PHYSICAL REVIEW B, VOLUME 65, 165412

Correlations in the sine-Gordon model with finite soliton density
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We study the sine-Gordof8G) model at finite densities of the topological charge and small SG interaction
constant, related to the one-dimensional Hubbard model near half filling. Using the modified Wentzel-Kramers-
Brillouin approach, we find that the spectrum of the Gaussian fluctuations around the classical solution repro-
duces the results of the Bethe ansatz studies. The modification of the collective coordinate method allows us to
write down the action, free from infrared divergencies. The behavior of the density-type correlation functions
is nontrivial and we demonstrate the existence of leading and subleading asymptotes. A consistent definition of
the charge-raising operator is discussed. The superconducting-type correlations are shown to decrease slowly at
small soliton densities, while the spectral weight of rigleft) moving fermions is spread over neighboring
“4 k" harmonics.
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[. INTRODUCTION ing zero energy, which corresponds in our case to the trans-
lational symmetry of the problem. The treatment of these
In this paper we study the sine-Gord¢8G) model at “zero modes” is best done by the collective coordinate
finite densities of the topological charge and small SG intermethod!® whose straightforward application, though, does
action constant. The exactly solvable sine-Gordon model hai8ot cure our problem. It is shown below, however, that it is
a large number of applications in different subfields of con-Possible to use a somewhat modified collective coordinate
densed matter physics and statistical mechanics. The particiiethod, to arrive at the action, free from the infrared diver-
lar case of the SG model of our interest below arose previgencies. Technically it is done by allowing the fluctuating
ously in various studies of the one-dimensional Hubbardield to enter the argument of the classical solution. The
model close to half filling, commensurate-incommensurate Stable infrared action is achieved at the expense of a more
transition? strongly correlated systems in higher complicated form of the correlations. _
dimensions’ collective excitations in a multifiuxon Joseph-  Proceeding this way, we obtain the leading and subleading
son junction? superconductirtyor quantum Hafi double- ~ asymptotic terms in the density-density correlation functions
layer systems in parallel magnetic field, and phase excital @greement with earlier predictions by HalddriEhe defi-
tions in ferroelectric liquid crystals. nition of the charge-raising operator now becomes free from
Theoretica' investigations Of the quantum SG mode| W|thambIQUItleS and we can Calcul-ate the leading behavior of the
the finite density of topological excitatiorikinks) were un- ~ superconducting-type correlations. Remarkably, the decay of
dertaken by Haldan®,Caux and Tsvelik, and Papa and the latter correlations is slow at small densities of kinks, an
Tsvelik 1° These studies, employing the analysis of the Bethé@bservation which confirms earlier restits
ansatz equations, established the dispersion of low-lying ex- We demonstrate a nonzero quantum average of the four-
citations and the so-called Luttinger parameter, defining théermion umklapp operator in the Hubbard model away from
asymptotic beha\/ior Of the Corre'ation functions_ half f|ll|ng Particularly, it results in the SpeCtral denSity of
In the present work, we use an alternative method to inthe right-moving fermions being distributed over the neigh-
vestigate this problem, which was introduced by Dashenboring 4kg harmonics of the density.
Hasslacher, and Nevéland is usually called the modified ~ The remaining part of the paper is organized as follows.
Wentzel-Kramers-Brillouin (WKB) or semiclassical ap- We obtain and analyze the classical solution in Sec. Il. The
proach. In this method, one first finds the classical solution tdluctuations around it are discussed in Sec. Ill. The difficul-
the equation of motion and then analyzes the quantum fludies with the standard application of the semiclassical ap-
tuations around this solutio.It is known that this method Proach are outlined in Sec. IV. A way of circumventing these

gives excellent agreement with the available exact solutiondifficulties is discussed in Sec. V, we present the form of the
of several models, and particularly the SG model. correlation functions here. Concluding remarks are found in

With the use of the modified WKB approach, we find that Sec. VI. The essence of the collective coordinate method is

the spectrum of Gaussian fluctuations in our model gives thgiven in the Appendix.

spectrum coinciding with the one obtained earlier by the Be-

the ansatz methdt:® At the same time, applying the stan- Il. CLASSICAL SOLUTION
dard semiclassical treatment, we encounter strong infrared
divergencies in higher orders of perturbation theory. The dif-
ficulties arise also with the definition of the so-called dual 2
field associated with the charge-raising operator of the ﬁ=—(ﬁt¢)2—l(& ¢)2—m—(1—cosﬂ¢)+H ﬁa é
theory. It is known that a troublesome difficulty with the 2 2 2 27"
semiclassical approach is the existence of fluctuations bear- (1)

We consider the Lagrangian density of the form
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on a line of length_. The SG interaction constant is assumedwith incomplete elliptic integraF.'® Inverting the last equal-
to be small,3<1, andmiis the first breather mass. The term ity, we have
with the chemical potentidi does not enter the equation of

motion and defines the boundary conditions for the figld

We write the topological charge densipy=(1/2m)dx(Bd)  \ynere amg,k) the Jacobi amplitude functiGhwith the el-

and the average densipy=Q/L. Using the well-known cor- liptic index k. This index is determined by the above total

respondence between the fermions and bosons in one spat{griation of the field 8¢/2) which results in the equatidh
dimension:* we associate with the fermionic density. Par-

ticularly, cosB¢ appears as an umklapp term in the charge
sector of the Hubbard model apdmeasures the deviation

from half filling, as 277;=4k,:—277. The total charge) is
given by

bo=2B"ram(xm/k k), ®)

