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Capacitance of a quantum dot from the channel-anisotropic two-channel Kondo model

Karyn Le Hur* and Georg Seelig†
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We investigate the charge fluctuations of a large quantum dot coupled to a two-dimensional electron gas via
a quantum point contact following the work of Matveev†K. A. Matveev, Phys. Rev. B51, 1743 ~1995!; Z.
Éksp. Teor. Fiz.98, 1598~1990! @Sov. Phys. JETP72, 892~1991!#‡. We limit our discussion to the case where
exactly two channels enter the dot and we discuss the role of an anisotropy between the transmission coeffi-
cients~for these two channels! at the constriction. Experimentally, a channel anisotropy can be introduced by
applying a relatively weak in-plane magnetic field to the system when only one ‘‘orbital’’ channel is open. The
magnetic field leads to different transmission amplitudes for spin-up and spin-down electrons. In a strong
magnetic field the anisotropic two-channel limit corresponds to two~spin polarized! orbital channels entering
the dot. The physics of the charge fluctuations can be captured using a mapping on the channel-anisotropic
two-channel Kondo model. For the case of weak reflection at the point contact this has already been briefly
stressed by one of us@K. Le Hur, Phys. Rev. B64, 161302~R! ~2001!#. This mapping is also appropriate to
discuss the conductance behavior of a two-contact setup in strong magnetic field. Here, we elaborate on this
approach and also discuss an alternative solution using a mapping on a channel-isotropic Kondo model. In
addition we consider the limit of weak transmission. We show that the Coulomb-staircase behavior of the
charge in the dot as a function of the gate voltage, is already smeared out by a small channel anisotropy both
in the weak- and strong-transmission limits.

DOI: 10.1103/PhysRevB.65.165338 PACS number~s!: 73.23.Hk, 72.15.Qm, 73.40.Gk, 72.10.Fk
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I. INTRODUCTION

In the past few years a great amount of work has b
devoted to studying the Kondo effect in mesosco
systems.1 A motivation for these efforts was the recent e
perimental observation of the Kondo effect in tunneli
through a small quantum dot.2,3 In these experiments th
effective~or excess! electronic spin of the dot acts as a ma
netic impurity.

A different set of problems relating the Kondo effect
the physics of quantum dots is encountered when stud
fluctuations of the charge of a large Coulomb-blockad
quantum dot. The setup we have in mind consists of a la
quantum dot coupled to a reservoir via a quantum point c
tact ~QPC! and capacitively coupled~with a capacitance
Cgd) to a back gate~see Fig. 1!. The amount of charge on th
dot can be changed through the gate voltageVG . The term
‘‘large’’ implies that the spacingD of the energy levels on
the dot~almost! vanishes and is much smaller than the do
charging energyEC5e2/(2Cgd). We assume that the capac
tance between the two-dimensional electron gas~2DEG! and
the dot can be neglected.

There are two limits in which a mapping to a Kond
Hamiltonian can be used to calculate the charge on the q
tum dot. These two limits roughly correspond to the case
very strong and very weak reflection at the QPC. Bef
elaborating on this point we will give here the standard m
tichannel Kondo Hamiltonian,

HK5HKin1(
a

$Ja,zsa,z~0!Sz
i

1Ja,'@sa,x~0!Sx
i 1sa,y~0!Sy

i #% ~1!
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in a very general form to be used as a point of reference
later discussions.4 Here SW is an impurity spin andsWa(0) is
the spin of conduction electrons with flavora at the place of
the impurity. We will consider only the two-channel casea
51,2. In the discussion of the Coulomb-blockade probl
we will encounter Kondo Hamiltonians that are both sp
(Ja,zÞJa,') and channel anisotropic (J1,'ÞJ2,').

We now want to return to the original problem and fir
want to discuss the limit of weak tunneling between the
and the reservoir~strong reflection at the QPC!. For low
enough temperatures (T!EC) the charge on the dot is quan
tized. When the gate voltageVG is increased the charge o
the dot changes in a steplike manner. This behavior is
ferred to as a Coulomb staircase. Charge fluctuations
important only for those values of the gate voltage at wh
two neighboring charge states~e.g., with n and n11 elec-
trons on the dot! are energy degenerate. Matveev demo
strated the equivalence of the effective Hamiltonian desc
ing the charge dynamics close to such a degeneracy poi

FIG. 1. A large quantum dot is coupled to a 2DEG via a qua
tum point contact. The number of electrons in the dot can be c
trolled through the gate voltageVG . The auxiliary voltageVa can
be used to open or close the point contact and thus to adjus
reflection amplitudes for the transport channels in the QPC.
©2002 The American Physical Society38-1
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a spin-anisotropic Kondo Hamiltonian.5 If the dot and the
reservoir are connected bym transport channels with th
same transmission probability the problem can be mappe
a channel-isotropicm-channel Kondo model6 with Ja,z50
andJa,'!1.5 The similarity of the charge dynamics on th
dot to the spin dynamics in a Kondo model was alrea
observed by Glazman and Matveev in there discussion on
conductance of a metallic grain~a quantum dot! tunnel
coupled to two reservoirs.7

The limit of a point contact with one~electrons without
spin! or two ~electrons with spin! transport channels close t
perfect transmission has also been treated. An effectiv
one-dimensional model for the dot-QPC system, wh
makes it possible to calculate the total charge on the
using bosonization, was developed by Flensberg8 and by
Matveev.9 Matveev9 also calculated the dot’s capacitance
a function of the gate voltage and the reflection amplitude
the point contact. In his calculation he demonstrated that
Hamiltonian of the original problem can be mapped onto
Kondo Hamiltonian in the generalized Toulouse limit (J1,z
5J2,z52pvF). In this limit the two-channel Kondo model i
exactly solvable as was shown by Emery and Kivelson.10 It
was one of the main results of Ref. 9 that Coulomb-blocka
oscillations~accompanied by a logarithmic singularity in th
expressions for the charge or the capacitance close to ‘‘h
integer’’ values of the number of electrons in the dot! persist
also in the limit of weak reflection, as recently checked e
perimentally by Bermanet al.11 They are completely
smeared out only if at least one transport channel is at pe
transmission, the charge in the dot then increases line
with the gate voltage.8,9,12A review of these results and mor
generally of interaction effects in quantum dots can be fou
in Ref. 13.

