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Density-functional method for nonequilibrium electron transport

Mads Brandbyge,1,* José-Luis Mozos,2 Pablo Ordejo´n,2 Jeremy Taylor,1 and Kurt Stokbro1
1Mikroelektronik Centret (MIC), Technical University of Denmark, Bldg. 345E, DK-2800 Lyngby, Denmark
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We describe anab initio method for calculating the electronic structure, electronic transport, and forces
acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage
bias. Our method is based on the density-functional theory~DFT! as implemented in the well testedSIESTA

approach~which uses nonlocal norm-conserving pseudopotentials to describe the effect of the core electrons,
and linear combination of finite-range numerical atomic orbitals to describe the valence states!. We fully deal
with the atomistic structure of the whole system, treating both the contact and the electrodes on the same
footing. The effect of the finite bias~including self-consistency and the solution of the electrostatic problem! is
taken into account using nonequilibrium Green’s functions. We relate the nonequilibrium Green’s function
expressions to the more transparent scheme involving the scattering states. As an illustration, the method is
applied to three systems where we are able to compare our results to earlierab initio DFT calculations or
experiments, and we point out differences between this method and existing schemes. The systems considered
are: ~i! single atom carbon wires connected to aluminum electrodes with extended or finite cross section,~ii !
single atom gold wires, and finally~iii ! large carbon nanotube systems with point defects.

DOI: 10.1103/PhysRevB.65.165401 PACS number~s!: 73.40.Cg, 72.10.2d, 85.65.1h
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I. INTRODUCTION

Electronic structure calculations are today an import
tool for investigating the physics and chemistry of new m
ecules and materials.1 An important factor for the success o
these techniques is the development of first-principles m
ods that make reliable modeling of a wide range of syste
possible without introducing system dependent parame
Most methods are, however, limited in two aspects:~i! the
geometry is restricted to either finite or periodic systems,
~ii ! the electronic system must be in equilibrium. In order
address theoretically the situation where an atom
molecular-scale system~contact! is connected to bulk elec
trodes requires a method capable of treating an infinite
nonperiodic system. In the case where a finite voltage b
applied to the electrodes drives a current through the con
the electronic subsystem is not in thermal equilibrium a
the model must be able to describe this nonequilibrium s
ation. The aim of the present work is to develop a new fir
principles nonequilibrium electronic structure method
modeling a nanostructure coupled to external electrodes
different electrochemical potentials~we will interchange the
termselectrochemical potentialand Fermi level throughout
the paper!. Besides, we wish to treat the whole system~con-
tact and electrodes! on the same footing, describing the ele
tronic structure of both at the same level.

Our method is based on the density-functional the
~DFT!.2–5 In principle, the exact electronic density and to
energy can be obtained within the DFT if the exa
exchange-correlation~XC! functional was available. This is
not the case and the XC functional has to be substituted
an approximate functional. The most simple form is t
local-density approximation~LDA !, but recently a number o
other more complicated functionals have been propos
which have been shown to generally improve the descrip
0163-1829/2002/65~16!/165401~17!/$20.00 65 1654
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of systems in equilibrium.6 There is no rigorous theory of th
validity range of these functionals and in practice it is det
mined by testing the functional for a wide range of syste
where the theoretical results can be compared with relia
experimental data or with other more precise calculation

Here we will take this pragmatic approach one step f
ther: We will use not only the total electron density, but t
Kohn-Sham wave functions asbona fidesingle-particle wave
functions when calculating the electronic current. Thus
assume that the commonly used XC functionals are abl
describe the electrons in nonequilibrium situations wher
current flow is present, as in the systems we wish to stu7

This mean-field-like, one-electron approach is not able
describe pronounced many-body effects which may app
in some cases during the transport process. Inelastic sca
ing, e.g., by phonons,8 will not be considered, either.

Except for the approximations inherent in the DFT, t
XC functional, and the use of the Kohn-Sham wave fun
tions to obtain a current, all other approximations in t
method are controllable, in the sense that they can be
tematically improved to check for convergence towards
exact result~within the given XC functional!. Examples of
this are the size and extent of the basis set~which can be
increased to completeness!, the numerical integration cutoffs
~which can be improved to convergence!, or the size of the
electrode buffer regions included in the self-consistent ca
lation ~see below!.

Previous calculations for open systems have in most ca
been based on semiempirical approaches.9–22 The first non-
equilibrium calculations with a full self-consistent DFT d
scription of the entire system have employed the jellium
proximation in the electrodes.23,24 Other approaches hav
used an equilibrium first-principles Hamiltonian for th
nanostructure and described the electrodes by includ
semiempirical self-energies on the outermost atoms.25–27
©2002 The American Physical Society01-1
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Lately, there have been several approaches which trea
entire system on the same footing, at the atomic level,28–30

but so far only one of the approaches has been applied to
nonequilibrium situation where the external leads have
ferent electrochemical potentials.31,32

The starting point for our implementation is theSIESTA

electronic structure approach.33 In this method the effect o
the core electrons is described by soft norm-conserv
pseudopotentials34 and the electronic structure of the valen
electrons is expanded in a basis set of numerical atomic
bitals with finite range.35,36 The quality of the basis set ca
be improved at will by using multiple-z orbitals, polarization
functions, etc.,36 allowing us to achieve convergence of th
results to the desired level of accuracy.SIESTA has been
tested in a wide variety of systems, with excellent results.37,38

The great advantage of using orbitals with finite range~be-
sides the numerical efficiency33! is that the Hamiltonian in-
teractions are strictly zero beyond some distance, which
lows us to partition the system unambiguously, and de
regions where we will do different parts of the calculation
we describe in Secs. II–IV. Besides, the Hamiltonian ta
the same form as in empirical tight-binding calculations, a
therefore the techniques developed in this context can
straightforwardly applied.

We have extended theSIESTA computational package t
nonequilibrium systems by calculating the density mat
with a nonequilibrium Green’s-functions technique.39,40,14,31

We have named this nonequilibrium electronic structure c
TRANSIESTA. Preliminary results obtained withTRANSIESTA

were presented in Ref. 41. Here we give a detailed acco
of the technical implementation and present results for
transport properties of different atomic scale systems. On
the authors~J.T.! has been involved in the independent d
velopment of a package,MCDCAL,32 which is based on simi-
lar principles, but with some differences in implementatio
We compare results obtained with the two packages fo
carbon wire connected to aluminum electrodes and show
they yield similar results. We present results for atomic g
wire systems which are one of the most studied atomic s
conductors, and finally we present results for transpor
nanotubes with defects.