m
—=kK(k) (6)
2p
with the complete elliptic integraK. Henceforth we will
omit the indexk as a second argument of the elliptic
[t dx— 1 L functions and use the conventiots=\1—kZ K(k)=K,
Q= of X_Z'B‘MO' (2) K(k,)=K’,E(k)=E. From Eq.(6) we have

which defines the boundary conditions fér klz4e—m/2p, ;< m, (7)
In what follows, we employ the quasiclassical method of

analysis of the quantum system defined by Eh. This =1, ;>m. (8)

method arises most naturally in path integral formulation of

the problem and basically corresponds to the steepest descentlntroducing the soliton masM¢=8m/B% and rescaling

method. As a first step, one finds the classical configuratiofhe fieldH = M:h we write the energy of this classic solution
of the field, delivering the extremum to the exponentiateds,— — [ ¢,] as follows:

action, and then analyzes the spectrum of fluctuations aroun

it. The general criterion for the applicability of the method is
the formally large value of the classical action; it was shown,
however, that the quasiclassics gives exact results for a par-
ticular case of sine-Gordon model with a zero density of th

topological chargé!
For later convenience we make a stfp— B¢+  writ-
ing the potential term in the form

2

U(¢)=%(1+COS/B¢)- 3

As a first step we seek a static classical soluifgnby vari-
ating £ in 6¢. We have

o= U’ () =0. )
Multiplying it by d,¢9 and integrating ovex we obtain
(Oxo)?=2U(¢) +C
with some constant of integratio@, which is integrated

again to give

%o dy
J2u(y)+c’

Letting

B 4m? 1—K?

BZ k2

with yet undetermined, we get

k
X= = F(B¢do/2 k) + const,

B2 @_ZE—ka_&
am? L kk kK

C)

€rhe indexk, defining the densitynumber of kink$, should

be chosen in order to minimize the enegy Differentiating
Eqg. (9) by k, we find that the energy attains its minimum at

E/k=h (10
and this minimum has a form
2m2L k3
0=" rara (11)

The last expression coincides, up to the sign, with the pres-
surep=—d&,/JL|q . The enthalpy of the system is given by
(2m?L/B?)(2E/K?K).

A. Number of kinks

At smaller fieldsh< 1, there are no solutions to EG.0).
The critical value of the field for the appearance of the “kink
condensateH = Mg was found earlier in Ref. 10. At fields
slightly exceeding this critical value, we have for the density
(m/p)e”™P=(h—1)/4. Upon further increase of the field,
we have approximately linear relation between the field and
the density of kinks

—~m<| Ao )_1 H=H (12)

n ’ ’

p H—H, o
~HB2/(47?), H>H,. (13)

Numerically, the asymptotic expression for large kink densi-
ties (13) holds with a good accuracy alreadytt=2H,,.
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B. Susceptibility

Consider now the susceptibility defined ag
=—L"1928,/9H?. A simple calculation gives
2
i »
:3—2(Ini)_2 h=1 (15
8(h—1)\"h—-1)
=(Bl2m)?, h>1. (16)

Our expressions for the kink densfyand susceptibilityy
are identical with those obtained earlfein the large-field
limit, Egs. (13),(16). At the fieldsH=H _, our expressions for

p and y coincide with their counterparts in Ref. 10 up to an

overall factor/2.

Near its minimum ab=; the energy can be expanded as

follows:

L N2
Eo= E(p— p) 17
or, 1ly= vy, in the notations by Haldarfe.

Another important parameter, according to Haldane, is
given by the coefficient in the total Hamiltoniaf{
=vJP2/(2wL;2), at small values of the total field momen-
tum szgdx é¢'. It can be easily shown, that{
=P2/2 M, With the mass of the kinks’ condensate(,,
= [5dx (dypo)?=LE/K(2m/Bk)?>=QH. As a result, one
findsv ;= w;/H =7 3%/(16KE). Therefore, one expeétthe
Fermi velocity vg=\unv;=k;K/E and the Luttinger pa-

PHYSICAL REVIEW B5 165412

Next, we seek the “normal modes,” satisfying

(— 95— m2cosB o) 7i(X) = w? 7i(X). (21)

The dynamics of these normal modes is simpigf)
=e*'*'c. Introducing the variable=xnvk we rewrite Eq.
(21) in the fornf

2

dz?

with A= —k?(w?/m?+1) and snk) Jacobian elliptic func-
tion. This is the Jacobi form of the Lanegjuation and the
solutions to it are described in the literatufRef. 17, Chap.
23.7)). These solutions are parametrized by an indeand
are explicitly written as

7=(A+2k?sr?z) 7, (22

H(z— )
n(z,@)= Wexr{zZ(a)] (23
with  Jacobi functions H{)=%[7u/(2K)], ©(u)

=9, wul(2K) ], andZ(u) =d In ®(u)/du; the nome of the}
functions q=exp(—7K'/K).® The structure of Eq.(23)
shows thatH/® is the modulating Bloch function and
corresponds to a wave vector. The enetgys given by

w==+(m/k)dn(a). (24)

The second independent solution fpwith the same energy
(24) is obtained from Eq(23) by changinga— — a which
corresponds to the symmetry of Eq22),(23) with respect
to reflectionz— —z.

B. Properties of 5(z)

rameter K= \/vj/vy=mB%/(16k,K?), both expectations
verified below.