Extending our previous work14 we here want to discus
the effect of achannel anisotropyon the results for the ca
pacitance in the two limits of almost perfect transmission a
almost total reflection discussed above. We will show t
the Coulomb-staircase behavior is smeared out by a s
channel anisotropy both in the weak and strong reflec
limit. We will concentrate on the case of two transport cha
nels. Channel anisotropy then means that the reflection~or
transmission! amplitudes for the two channels are differen
Such a situation can be realized by applying a magnetic fi
to the sample. A weak in-plane magnetic field leads to d
ferent reflection amplitudes for spin-up and spin-down el
trons. In a strong magnetic field electrons are spin polari
and the number of open channels in the QPC and their
spective reflection amplitudes depend on the opening of
QPC. The confinement potential at the QPC and thus
opening can be tuned by changing the auxiliary gate volt
Va ~see Fig. 1!. In the limit of small reflection an intuitive
physical picture for the transition from the channel symm
ric case9 to the case of a weak asymmetry between the
channels can be obtained14 from the use of thechannel-
anisotropic two-channel Kondo model at the Emer
Kivelson line.15 This model has also been investigated
Ref. 16. The two coupling constants of the asymme
Kondo model are directly related to the reflection amplitud
of the two transport channels in the QPC. In this paper
16533
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will elaborate on this mapping and discuss its limitation
Although the physical picture associated with thechannel-
anisotropictwo-channel Kondo model is very appealing, th
Coulomb-blockade problem in the high transparency lim
with two transport channels with different reflection coef
cients can also be solved through a mapping on thechannel-
isotropic two-channel Kondo model as we will show. Such
procedure was applied by Furusaki and Matveev17 when they
calculated the inelastic cotunneling through a quantum
strongly coupled to two quantum point contacts with o
transport channel each~electrons in a strong magnetic field!.
We will see furthermore that in the case of tunnel coupli
~small transmission! an asymmetry between transmissio
amplitudes of different channels will lead to a mapping
the Hamiltonian on a channel-anisotropic Kondo model w
(J1,z5J2,z50).

Our paper is structured as follows. In a first part we co
sider the weak coupling limit. We start by developing t
model Hamiltonian in Sec. II. In Sec. III we discuss th
mapping on the channel-anisotropic two-channel Kon
model and use it to calculate the capacitance of the quan
dot in a weak magnetic field. In Sec. IV we show that t
same results can also be found from a mapping to a chan
isotropic Kondo model and in addition look at the case o
strong magnetic field applied to the QPC-dot system. In S
V a simple scaling argument is used to rederive the m
~exact! results of Secs. III and IV. In Sec. VI, we will show
that the channel-anisotropic two-channel Kondo model
also be used to discuss the conductance in a two-con
setup with a strong in-plane magnetic field. The limit
small transmission through the quantum dot will finally
considered in Sec. VII.

II. THE MODEL

We consider here a large quantum dot weakly coupled
a 2DEG via a point contact9 ~see Fig. 1!. The shape of the
QPC is defined through metallic gates put on top of a 2DE
The lateral confinement potential in the QPC can be c
trolled by changing the voltage applied to these gates. A
consequence of the lateral confinement the conductanc
the QPC is quantized and electron motion in the vicinity
the QPC is essentially one dimensional. The one-dimensio
wave-functionCs

n for motion along thex axis is character-
ized by the spin indexs5↑,↓ and the ~orbital! channel
quantum numbern due to the lateral confinement.18 Note,
that from here on we will use the word channel to me
electrons with a certain pair of indicess,n. As a short nota-
tion we introduce the channel indexa5s,n and we denote
the wave function of an electron in this channel byCa . In
the further analysis we neglect transport channels that
totally reflected at the QPC, since electrons from these ch
nels are confined to the reservoir and will not contribute
the charging of the dot. We will concentrate on the ca
where only two channels are open. This can be realized
two different ways. If a weak~or zero! in-plane magnetic
field is applied~see Sec. III!, the two channels correspond t
the two spin polarizations of electrons in the lowest (n51)
energy eigenstate of the lateral Hamiltonian (C15C↑

1 ,C2
8-2
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CAPACITANCE OF A QUANTUM DOT FROM THE . . . PHYSICAL REVIEW B 65 165338
5C↓
1). The role of the magnetic field is to introduce an asy

metry between the reflection coefficients for spin-up a
spin-down electrons.14 In a strong magnetic field the elec
trons are spin-polarized and the two-channel case co
sponds to two orbital channels entering the constriction~e.g.,
C15C↑

1 ,C25C↑
2); see Sec. IV.

Since we are interested in energies much smaller than
Fermi energy, we linearize the spectrum around the Fe
points. Furthermore, it is convenient to decompose the w
function into a right-going and a left-going contributio
Ca5exp(ikFx)Ca,R(x)1exp(2 ikFx)Ca,L(x). For two
open transport channels the Hamiltonian for the electron
the point contact is

HKin52 ivF (
a51,2

E
2`

`

dx@Ca,R
† ~x!]xCa,R~x!

2Ca,L
† ~x!]xCa,L~x!#, ~2!

where the sum is over~open! quantum channels. Electro
interactions in the quantum dot are taken into account via
Coulomb Hamiltonian

HC5EC~Q2N!22ECN2. ~3!

The parametereN5VGCgd is proportional to the gate volt
age andEC5e2/(2Cgd) is the charging energy. In additio
we allow for a weak backscattering29 in the point contact:

Hbs5vF (
a51,2

ur au@Ca,R
† ~0!Ca,L~0!1H.c.#. ~4!

The transmission is supposed to be globally adiabatic.19 The
reflection amplitudesur 1u and ur 2u can be tuned applying a
voltage to the gates defining the QPC. The main goal in
following will be to calculate the shift in the ground-sta
energy de due to the backscattering in the point conta
From the correctionde it is possible to obtain the averag
charge in the dot and the dot’s capacitance via

^Q&5CgdVG2
]~de!

]VG
,

C5
]^Q&
]VG

5Cgd2
]2~de!

]VG
2

. ~5!

To manipulate the Hamiltonian of the one-dimension
interacting system we have introduced above, it is con
nient to use the bosonization technique. Bosonizing in
standard way we express the Fermi field operators thro
the bosonic fieldsfa(x) andua(x) and write20,21

Ca,R/L~x!5
1

A2pa
exp$ iAp@2pfa~x!1ua~x!#%. ~6!

Herep51 for right movers~R! andp521 for left movers
(L). The bosonic fields obey the commutation relations
16533
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2
sgn~x2y!da,b ,

@fa~x!,]yub~y!#5 id~x2y!da,b ,

@fa~x!,fb~y!#5@ua~x!,ub~y!#50. ~7!

In the new variables the kinetic energy takes the form

HKin5vF (
a51,2

E
2`

`

dx@~]xfa!21~]xua!2#. ~8!

To bosonize the Coulomb Hamiltonian we use the relati
Ca,L

† Ca,L1Ca,R
† Ca,Rª2]xfa /Ap. The total charge in

the dot then is

Q5 (
a51,2

E
0

`

dx~ :Ca,R
† Ca,R1Ca,L

† Ca,L : !. ~9!

The charge in the dot is now measured in units ofe. We
neglect both finite-size effects in the dot13,22 ~supposed to be
ideal with no dephasing process! and mesoscopic correction
to the capacitanceCgd .23,24 Expressing the charge in term
of the bosonic variables we obtainQ5@f1(0)
1f2(0)#/Ap. The term at spatial infinity is independent o
the gate voltage. We choosef i(`)50 in such a way that the
total chargeQ on the dot is zero whenN50. Consequently
we get

HC5
EC

p S (
a51,2

fa~0!2ApND 2

~10!

for the Coulomb Hamiltonian. In writing Eq.~10! we have
only considered theQ-dependent part of Eq.~3!. Finally we
also have to bosonize the backscattering Hamiltonian, wh
leads us to

Hbs5
vF

pa (
a51,2

ur aucos@A4pfa~0!#. ~11!