The organization of the paper is the following. In the fir
part of the paper we describe how we divide our system
the contact and electrode parts and how we obtain the
sity matrix for the nonequilibrium situation using Green
functions. Here we also discuss the relation between the s
tering state approach and the nonequilibrium Gree
function expression for the density matrix. Then we descr
how this is implemented in the numerical procedures a
how we solve the Poisson equation in the case of finite b
In the second part of the paper we turn to the applicati
where our aim is to illustrate the method and show some
its capabilities rather than presenting detailed analysis of
findings. We compare our results with otherab initio calcu-
lations or experiments for~i! carbon wires connected to alu
minum electrodes,~ii ! gold wires connected to gold elec
trodes, and finally~iii ! infinite carbon nanotubes containin
defects.
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II. SYSTEM SETUP

We will consider the situation sketched in Fig. 1~a!. Two
semi-infinite electrodes, left and right, are coupled via a c
tact region. All matrix elements of the Hamiltonian or ove
lap integrals between orbitals on atoms situated in differ
electrodes are zero so the coupling between the left and r
electrodes takes placevia the contact region only.

The region of interest is thus separated into three pa
left (L), contact~C! and right (R). The atoms inL ~R! are
assumed to be the parts of the left~right! semi-infinite bulk
electrodes with which the atoms in regionC interact. The
Hamiltonian is assumed to be converged to the bulk value
region L and R along with the density matrix. Thus th
Hamiltonian, density, and overlap matrices only differ fro
bulk values in theC, C-L, andC2R parts. We can test this
assumption by including a larger fraction of the electrodes
C ~so theL andR regions are positioned further away fro
the surfaces in Fig. 1!.

In order to obtain the transport properties of the syste
we only need to describe the finiteL-C-R part of the infinite
system as illustrated in Fig. 1~b!. The density matrix which
describes the distribution of electrons can be obtained fro
series of Green’s-function matrices of the infinite system
we will discuss in detail in Sec. III. In principle the Green’
function matrix involves the inversion of an infinite matr
corresponding to the infinite system with all parts of t
electrodes included. We are, however, only interested in
finite L-C-R part of the density matrix and thus of th
Green’s-function matrix. We can obtain this part by inverti
the finite matrix,

FIG. 1. ~a! We model the contact~C! region coupled to two
semi-infinite left~L! and right~R! electrodes. The direction of trans
port is denoted byz. ~b! We only describe a finite section of th
infinite system: Inside theL and R parts the Hamiltonian matrix
elements have bulk electrode values. The external~buffer! region,
B, is not directly relevant for the calculation.
1-2
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DENSITY-FUNCTIONAL METHOD FOR . . . PHYSICAL REVIEW B 65 165401
S HL1SL VL 0

VL
† HC VR

0 VR
† HR1SR

D , ~1!

whereHL , HR andHC are the Hamiltonian matrices in theL,
R andC regions, respectively, andVL (VR) is the interaction
between theL (R), andC regions. The coupling ofL andR
to the remaining part of the semi-infinite electrodes is fu
taken into account by the self-energies,SL andSR . We note
that to determineVL , VR , andHC , we do not need to know
the correct density matrix outside theL-C-R region, as long
as this does not influence the electrostatic potential inside
region. This is the case for metallic electrodes, if theL-C-R
region is defined sufficiently large so that all the screen
takes place inside of it.

The upper and lower part of the Hamiltonian (HL(R)
1SL(R)) are determined from two separate calculations
the bulk systems corresponding to the bulk of the left a
right electrode systems. These systems have periodic bo
ary conditions in thez directions, and are solved usin
Bloch’s theorem. From these calculations we also determ
the self-energies by cutting the electrode systems into
semi-infinite pieces using either the ideal construction42 or
the efficient recursion method.43

The remaining parts of the Hamiltonian,VL, VR, andHC,
depend on the nonequilibrium electron density and are de
mined through a self-consistent procedure. In Sec. III we w
describe how the nonequilibrium density matrix can be c
culated given these parts of the Hamiltonian, while in S
IV we show how the effective potential and thereby t
Hamiltonian matrix elements are calculated from the den
matrix.

III. NONEQUILIBRIUM DENSITY MATRIX

In this section we will first present the relationship b
tween the scattering state approach and the nonequilib
Green’s-function expression for the nonequilibrium electr
density corresponding to the situation when the electro
have different electrochemical potentials. The scattering s
approach is quite transparent and has been used for non
librium first-principles calculations by McCann an
Brown,44 Lang and co-workers,45,23,46 and Tsukada and
co-workers.47,24,48 All these calculations have been for th
case of model jellium electrodes and it is not straightforw
how to extend these methods to the case of electrodes w
realistic atomic structure and a more complicated electro
structure or when localized states are present inside the
tact region. The use of the nonequilibrium Green’s functio
combined with a localized basis set is able to deal with th
points more easily.

Here we will start with the scattering state approach a
make the connection to the nonequilibrium Green’s-funct
expressions for the density matrix. Consider the scatte
states starting in the left electrode. These are generated
the unperturbed incoming states~labeled by l ! of the un-
coupled, semi-infinite electrode,c l

0 , using the retarded
Green’s functionG of the coupled system,
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c l~xW !5c l
0~xW !1E dyW G~xW ,yW !VL~yW !c l

0~yW !. ~2!

As in the previous section there is nodirect interaction be-
tween the electrodes:

V~rW !5VL~rW !1VR~rW !, ~3!

VR~rW !c l
0~rW !5VL~rW !c r

0~rW !50. ~4!

Our nonequilibrium situation is described by the follow
ing scenario: The states starting deep in the left/right e
trode are filled up to the electrochemical potential of the l
~right! electrode,mL (mR). We construct the density matri
from the ~incoming! scattering states of the left and righ
electrode:

D~xW ,yW !5(
l

c l~xW !c l* ~yW !nF~« l2mL!

1(
r

c r~xW !c r* ~yW !nF~« r2mR!, ~5!

where indexl and r run over all scattering states in the le
and right electrode, respectively. Note that this density m
trix only describes states inC which couple to the continuum
of electrode states—we shall later in Sec. III D return to t
states localized inC.

A. Localized nonorthogonal basis

Here we will rather consider the density matrix defined
terms of coefficients of the scattering states with respec
the given basis~denoted below by Greek subindexes!,

c l~xW !5(
m

clmfm~xW !. ~6!

Thus Eqs.~2! and ~5! read

clm5clm
0 1(

n
@G~z!V#mn cln

0 , z5« l1 id, ~7!

Dmn5(
l

clmcln* nF~« l2mL!1(
r

crmcrn* nF~« r2mR!.

~8!