One can show that the whole family of linearly indepen-
dent solutions(23), which possess the real-valued energies
and are periodic on a length of the chain, is exhausted by the
values of a« belonging to segmentsK(-2iK’,K] and
[ —2iK’,0) in the complex plane. We will refer to these seg-
ments as | and Il, respectively. The energi@d) and the
normalized solution$23) are doubly periodic inx with the

Now we consider the fluctuations around the classical soperiods X, 2iK".
lution ¢. We write ¢= ¢po+ 7 and expand the Lagrangian  The solutiong23) are quasiperiodic in R, and
into Taylor serie¥’

Ill. FLUCTUATIONS AROUND
THE CLASSICAL SOLUTION

A. Lame equation

7(z+2K,a)=—5(z,a)exd 2KZ(a)]. (25
L=Lldol Lo (18 Introducing the Floquet index by e 2"K=—e?KZ(a) e
1 2 1 2 1 2 2 have
L1=5(an)" =5 (9 +5m (cosBeéo) -
V=iZ(a)+ 5= o (26)
+ higher orders in7. (19 2K QK

with integern. Returning to the original variable=zk/m,

The term linear-iny drops out from this expression and the _ :
we find the allowable wave vectors in the form

higher orders iny contain additional powers g8, and we
will neglect them for the moment. We look for the solutions
7 in the form n(x,t)=Xc;(t) #;(x), obeying cyclic bound-
ary conditions. Integrating by parts, we write

(27)

Consider first the variation of the index on segment I, the
correspondingn in Eq. (27) in the range

q=2mpli(K/m)Z(a)+1/2]=2mnlL.

1
Li=5n(= 02+ 92+ m2cosB o) 7. (20)

—Q2<n<Q/2, (28)

165412-3



D. N. ARISTOV AND A. LUTHER PHYSICAL REVIEW B 65 165412

which meansQ allowed values oin. The energieg24) of 3
luti ith « f L, li
solutionsz(z, @), with « from segment |, lie between 5 = (a)
w=0, g=0 at a=K=iK’, P
and él .
— w
wo=w,=mk/k, g=mp at a=K. (29 1

This part of the spectrum is interpreted as a band, originated ¢
due to hybridization of the bound states related to individual

kinks.
In order to see this, we note that for one kigx=1, the 2 -1 0 1 2 3
only valuen=0 is allowed in segment I. It is the quantized q/m
bound state withw=0 for the single-kink solution of the 3
sine-Gordon equation. In the limit of low densjpy<m, the
energies of the lower band are exponentially small, 2.5 (b)
wz4me‘”“’2;sinM (30) i
2P % 1.5
which is the dispersion for a system of weakly coupled har- 1
monic oscillators. 0.5
Another branch of the spectrum, parametrizedabfrom
segment Il, has one singular pointat —iK'’, where both 0 s o0 035 1
Z(a) anddn(a) have simple poles. This point corresponds /TC_
to g— = andw— . np
The energy of this band has the minima FIG. 1. The dispersion in th@) extended andb) reduced Bril-

— . louin zone scheme shown kt=0.87 andp/m=0.26.
o=w,=m/k at |g|=mp, a=-2iK',0. (31 i
in agreement with the above estimate and the results in Ref.

The dispersion ap/m=0.26 is shown in Fig. ® in the 0. As a result, the Luttinger parametér yv ¢ is found in

extended Brillouin zone scheme. The same dispersion sho

in the reduced Brillouin zone scheme is depicted in F{g).1 the form
We see that there is an energy gap— w, between the 5
states in the lower and upper band. It is interesting to note = B 1 (36)
the following relation: 16 k,K?’
wg—aﬁ:mz- which shows thatC decreases with increasing the density,

L — . o, and attains its limiting valugg?/(4m) at p—o.

Inthe Iow-d{ensny limit p<m, we write a=la, then The form of the eigenfunction@3) is somewhat simpli-

g——mtana’,w—m/cosa’ SO thatw=ym"+q~. , fied at the special pointe=K—iK’,K,0, where one has
At this point it is worthwhile to calculate the Fermi ve- [see Eqs(29),(31)]

locity vg for low-lying excitations in the larg& limit. Ex-

Eg\r/\gingw andq near the pointhg=K—iK' of sector I, we no(X)=(LE/K)~Y2dn(xm/k), a=K—iK', (37)
ky _ n(x)xcn(xm’k), a=K, (39
wz—im?(a—ao), g=—i2pE(a—«aq), (32
72(X)csn(xm/k),  a=0 (39
and

with the normalization factor img(x) made explicit. Hence-
ve=wlq=k,K/E, (33  forth, we will call the eigenfunctiort37) the zero mode.
Analyzing the lowest-energy states with=K —iK’, one

) canﬂnd a following expression, valid in the leading order in
= \/(h_l)m(m), h=1, (34 qlmp:

qm  95(mxp)
AKEp 93(mxp)]

4
:1—(1), h>1, (35) nq(X)=no(X)exp(—iqx—i (40)
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The second term in the exponential is the phase of théearing the zero energy, corresponds to the translation of the

Bloch function. It is 1; periodic in x, vanishing atx
=0,+p L, x2p7 1, ... .

classical solutionpg(x) — ¢(x+ X), while 7g(X) ~ dydq(X).
As a result, the consistent treatment will consist of the func-

For completeness, we provide here an approximate exions Go(X+X) {7n(x+X)}q-1, With 7 replaced by the
pression for the eigenfunctions of the upper band in the lowdisplacementx of the system as whole. The quanti¥

density limitp<m andk— 1. Near the position ofith kink,
it is given by
n(x)w:moc[tanhm(x—;n)—i tana]
xexdi(x—pn)mtana—ing/p], (41

q=—mtana+2ap+ mp, (42)

should be regarded as a dynamical variable in the correct
description of the quantum Hamiltonia?.