Now we introduce the new standard variablesfc,s

5(1/A2)@f1(x)6f2(x)# anduc,s5(1/A2)@u1(x)6u2(x)#
where the positive sign belongs to the labelc ~charge! and
the negative sign belongs tos ~spin!. Note that in the case o
a strong magnetic field electrons are spin polarized. The
dex s then labels a ‘‘pseudospin’’ and not physical sp
states. The kinetic energy in the new variables has the s
dard form of Eq.~8!. The Coulomb Hamiltonian

HC5
2EC

p
@fc~0!2Ap/2N#2 ~12!

is a function of the charge field only which is the main m
tivation for the introduction of this new set of variables. Fu
thermore we get for the backscattering part
8-3
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Hbs5
vF

pa
~ ur 1u1ur 2u!cos@A2pfc~0!#cos@A2pfs~0!#

2
vF

pa
~ ur 1u2ur 2u!sin@A2pfc~0!#sin@A2pfs~0!#.

~13!

We now introduce the charge fluctuation fieldf̂c(0)
5fc(0)2Ap/2N. The total charge in the dot is pinned at i
classical valueQcl5fc(0)5Ap/2N to minimize the Cou-
lomb energy. For weak backscatteringur 1u,ur 2u!1 and for
energies below the charging energy we can average ove
charge fluctuationsf̂c(0). When averaging over the term
cos@A2pfc(0)#5cos@A2pf̂c(0)1pN# in Eq. ~13! we ob-
tain the expression

e2p^f̂c(0)2& cos~pN!5AagEC

vF
cos~pN!. ~14!

Here the angular brackets mean averaging with regard to
ground state of the free Hamiltonian Eq.~8!. An analogous
expression can also be found for the term sin@A2pfc(0)# in
Eq. ~13!. When calculating the correlator

^f̂c~0!2&52
1

2p
ln

agEC

vF
~15!

we have taken into account that only fluctuation modes w
energies larger than the charging energyEC can enter into
the dot. Hereg is defined throughg5eC whereC'0.577 is
Euler’s constant. After the averaging, the backscattering
of the Hamiltonian can thus be written as

Hbs5
AgaECvF

pa
~ ur 1u1ur 2u!cos~pN!cos@A2pfs~0!#

2
AgaECvF

pa
~ ur 1u2ur 2u!sin~pN!sin@A2pfs~0!#.

~16!

Using simple trigonometric relations the Hamiltonian E
~16! can be rewritten in an alternative form17 as

Hbs5
AagECvF

pa
~reiA2pfs(0)1r * e2 iA2pfs(0)!, ~17!

where r is the complex parameter r 5(ur 1ueipN

1ur 2ue2 ipN)/2. The first form of the backscattering term E
~16! will be used in Sec. III when discussing the two-chann
anisotropic version of the Kondo model, while Eq.~17! will
be useful as a starting point for the mapping on the isotro
form of the two-channel Kondo model~see Sec. IV!. The
charge part of the kinetic energy can now be dropped sinc
is completely decoupled from the perturbation due to
backscattering.
16533
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III. CHANNEL-ANISOTROPIC
TWO-CHANNEL KONDO MODEL

In this section we will concentrate exclusively on the ca
where the reflection amplitudesur 1u andur 2u are very close to
each other. It is then convenient to introduce the parame
uRu5ur 1u1ur 2u and udr u5ur 2u2ur 1u where udr u!uRu!1.
For the sake of clarity we have split up this section into th
subsections. In the first subsection we will discuss the re
tion between our problem and the channel-anisotropic~two-
channel! Kondo model.14 In the second subsection we wi
derive an expression for the impurity correction to t
ground-state energy while a physical realization of the c
udr u!uRu!1 is discussed in the third subsection. There
will also explicitly calculate the charge in the dot and t
dot’s capacitance.

A. Equivalence to the Kondo model

We will now see that our theory for the Coulomb
blockade problem can be mapped on the anisotropic t
channel Kondo model at the Emery-Kivelson line, i.e.,Js,z
52pvF with s51,2. The solution of this model15,25 was
given by Fabrizio, Gogolin, and Nozie`res.15

Introducing the auxiliary impurity-spin operatorsŜx and
Ŝy we rewrite the backscattering term@Eq. ~16!# as

Hbs5
Jx

pa
cos@A2pfs~0!#Ŝx1

Jy

pa
sin@A2pfs~0!#Ŝy ,

~18!

where the Kondo coupling parameters are defined throug

Jx52uRuAagECvF cos~pN!,

Jy52udr uAagECvF sin~pN!. ~19!

Starting with a standard Kondo model, we rather getJx
}(J1,'1J2,') and Jy}(J1,'2J2,'), whereJs,' denotes the
transverse Kondo coupling of each conduction-band chan
with the magnetic impurity. The total Hamiltonian, which w
will denote HEK

A , is given by HEK
A 5HKin(fs ,us)

1Hbs(fs), where the kinetic term is of the form Eq.~8!.
Both Ŝx andŜy can be considered as good quantum numb
since their commutators with the HamiltonianHEK

A are small,
close to perfect transmission through the quantum po
contact:

@HEK
A ,Ŝx#}2 i uRuŜz ,

@HEK
A ,Ŝy#} i udr uŜz . ~20!

The impurity spin inHEK
A can oscillate between the two va

ues Ŝx51/2 andŜy521/2. It is important to note that the
backscattering part of the total Hamiltonian@Eq. ~16!# and
the coupling term of the two-channel anisotropic Kon
model @Eq. ~18!# are exactly equivalent only in the chann
symmetric caseudr u50, sinceŜx and Ŝy do not commute.
However, we will see in the following section that the a
8-4
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proximation made in writing Eq.~18! is good as long as
udr u!uRu or N;0,61/2,61 . . . .

We now want to find the shift of the energy due to t
backscattering or, in the language of the Kondo problem,
impurity correction to the ground-state energy. To make f
ther progress it is useful to refermionize the Hamiltonia
The basic idea is to introduce a unique operatorc(x) such
that cos@A2pfs(0)#}c(0)1c†(0) and sin@A2pfs(0)#
}c(0)2c†(0). Furthermore, we use the Majorana repres
tation

A2Ŝx5a5~d1d†!/A2,

A2Ŝy52b5~d†2d!/~ iA2!, ~21!

to express the spin operators through fermionic operat
The d operators (d5a1 ib) obey $d†,d%51 and$d,c(x)%
50. The~unusual! refermionization procedure will be exten
sively discussed in Appendix A. There we also give a prec
definition of the new fermionic fieldsc. After refermioniza-
tion the kinetic energy takes the standard form

HKin52 ivFE
2`

`

dxc†~x!]xc~x!, ~22!

while the backscattering Hamiltonian is

Hbs5
iJx

A4pa
@c~0!1c†~0!#b1

Jy

A4pa
@c~0!2c†~0!#a.