The basis is in general nonorthogonal but this will not intr
duce any further complications. As for the Hamiltonian, w
assume that the matrix elements of the overlapS are zero
between basis functions inL andR. The overlap is handled
by defining the Green’s-function matrixG(z) as the inverse
of (zS2H), and including the term2zS in the perturbation
matrix V. To see this we use the following equations:

@« lS02H0#cl
050, ~9!
1-3
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@« lS2H#cl50, ~10!

@zS2H#G~z!51. ~11!

With these definitions we see that Eq.~7! is fulfilled,

@« lS2H#cl5@« lS2H#cl
01Vcl

050, ~12!

when

V5H2H02« l~S2S0!. ~13!

The use of a nonorthogonal basis is described further in R
42 and 49.

The density matrix naturally splits into left and right par
The derivations for left and right are similar, so we w
concentrate on left only. It is convenient to introduce the l
spectral density matrix,rL ,

rmn
L ~«!5(

l
clmcln* d~«2« l !, ~14!

and likewise a right spectral matrixrR . The density matrix is
then written as

Dmn5E
2`

`

d« rmn
L ~«!nF~«2mL!1rmn

R ~«!nF~«2mR!.

~15!

As always we wish to expressrL in terms of known~un-
perturbed! quantities, i.e.,clm

0 , and for this we use Eq.~7!.
Since we are only interested in the density-matrix part c
responding to the scattering region (L-C-R), we note that the
coefficientsclm

0 for the unperturbed states are zero for ba
functions (m) within this region. Thus

clm5(
n

~GV!mn cln
0 , ~16!

wheren is inside the bulk of the left electrode. Inserting th
in Eq. ~14! we get

rmn
L ~«!5S G~«!

1

p
Im @VgL~«!V†#G†~«! D

mn

. ~17!

Here we use the unperturbed left retarded Green’s funct

gmn
L ~«!5(

l

clm
0 cln

0*

«2« l1 id
, ~18!

and the relation

$gL~«!2@gL~«!#†%mn52p i(
l

clm
0 cln

0* d~«2« l !, ~19!

and thatg5gT due to time-reversal symmetry.
We can identify the retarded self-energy,

SL~«![@VgL~«!V†#, ~20!

GL~z![ i @SL~«!2SL~«!†#/2, ~21!

and finally we expressrL as
16540
fs.

.

t

r-

s

n,

rmn
L ~«!5

1

p
@G~«!GL~«!G†~«!#mn , ~22!

and a similar expression forrR. Note that theS, G and G
matrices in the equations above are all matrices defined
in the scattering regionL-C-R which is desirable from a
practical point of view. TheG matrix is obtained by invert-
ing the matrix in Eq.~1!.

The expression derived from the scattering states is
same as one would get from a nonequilibrium Green
function derivation, see, e.g., Ref. 39, whereD is expressed
via the ‘‘lesser’’ Green’s function,

D5
1

2p i E2`

`

d« G,~«!, ~23!

which includes the information about the nonequilibrium o
cupation.

B. Complex contour for the equilibrium density matrix

In equilibrium we can combine the left and right parts
Eq. ~15!,

GGG†5
i

2
G@S2S†#G†

52
i

2
G@~G!212~G†!21#G†

52Im@G# ~24!

whereS includes bothSL and SR , and time-reversal sym
metry (G†5G* ) was invoked. With this Eq.~15! reduces to
the well-known expression

D52
1

pE2`

`

d« Im@G~«1 id!# nF~«2m!

52
1

p
ImF E

2`

`

d« G~«1 id! nF~«2m!G . ~25!

The invocation of time-reversal symmetry makesD a real
matrix sinceD* 5DT5D.

At this point it is important to note that we have neglect
the infinitesimalid in Eq. ~24!. This means that the equalit
in Eq. ~24! is actually not true when there are states pres
in C which do not couple to any of the electrodes, and th
GL5GR50 and rL5rR50 for elements involving strictly
localized states. The localized states cannot be reached
ing from scattering states and are therefore not included
Eq. ~15!, while they are present in Eq.~25!. We return to this
point in Sec. III D below.

All poles of the retarded Green’s functionG(z)
are lying on the real axis and the function is analytic oth
wise. Instead of doing the integral in Eq.~25! ~corresponding
to the dotted line in Fig. 2!, we consider the contour in th
complex plane defined for a given finite temperature sho
by the solid line in Fig. 2. Indeed, the closed contour beg
ning with line segmentL, followed by the circle segmentC,
and running along the real axis from (EB1 id) to (`1 id),
1-4
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DENSITY-FUNCTIONAL METHOD FOR . . . PHYSICAL REVIEW B 65 165401
whereEB is below the bottom valence-band edge, will on
enclose the poles ofnF(z) located atzn5 i (2n11)pkT. Ac-
cording to the residue theorem,

R dzG~z! nF~z2m!522p i kT(
zn

G~zn!, ~26!

where we use that the residues ofnF are2kT. Thus

E
EB

`

d« G~«1 id! nF~«2m!

52E
C1L

dzG~z! nF~z2m!22p i kT(
zn

G~zn!.

~27!

The contour integral can be computed numerically fo
given finite temperature by choosing the number of Fe
poles to enclose. This insures that the complex contour s
away from the real axis~the part close toEB is not impor-
tant!. The Green’s function will behave smoothly sufficient
away from the real axis, and we can do the contour integ
by Gaussian quadrature with just a minimum number
points; see Fig. 3. The main variation onL comes fromnF
and it is advantageous to usenF as a weight function in the
Gaussian quadrature.50

C. Numerical procedure for obtaining the nonequilibrium
density matrix

In nonequilibrium the density matrix is given by

Dmn5Dmn
L 1Dmn

R , ~28!

FIG. 2. The closed contour:L (#`1 iD;EF2g1 iD@), C, and
@EB1 id;`1 id# enclosing the Fermi poles~black dots!.

FIG. 3. Typical points for Gaussian quadrature on the conto
On L we employ a quadrature with a weight function equal to
Fermi function.
16540
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L 52

1

p
ImF E

EB

`

d« G~«1 id! nF~«2mL!G , ~29!

Dmn
R 5E

2`

`

d« rmn
R ~«!@nF~«2mR!2nF~«2mL!#, ~30!

or equivalently

Dmn5Dmn
R 1Dmn

L , ~31!

Dmn
R 52

1

p
ImF E

EB

`

d« G~«1 id! nF~«2mR!G , ~32!

Dm,n
L 5E

2`

`

d« rmn
L ~«!@nF~«2mL!2nF~«2mR!#. ~33!

