
here,

^r~x!&X5 r̄^w~x!&X5 r̄.

At the same time, the classical contribution to the pairw
density correlator is ^r(x)r(y)&X5 r̄2^w(x)w(y)&XÞr̄2.
These nontrivial correlations of density at largest distan
correspond to Wigner crystallization of the chargeQ. This
long-range ordering of the charge in one spatial dimensio
evidently erroneous and should eventually be removed fr
the theory.

The quantum corrections to the above correlator in
long-distance limit read as

^r~x!r~y!&q52
K

2p2

]2

]x]y
^w~x!w~y!&Xlnux2yu,

~51!

where we have used Eqs.~33!, ~37!, ~40!, and ~46!. The
CDW-type correlator is similarly estimated as

^eibf(x)e2 ibf(y)&;^exp@22K ln~x2y!w~x!w~y!#&X .
~52!

Evidently, the modulationw(x)w(y) in Eq. ~52!, being ex-
ponentiated is more pronounced than in Eq.~51!.
2-5
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B. Dual field

The so-called dual fieldu(x,t) used in the construction o
the fermion operator, is usually defined as

]xu5] tf, ] tu5]xf.

These relations imply] t
2f5]x

2f, which is not consisten
with the linearized theory equation~21! ~the discussion of
the zero mode contribution tou is postponed until the nex
section!. Particularly, the usual construction of the charg
raising operatorO;exp 2pib21*(x,t)(dt]x1dx]t)f is inappro-
priate in the basis$hn%, being dependent on the contour
integration inO.

One may ignore for a moment this discrepancy, us
only a first equation]xu5] tf. This is sufficient for the cal-
culation of the instantaneous correlation functi
^exp@4pib21u(x)#exp@24pib21u(y)#&. Making this calcula-
tion, we meet another troublesome property.

The lattice of kinks gives rise to the notion of the Br
louin zone and to the infinite set$hn

(0)% of the eigenstates
with nonzero energy and zero wave vector in the redu
Brillouin zone scheme:h0

(0)[h0. A constant is not an eigen

state of Eq. ~21!, and therefore h̄n[L21*0
Ldx hn

(0)(x)
;L21/2. Further, if the wave vectorqn of the eigenstatehn is
close to zero, a corresponding Fourier transformhn(q) has a
pole h̄n /(q2qn). The quantityh̄n decreases when increa
ing the energy and this decrease is slower at largerk. In
particular, one can show for the above set$hn

(0)% that

(n50
` (h̄n)25L21, while h̄05p/(2ALKE).
The vacuum expectation value of the product ofu fields is

then

^u~x1y!u~y!&. (
q.0

vF

q
h̄0

2cosqx

1(
q8

cosq8x

2q82 (
n>1

vn,q8h̄n
2 . ~53!

As usual, the constant~divergent! term should be added her
in order to analyze the dependence of the correlations ox.
The first term in Eq.~53!, resulted from the lowest energ
modes, contributes to the logarithm. In the second term, w
both signs ofq8 available, we note that linear-in-q8 correc-
tions tovn,q8 vanish and the sum overq8 gives a contribu-
tion linear in uxu. The sum overn in Eq. ~53! converges
rapidly when elliptic indexk is not too close to unity, i.e., a
r̄*m. For an estimate, it is sufficient to writ
(n>1vn,q8h̄n

2;r̄(n>1h̄n
25 r̄(L212h̄0

2). As a result, we
have

^u~x1y!u~y!&.
pk1

8E2
ln

L

uxu
2 r̄uxu@12p2/~4KE!#O~1!.

~54!

The linear in uxu term is present unlessk→0 (m/ r̄→0),
when one recovers the usual expression^u(x1y)u(y)&
;2 lnuxu. As a result, the superconducting correlatio
16541
-

g

d

th

^e4p ib21ue24p ib21u& decay exponentially at large distance
We see that the above definitions of the dual field are inc
sistent in the basishn and lead to an exponential decrease
the SC correlations in the gapless situation.