We outline this collective coordinate method in the Ap-
pendix and show, that the corrections to the above simpler
formula are negligible in the limiQ—oo. The only thing
which we should borrow from the collective coordinate
method, is the necessity to integrate over the vacuum loca-
tion X instead of inclusion ofy.

It seems that one now has everything to compute various

in accordance with Ref. 18. Concluding this subsection, wesorrelation functions, describing the quantum fluctuations of
note that Eqs(33), (36), (40), and(41) extend the analysis of the system. Given a set consisting of the classical solution

fluctuations performed by previous authdrs’

C. Quantization of fluctuations

The differential operator in Eq22) is self-adjoint and,

consequently, the eigenfunctions form an orthonormal set

L
JO dX70(X) 7(X) = Spm- (43

There is a well-known property that a continuous function

¢ and the normal modes around it, one calculates the quan-
tum averages with the simple rules of bosonic algebra and
then integrates over the initial positiofiof the soliton lat-
tice. This program, however, reveals many difficulties de-
scribed in the next section.

IV. DIFFICULTIES IN THE APPROACH
A. Density-type correlations

Consider the fermionic densiy= d,8¢/2m. The classi-

F(x) (with the same boundary conditionsan be expanded ca| contributionp= d,8¢/27= pw(X), where

as a generalized Fourier series

L
F(x>=; M(X) fo dy7a(Y)F(y) (44)

which means
20 7(X) m(y) = A(x=Y). (45)

Now we may introduce the quantized field, defining

D(x,t)=> L[77 (x)€'“nth! + 7% (x)e ™ “nth, ]

1 = \/2_% n n n nil-
(46)
The Bose operators,, satisfy the commutation relations
[bn D] =6nm 47

and therefore for equal-time fields

[0, =5 2 [ 75 () + 73 (9 7(Y)]
@9

=is(x—y). (49
Strictly speaking, the zero mod87) with =0 should be

excluded from the sun6), which leads to the extra term

—i79(X) o(y)~Q~ 1—0 in Eq.(48). The reason for it is a
nonindependent character of the moglein the description
of the field configurationgo(x),{ 7,(X)}5—o- Indeed, 7,

2K m(x+X)

W(X)= 7d n—p (50)

The averaging over the kinks position gives a simple result
here,

(p(X))x=p(W(X))x=p-

At the same time, the classical contribution to the pairwise
density correlator is{p(x)p(y))x=pXW(X)W(Y))x# p°.
These nontrivial correlations of density at largest distances
correspond to Wigner crystallization of the chai@e This
long-range ordering of the charge in one spatial dimension is
evidently erroneous and should eventually be removed from
the theory.

The quantum corrections to the above correlator in the
long-distance limit read as

2

(W(x)w(y))xIn[x=yl,
(51)

where we have used EQq$33), (37), (40), and (46). The
CDW-type correlator is similarly estimated as

(e1F*Me=iBsW)) ~ (exd — 2K IN(X—y)W(X)W(Y)])x .
(52)

Evidently, the modulatiomw(x)w(y) in Eqg. (52), being ex-
ponentiated is more pronounced than in Ezf).
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B. Dual field S (a) mb)
The so-called dual field(x,t) used in the construction of * : : +%+'“

the fermion operator, is usually defined as
FIG. 2. (a) A tadpole sequence of diagrams, contributing to

00=0,p, 0,0=0y¢. position-dependent mass renormalizati@l). A stronger divergent
diagram not contained in this sequence.
These relations imply?¢=d2¢, which is not consistent

the zero mode contribution t6 is postponed until the next e see that the above definitions of the dual field are incon-
section. Particularly, the usual construction of the charge-gjstent in the basig, and lead to an exponential decrease of

raising operato~exp 2mi B *[*Y(dtd,+dxd) ¢ is iNappro-  the SC correlations in the gapless situation.
priate in the basi§#,}, being dependent on the contour of

integration in®. C. Perturbation theory

One may ignore for a moment this discrepancy, using Consider now the role of the terms of the interaction in
only a first equatiord, 6= d;¢. This is sufficient for the cal- Eq. (19), which have been discarded. These terms, contain-
culation of the instantaneous correlation functioning additional 3s, produce divergences in the perturbation
(exp{4mi B 16(x)lexd —4mi B 16(y)]). Making this calcula- theory. Resumming the tadpole sequence of diagrams, Fig.

tion, we meet another troublesome property. 2(a), one obtains the mass renormalization of the form
The lattice of kinks gives rise to the notion of the Bril-
louin zone and to the infinite sdty,”’} of the eigenstates nz(x)mzcosﬁ¢o(x)—>nz(x)mZCOquO(x)e"C""(X)Z'”A

with nonzero energy and zero wave vector in the reduced

Brillouin zone schemey{”= 7. A constant is not an eigen- with A~Q. This renormalization depends onand, there-
state of Eq.(21), and therefore 7,=L *[§dx 7,<n°>(x) fore, changes the shape of the potential 8¢s This essen-
~L ™2 Further, if the wave vectar, of the eigenstatey, is tial modification is accompanied by stronger than logarith-
close to zero, a corresponding Fourier transfogpiq) has a  mic infrared divergencies in diagrams, not contained in the
pole 7,/(q—q,). The quantityy, decreases when increas- tadpole series, e.g., that shown in Figb)2

ing the energy and this decrease is slower at latgen

particular, one can show for the above dej{”’} that V. A PROPOSED SOLUTION
Zn=o(7a)?=L"", while 7o=/(2LKE). . A. Lagrangian
The vacuum expectation value of the productdields is ] o
then A key to resolve all the above discrepancies is found as

follows. We wrote the fluctuations around the classical solu-

VE— tion as¢= ¢y+ 5 and performed the Taylor expansi¢ib).