~23!

So we finally arrive at a~standard! solvable resonant leve
type of model for the two Majorana fermionsa andb.15,25

B. Impurity corrections and scattering phase shifts

Our next step is to calculate the impurity corrections
the ground-state energy from the impurity Green’s functio
Ga52^Tta(t)a(0)& and Gb52^Ttb(t)b(0)&. The Fou-
rier transforms of these Green’s functions can be found
convenient way from the equations of motion~cf. Appendix
B!. We get

Gk~v!5
1

v1 iGk sgn~v!
, ~24!

where the labelk is k5a,b. The width of the resonanta(b)
level Ga(Gb) is related to the respective Kondo couplin
constantJy(Jx) via

Ga5
Jy

2

4pavF
5

ECg

p
udr u2 sin2~pN!,

Gb5
Jx

2

4pavF
5

ECg

p
uRu2 cos2~pN!. ~25!

The impurity correction to the ground-state energy at z
temperature is
16533
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de52E
vmin

EC dv

2p
v@na~v!1nb~v!#. ~26!

The occurrence of a high-energy cutoff atEC in Eq. ~26! is
an intrinsic property of the theory developed so far. The lo
energy cutoffvmin needs some additional explanation. W
can distinguish two different situations. In the neighborho
of integer values ofN the resonance widthGa is negligibly
small. Already at temperatures of the order ofGb spin fluc-
tuations will get pinned, since the coupling constantJx goes
to strong coupling~compare Sec. V!.

Very close to half-integer values ofN, however, we have
Gb!Ga even thoughudr u!uRu. Thus the couplingJy will go
to strong coupling beforeJx and spin fluctuations will be
frozen atGa . An expression forvmin that correctly repro-
duces these two limits isvmin5max$Ga ,Gb%. The density of
statesnk(v) of impurity k in Eq. ~26! is related to the cor-
responding impurity Green’s function through

nk~v!522 Im$Gk~v!%5
2Gk sgn~v!

v21Gk
2

. ~27!

With this expression fornk(v) the integration in Eq.~26!
can easily be performed and we get

de52
1

2p (
k5a,b

FGk lnS EC
2 1Gk

2

max$Ga ,Gb%
21Gk

2D G . ~28!

For most purposes it is sufficient to approximate this expr
sion by the more simple form26

de52
1

p
~Ga1Gb!lnS EC

max$Ga ,Gb%
D . ~29!

We have usedGk!EC and have dropped an additive co
stant. A quantity that is interesting is the scattering ph
shift ~extracted from the Friedel sum rule!

d~v!5
1

2 (
k5a,b

arctanS Gk

v D ~30!

of the conduction electronsc due to the impurity scattering
In the channel symmetric case we haveGa50 and d(v
!Gb)5p/4. The Friedel sum rule can also be rewrittenZ
52( l(2l 11)d/p whereZ is the impurity charge screene
by the electrons. Fors-wave scattering (l 50) andZ51/2 we
recoverd5p/4. The particular value ofd can thus be under
stood as a consequence of the fact that only ‘‘half’’ of t
fermiond ~the parta) is coupled to the conduction electron
In general, if bothGa andGb are finite we findd5p/2 in the
limit v→0 andZ51 since nowa andb are screened. Here
~even! for a finite channel asymmetry, we still findd5p/4 at
the fixed point because close toN51/2 we haveGb→0 and
close toN50,61 we haveGa→0. This gives a physica
justification on the validity of the mapping in Sec. IV. It i
important to remember that the ‘‘spin fermions’’c are not
the real electrons but are related to the spin degrees of f
dom of the original electronic wave functions. However, th
play the part of the conduction electrons of the real Kon
8-5
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KARYN LE HUR AND GEORG SEELIG PHYSICAL REVIEW B65 165338
problem. In the case of spinless electrons~electrons in a
strong magnetic field! and for a single transmitted chann
ur u!1 the scattering phase shift of the real electrons is
lated to the average charge on the dot viad5p^Q&, again as
a consequence of Friedel’s rule. It was shown by Aleiner a
Glazman22 that in the one-channel limit this relation can b
used to calculate the impurity correction@see Eq.~35!# in an
intuitive way. The physics resembles closely the one of
one-channel Kondo problem.27

C. Applications

The caseudr u!uRu!1 can be realized in our setup b
applying a weak in-plane magnetic field. In a nonzero fi
the reflection amplitudesur 1u andur 2u for electrons with spin
up and spin down are different due to the Zeeman effect.
channel indexa here distinguishes between spin-up a
spin-down electrons in the lowest orbital channeln51. The
~original! electronic wave functions for electrons in the tw
channels areCa515C↑

n51 andCa525C↓
n51 . We first want

to consider the special case of zero magnetic field, wh
was solved by Matveev in Ref. 9. The reflection amplitud
for the two channels, corresponding to spin-up and sp
down electrons are equal (ur 1u5ur 2u5uRu/2) and thusudr u
50. It follows from Eqs.~19! and ~25! that Jy50 andGa
50. Furthermore, from Eq.~25! we know that Gb
5uRu2gEC cos2(pN)/p. Calculating the energy with Eq.~29!
we find9

de51
gEC

p2
uRu2 cos2~pN!ln@g/puRu2 cos2~pN!#.

~31!

The correction to the capacitance can then easily be ca
lated using Eq.~5! and is found to be

dC522gECuRu2b2 cos~2pN!lnS 1

uRu2 cos2~pN!
D .

~32!

Here we have kept only the logarithmically divergent con
bution that will dominate all other terms close toN51/2.
The parameterb5e/(2EC) is the ratio of the dimensionles
parameterN and the gate voltageVG , b5N/VG . This seems
to be in agreement with the recent capacitance experime
Ref. 11.

As we can see from Eq.~18! in the channel-symmetric
case only fermionb is coupled to the fieldc. If we allow for
a weak magnetic field the reflection coefficients for spin-
and spin-down electrons are slightly different andudr uÞ0.
As a consequence the Kondo couplingJy does not vanish
anymore and both Majorana fermionsa andb are coupled to
the bath. The total energy shiftde from Eqs.~25! and~29! is
found to be14
16533
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de51
gEC

p2
@ uRu2 cos2~pN!1udr u2 sin2~pN!#

3 ln@g/pmax$udr u2 sin2~pN!,uRu2 cos2~pN!%#.

~33!

Due to the appearance of the max the logarithm does
diverge anymore. Still it can be very large due to the sm
ness ofudr u and the logarithmic term will dominate in th
capacitance~See Fig. 2!:

dC522gECb2~ uRu22udr u2!cos~2pN!

3 lnS 1

max$udr u2 sin2~pN!,uRu2 cos2~pN!%
D .

~34!