C. Perturbation theory

Consider now the role of the terms of the interaction
Eq. ~19!, which have been discarded. These terms, cont
ing additionalbs, produce divergences in the perturbati
theory. Resumming the tadpole sequence of diagrams,
2~a!, one obtains the mass renormalization of the form

h2~x!m2cosbf0~x!→h2~x!m2cosf0~x!e2Kw(x)2ln L

with L;Q. This renormalization depends onx and, there-
fore, changes the shape of the potential cosbf0. This essen-
tial modification is accompanied by stronger than logari
mic infrared divergencies in diagrams, not contained in
tadpole series, e.g., that shown in Fig. 2~b!.

V. A PROPOSED SOLUTION

A. Lagrangian

A key to resolve all the above discrepancies is found
follows. We wrote the fluctuations around the classical so
tion asf5f01h and performed the Taylor expansion~19!.
Instead of that, we can write the fluctuations in the form

f52b21amF2KS xr̄1
bh̃

2p
D G . ~55!

Formula ~55! has the remarkable property that shiftingh̃
→h̃12p/b increasesf→f12p/b. This may serve as a
justification of the scaling factor beforeh̃ in Eq. ~55!. At r̄

@m one hasf→2pr̄b21x1h̃, hence Eq.~55! and f
5f01h coincide in this limiting case. Some calculatio
shows, that the perturbation theory inh̃ can be obtained from
the exact form of the full Lagrangian

L5w2Fx1
bh̃

2pr̄
G ~] th̃ !22~]xh̃ !2

2
. ~56!

The field theory decribed by Eq.~56! is free from infrared
divergencies for two reasons. The first is the presence of
field derivatives in each term of the perturbation series. A
other reason is a particular form of the formfactors of t
interaction, when thenth vertex is obtained by (n22) dif-
ferentiations of the restricted functionw2(x).

The Gaussian action is given by

FIG. 2. ~a! A tadpole sequence of diagrams, contributing
position-dependent mass renormalization.~b! A stronger divergent
diagram not contained in this sequence.
2-6



s

os
ti
n
si
s

he

-

ght
g

e

e

sal,
the
es

he
ld,

f
,

r

CORRELATIONS IN THE SINE-GORDON MODEL WITH . . . PHYSICAL REVIEW B65 165412
L5
1

2
w2~x!@~] th̃ !22~]xh̃ !2#, ~57!

with the corresponding equation of motion

] t
2h̃5w22]xw

2]xh̃. ~58!

Our aim is now to show that the spectrum of Eq.~58!
coincides with the initial problem~21!, and to find the con-
nection between the fieldsh̃ andh. The equivalence of the
spectra stems from the possibility to rewrite the Lame´ equa-
tion in the form

v2h~x!52w21~x!]xw
2~x!]xw

21~x!h~x!, ~59!

which implies that the Lagrangian is

L5
1

2
@~] th!22~w]xw

21h!2#. ~60!

Evidently, Eq. ~60! coincides with Eq. ~57! after the
substitution

h̃~x,t ![w21~x!h~x,t !. ~61!

As a result, the eigenfunctions to Eq.~57! are normalized
with a weight

E dxw2~x!h̃a~x!h̃b~x!5dab , ~62!

and Eq.~61! leads to the following form of the correlation
at large distances:

b2^h̃~x,t !h̃~y,0!&.2K lnu~x2y!22vF
2 t2u. ~63!

Therefore, we find the description of the fluctuations, p
sessing the same spectrum in the Gaussian approxima
but free from divergencies in higher orders of interactio
This choice of appropriate variables should be hence con
ered as an effective partial resummation of perturbation
ries.