The spectral density matrices,rL andrR, are not analyti-
cal. Thus only the ‘‘equilibrium’’ part of the density matrix
DL(DR), can be obtained using the complex contour. Furth
more, this is a real quantity due to the time-reversal symm
try, whereas the ‘‘nonequilibrium’’ part,DL(DR), cannot be
made real since the scattering states by construction b
time-reversal symmetry due to their boundary conditio
The imaginary part ofDL (DR) is in fact directly related to
the local current.51 However, if we are interested only in th
electron density and if we employ a basis set with real ba
functions (fm) we can neglect the imaginary part ofD,

n~rW !5(
m,n

fm~rW !Re@Dmn#fn~rW !. ~34!

To obtainDL (DR) the integral must be evaluated for
finite level broadening,id, and on a fine grid. Even for sma
voltages we find that this integral can be problematic, a
care must be taken to ensure convergence in the level br
ening and number of grid points. Since we have two sim
expressions for the density matrix we can get the integra
error from

emn5Dmn
R 1Dmn

L 2~Dmn
L 1Dmn

R !. ~35!

The integration error arises mainly from the real axis in
grals, and depending on which entry of the density matrix
are considering eitherDL or DR can dominate the error. Thu
with respect to the numerical implementation the two form
las Eqs.~28! and ~31! are not equivalent. We will calculate
the density matrix as a weighted sum of the two integral

Dmn5wmn~Dmn
L 1Dmn

R !1~12wmn!~Dmn
R 1Dmn

L !, ~36!

wmn5
~Dmn

L !2

~Dmn
L !21~Dmn

R !2
. ~37!

The choice of weights can be rationalized by the followi
argument. Assume that the result of the numerical integra
is given by a stochastic variableD̃L with mean valueDL and
the standard deviation is proportional to the overall size

r.
1-5
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BRANDBYGE, MOZOS, ORDEJO´ N, TAYLOR, AND STOKBRO PHYSICAL REVIEW B65 165401
the integral, i.e.,Var(D̃L)}(DL)2. A numerical calculation
with weighted integrals as in Eq.~36! will then be a stochas
tic variable with the variance

Var~D̃!}w2~DR!21~12w!2~DL!2. ~38!

The value ofw which minimize the variance is the weigh
factor we use in Eq.~37!.

D. Localized states

As mentioned earlier the signature of a localized state
«0 in the scattering region is that the matrix elements
GL(«0) andGR(«0) are zero for that particular state. Loca
ized states most commonly arise when the atoms inC have
energy levels below the bandwidth of the leads. The loc
ized states give rise to a pole at«0 in the Green’s function.
As long as«0,$mL ,mR% the pole will be enclosed in the
complex contours and therefore included in the occup
states. If on the other hand the bound state has an en
within the bias window, i.e.,mL,«0,mR the bound state
will not be included in the real axis integral (DL,DR) and in
the complex contour forDL, but it will be included in the
complex contour forDR. Such a bound state will only b
correctly described by the present formalism if addition
information on its filling is supplied. These situations are ra
and seldom encountered in practice.

IV. NONEQUILIBRIUM EFFECTIVE POTENTIAL

The DFT effective potential consists of three parts:
pseudopotentialVps , the exchange correlation potentialVxc ,
and the Hartree potentialVH . For Vps we use norm conserv
ing Troullier-Martins pseudopotentials, determined fro
standard procedures.34 For Vxc we use the LDA as param
etrized in Ref. 52.

A. Hartree potential

The Hartree potential is a nonlocal function of the ele
tron density, and it is determined through the Poisson’s eq
tion ~in Hartree atomic units!

¹2VH~rW !524pn~rW !. ~39!

Specifying the electron density only in theC region of Fig. 1
makes the Hartree potential of this region undetermined
to a linear term,53

VH~rW !5f~rW !1aW •rW1b, ~40!

wheref(rW) is a solution to Poisson’s equation in regionC

andaW andb are parameters that must be determined from
boundary conditions to the Poisson’s equation. In the dir
tions perpendicular to the transport direction (x,y) we will
use periodic boundary conditions which fix the values ofax
and ay . The remaining two parametersaz and b are deter-
mined by the value of the electrostatic potential at theL-C
andC-R boundaries. The electrostatic potential in theL and
R regions could be determined from the separate bulk ca
lations, and shifted relative to each other by the biasV. With
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these boundary conditions the Hartree potential in the c
tact is uniquely defined, and could be computed using a r
space technique54 or an iterative method.24

However, in the present work, we have solved the Po
son’s equation using a fast Fourier transform~FFT! tech-
nique. We set up a supercell with theL-C-R region, which
can contain some extra layers of buffer bulk atoms and, p
sibly, vacuum~specially if the two electrodes are not of th
same nature, otherwise theL andR are periodically matched
in thez direction!. We note in passing that this is done so th
the potential at theL-C andC-R boundaries reproduces th
bulk values, crucial for our method to be consistent. Fo
given biasV, the L and R electrode electrostatic potentia
need to be shifted byV/2 and2V/2, respectively, andVH
will therefore have a discontinuity at the cell boundary. T
electrostatic potential of the supercell is now decomposed

VH~rW !5f̃~rW !2VS z

Lz
20.5D , ~41!

wheref̃(r ) is a periodic solution of the Poisson’s equatio
in the supercell, and therefore can be obtained using FFT55

To test the method we have calculated the induced den
and potential on a ‘‘capacitor’’ consisting of two gold~111!
surfaces separated by a 12-bohr-wide tunnel gap and w
voltage drop of 2 V. We have calculated the charge den
and the potential in this system in two different ways. Fir
we apply the present formulation~implemented inTRANSI-

ESTA!, where the system consists of two semi-infinite go
electrodes, and the Hartree potential is computed as
scribed above. Then, we calculate a similar system, but w
a slab geometry, computing the Hartree potential withSI-

ESTA, adding the external potential as a ramp with a disc
tinuity in the vacuum region. Figure 4 shows the comparis
of the results for the average induced density and poten
along thez axis. Since the tunnel gap is so wide that there
no current running, the two methods should give very sim
results, as we indeed can observe in the figure. We can
observe that the potential ramp is very effectively scree
inside the material, so that the potential is essentially equa
the bulk one, except for the surface layer. This justifies
approach for the partition of the system, the solution of
Poisson’s equation, and the use of the bulk Hamiltonian m
trix elements fo theL andR regions~see below!.

B. Hamiltonian matrix elements

Having determined the effective potential we calculate
Hamiltonian matrix elements as in standardSIESTA calcula-
tions. However, since we only require the density and
electrostatic potential to be correct at theL-C and C-R
boundaries, theHL andHR parts of the Hamiltonian@see Eq.
~1!# will not be correct. We therefore substituteHL and HR
with the Hamiltonian obtained from the calculation of th
separate bulk electrode systems. Here it is important to n
that the effective potential within the bulk electrode calcu
tions usually are shifted rigidly relative to the effective p
tential in theL and R regions, due to the choice of the pa
rameter b in Eq. ~40!. However, the bulk electrode
1-6
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DENSITY-FUNCTIONAL METHOD FOR . . . PHYSICAL REVIEW B 65 165401
HamiltoniansHL andHR can easily be shifted, using the fa
that the electrode Fermi level should be similar to the Fe
level of the initial SIESTA calculation for theBLCRBsuper-
cell.