We see from Eqs.~33! and ~34! that an arbitrary weak an
isotropy between the two reflection coefficients is sufficie
to cut off the logarithmic divergence. At the degenera
point N51/2, we find dC} lnudru. There is some analogy9

with the behavior of the magnetic susceptibility of the imp
rity x5]2(de)/]h2 away from the Emery-Kivelson line15

and with that of the local magnetic susceptibilityx l

5]^Ŝz&/]h at the Emery-Kivelson line~the magnetic fieldh
would only act on the impurity!,25 even though for weak
backscattering at the QPC there is no real corresponde
between the charge in the dotQ and Ŝz . From the two-
channel anisotropic Kondo model we see that the appear
of the second energy scale that leads to the suppressio
the divergence follows in a natural manner from the coupl
of the second Majorana fermion to the conduction electro

At this point it is also interesting to compare these resu
to the result obtained in the case of a single transmitted ch
nel ~reflection amplitudeur 1u!1 andur 2u→1). Such a situ-

FIG. 2. The correction to the capacitance Eq.~34! is shown for
different values of the anisotropy parameterudr u5ur 2u2ur 1u. The
parameteruRu5ur 1u1ur 2u is set touRu50.4. The solid line corre-
sponds to the channel isotropic caseudr u50 where the capacitanc
is logarithmically divergent. In order of decreasing peak height
remaining three curves correspond toudr u50.1, udr u50.2, and
udr u50.3. The units of the capacitance are arbitrary.
8-6
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CAPACITANCE OF A QUANTUM DOT FROM THE . . . PHYSICAL REVIEW B 65 165338
ation can be realized in a strong magnetic field14 ~spinless
electrons! and was also treated in Ref. 9. The energy shift
this case is

de}ur 1uEC cos~2pN! ~35!

and therefore no logarithmic contribution occurs anymore
the expressions for the charge and the capacitance. We
get a periodic oscillation as a function of the gate voltag

In the following section we want to demonstrate that t
approximation made in writing Eq.~18! is justified. Further-
more, we will address the case of strong asymmetry betw
the conduction channels.

IV. MAPPING
TO A CHANNEL-ISOTROPIC KONDO MODEL

We have seen in the preceding section that the ba
scattering term Eq.~18! is not exactly equivalent to the origi
nal Hamiltonian Eq.~16!. We will now justify the approxi-
mation made and will rederive the results we have fou
from the two-channel anisotropic Kondo model in an ex
way, following in our derivation Furusaki and Matveev.17

This section is structured in a similar way as Sec. III. T
mathematical mapping will be discussed in a first subsec
while a second short subsection will be devoted to the
cussion of an application.

A. Mapping

As a starting point we use the form Eq.~17! of the origi-
nal backscattering Hamiltonian, which we rewrite as

Hbs5
J0

2pa
~reiA2pfs(0)1r * e2 iA2pfs(0)!Ŝx . ~36!

Here r is the complex parameter r 5(ur 1ueipN

1ur 2ue2 ipN)/2 andJ054AagECvF. Exactly as in the pre-
ceding section we have introduced an auxiliary impurity s
Ŝx . The spinŜx is a good quantum number since it com
mutes with the total Hamiltonian~hereŜx51/2). It is impor-
tant to note that therefore Eq.~36! is exactly equivalent to
the original expression Eq.~17!. Reformionizing as de-
scribed in Appendix A gives

Hbs5
iJ0

A4pa
@rc~0!1r * c†~0!#b, ~37!

where we again use the Majorana representation for the
purity spin. The Hamiltonian Eq.~37! is very similar to the
resonant level model that occurs in the solution of the tw
channel isotropic Kondo model at the Emery-Kivelson li
@compare Eq.~23! with Jy50#. The impurity correction to
the ground-state energy can again be obtained from
Green’s function. The propagator for the impurity has e
actly the form Eq.~24! with Gk replaced by

G5
J0

2ur u2

4pavF
5Ga1Gb . ~38!
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The second equation can be verified by explicit calculat
of the sum of the two resonance energies given in Eq.~25!.
The impurity correction can be found from Eq.~26! in the
channel-symmetric limit. Furthermore, the density of sta
of the impurity was defined in Eq.~27!. Combining these
expressions we find for the impurity energy

de52
G

2p
lnS EC

2 1G2

2G2 D '2
G

p
lnS EC

G D . ~39!

In the second equation we have usedG!EC . It is now clear
that the use of the two-channel anisotropic model is justifi
whenever max$Ga ,Gb%'Ga1Gb . This condition is certainly
met whenN is very close either to an integer or to a ha
integer value. Furthermore, the range ofN values for which
the equation is approximately true will be larger for strong
asymmetry betweenGa andGb , i.e., for a weak asymmetry
between the reflection amplitudesur 1u and ur 2u.

In the two cases of electrons with spin in zero magne
field or with a weak magnetic field we have max (Ga)
!max (Gb) and the channel-anisotropic Kondo model
more convenient~See Fig. 3!: In particular, the asymmetry
simply produces a new energy scale obviously affecting
properties of the system close to the degeneracy poinN
51/2. This also allows to make explicit links with the sma
transmission limit~see Sec. VII!.

B. Applications

We will now discuss a case for which the isotropic mod
is particularly well suited. This is the case of strong asy
metry between the reflection amplitudes of the two transm
ted channels. We assume that one of the two channels is
close to perfect transmission, e.g.,ur 1u→0 and ur 1u!ur 2u
!1. Such a situation can be reached in a strong magn
field where the electrons are essentially spin polarized.
number of open channels and their reflection amplitudes
then be adjusted by changing the voltage applied to the g
used to define the QPC. The wave functions for the electr

FIG. 3. The resonance energiesGa and Gb of Eq. ~25! are
shown. The parameteruRu in Gb ~solid line! is uRu50.4. The size of
the resonanceGa grows with increasing anisotropy and thus wi
increasingudr u. The long-dashed line in the graph corresponds
udr u50.1, the short-dashed line toudr u50.2, and the dotted line to
udr u50.3. The energies are measured in units ofECg/p.
8-7
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KARYN LE HUR AND GEORG SEELIG PHYSICAL REVIEW B65 165338
in the two channels areCa515C↑(↓)
n51 andCa525C↑(↓)

n52 . In
the limit of interest here the energyde with the help of Eqs.
~38! and ~39! is found to be

de5
gEC

p2
ur 2u2@112l cos~2pN!#

3 ln$~gur 2u2/p!~112l cos~2pN!!%, ~40!

wherel5ur 1u/ur 2u is a small parameter. To leading order
l the correction to the capacitance is given by

dC518gECb2ur 1uur 2u ln~ ur 2u2!cos~2pN!. ~41!

First we observe that at perfect transmissionur 1u50 there is
no signature of Coulomb blockade left as it
expected.8,5,13,28Furthermore, it is interesting to notice th
with one channel very close to perfect transmission
Coulomb-blockade oscillations are strongly reminiscent
the one-channel case, also discussed in Ref. 9.

V. RENORMALIZATION-GROUP FORMULATION

We will now show that the energy scalesGa andGb can
also be found from a renormalization-group treatment. To
this we will use a similar argument as was put forward
Ref. 13 which in turn is based on Ref. 29. We will fir
discuss the channel symmetric caseur 1u5ur 2u ~electrons with
spin and zero magnetic field!. The backscattering Hamil
tonian for this case is given by

Hbs5
2ur 1u
pa

AagECvF cos~pN!cos@A2pfs~0!#. ~42!