B. Density-density correlations

The adoption of the definition~55! makes the calculation
of the correlation functions less trivial. Consider first t
density-density correlationŝr(x)r(y)&. Using the series
representation15 for the functiondn(x) we write

r5S r̄1
b

2p
]xh̃ D (

n52`

`
ein(2pr̄x1bh̃)

coshnt
, ~64!

with t5pK8/K. Note that the previous kinks’ lattice dis
placementX corresponds to the new zero modeh̃05const,
Eq. ~61!. The integration overh̃0 gives evidently^r&5 r̄,
while it selects the terms with equalns in the pairwise den-
sity correlator

^r~x!r~y!&q5 r̄21
K

2p2~x2y!2
~65!
16541
-
on,
.
d-
e-

1 (
n51

`

cn

cos 2npr̄~x2y!

ux2yu2n2K 1••• ~66!

with omitted faster decaying terms. We see that the wei
factorsw(x) in Eq. ~51! are transformed into the decayin
4kF52pr̄ harmonics of the density, in line with Ref. 8.

C. CDW-type correlations and umklapp ordering

Keeping in mind the Hubbard model near half filling, w
associate the exponenteibf/2 with the ‘‘2kF’’ density wave
operator, whereaseibf stands for the ‘‘4kF’’ umklapp pro-
cess. The ‘‘2kF’’ correlations are estimated as follows. W
use Eq.~55! and the series representation

eiam(2Kz)5 (
n52`

`

Cn
(1)e2p iz(n11/2), ~67!

Cn
(1)5

pet(n11/2)

kK sinh~2n11!t
,

to obtain

^ei (b/2)f(x)e2 i (b/2)f(0)&; (
n52`

`

@Cn
(1)#2

e2ipr̄x(n11/2)

uxu2K(n11/2)2
,

~68!

^ei (b/2)f(x)ei (b/2)f(0)&; (
n52`

`

Cn
(1)C212n

(1) e2ipr̄x(n11/2)

uxu2K(n11/2)2
.

~69!

The prefactors of the exponents here are not univer
depending on the cutoff. What matters here, is the ratio of
amplitudes for the forward-going and backward-going wav
with the same absolute value of (n11/2). The leading as-
ymptotes are defined byn50,21, noting that C21

(1)

52q̃C0
(1) , with q̃5e2pK8/K, we write

^eibf(x)/2e2 ibf(0)/2&;~eipr̄x1q̃2e2 ipr̄x!uxu2K/2, ~70!

^eibf(x)/2eibf(0)/2&;22q̃ cos~pr̄x!uxu2K/2. ~71!

Particularly, the above formulas indicate the following. T
lowest harmonic of the CDW order parameter fie
}sin(bf/2)5sn@2K( r̄x1bh̃/2p)# has an amplitude
p/(kK sinht/2) which remains finite in the total range o
variation of r̄. The similar quantity for the SDW field
}cos(bf/2)5cn@2K( r̄x1bh̃/2p)#, has an amplitude
p/(kK cosht/2) which vanishes asr̄/m at half filling, r̄
50.

Using Eq. ~67! we write the umklapp order paramete
field in the form

cosbf5 (
n52`

`

Cn
(2)ein(2pr̄x1bh̃), ~72!
2-7
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2Cn
(2)5(

n1

Cn2n1

(1) Cn1

(1)1~n→2n!. ~73!

We observe the appearance of the constant termC0
(2) corre-

sponding to the fact that the average value^eibf(x)&
5^cosbf(x)&5C0

(2) is not zero at finite density of kinks. In
deed one has

C0
(2)5@22E1K~11k1

2!#/~k2K !, ~74!

.124r̄/m, r̄/m&0.2, ~75!

.m2/~8p2r̄2!, r̄/m*0.2. ~76!

It should be noted that the nonzero value ofC0
(2) arises with-

out ‘‘locking’’ of the field f. We remind that in the absenc
of kinks the fieldf is ‘‘locked’’ to one of the discrete value
fn52pn/b, and it results in the nonzero value of the ‘‘2kF’’
density wavê eibf/2&561. In the presence of kinksf con-
nects different vacuafn , and^eibf/2&50, while ^eibf&Þ0
is decreasing function of the kinks density.

The quantum average of two umklapp exponents at l
distances has the form

^cosbf~x!cosbf~0!&;@C0
(2)#21 (

n51

`

cn8
cos 2pr̄xn)

uxu2Kn2 .