(0(x+y)6(y))= 2 HﬂoCOSQX Instead of that, we can write the fluctuations in the form
g
cosq’x -, L — B7
+ > n; ong7a. (53 $=28 arr{ZK Xp+5—]|. (55)

As usual, the constarftlivergen} term should be added here pormyla (55) has the remarkable property that shifting

in order to analyze the dependence of the correlations.on  ~ . ,
The first term in Eq(53), resulted from the lowest energy __”7+27T/’8 increases¢— ¢-+2m/ 5. This may serve as a

modes, contributes to the logarithm. In the second term, withUStification of the scaling factor beforg in Eq. (55). At p
both signs ofy’ available, we note that linear-ig- correc-  >m one has¢—2mpB~'x+ 7, hence Eq.(55 and ¢
tions to w,, ¢ vanish and the sum ovey’ gives a contribu- = ¢o+ 7 coincide in this limiting case. Some calculation
tion linear in|x|. The sum ovem in Eq. (53) converges shows, that the perturbation theorysrcan be obtained from
rapidly when elliptic indexk is not too close to unity, i.e., at the exact form of the full Lagrangian

p=m. For an estimate, it is sufficient to write

S T2 -1 2
Zn=1@nq M~ PZn=17=p(L 1—n5). As a result, we 5
have L=w x

> 07"' 2_ (9x~ 2
+2,6:;( 1) 2( 7) ' (56

~7Tk1 L — 2 The field theory decribed by E¢56) is free from infrared
(0(x+y)0(y))—glnm pIX|[1= 7 (4KE)]O(D). divergencies for two reasons. The first is the presence of the
(54) field derivatives in each term of the perturbation series. An-
o other reason is a particular form of the formfactors of the
The linear in|x| term is present unless—0 (m/p—0), interaction, when theth vertex is obtained byn—2) dif-
when one recovers the usual expressigf(x+y)6(y)) ferentiations of the restricted functiom?(x).
~—In|x. As a result, the superconducting correlations The Gaussian action is given by
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1 2 N2 N2
L= 5w )0 = (7], (57)
with the corresponding equation of motion
Zn=w"20,W2d,7. (58)

Our aim is now to show that the spectrum of E§8)
coincides with the initial probleni21), and to find the con-
nection between the fields and . The equivalence of the

spectra stems from the possibility to rewrite the Lasggia-
tion in the form

@?7(X)= =W HX) WA (X)W (X) 7(X), (59
which implies that the Lagrangian is
1 2 -1_\2
£=5[(dm)*= (waw™'n)?]. (60)

Evidently, Eq. (60) coincides with Egq. (57) after the
substitution

P =w"1(x) n(x,1). (62)

As a result, the eigenfunctions to E(7) are normalized
with a weight

f dXW2(X) 7,(X) 7(X) = B0, (62

and Eq.(61) leads to the following form of the correlations

at large distances:

BAn(x,0)7(y,0)=—KIn|(x—y)2—vit?. (63

Therefore, we find the description of the fluctuations, pos-
sessing the same spectrum in the Gaussian approximatiog
but free from divergencies in higher orders of interaction.
This choice of appropriate variables should be hence consiq-
ered as an effective partial resummation of perturbation se-

ries.

B. Density-density correlations

The adoption of the definitiof65) makes the calculation

of the correlation functions less trivial. Consider first the

density-density correlation$p(x)p(y)). Using the series
representatiof? for the functiondn(x) we write

ein(Zw;x-# B:;)

E+g%aﬁﬁn§: . 4

=—®

P coshnr
with 7= 7K'/K. Note that the previous kinks’ lattice dis-
placementX corresponds to the new zero mogg= const,
Eq. (61). The integration overy, gives evidently<p)=;
while it selects the terms with equaé in the pairwise den-
sity correlator

(p(X)p(Y))g=p2+ (65)

2m%(x—y)?
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cos mw;(x—y)

ey o

+2, ¢y
n=1

with omitted faster decaying terms. We see that the weight
factorsw(x) in Eq. (51) are transformed into the decaying

4k,:=277;harmonics of the density, in line with Ref. 8.

C. CDW-type correlations and umklapp ordering

Keeping in mind the Hubbard model near half filling, we
associate the exponeat®?’ with the “2kg” density wave
operator, whereas'?? stands for the “4g” umklapp pro-
cess. The “Xg” correlations are estimated as follows. We
use Eq.(55) and the series representation

i 2Kz) _ 1) 2i 1/2
glam(Kz) — E Cg )g2miz(n+ ),

(67)
(n+1/2)
cw-__ T 7
" kKsinh2n+1)7’
to obtain
o 2i mpx(n+1/2)
(6l(BR$X)gi(B2I$O) . 3 [C(l)]zL
n, b |X|2}C(n+1/2)2’
(68)
» 2i wpx(n+1/2)
(el (BRNGIERHON . 3 cWict) e
=, " *l*nlx|2/C(n+1/2)2'
(69

The prefactors of the exponents here are not universal,
depending on the cutoff. What matters here, is the ratio of the
mplitudes for the forward-going and backward-going waves
ith the same absolute value ofi{ 1/2). The leading as-
mptotes are defined byn=0,—1, noting that C**)
=-qcY, with g=e~"%"/K, we write
<eiﬁ¢-(x)/2€—iﬁ¢(0)/2>~(eiw;x+aze—iwFX)|X|—/C/Z’ (70)

(e1BH0RGBHON) . _ 55 cog mpx)|x| T2 (71)

Particularly, the above formulas indicate the following. The
lowest harmonic of the CDW order parameter field,
xsin(Bel2)=sn[ 2K (px+ B7p/27)] has an amplitude
7/ (kK sinh#/2) which remains finite in the total range of
variation of; The similar quantity for the SDW field,
xcosBp/2)=cn[ 2K (px+ B7p/l2m)], has an amplitude
m/(kK cosh/2) which vanishes ag/m at half filling, p
=0.