The discontinuity of the Hartree potential at the c
boundary has no consequence in the calculation: the Ha
tonian matrix elementsinside the L-C-R region are unaf-
fected because of the finite range of the atomic orbitals,
the Hamiltonian matrix elementsoutsidethe L-C-R region
which do feel the discontinuity are replaced by bulk valu
~shifted according to the bias!.

V. CONDUCTANCE FORMULAS

Using the nonequilibrium Green’s-function formalis
~see, e.g., Refs. 39,40,14, and references therein! the current
I through the contact can be derived,

I ~V!5G0E
2`

`

d«@nF~«2mL!2nF~«2mR!#

3Tr @GL~«!G†~«!GR~«!G~«!#, ~42!

whereG052e2/h. We note that this expression is not ge
eral but is valid for mean-field theory like DFT.56 An equiva-
lent formula has been derived by Todorovet al.57 @the
equivalence can be derived using Eq.~21! and the cyclic
invariance of the trace in Eq.~42!#.

With the identification of the~left-to-right! transmission
amplitude matrixt,58

t~«!5@GR~«!#1/2G~«!@GL~«!#1/2, ~43!

FIG. 4. ~a! The induced external potential for slab calculati
~full line!, and in theTRANSIESTA calculation~dashed line!. In the
slab calculation the jump in external potential is in the middle of
vacuum region. The total potential~arbitrary units! is shown for
reference~dotted line!. ~b! Induced density. Potential and density
averaged in the surface plane. The density corresponds to one
face unit cell.
16540
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Eq. ~42! is seen to be equivalent to the Landauer-Bu¨ttiker
formula59 for the conductance,G5I /V,

G~V!5
G0

V E
2`

`

d«@nF~«2mL!2nF~«2mR!# Tr @ t†t#~«!.

~44!

The eigenchannels are defined in terms of the~left-to-right!
transmission matrixt,60,61

t5UR diag$utnu% UL
† , ~45!

and split the total transmission into individual chann
contributions,

TTot5(
n

utnu2. ~46!

The collection of the individual channel transmissio
$utnu2% gives a more detailed description of the conductan
and is useful for the interpretation of the results.62,58,14

VI. APPLICATIONS

A. Carbon wiresÕaluminum „100… electrodes

Short monoatomic carbon wires coupled to metallic el
trodes have recently been studied by Lang and Avouris63,46

and Laradeet al.64 Lang and Avouris used the Jellium ap
proximation for the electrodes, while Laradeet al. used Al
electrodes with a finite cross section oriented along the~100!
direction. In this section, we will compare theTRANSIESTA

method with these other first-principles electron transp
methods by studying the transmission through a seven-a
carbon chain coupled to Al~100! electrodes with finite cross
sections as well as to the full Al~100! surface.

We consider two systems, denoted A and B, shown
Figs. 5~a! and~b!. System A consists of a seven-atom carb
chain coupled to two electrodes of finite cross section o
ented along the Al~100! direction @see Fig. 5~a!#. The elec-
trode unit cell consists of nine Al atoms repeated toz5
6`. The ends of the carbon chain are positioned in
Al ~100! hollow site and the distance between the ends of
carbon chain and the first plane of Al atoms is fixed to
d51.0 Å. In system B the carbon chain is coupled to tw
Al(100)-(2A232A2) surfaces with an Al-C coupling simi
lar to system A. In this case the electrode unit cell conta
two layers each with eight atoms. For both systems the c
tact region~C! includes three layers of atoms in the left ele
trode and four layers of the right electrode. We use singlz
basis sets for both C and Al to be able to compare with
results fromMCDCAL, which were obtained with that basis.64

The conductance of system A is dominated by the ali
ment of the lowest unoccupied molecular state~LUMO! state
of the isolated chain to the Fermi level of the electrod
through charge transfer.64 The coupling of the LUMO,
charge transfer, and total conductance can be varied con
ously by adjusting the electrode-chain separation.64 For our
value of the electrode-chain separation we get a charge tr
fer of 1.43 and 1.28e to the carbon wire in systems A an
B, respectively. This is slightly larger than the values o

e

ur-
1-7
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BRANDBYGE, MOZOS, ORDEJO´ N, TAYLOR, AND STOKBRO PHYSICAL REVIEW B65 165401
tained by Lang and Avouris46 for Jellium electrodes, but in
good agreement with results fromMCDCAL.64

To facilitate a more direct comparison between the me
ods we show in Fig. 6 the transmission coefficient of syst
A calculated both withinTRANSIESTA ~solid! and MCDCAL

~dotted!. For both methods, we have used identical basis
and pseudopotentials. However, several technical detail
the implementations differ and may lead to small differen
in the transmission spectra. The main implementation dif
ences between the two methods are related to the calcul
of Hamiltonian parameters for the electrode region, the so
tion of the Poisson’s equation, and the complex conto
used to obtain the electron charge.65 Thus there are many
technical differences in the two methods, and we theref
find the close agreement in Fig. 6 very satisfactory.

In Fig. 7 we show the corresponding transmission coe
cients for system B. It can be seen that the transmiss
coefficient for zero bias at«5m is close to 1 for both sys
tems, thus they have similar conductance. However, the
tails in the transmission spectra differs much from system
In order to get some insight into the origin of the differe
features we have projected the self-consistent Hamilton
onto the carbon orbitals, and diagonalized this subsp

FIG. 5. ~a! The seven-atom carbon chain with finite cross s
tion Al~100! electrodes~system A!. ~b! The carbon chain with
Al(100)-(2A232A2) electrodes~system B!. ~c! The effective po-
tential of system A~dashed! and system B~solid!, together with the
effective potential of the corresponding bare electrode systems~d!
The self-consistent effective potential for an external bias of 1
~the zero-bias effective potential has been subtracted!.
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Hamiltonian to find the position of the carbon eigenstates
the presence of the Al electrodes. Within the energy wind
shown in Figs. 6 and 7 we find four doubly degeneratep
states (3p,4p,5p,6p). The positions of the eigenstates a
indicated above the transmission curves. Each doubly de
erate state can contribute to the transmission with 2 at m
Generally, the position of the carbonp states give rise to a
slow variation in the transmission coefficient, and the f
variation is related to the coupling between different scat
ing states in the electrodes and the carbonp states. For in-
stance, in system A, there are two energy intervals@21.9,
21.7# and @0.7,1.4#, where the transmission coefficient
zero, and the scattering states in these energy intervals
therefore not coupling to the carbon wire. Note how the
zero transmission intervals are doubled at finite bias, si
the scattering states of the left and right electrode are n
displaced.