The basic idea of the renormalization-group treatment
plied here is to calculate the partition function to seco
order in the small parameterur 1u and to chooseur 1u as a
function of the lattice stepa in such a way that the partition
function remains invariant under the transformationa→a8
5a exp(l). The correction to the partition function due to th
backscattering perturbation is

dZ52E
0

b

dt1dt2^Hbs~t1!Hbs~t2!&

52
Jx

2

~2pa!2E0

b

dt1dt2

a

vFut12t2u
. ~43!

Using the definition ofJx given in Eq.~19! it can be seen
that the partition functiondZ is independent of the lattice
step a and thusur 1u is invariant under rescaling. We now
introduce adimensionlessparameteru r̃ 1u via u r̃ 1u5Jx /vF .
With the help of this parameter we can rewrite the ba
scattering Hamiltonian in the standard form

Hbs5
vFu r̃ 1u
2pa

cos@A2pfs~0!#. ~44!

From this we can see thatu r̃ 1u54ur 1uAgECa/vF cos(pN) has
the meaning of an effective reflection amplitude. Sinceu r̃ 1u
16533
e
f
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}Aaur 1u it is clear thatu r̃ 1u grows under the renormalizatio
a→a85a exp(l). The renormalization flow equation foru r̃ 1u
is given by

d

dl
u r̃ 1~ l !u5

1

2
u r̃ 1~ l !u. ~45!

We can now integrate this equation froml 50 (a85a) to l
5 l c @a85ac5a exp(lc)#, where ac is the value ofa8 for
which Jx}u r̃ 1u departs to strong coupling, that is,u r̃ 1(a8)u
;1. Integrating we getu r̃ 1(ac)u25(ac /a)u r̃ 1(a)u251. The
corresponding critical energy scale is defined through

Ex,c'vF /ac5vFu r̃ 1~a!u2/a5Jx
2/~avF!. ~46!

Comparing Eq.~46! to Eq. ~25! we see thatEx,c is equal to
Gb up to a numerical factor. Further evaluation of Eq.~46!
gives

Ex,c516ur 1u2gECa cos2~pN!. ~47!

Similar considerations can be used in the more general
whereur 1uÞur 2u. Then we have to use, e.g., the backscat
ing Hamiltonian Eq.~16! as a starting point. Expanding th
partition function to the second order in this perturbation~the
small parameters areuRu5ur 1u1ur 2u and udr u5ur 2u2ur 1u)
we get

dZ52
Jx

21Jy
2

~2pa!2E0

b

dt1dt2

a

vFut12t2u
, ~48!

where the partition function is again independent of the
tice stepa. Furthermore, it is important to note that term
proportional toJx andJy do not mix in the expansion of the
partition function up to second order.

For a small channel anisotropy, either the couplingJx or
Jy grows under renormalization, which gives rise to twoin-
dependentenergy scales. The critical energy for whichJx

(Jy) departs to strong coupling isEx,c5Jx
2/(vFa)

}ECuRu2 cos2(pN) @Ey,c5Jy
2/(vFa)}udr u2EC sin2(pN)#. Of

course we have recovered here, up to a numerical factor
two energiesGa(}Ey,c) andGb(}Ex,c) @see Eq.~25!#. More
generally, using Eq.~48! we find:

d

dl
@ uR̃~ l !u21ud̃r ~ l !u2#5@ uR̃~ l !u21ud̃r ~ l !u2#, ~49!

where we defineduR̃u5Jx /vF and ud̃r u5Jy /vF . In the case
of a strong channel anisotropy, we deduce that the effec
coupling Jx

21Jy
2 flows off to strong coupling at the critica

energy Ec5(Ex,c1Ey,c). Again, we recoverEc}G5Gb
1Ga . For a small anisotropy, of course this reduces toEc
}max$Ga ,Gb%.

VI. REALIZATION IN A TWO-CONTACT SETUP

Let us now briefly emphasize that the channel-anisotro
two-channel Kondo model of Sec. III is also well suited
discuss the conductance behavior of a two-contact setupà la
Furusaki-Matveev. In this setup, which is a natural extens
8-8
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CAPACITANCE OF A QUANTUM DOT FROM THE . . . PHYSICAL REVIEW B 65 165338
of the geometry shown in Fig. 1, a single dot is coupled
two different electron reservoirs via two point contacts.
back gate or side gate is used to vary the Coulomb ene
The device is illustrated in Ref. 17.

Let us start with a strong magnetic field such that
electrons of each reservoir are fully polarized. We obtain
effective two-channel model wherea51(2) now denotes
the electrons of the left~right! QPC. Again, we are mainly
interested in the case of asmall channel anisotropywhere
reflection amplitudes at each contact, namely,ur 1u and ur 2u,
are close to each other:ur 1u,ur 2u!1. It is convenient to
associate the centers of the two constrictions with the p
x50, meaning that electrons in the dot are described
C1,L(R) at x.0 and byC2,L(R) at x,0.17 We introduce the
variablesf t andfc via

f15
1

A2
~f t1fc!, f25

1

A2
~f t2fc!, ~50!

and similarly foru1 andu2. Typically, herefc is the bosonic
variable associated to thecharge in the dot, whilef t is the
one related to thecurrent passing through the dot. The ma
difference with the one-contact setup is that here the cha
on the dot rather reads~note the minus sign!17

Q5
1

Ap
@f1~0!2f2~0!#. ~51!

It is straightforward to show that the backscattering Ham
tonian is of the form of Eq.~16! or Eq.~18! with fs replaced
by f t , explicitely

Hbs5
Jx

pa
cos@A2pf t~0!#Ŝx1

Jy

pa
sin@A2pf t~0!#Ŝy .

~52!

The Kondo parameters are given in Eq.~19! where udr u
!uRu!1, and the kinetic energy for the symmetric char
modeHKin(f t ,u t) is still of the form of Eq.~8!. Again, we
insist on the fact that this mapping is more intuitive than
one of Eq.~17! because the anisotropy of the reflection c
efficients is directly related to the anisotropy between c
pling parameters in the Kondo model. In consequence,
have two independent energy scalesGa andGb . The behav-
ior of the conductance close to the degeneracy poinN
51/2 becomes really transparent.

In the absence of any backscattering, the system
equivalent to two resistances 2p\/e2 ~those of the two
QPCs! connected in series. Therefore, the conductanc
G05e2/(4p\). This is in fact still the case forfinite barriers
in the symmetric caseur 1u5ur 2u at the degeneracy point,30

where bothJx andJy are zero forN51/2. As was found in
Ref. 17 the conductance is still at its resonant valueG0 and
the tails of the peak atN51/2 are not Lorentzian:G}(N
21/2)24 due to theJx coupling. Whenudr u is finite, from
Eq. ~52! we immediately see that the asymmetry betwe
channels engenders a finite backscattering process aN
51/2 ~again,Jy}udr u):
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Hbs5
Jy

pa
sin@A2pf t~0!#Ŝy ,

5
Jy

A4pa
@c~0!2c†~0!#a. ~53!