Using Eq. (67) we write the umklapp order parameter
field in the form

o

cosBh= E Cg2)ein(2w;x+ﬁ;y), (72)
n=—o

165412-7
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2cP=2, ¢, CP+(n——n),

ny

(73

We observe the appearance of the constant @ﬁﬁ corre-
sponding to the fact that the average val(e??®)

= (cosB}(x))=C{ is not zero at finite density of kinks. In-
deed one has

CP=[—-2E+K(1+k3)]/(k?K), (74)
~1-4p/m, p/m=0.2, (75)
~m?(87%p?), p/lm=0.2. (76)

It should be noted that the nonzero valugddf’ arises with-
out “locking” of the field ¢. We remind that in the absence
of kinks the field¢ is “locked” to one of the discrete values
¢,=2mn/B, and it results in the nonzero value of thek
density wave(e'##2)=+ 1. In the presence of kinkg con-
nects different vacua,, and(e'#??)=0, while (e'#%)+0

is decreasing function of the kinks density.
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are consistent with the equation of motion. The charge-
raising operator O~exp 2mi 8~ ®OWA(dta, +dxd) 7,  is
now uniquely defined, independent of the contour of in-
tegration. Further, one hapz(x),8(y)]=id9(y—x) and

therefore  we have  efpmiB L)1 7(y)]=f[7(y)
+27B8 19(x—y)lexd 278~ 6(X)] for any f(z). This prop-
erty allows one to define the fermion operator, see below.

A counterpart, of 7,=const cannot be obtained from
Eq. (79), which again shows a particular role of the zero
mode. One of the possible ways to introduce the quantized

quantity 6, relevant to our discussion in the Appendix, is
found in Ref. 20. One can write these zero-energy compo-
nents as follows:

~ 2B B 24
ﬂo—ﬁ\]t"‘(q—Q)Wl(X)m"'lEﬁ, (80)

B B

. B
bo=grer We 0+ (4-Qt5

22
I271' aq

(81)

The quantum average of two umklapp exponents at longyith 3= p/p the persistent current attaining integer values,

distances has the form

(cosBb(x)cospd(0)~[CHT+ 3, CG%'
7

We see that in the absence ®f) the dimensionality of the
operator co@¢ would be . As K increases with decrease

of; one might think that umklapp operator gé¢ becomes
less relevant’ However, this increase df is accompanied

by the increase o€{?), and(cosp®)~1 atp~m.

D. Dual field

the functions Wy(x)=W 2(y)dy and W,(X)

= w?(y)dy are expressed through the elliptic functions
Nd(x) and Dnf), respectively. A canonical conjugate ds
7pX, so the last term in Eq80) is simply the previous shift
in the initial kink position. The charge variablg was as-

sumed to beQ in Secs. lll, IV and we let it fluctuate now
around its equilibrium value. A choice of the factors befdre
and q \variables is dictated by the condition

Jodx WA(9i770)*+ (3x70)°= (A~ Q)°x 'L~ '+ P> M, cf.
Eq. (17). A particular form of the functioW;(x) in Eq. (80)

is not coincidental here. Satisfying the equation
w29,w?9,W; (x) =0, the functionW; is another(increas-
ing) zero mode for Eq(58), which corresponds to the in-

Let us now discuss the modification of the definition of créase oiQ i”L the classical solutiomv(x)Wy(x) = d¢ol Ik ;
the dual fieldd(x,t). The basic property of the charge raising we haveBo|,_,=27(q—Q).

operatorO~exp 2783”16 in the path integral representation
is that the contour of integratiofiDirac string”) in the defi-
nition of @ introduces a discontinuity in the field, so that
the values of the fiel@¢ differ by 27 across this contodr’

In view of the above property3¢— Bp+2m as Bn— By

+2, we see that it suffices to require the charge-raisin

property for the fields.
The canonical momentum for the field is given by 7
=3dL13(d,7)=w?d;5. The quantization condition reads

[7(x), 7(y) =i 8(x—y).
Consider the definition

~ X ~
6(x)=f dx' mw(x") (78
for equal-time fields. Differentiating the last equality By

and then byt we have from Eq(58) 9,9, 0= d,W?dy 7, hence
the definitions
8, 0=W>?3, 7,

0 0=W>?3,7, (79

Let us discuss now the correlations of the dual fieldo
do it, consider first its equation of motion, as follows from
Eq. (79):