~77!

We see that in the absence ofC0
(2) the dimensionality of the

operator cosbf would beK. As K increases with decreas
of r̄, one might think that umklapp operator cosbf becomes
less relevant.10 However, this increase ofK is accompanied
by the increase ofC0

(2) , and^cosbf&;1 at r̄;m.

D. Dual field

Let us now discuss the modification of the definition
the dual fieldu(x,t). The basic property of the charge raisin
operatorO;exp 2pib21u in the path integral representatio
is that the contour of integration~‘‘Dirac string’’ ! in the defi-
nition of u introduces a discontinuity in the fieldf, so that
the values of the fieldbf differ by 2p across this contour.19

In view of the above property,bf→bf12p as bh̃→bh̃
12p, we see that it suffices to require the charge-rais
property for the fieldh̃.

The canonical momentum for the fieldh̃ is given by p̃

5]L/](] th̃)5w2] th̃. The quantization condition read

@h̃(x),p̃(y)#5 id(x2y).
Consider the definition

ũ~x!5Ex

dx8p̃~x8! ~78!

for equal-time fields. Differentiating the last equality byx

and then byt we have from Eq.~58! ] t]xũ5]xw
2]xh̃, hence

the definitions

]xũ5w2] th̃, ] tũ5w2]xh̃, ~79!
16541
g

g

are consistent with the equation of motion. The char
raising operator O;exp 2pib21*(x,t)w2(dt]x1dx]t)h̃, is
now uniquely defined, independent of the contour of
tegration. Further, one has@h̃(x),ũ(y)#5 iq(y2x) and
therefore we have exp@2pib21ũ(x)#f@h̃(y)#5f@h̃(y)
12pb21q(x2y)#exp@2pib21ũ(x)# for any f (z). This prop-
erty allows one to define the fermion operator, see below

A counterpartũ0 of h̃05const cannot be obtained from
Eq. ~79!, which again shows a particular role of the ze
mode. One of the possible ways to introduce the quanti
quantity ũ0, relevant to our discussion in the Appendix,
found in Ref. 20. One can write these zero-energy com
nents as follows:

h̃05
p2b

8LEK
Jt1~q2Q!W1~x!

b

2pxL
1 i

2

b

]

]J
, ~80!

ũ05
p2b

8LEK
JW2~x!1~q2Q!t

b

2pxL
1 i

b

2p

]

]q
~81!

with J5P/pr̄ the persistent current attaining integer value
the functions W1(x)5*xw22(y)dy and W2(x)
5*xw2(y)dy are expressed through the elliptic functio
Nd(x) and Dn(x), respectively. A canonical conjugate toJ is
pr̄X, so the last term in Eq.~80! is simply the previous shift
in the initial kink position. The charge variableq was as-
sumed to beQ in Secs. III, IV and we let it fluctuate now
around its equilibrium value. A choice of the factors beforeJ
and q variables is dictated by the conditio
*0

Ldx w2(] th̃0)21(]xh̃0)25(q2Q)2x21L211P2Mtot
21 , cf.

Eq. ~17!. A particular form of the functionW1(x) in Eq. ~80!
is not coincidental here. Satisfying the equati
w22]xw

2]xW1(x)50, the functionW1 is another~increas-
ing! zero mode for Eq.~58!, which corresponds to the in
crease ofQ in the classical solutionw(x)W1(x)}]f0/]k ;
we havebh̃0ux50

L 52p(q2Q).

Let us discuss now the correlations of the dual fieldũ. To
do it, consider first its equation of motion, as follows fro
Eq. ~79!:

] t
2ũ5w2]xw

22]xũ. ~82!

Recalling the property of the Jacobi function dn(x), we write

w~x1 r̄21/2!5c1w21~x!, c15
4K2k1

p2
. ~83!

Therefore the differential operator in the right-hand side
Eq. ~82! coincides with one in Eq.~58!, when shifted by its
half periodx→x1 r̄21/2.