This produces the same physics as a nonmagnetic impuri
a Luttinger liquid with the Luttinger exponent bein
g51/2.29 The problem becomes exactly solvable using
refermionization procedure of Appendix A. In particular, th
current through the device takes the required form:25

I 5evFc†~0!c~0!. ~54!

For temperaturesT!Ey,c and N close to 1/2, the effective
potential scatteringJy ~or the asymmetry parameter! diverges
and the conductance then obeys:25

G~T;N'1/2!5G0S T

Ey,c
D 2/g22

}S T

EcN
2D 2

, ~55!

where the second equation is true forg51/2. The energy
Ey,c was defined in the last paragraph of the preceding s
tion. For nonsymmetric barriers the conductance peak he
~like the capacitance peak height before! becomes strongly
dependent on the finite asymmetry between reflection am
tudes at the QPCs~Fig. 4!. This naturally reflects the fact tha
the on-resonance behavior of the system forN51/2 is very
different if the two barriers are not identical.

A simple explanation can be given using the chann
anisotropic two-channel Kondo model. On resonance,
small asymmetry inevitably grows under renormalization.
low temperaturesT!max$Ga ,Gb%, the conductance behav
ior for all values ofN is given by

G~T;N!5G0S T

max$Ga ,Gb%
D 2

!G0 . ~56!

This can also be rewritten as17

FIG. 4. Conductance in the two-contact setup as a function oN
for different values of the~small! anisotropy parameterudr u5ur 2u
2ur 1u. The parameteruRu5ur 1u1ur 2u is here set touRu57/10. The
different curves have been calculated forT/Ec51/50 and have been
normalized toG0. In order of decreasing conductance peak hei
the different curves here correspond toudr u50.2 ~top!, udr u
50.25, udr u50.3, udr u50.35, andudr u50.4 ~bottom!.
8-9
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G~T;N!}S T

G D 2

, ~57!

where@see Eq.~38!#

G}@ ur 1u21ur 2u212ur 1uur 2ucos~2pN!#, ~58!

even though this formula seems a little bit less intuitive.
particular, theN dependence of the conductance forN'1/2
is less apparent. It is worth noting that the quadratic temp
ture dependence is a universal property of inelastic cotun
ing. But, close toN51/2 this can also be interpreted as
nice manifestation of the restoration of theFermi-liquid be-
havior due to the finite asymmetry between channels~like for
the capacitance problem!.

Unfortunately, the present approach does not allow a c
plete solution for the case of fermions with spin in the tw
contact setup.17 At zero magnetic field and for completel
symmetric barriers at the two QPCs, there exists a mapp
onto a four-channel Kondo model for the Hamiltonia
~which could help to compute thermodynamical propertie!,
but it is very difficult to rigorously compute current-curre
correlation functions in the new basis and then to extract
conductance behavior. The current operator indeed exh
an unusual form as indicated in Appendix B of Ref. 1
Therefore, the height of the conductance peak cannot be
culated in a rigorous manner even for completely symme
barriers at zero temperature. Furthermore, the mapping
the Kondo problem is only valid at~close to! N51/2. To
extend the~four-channel! Kondo mapping to the case o
asymmetric barriers remains a challenging task.

VII. SMALL TRANSMISSION LIMIT

Having so far concentrated on the limit where the qu
tum dot is strongly coupled to a reservoir through a hig
transmissive quantum point contact, we will in this secti
consider the limit of weak coupling. The similarity betwee
the Coulomb-blockade problem in this limit and a Kon
model was noticed by Glazman and Matveev.7 An explicit
mapping of the Coulomb-blockade Hamiltonian on a Kon
model was used by Matveev to calculate the charge and
capacitance of the quantum dot in the weak transmiss
limit.5 Note that recently a noncrossing approximation h
been generalized to this type of multichannel Kon
models.31

We will here rederive Matveev’s mapping and discuss
straightforward extension of his model to the channel an
tropic case. Again our discussion will be restricted to t
case of two transport channels through the point contact.
anisotropy between the transmission amplitudes for the
transport channels in the QPC will still give rise to a ma
ping on a channel-anisotropic Kondo model; But here,
system flows off to the usualspin-isotropicfixed point, i.e.,
Js,'5Js,z@0. We will see below that the problem of calcu
lating the average charge^Q& on the dot is now equivalent to
the problem of finding the average of thez component̂ Sz&
of the impurity spin in the Kondo model. In addition, th
capacitance of the dot is the same as the magnetic susc
bility x of the impurity. Once this equivalence is establish
16533
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the problem is solved, since these quantities (^Sz&, x) can be
found in the literature. The channel- and spin-isotropic mul-
tichannel Kondo problem was solved exactly in this limit
Refs. 32,33, while the impurity susceptibility for th
channel-anisotropic~but spin-isotropic! two-channel Kondo
problem can be simply extracted from Ref. 34. Note in pa
ing that the channel-anisotropic case was also solved~ex-
actly! using Bethe ansatz in Ref. 35. There, the Wilson ra
is computed even in the case of a channel anisotropy. T
model has also been investigated using conformal fi
theory and numerical renormalization-group calculations
Ref. 36.

We will now proceed to writing down the model for ou
system in the small transmission limit. Instead of formulati
it in momentum space as it was done by Matveev we w
here use a real-space formulation that allows us to stress
analogy with the corresponding model in the strong tra
mission limit ~see Sec. II!. In Appendix C, we will also ad-
dress the question why the mapping on the Kondo mo
cannot be derived using bosonization as it was done in S
III. In the preceding section we have treated the backsca
ing as a small perturbation to an otherwise perfectly tra
parent QPC. In this section the perturbation is a tunnel
Hamiltonian that couples twoa priori independent system
~the 2DEG and the dot!. A smooth transition can be mad
from the strongly to the weakly coupled limit by continu
ously increasing the auxiliary gate voltage to pinch off t
QPC. In this transition a perfectly transmissive on
dimensional channeln will be cut into two weakly coupled
halves. In the vicinity of the center of the QPC electr
motion is still quasi-one-dimensional. Electronic wave fun
tions to the left of the center of the QPC~in the reservoir!
will be denotedCs,0

n , wave functions to the right of the
center@in the quantum dot~QD!# are Cs,1

n . Again s is the
spin index,n the channel index due to lateral confineme
and herea50,1 indicates the location of the electron. Ho
ping between the two sides of the QPC constitutes a sm
perturbation. To model this perturbation we use the Ham
tonian

HT5 (
s51,2

@ utsuCs,1
† ~0!Cs,0~0!1H.c.#. ~59!

Note that the kinetic energiesHkin
0 ($Cs,0

† ,Cs,0%) and
Hkin

1 ($Cs,1
† ,Cs,1%) for electrons in the 2DEG and the do

have the form of Eq.~22!. The boundaries for the integratio
along thex axis are2`,0 in Hkin

0 and 0,̀ in Hkin
1 . The

Coulomb interaction can be modeled as in Sec. II, Eq.~3! the
charge on the dot being

Q5E
0

`

dx@Cs,1
† ~x!Cs,1~x!2r0#. ~60!