9Z0=w?d W 23,0. (82)

q?ecalling the property of the Jacobi function gh(we write

2

Ky

w(x+p Y2)=cw X(x), c,= 5 (83
ar

Therefore the differential operator in the right-hand side of
Eq. (82 coincides with one in Eq(58), when shifted by its

half periodx—x+p~1/2.
For the infrared Gaussian action, given some particular

solution 7,, to Eq. (58), we obtain its dual counterpaft,
with the same energy and Floquet index. In view of the com-

pleteness of the sej,, we have a relatiom (x) = c, 7,(x

+;* 1/2). The value of the constany, is elucidated from the
following sequence of equalities
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Caﬁt;la(x'*‘;_llz)=r9t~éa(x)=W2(X)r9x7la(X) Majorana fermionic \_/ariables;((,.20 These variables obey
- X+X+=x-X-=1, while y, x-=—x_x+.
=e2”'<w2(x)ax77a(x+p*1) A subtler question concerns the relation of the construc-
. tion (90) to the initial fermionic variables in the Hubbard
=e?"Kw2(x)c, 0,0, (x+p112) model. In the bosonization procedure, the initial fermions

A _ _ were written similarly to Eq(90), with the dual fieldd in Eq.
=e”"cic, tama(x+p Y2) (84 (88) instead of ourf. The oscillator representatiaq@6) for
hence the initial right (left) bosons had simple form, which is
, achieved within our formalism fop#0 atm=0. It is not at
Co=tcre'" (859 once clear that the complicated expressits8,(79),(23) in

One can show, that the sign here is plus fere (K  the presence of umklapp termz0 are related to right and
—iK’,K) and ae(—iK',0) and minus for ae (K left moving _partlcles.. We s_tat_e here that thellabel “rlght_" of
iK' K—iK') and ae(—2iK’,—iK'). In the Iarge; the. bo;on fieldpg,, S|mp!y indicates the species of fermion,
- ) R which is constructed this way. As we will see shortly, um-
limit the eigenfunctions7,(x) are usual plane waves, yjapp interaction produces a partial redistribution of the fer-
~e "9 and we recover the usual expressi@h(x)  mionic spectral weight over thek4 components of the den-
=sgn@,) 7.(x). The sign in Eq(85) is irrelevant for cal-  sity, hence initially right-moving particle has now left-going
culating the expectation value of the product of two dualcomponents.

fields and we have In short, our fermiong90) anticommute, have the same
L o initial field ¢, and explicitly acquire the conventional form at
(0(x)0(y))= c"{( (X)) n(y)). (86) m= 0. Therefore they are the fermions, which one starts with

during the bosonization of the Hubbard model.
The spin fields of the fermions are factorized, and for the
charge part we have

Noting from Eqgs.(36),(83), that 4mc,= 8%/ K, we immedi-
ately obtain

L1 _ -1 =
<e4mﬁ H(X)e Ami B (’(V))~|x—y| 2/IC. (87) _27T~

wR,,_(x)ocex4 ii§q5—|—0) (91

The dynamics of the correlation®5),(68),(87) is ob- B

tained by replacingx—y|—[ (x—y)?—v(t;—t,)2]*2 This .

simple temporal dependence of the correlations is valid as —omip 19 (h) o+ i (27px+ B7) (n+1/4)
- - : - ~g 2mp 0 N ce*i@mext fr :

long as we consider the long-time, long-distance behavior o, N

~vpt>;*1. At shorter scales, the complicated structure of (92

the wave functions and of the dispersion comes into play and

the Lorentz form of the correlations is lost. Cﬁl)=2 Cﬁh,)n Cﬁh), 93)
ny 1 1

E. Fermionic correlations o . .
) cf. Egs.(67),(73). The fermionic correlations are found in the
We now discuss the Hubbard model and regard&psas  form

a four-fermion umklapp term. In this case, in addition to the
“charge” field ¢ discussed insofar, one also considers the (yf, (x,t)yr,(0))
spin degree of freedom described by the figldand its dual

one 6. We write the right and left fields as the linear com- 1 - ch e2mipx(n+ 1) 4
binations (Xx—vg) Y20 (x—ppt)2"HH2(x2— v,2:t2) n
B 27 T 2
bro="b— —0+ 0\ =(Ps— 0, (88) [(2n+1/2)K—-1]
4 B 2 Vo= : (95)
4K
B, 2w \/; In the case of free fermionsr(=0,8°=8) one has=2,
¢L0_Z¢+ FGJ”T E( b5+ 0s) (89) and the anomalous dimension of the fermion vanishgs,
ith th . i h =0. We observe that at special values of the Luttinger pa-
with the spin projectiory=*1. The operators rameterk/2=1/3,1/5,1/7. . ., certain y, vanishes as well,

— v aldre — Yy et and the fermionic correlations reveal purely chisiiblead-
VRo=Xo® TR Yo=Xo® T (%0 ing) component. FOKC=2/(2n+1), it is of the form
may be identified with the right and left fermion, respec- _

tively. Let us discuss this point in more detail. gt mpx(n+1/2)

One can easily check that given the usual relation — nti2 2
[600,04(y) =19y~ X), the Operalorsit, i .5 i, (o v
with the samer anticommute. The anticommutation of these with upper(lower) sign for evenodd) n. The leading asymp-
operators with different projection of spin is ensured by thetote in Eq.(94) is given by a term witm=0 and hence the

(96)
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scaling dimension of the fermion operator has its usual valuéermions is distributed over the neighboringK4” harmon-

dim[ yr, 1= 5 (VKI2+ \2IK)2. ics of the fermionic density.
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eventually becomes large. Haldane’s analysis of the Betheédnd the Russian State Program for Statistical PhySicant
ansatz equations has shown the crossover region &o- VIII-2).