The energy dependence of the transmission coefficien
quite different in system B compared to system A. This

-

FIG. 6. ~a! Zero-bias transmission coefficient,T(E,0 V), for
the seven-atom carbon chain with finite cross section Al~100! elec-
trodes~system A!. ~b! Transmission coefficient at 1 V,T(E,1 V).
Solid lines show results obtained withTRANSIESTA, and dotted lines
results obtained withMCDCAL. The vertical dashed lines indicate
the window betweenmL andmR . The position of the eigenstates o
the carbon wire subsystem are also indicated at the top axis.

FIG. 7. Transmission coefficients,T(E,0 V) andT(E,1 V) for
the seven-atom carbon chain with Al(100)-(2A232A2) electrodes
~system B!. The position of the eigenstates of the carbon wire s
system are also indicated at the top axis.
1-8
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DENSITY-FUNCTIONAL METHOD FOR . . . PHYSICAL REVIEW B 65 165401
mainly due to the differences in the electronic structure
the surface compared to the finite-sized electrode. Howe
the electronic states of the carbon wires are also slig
different. We find that thep states lie 0.2 eV higher in en
ergy in system B relative to system A. As mentioned pre
ously, the charge transfer to the carbon chain is differen
the two systems. The origin of this is related to a larger w
function (;1 eV) of the surface relative to the lead. W
note that the calculated work function of the surface is 0
eV higher than the experimental work function of Al~4.4
eV!,66 which may be due to the use of a single-z basis set
and the approximate exchange-correlation description.67

In Fig. 5~d!, we show the changes in the effective pote
tial when a 1-V bias is applied. We find that the potent
does not drop continuously across the wire. In system A,
main potential drop is at the interface between the car
wire and the right electrode, while in system B the poten
drop takes place at the interface to the left electrode. T
should be compared to the Jellium results, where there
more continuous voltage drop through the system.46 We do
not yet understand the details of the origin of these volt
drops. However, it seems that the voltage drop is very s
sitive to the electronic structure of the electrodes. Thus
find it is qualitatively and quantitatively important to have
good description of the electronic structure of the electrod

B. Gold wiresÕgold „111… electrodes

The conductance of single atom gold wires is a ben
mark in atomic scale conduction. Since ea
experiments68–70 numerous detailed studies of their condu
tance have been carried out through the 1990s until now~see,
e.g., Ref. 71 for a review!. More recently the nonlinea
conductance72–75 has been investigated and the atom
structure76–78 of these systems has been elucidated. Exp
ments show that chains containing more than five g
atoms79 can be pulled and that these can remain stable fo
extended period of time at low temperature. A large num
of experiments employing different techniques and unde
variety of conditions~ambient pressure and UHV, room, an
liquid-He temperature! all show that the conductanc
at low bias is very close to 1G0 and several experiment
point to the fact that this is due to a single conductan
eigenchannel.80–82

Several theoretical investigations have addressed the
bility and morphology83–88 and the conductance85,86,88 of
atomic gold chains and contacts using DFT. However, for
evaluation of the conductance, these studies have negle
the presence of valenced electrons and the scattering due
the nonlocal pseudopotential. This approximation is not j
tified a priori: for example, it is clear that the bands due tod
states are very close to the Fermi level in infinite line
chains of gold and this indicates that these could play a r
especially for a finite bias.14

1. Model

In this section we consider gold wires connected betw
the~111! planes of two semi-infinite gold electrodes. In ord
to keep the computational effort to a minimum we will lim
16540
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our model of the electrode system to a small unit cell
33) and use only theG point in the transverse~surface!
directions. We have used a single-z plus polarization basis
set of nine orbitals corresponding to the 5d and 6(s,p) states
of the free atom. In one calculation@the wire labeled~c! in
Fig. 9# we used double-z representation of the 6s state as a
check and found no significant change in the results. T
range of interaction between orbitals is limited by the radii
the atomic orbitals to 5.8 Å, corresponding to the fou
nearest neighbor in the bulk gold crystal or a range of th
consecutive layers in the@111# direction. We have checked
that the band structure of bulk gold with this basis set is
good agreement with that obtained with more accurate b
sets for the occupied and lowest unoccupied bands.

We have considered two different configurations of o
calculation cell, shown in Fig. 8. In most calculations w
include two surface layers in the contact region~C! where
the electron-density matrix is free to relax and we ha
checked that these results do not change significantly w
three surface layers are included on both electrodes. We
tain the initial guess for a density matrix at zero-bias volta
from an initial SIESTA calculation with normal periodic
boundary conditions in the transport~z! direction.89 In order
to make this density matrix as close to theTRANSIESTA den-
sity matrix we can include extra layers in the interface b
tween theL andR regions~black atoms in Fig. 8! to simulate
bulk. In the case of two different materials forL andR elec-
trodes many layers may be needed, but in this case we
just one layer. We use the zero-biasTRANSIESTA density ma-
trix as a starting point forTRANSIESTA runs with finite bias.

FIG. 8. Models used for the gold wires calculations. The wh
atoms correspond to contact regionC while the gray atoms corre
spond to theL and R regions in Fig. 1. The black atoms are on
included in the initialSIESTA calculation and can be added in ord
to yield a better initial density matrix for the subsequentTRANSI-

ESTA run. We have used 2(A) and 3(B) surface layers in the contac
region.
1-9
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BRANDBYGE, MOZOS, ORDEJO´ N, TAYLOR, AND STOKBRO PHYSICAL REVIEW B65 165401
2. Bent wires

In a previous study by Sa´nchez-Portal and co-workers,84 a
zigzag arrangement of the atoms was found to be ener
cally preferred over a linear structure in the case of infin

FIG. 9. We have considered the distances 9.0~a!, 9.3 ~b!, 9.6
~c!, and 9.9~d! Å between the two~111! surfaces. All wires have
been relaxed while the surface atoms are kept fixed. Distance
shown in Å.
16540
ti-
e

atomic gold chains, free standing clusters, and short w
suspended between two pyramidal tips. In general the st
ture of the wires will be determined by the fixed distan
between the electrodes and the wires will therefore m
probably be somewhat compressed or stretched.

Here we have considered wires with a length of thr
atoms and situated between the~111! electrodes with differ-
ent spacing. Initially the wire atoms are relaxed at zero vo
age bias~until any force is smaller than 0.02 eV/Å! and for
fixed electrode atoms. The four relaxed wires for differe
electrode spacings are shown in Figs. 9~a!–~d!. The values
for bond length and bond angle of the first wire~a!, r
52.57 Å, a5135°, are close to the values found in Ref.
for the infinite periodic wires at the minimum of energy wi
respect to unit-cell length (r 52.55 Å,a5131°).