For the infrared Gaussian action, given some particu
solution h̃a to Eq. ~58!, we obtain its dual counterpartũa
with the same energy and Floquet index. In view of the co
pleteness of the seth̃a , we have a relationũa(x)5cah̃a(x
1 r̄21/2). The value of the constantca is elucidated from the
following sequence of equalities
2-8
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ca] th̃a~x1 r̄21/2!5] tũa~x!5w2~x!]xh̃a~x!

5e2inKw2~x!]xh̃a~x1 r̄21!

5e2inKw2~x!ca
21]xũa~x1 r̄21/2!

5e2inKc1
2ca

21] th̃a~x1 r̄21/2! ~84!

hence

ca56c1einK. ~85!

One can show, that the sign here is plus foraP(K
2 iK 8,K) and aP(2 iK 8,0) and minus for aP(K
22iK 8,K2 iK 8) and aP(22iK 8,2 iK 8). In the large-r̄
limit the eigenfunctionsh̃a(x) are usual plane waves
;e2 iqax, and we recover the usual expressionũa(x)
5sgn(qa)h̃a(x). The sign in Eq.~85! is irrelevant for cal-
culating the expectation value of the product of two du
fields and we have

^ũ~x!ũ~y!&5c1
2^h̃~x!h̃~y!&. ~86!

Noting from Eqs.~36!,~83!, that 4pc15b2/K, we immedi-
ately obtain

^e4p ib21ũ(x)e24p ib21ũ(y)&;ux2yu22/K. ~87!

The dynamics of the correlations~65!,~68!,~87! is ob-
tained by replacingux2yu→@(x2y)22vF

2(t12t2)2#1/2. This
simple temporal dependence of the correlations is valid
long as we consider the long-time, long-distance behaviox

;vFt@ r̄21. At shorter scales, the complicated structure
the wave functions and of the dispersion comes into play
the Lorentz form of the correlations is lost.

E. Fermionic correlations

We now discuss the Hubbard model and regard cosbf as
a four-fermion umklapp term. In this case, in addition to t
‘‘charge’’ field f discussed insofar, one also considers
spin degree of freedom described by the fieldfs and its dual
oneus . We write the right and left fields as the linear com
binations

fRs5
b

4
f2

2p

b
ũ1sAp

2
~fs2us!, ~88!

fLs5
b

4
f1

2p

b
ũ1sAp

2
~fs1us! ~89!

with the spin projections561. The operators

cRs5xseifRs, cLs5xse2 ifLs ~90!

may be identified with the right and left fermion, respe
tively. Let us discuss this point in more detail.

One can easily check that given the usual relat
@fs(x),us(y)#5 iq(y2x), the operatorscRs

† ,cRs ,cLs
† ,cLs

with the sames anticommute. The anticommutation of the
operators with different projection of spin is ensured by
16541
l

s

f
d

e

-

n

e

Majorana fermionic variablesxs .20 These variables obey
x1x15x2x251, while x1x252x2x1 .

A subtler question concerns the relation of the constr
tion ~90! to the initial fermionic variables in the Hubbar
model. In the bosonization procedure, the initial fermio
were written similarly to Eq.~90!, with the dual fieldu in Eq.
~88! instead of ourũ. The oscillator representation~46! for
the initial right ~left! bosons had simple form, which i
achieved within our formalism forr̄Þ0 atm50. It is not at
once clear that the complicated expressions~55!,~79!,~23! in
the presence of umklapp term,mÞ0 are related to right and
left moving particles. We state here that the label ‘‘right’’ o
the boson fieldfRs simply indicates the species of fermion
which is constructed this way. As we will see shortly, um
klapp interaction produces a partial redistribution of the f
mionic spectral weight over the 4kF components of the den
sity, hence initially right-moving particle has now left-goin
components.

In short, our fermions~90! anticommute, have the sam
initial field f, and explicitly acquire the conventional form a
m50. Therefore they are the fermions, which one starts w
during the bosonization of the Hubbard model.