4(p/m)In B~1=1 and the saturation d€— 1 at smaller den-
sities. This statement, albeit reasonable, is hard to check in APPENDIX: COLLECTIVE COORDINATE METHOD
our formalism. . S . PV .
The saturation ofC can be a result of the intervention of Fo:lzc?vr\/itr)lre\gg" Vi’g mll \\llvvrrlltt: (z)tlzr_;c;lalj(tfic;]finI?hfahlfsorsrﬁcnon.
some class of diagrams, increasingly important at small den- 9 '
sities. As we have shown, the full Lagrangiésb) is free ®
from infrared divergencies. On the other hand, it requires the H(X,1) = do(X+X)+ E Ch(t) 7(X+X). (A1)
essential ultraviolet regularization. The situation is reversed 0
when one works with the initial field variabl€¢49). Hence
the question of saturation & remains open within our for-
malism.

The classical solutionp, is proportional tog™ 1, and the
fluctuations are of order of8°. In terms of the above mass
of kinks condensatéV,., the normalized zero-energy solu-
tion is

VI. DISCUSSION AND CONCLUSIONS

. . . 7o(X+X) = Mo “bo(x+X),
We have studied the sine-Gordon model in the presence of ° ot 7o

a finite density of kinks. This quantum problem is related toin accordance with E¢37). In order to pass to the correct
the strongly interacting electronic system in one spatial diform of the quantum Hamiltonian, one has to regard the vari-
mension close to commensurability, where the metal@bleX, which indicates the location of the soliton lattice, as
insulator transition occurs. The model was investigated prea dynamical variable, replacing the zero mode coordiogte
viously by the Bethe ansatz method, which gave a form ofnstead of Eq(Al) we write
the spectrum and the Luttinger parameter, defining the decay
of correlations functions at large distances.

In dealing with complicated problems, it is always worth
to have alternative methods at hand, suitable for cross check- . o
ing with existing results and capable for further theoretical@nd the time derivative
predictions. In this paper we used the semiclassical approach
and demonstrated that the spectrum and the Luttinger param-
eter correctly reproduced the results of the Bethe ansatz stud-
ies. Among the new features, available due to the quasiclas-
sics, are the explicit form of various correlation functions Introducing the new coordinates,,n=0,1,... o ac-
and the unambigous construction of the charge-raising opera&ording to ug(t) =X(t),u,(t)=c,(t) for n>0 we repre-
tor in the theory. sent the kinetic energy term in the Lagrangian in the form

Discussing the correlation functions, we determined theirl rLgy 2= %Ef-:oUiDijUj , with a symmetric matrixD;;
leading and subleading asymptotes, whose amplitudes aRgih elements
critical exponents strongly depend on the kink density. Ad-
dressing a more technical issue of the charge-raising opera-
tor, or the dual field in the theory, we showed the way it is Doo:f dx
constructed through the modified collective coordinate
method. This allowed us to reestablish the link with the fer- "
mionic counterpart of our bosonic problem and to calculate, D — |4 2 ,
in the leading order, the behavior of the superconducting- on™ X 7n T Umm
type correlations.

One of the consequences of our approach is the nonzero Dym=Omm, N,m>0. (A4)
value of the quantum average, associated with the four-
fermion umk]app operator in the Hubbard model away fromThe Hamiltonian is obtained by flndlng the canonical mo-
half filling. As a result, we found that close to commensura-menta ;, conjugate to coordinates;, according to;
bility point, the spectral density of the rightieft-) moving ~ =dL/du;=Dju;. The classical Hamiltonian then becomes

B(x,1)= ¢>o[x+><<t>]+§ c(t) [ x+X(1)], (A2)

B(x,t)= >'<+§ Catn-  (A3)

¢6+§1: Cn77r’1

o 2

)5 n>05
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Heg 2,

where the potential energy ter is given by V({u,})
=[dX[ 3" 2+ U($)]= Mot 35_1u50)+O(B).
The elements of the inverse matiix *

mi+V({un}), (A5)

(D™ 1Hoo=1/D,
(D YHon=—Don/D, n>0,
(D YHm=0am*TDonDom/D, n,m>0,  (A6)
and the determinanb of the matrix D;; is given by D

= (V Mo+ ag)? with ag= [ dx 7o(x) (27 um77m)

Using above formulas, one obtains after some algebra

B(x,1)= —= o+ E (A7)

r b ”°>

Requiring now u,(t), (1) ]=i6,m and using Eq(A7),
one verifies the exactness of the equatief(x,t), #(y,t)]

=i8(x—y), which result improves the previous formula + w2u

PHYSICAL REVIEW B5 165412

(48). Among the new features, brought about by the de-
scribed method is the explicit absence of the variadlg in
the Hamiltonian(A5). As a result, its conjugate momentum
7o 1S independent of time and equals to the conserved total
field momentumP=[}dx ¢¢’, which equality is easily
checked.

If we consider the soliton lattice in its rest frame=0,
then the Hamiltonian is simplified and becomes

DonDo
(%ﬁr%

©

1
Hp=o:§ nZ

,m=1

7Tn77m+v({un})-
(A8)

At first glance, Eqs(A7),(A8) contain nontrivial admixtures
«Dgn/+/D, Which should interfere into the subsequent con-
sideration. This is true, when one deals with a vacuum, con-
sisting of a finite number of kink®. However, in the limit
Q~L—ox, one has#n,<L~*2 and thereforeD,,=0(1),
whereasD=0(QB ). As a result, the termD,,/\/D
~BQ Y2in Egs.(A7), (A8) should be neglected in this limit
and we arrive at simpler equatiorl&=&y+ 330 (72

2)+0(B) and d(X,t)poo= i 1 7n(X+X) .
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