In Fig. 10 we show the total energy and correspond
force as evaluated in a standardSIESTA calculation for the
wires as a function of electrode spacing. The force just
fore the stretched wire breaks has been measured90,91 and is
found to be 1.560.3 nN independent of chain length. Th
total transmission resolved in energy is shown in Fig. 11
zero bias. The conductance in units ofG0 is given by
TTot(EF) which is 0.91, 1.00, 0.95, and 0.94 for the~a!, ~b!,
~c!, and ~d! structures of Fig. 9, respectively. It is strikin
that the measured conductance in general stays quite
stant as the wire is being stretched. Small dips below 1G0
can be seen, which might be due to additional atoms be
introduced into the wire from the electrodes during t
pull.91 It is interesting to note that the value for~a! is quite
close to the conductance dip observed in Ref. 91 and
speculate that this might correspond to the addition of
extra atom in the chain which will then attain a zigzag stru
ture which is subsequently stretched out to a linear confi
ration.

It can be seen from the corresponding eigenchan
decomposition in Fig. 12 that the conductance is d
to a single, highly transmitting channel, in agreeme
with the experiments mentioned earlier and previo

are

FIG. 10. The change in total energy of the relaxed wires dur
the elongation shown in Fig. 9 as calculated in aSIESTA run. The
force determined from the slopes of the line segments is sh
also.
1-10



s-
a

or
.
h
th
e

ni
e

e

in
gh
o
e

u
-

e
uc

l
at

On

ld

om

vs

nly
nge

ces

DENSITY-FUNCTIONAL METHOD FOR . . . PHYSICAL REVIEW B 65 165401
calculations.62,58,14,88This channel is composed of thel z50
orbitals.14 About 0.5–1.0 eV below the Fermi energy tran
mission through additional channels is seen. These
mainly derived from thel z51 orbitals and are degenerate f
the wires without a bend, due to the rotational symmetry

We have done a calculation for a five atom long wire. T
relaxed structure is shown in Fig. 13. We note that while
bond lengths are the same within the wire, there is a differ
bond angle (143° in the middle, 150° at the electrodes!. We
find that the transmission at zero bias is even closer to u
compared with the three atom case and find a conductanc
0.99 G0 despite its zigzag structure~see Fig. 14!.

3. Finite bias results

Most experimental studies of atomic wires have be
done in the low-voltage regime (V,0.25 V). Important
questions about the nonlinear conductance, stability aga
electromigration, and heating effects arises in the hi
voltage regime. It has been found that the single atom g
wires can sustain very large current densities, with an int
sity of up to 80 mA corresponding to 1-V bias.79 Sakai and
co-workers72,92,75 have measured the conductance distrib
tions ~histograms! of commercial gold relays at room tem
perature and at 4 K and found that the prominent 1G0 peak
height decreases for high biasesV.1.5 V and disappears
around 2 V. It is also observed that there is no shift in th
G0 peak position which indicates that the nonlinear cond
tance is small. In agreement with this Hansenet al.74 re-
ported linear current-voltage (I -V) curves in scanning tunne
microscope~STM!-UHV experiments and suggested th

FIG. 11. The total transmission of the wires shown in Fig. 9
electron energy.
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nonlinearities are related with presence of contaminants.
the theoretical sides,p,d tight-binding calculations14,74 have
been performed for voltages up to 2.0 V for atomic go
contacts between~100!, ~111!, and~110! electrodes. Todorov
et al.93,94 addressed the forces and stability of single at

FIG. 12. Eigenchannel transmissions of the wires in Fig. 9. O
three channels give significant contribution within the energy ra
shown.

FIG. 13. Relaxed structure of a five atom long chain. Distan
are shown in Å.
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gold wires within a single orbital model combined with th
fixed atomic charge condition.

Here we study the influence of such high currents a
fields on one of the wire structures@Fig. 9~c!#. We have
performed the calculations for voltages from 0.25 to 2.0 V
steps of 0.25 V. In Fig. 15 we show the eigenchannel tra
missions for finite applied bias. For a bias of 0.5 V we se
behavior similar to the 0-V situation except for the disa
pearance of the resonance structure about 0.7 eV aboveEF in
Fig. 12~c!. For 0.5-V bias the degenerate peak 0.75 eV be
EF which is derived from thel z51 orbitals is still intact
whereas this feature diminishes gradually for higher b
Thus mainly a single channel contributes for finite bias up
2 V. It is clear from Fig. 15 that the transmissions for ze
volts cannot be used to calculate the conductance in the h
voltage regime and underlines the need for a full se
consistent calculation.

The calculatedI -Vcurve is shown in Fig. 16. We observ
a significant decrease in the conductance (I /V) for high volt-
ages. This is in agreement with tight-binding results14 where
a 30% decrease was observed for a bias of 2 V. For w
attached to~100! and ~110! electrodes14,74 a quite linear
I -Vwas reported for the same voltage range.

In Figs. 17 and 18 we plot the voltage drop, i.e., t
change in total potential between the cases of zero and fi
bias, for the case of 1 and 2 V, respectively. We observe
the potential drop has a tendency to concentrate in betw
the first two atoms in the wire in the direction of the curre
A qualitatively similar behavior was seen in the tight-bindi
results for both~100! and ~111! electrodes14 and it was sug-
gested to be due to the details of the electronic structure
a high density of states just below the Fermi energy deri
from thed orbitals ~and their hybridization withs orbitals!.
The arguments were based on the atomic charge neutr
assumption. In the present calculations, this assumptio
not made, although the self-consistency and the screenin

FIG. 14. The total transmission of all channels and eigencha
transmissions of the five-atom long chain shown in Fig. 13.
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the metallic wire will drive the electronic distribution clos
to charge neutrality. This would not occur in the case o
nonmetallic contact.27,31

The number of valence electrons on the gold atoms
close to 11. There is some excess charge on the wire at
and first surface layers~mainly taken from the second su

el

FIG. 15. The eigenchannel transmissions for bias voltages
0.5, 1, 1.5, and 2 V for the wire shown in Fig. 9. The conductan
is determined from the average total transmission frommL to mR .
The voltage window is shown with thick dashed lines.

FIG. 16. The current-voltage (I -V) curve for the wire shown in
Fig. 9.
1-12
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DENSITY-FUNCTIONAL METHOD FOR . . . PHYSICAL REVIEW B 65 165401
face layers!. The behavior of the charge with voltage
shown in Fig. 19. The minimum in voltage drop around t
middle atom for high bias~see Fig. 18! is associated with a
decrease in its excess charge for high bias. The decrea
found mainly in thes anddzz orbitals of the middle atom.