The spin fields of the fermions are factorized, and for t
charge part we have

cR,L~x!}expS 6 i
b

4
f2 i

2p

b
ũ D ~91!

;e22p ib21ũ (
n52`

`

Cn
(h)e6 i (2pr̄x1bh̃)(n11/4),

~92!

Cn
(1)5(

n1

Cn2n1

(h) Cn1

(h) , ~93!

cf. Eqs.~67!,~73!. The fermionic correlations are found in th
form

^cRs
† ~x,t !cRs~0!&

;
1

~x2vst !
1/2 (

n52`

` cn9 e2p i r̄x(n11/4)

~x2vFt !2n11/2~x22vF
2 t2!gn

~94!

gn5
@~2n11/2!K21#2

4K . ~95!

In the case of free fermions (m50,b258p) one hasK52,
and the anomalous dimension of the fermion vanishes,g0
50. We observe that at special values of the Luttinger
rameterK/251/3,1/5,1/7, . . . , certaingn vanishes as well,
and the fermionic correlations reveal purely chiral~sublead-
ing! component. ForK52/(2n11), it is of the form

e6p i r̄x(n11/2)

~x7vFt !n11/2~x2vst !
1/2

~96!

with upper~lower! sign for even~odd! n. The leading asymp-
tote in Eq.~94! is given by a term withn50 and hence the
2-9
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scaling dimension of the fermion operator has its usual va
dim@cRs#5 1

8 (AK/21A2/K)2.

F. Low-density limit

We have obtained the critical exponents for the corre
tion functions which depend on the Luttinger parameterK.
Some inspection of the formula~36! reveals that at smal
densities the Fermi velocity is exponentially small,vF

.(m/2r̄)e2m/2r̄, and the parameterK;b2( r̄/m)2em/2r̄

eventually becomes large. Haldane’s analysis of the Be
ansatz equations has shown the crossover region
4(r̄/m)ln b21.1 and the saturation ofK→1 at smaller den-
sities. This statement, albeit reasonable, is hard to chec
our formalism.

The saturation ofK can be a result of the intervention o
some class of diagrams, increasingly important at small d
sities. As we have shown, the full Lagrangian~56! is free
from infrared divergencies. On the other hand, it requires
essential ultraviolet regularization. The situation is rever
when one works with the initial field variables~19!. Hence
the question of saturation ofK remains open within our for-
malism.

VI. DISCUSSION AND CONCLUSIONS

We have studied the sine-Gordon model in the presenc
a finite density of kinks. This quantum problem is related
the strongly interacting electronic system in one spatial
mension close to commensurability, where the me
insulator transition occurs. The model was investigated p
viously by the Bethe ansatz method, which gave a form
the spectrum and the Luttinger parameter, defining the de
of correlations functions at large distances.

In dealing with complicated problems, it is always wor
to have alternative methods at hand, suitable for cross ch
ing with existing results and capable for further theoreti
predictions. In this paper we used the semiclassical appro
and demonstrated that the spectrum and the Luttinger pa
eter correctly reproduced the results of the Bethe ansatz s
ies. Among the new features, available due to the quasic
sics, are the explicit form of various correlation functio
and the unambigous construction of the charge-raising op
tor in the theory.

Discussing the correlation functions, we determined th
leading and subleading asymptotes, whose amplitudes
critical exponents strongly depend on the kink density. A
dressing a more technical issue of the charge-raising op
tor, or the dual field in the theory, we showed the way it
constructed through the modified collective coordin
method. This allowed us to reestablish the link with the f
mionic counterpart of our bosonic problem and to calcula
in the leading order, the behavior of the superconducti
type correlations.

One of the consequences of our approach is the non
value of the quantum average, associated with the fo
fermion umklapp operator in the Hubbard model away fro
half filling. As a result, we found that close to commensu
bility point, the spectral density of the right-~left-! moving
16541
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fermions is distributed over the neighboring ‘‘4kF’’ harmon-
ics of the fermionic density.
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APPENDIX: COLLECTIVE COORDINATE METHOD

For brevity, we will write] t f 5 ḟ ,]xf 5 f 8 in this section.
Following Ref. 13 we write our solution in the form

f~x,t !5f0~x1X!1(
0

`

cn~ t !hn~x1X!. ~A1!

The classical solutionf0 is proportional tob21, and the
fluctuationsh are of order ofb0. In terms of the above mas
of kinks condensateMtot , the normalized zero-energy solu
tion is

h0~x1X!5Mtot
21/2f08~x1X!,

in accordance with Eq.~37!. In order to pass to the correc
form of the quantum Hamiltonian, one has to regard the v
ableX, which indicates the location of the soliton lattice,
a dynamical variable, replacing the zero mode coordinatec0.
Instead of Eq.~A1! we write

f~x,t !5f0@x1X~ t !#1(
1

`

cn~ t !hn@x1X~ t !#, ~A2!

and the time derivative

ḟ~x,t !5S f081(
1

`

cnhn8D Ẋ1(
1

`

ċnhn . ~A3!

Introducing the new coordinatesun ,n50,1, . . . ,̀ ac-
cording to u0(t)5X(t),un(t)5cn(t) for n.0 we repre-
sent the kinetic energy term in the Lagrangian in the fo
1
2 *0

Ldx ḟ25 1
2 ( i , j 50

` u̇iDi j u̇ j , with a symmetric matrixDi j

with elements

D005E dx S f081(
1

`

unhn8D 2

,

D0n5E dx hnS (
1

`

umhm8 D , n.0,

Dnm5dnm , n,m.0. ~A4!

The Hamiltonian is obtained by finding the canonical m
menta p j , conjugate to coordinatesuj , according top j

5]L/]u̇ j5D ji u̇i . The classical Hamiltonian then become
2-10
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H5
1

2 (
i , j 50

`

p i~D21! i j p j1V~$un%!, ~A5!

where the potential energy termV is given by V($un%)

5*dx@ 1
2 f8 21U(f)#5Mtot1

1
2 (n51

` un
2vn

21O(b).
The elements of the inverse matrixD21 are

~D21!0051/D,

~D21!0n52D0n /D, n.0,

~D21!nm5dnm1D0nD0m /D, n,m.0, ~A6!

and the determinantD of the matrix Di j is given by D
5(AMtot1a0)2 with a05*dx h0(x)((1

`umhm8 ).
Using above formulas, one obtains after some algebra

ḟ~x,t !5
h0

AD
p01 (

n51

` S hn1
D0n

AD
h0D pn . ~A7!

Requiring now@un(t),pm(t)#5 idnm and using Eq.~A7!,
one verifies the exactness of the equation@f(x,t),ḟ(y,t)#
5 id(x2y), which result improves the previous formu
in

.

16541
~48!. Among the new features, brought about by the d
scribed method is the explicit absence of the variableX(t) in
the Hamiltonian~A5!. As a result, its conjugate momentum
p0 is independent of time and equals to the conserved t
field momentumP[*0

Ldx ḟf8, which equality is easily
checked.

If we consider the soliton lattice in its rest frame,P50,
then the Hamiltonian is simplified and becomes

HP505
1

2 (
n,m51

` S dnm1
D0nD0m

D Dpnpm1V~$un%!.

~A8!

At first glance, Eqs.~A7!,~A8! contain nontrivial admixtures
}D0n /AD, which should interfere into the subsequent co
sideration. This is true, when one deals with a vacuum, c
sisting of a finite number of kinksQ. However, in the limit
Q;L→`, one hashn}L21/2 and thereforeD0n5O(1),
whereasD5O(Qb22). As a result, the termsD0n /AD
;bQ21/2 in Eqs.~A7!, ~A8! should be neglected in this limi
and we arrive at simpler equationsH5E01 1

2 (n51
` (pn

2

1vn
2un

2)1O(b) and ḟ(x,t)P505(n51
` hn(x1X)pn .
-

,

ys-

r. A
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