4. Forces for finite bias

We end this section by showing the forces acting on
three atoms in the wire for finite bias in Fig. 20. We evalu
the forces for nonequilibrium in the same manner as
equilibrium SIESTA calculations95 by just using the nonequi
librium density matrix and Hamiltonian matrix instead of th
equilibrium quantities.93 We find that for voltages above 1.
V that the first bond in the chain wants to be elongated wh
the second bond wants to compress. Thus the first bond
respond to a ‘‘weak spot’’ as discussed by Todorovet al.93,94

We note that the size of the bias induced forces acting
tween the two first wire atoms at 2 V is close to the for
required to break single atom contacts91 (1.560.3 nN) and
the result therefore suggests that the contact cannot sust
voltage of this magnitude, in agreement with the re
experiments.75 A more detailed calculation including the re
laxation of the atomic coordinates for finite voltage bias
needed in order to draw more firm conclusions about the
played by the nonequilibrium forces on the mechanical s
bility of the atomic gold contacts. We will not go further int
the analysis of the electronic structure and forces for fin
bias in the gold wire systems at this point, since our aim h
is simply to present the method and show some of its ca
bilities. A full report of our calculations will be publishe
elsewhere.

FIG. 17. The voltage drop for applied bias of 1 V in a pla
going through the wire atoms. In the surface plot the wire at
positions are shown as black spheres. The contour plot below
solid contours~separated by 0.1 eV! shows the voltage drop. Th
dashed contours are shown to indicate the atomic positions.
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C. Conductance in nanotubes

Finally, we have applied our approach to the calculat
of conductance of nanotubes in the presence of point defe
In particular the Stone-Wales~SW! defect96 ~i.e., a pentagon-
heptagon double pair! and a monovacancy in a~10, 10!
nanotube. The atomic geometries of these structures are
tained from aSIESTA calculation with a 280-atom superce
~seven bulk unit cells!, where the ionic degrees of freedo
are relaxed until any component of the forces is smaller t
0.02 eV/Å. We use a single-z basis set, although some tes
were made with a double-z basis, producing very simila
results. The one-dimensional Brillouin zone is sampled w
five k points. The forces do not present any significant var
tion if the the relaxed configurations are embedded int
440-atom cell, where the actual transport calculations
performed.

In a perfect nanotube two channels, of characterp and
p* , each contribute a quantum of conductance,G0. In Fig.
21 we present our results for zero bias for the SW defe
Recentab initio studies29,97 are well reproduced, with two
well defined reflections induced by defect states. The t
dips in the conductance correspond to the closure of ei
the p* ~below the Fermi level! or thep channel.

For the ideal vacancy the two antibonding states ass
ated with brokens bonds lie close to the Fermi level. Th
coupling between these states and thep bands, although
small, suffices to open a small gap in the bulklikep-p*
bands. The vacancy-induced states appear within this
Otherwise, the three two-coordinated atoms have a la
penalty in energy and undergo a large reconstruction towa
a split vacancy configuration with two pentagons,;2 eV
lower in energy. Two configurations are possible, depend
on the orientation of the pentagon pair, depicted in Fig.
We have found that there is a further 0.4-eV gain in ene

he

FIG. 18. Same as in Fig. 17 for a bias of 2 V~contours separated
by 0.2 eV!.
1-13
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FIG. 19. The ~Mulliken! change in excess
charge~in units of the electron charge! on the
wire atoms and average excess charge on the
face atoms in the first and second left and rig
electrode layers. For high bias the second rig
electrode layer takes up some of the exce
charge.
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1 V
ble
tted
by reorienting the pentagon-pentagon 60° off the tube a
@Fig. 22~b!# resulting in a formation energy ofEf
56.75 eV.98 The bonding of the tetracoordinated atom
not planar but paired with angles of;158°. Some of these
structures were discussed in previous tight-bind
calculations.99 This is at variance with the results of Refs. 2
and 97, possibly due to their use of too small a super
which does not accommodate the long-range elastic re
ations induced by these defects.

The conductance of these defects, calculated at zero
~Fig. 23!, does not present any features close to the Fe
level. This is in contrast to the ideal vacancy, where refl
tion related to the states mentioned above are present.
dips appear, at possitions similar to those of the SW deff
An eigenchannel analysis62 of the transmission coefficient
gives the symmetry of the states corresponding to these d
The metastable configuration is close to having a mir
plane, containing the tube axis, except for the small pair
mode mentioned before. The mixing of thep andp* bands
is rather small. The lower and upper dips come from

FIG. 20. The forces acting on the wire atoms when the bia
applied~the radius of the circles correspond to 0.5 nN!. The tensile
force in the bond between the two first atoms is about 1 nN for
and 1.5 nN for 2 V.
16540
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reflection of the almost purep* and p eigenchannels, re
spectively. This behavior is qualitatively similar to the S
defect. On the other hand, for the rotated pentagon pair th
is no mirror plane and the reflected wave does not hav
well defined character.

VII. CONCLUSION

We have described a method and its implementat
~TRANSIESTA! for calculating the electronic structure, ele
tronic transport, and forces acting on the atoms at finite v
age bias in atomic scale systems. The method deals with
finite voltage in a fully self-consistent manner, and tre
both the semi-infinite electrodes and the contact region w
the same atomic detail.

We have considered carbon wires connected to alumin
electrodes where we find good agreement with results p
lished earlier with another method~MCDCAL!64 for electrodes

is
FIG. 21. Transmission coefficient of pentagon-heptagon dou

pair vs energy measured with respect to the Fermi level. The do
line shows the transmission of a perfect nanotube.
1-14
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with finite cross section. We find that the voltage dr
through the wire system depends on the detailed structu
the electrodes~i.e., periodic boundary conditions vs cro
section!.

The conductance of three and five atom long gold wi
with a bend angle has been calculated. We find that the
ductance is close to one quantum unit of conductance
that this result is quite stable against the bending of the w
These results are in good agreement with experimental fi
ings. For finite bias we find a nonlinear conductance
agreement with previous semiempirical calculations for~111!
electrodes.14 We find that the forces at finite bias are close
the experimental force needed to break the gold wires91 for a
bias of 1.5–2.0 V.

FIG. 22. Atomic configurations for the vacancy defect in
~10,10! nanotube:~a! metastable and~b! ground state.
s

165401
of

n-
d
.
-

Finally we have studied the transport through a~10,10!
nanotube with a Stone-Wales defect or with a monovacan
~a calculation involving 440 atoms!. We have found good
agreement with recentab initio studies of these systems.29,97
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