The equilibrium charge densityr0 is chosen in such a way
that the total chargeQ on the dot is zero when no voltage
applied to the gate (VG50).

We now want to concentrate on the pointN51/2 where
the states withQ50 andQ51 are energy degenerate@see
Eq. ~3!#, and therefore charge fluctuations are large. We
8-10
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troduce the small parameterU5e/(2Cgd)2VG}(N21/2)
to measure deviations ofN from the degeneracy point. In
terms ofU the electrostatic energies of the two statesQ50
andQ51 areE050 andE15eU, respectively.

If the two conditionsuUu!e/Cgd and kT!EC are met
only the two states withQ50 andQ51 are accessible an
higher-energy states can be removed from our theory in
ducing the projection operatorsP0 andP1. HereP0 andP1
are projecting on the statesQ50 and Q51, respectively.
The effective Hamiltonian for this truncated system is

He f f5~Hkin
0 1Hkin

1 !~P01P1!1eUP1

1 (
s51,2

~ utsuCs,1
† Cs,0P01utsuCs,0

† Cs,1P1!,

~61!

where the operators in the tunneling part are evaluatedx
50 @see Eq. 59!#. From this equation we see that]H/]U
5eP1 and thereforêQ&5]E0 /]U whereE0 is the ground-
state energy of the Hamiltonian Eq.~61!. It can be shown
that the Hamiltonian Eq.~61! is equivalent to the Hamil-
tonian

HK5 (
a50,1

Hkin
a 12hSz1

1

2 (
s51,2

$Js,'@ss
1~0!S2

1ss
2~0!S1#%, ~62!

which has the form of a standard Kondo Hamiltonian. T
equivalence between the Hamiltonians Eq.~61! and Eq.~62!
was demonstrated by Matveev in Ref. 9. For completen
we rederive this relation in Appendix C taking channel a
isotropy into account explicitely. In Eq.~62! we have intro-
duced the transversal Kondo coupling parametersJs,'
52utsu and an effective external magnetic fieldh5eU/2
}(N21/2) applied along thez axis. Note that Eq.~62! cor-
responds to the limitJ1,z5J2,z50 of Eq. ~1!. We have
dropped the constanteU/2 from the Hamiltonian in Eq.~62!.
Therefore, the ground-state energyEK,0 of the Kondo Hamil-
tonian Eq.~62! is related to the ground-state energyE0 of the
effective Hamiltonian Eq.~61! through EK,01eU/25E0.
Since 2̂ Sz&5]EK,0 /]h and^Q&5]E0 /]U we are led to the
obvious identification

^Q&5eS 1

2
1^Sz& D . ~63!

Combining Eq.~5! with U5e/(2Cgd)2VG we find for the
correction to the capacitanceC52]^Q&/]U}x5]^Sz&/]h,
wherex is the impurity susceptibility~Sinceh only acts on
Sz , x is also equivalent to the local magnetic susceptibi
x l).

So we have now shown that a calculation of the capa
tance of the quantum dot coupled to a 2DEG through a Q
with two transport channels withdifferent transmission am-
plitudes is equivalent to a calculation of the impurity susc
tibility in the channel-anisotropic two-channel Kondo mod
It is known that bothJs,z50 andJs,'!1 grow under renor-
malization and that for small enough energiesJs,z5Js,'
16533
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5Js}utsu even if we start from a spin-anisotropic Kond
model. The resulting spin-isotropic Kondo model was solv
in Refs. 32 and 33. In the zero-temperature limit the impur
susceptibilities for the one-channel case and the two-cha
isotropic limit are

x}H const, J250,

ln h, J15J2 .
~64!

Note that the susceptibility for the two-channel case diver
in the zero magnetic field limit. The channel-anisotropic~but
spin-isotropic! Kondo model was discussed, e.g., by Co
man and Schofield34 ~also by Andrei and Jerez35 and by Af-
fleck et al.36! who found for the susceptibility at zero mag
netic field (h50),

x}12
ln~n!

n21
, ~65!

where the anisotropy parametern}udtu/T with udtu}uJ1
2J2u and T }(J11J2), is n51 in the one-channel limit
(J250) andn50 in the two-channel isotropic limit. Equa
tion ~65! thus reproduces correctly the main characteristics
the result Eq.~64! in these two limiting situations. From th
results for the susceptibility we immediately obtain the c
pacitance

dC}H const, J250,

ln~N21/2!, J15J2 ,

lnudtu, J1ÞJ2 , N51/2.

~66!

The results for the one-channel and the two-channel isotro
cases are due to Matveev.9 The main observation we want t
make here is that a small channel anisotropy cuts off
logarithmic divergence exactly in the same way as in
case discussed in the previous sections where the refle
amplitudes in the QPC could be treated as small parame

VIII. CONCLUSIONS

We have applied the channel-~and spin-! anisotropic two-
channel Kondo model to study Coulomb-blockade osci
tions in the capacitance of a quantum dot. Our main inte
has been to investigate the effect of an asymmetry betw
the reflection~or transmission! amplitudes of different open
channels in the QPC connecting the dot to a reservoir. F
lowing Matveev5,9 we have studied the two exactly solub
limits of very weak (ut1u,ut2u!1) and very strong coupling
(ur 1u,ur 2u!1). A summary of the results for the capacitan
in different limits is given in Table I.

In both limits a mapping of the original problem onto
Kondo model is possible. Remember that these results c
cern the limit of very low temperature where quantum flu
tuations are prominent. At quite high temperature, the Kon
physics gets destroyed by thermal fluctuations.9,13,22

For weak backscattering at the point contact (ur 1u,ur 2u
!1) the original problem can be mapped14 on a channel
anisotropic Kondo model at the Emery-Kivelson10 line (J1,z
5J2,z52pvF). For this particular value of the coupling con
stant the Kondo model is exactly solvable. The anisotropy
8-11
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TABLE I. We have listed here all the results for the capacitance of the quantum dot atN→1/2 and the
respective references. The divergence occuring atN→1/2 in the channel-isotropictwo-channel limit is cut off
by a channel anisotropy for both weak and strong reflection at the QPC.

No. of
channels

Reflection or
transmission coefficient

Capacitance
at N51/2 Ref.

1 ur 1u!1, (ur 2u→1) constant Ref. 9
2 ur 1u5ur 2u!1 2 lnuN21/2u Ref. 9
2 ur 1uÞur 2u!1 2 ln(ur2u2ur1u) Ref. 14, Secs. III–V
1 ut1u!1, (ut2u→0) constant Ref. 5
2 ut1u5ut2u!1 2 lnuN21/2u Ref. 5
2 ut1uÞut2u!1 2 ln(ut1u2ut2u) Sec. VII
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the reflection amplitudes for different channels is direc
reflected in the channel anisotropy of the Kondo model.
fact we foundJ1,'}ur 1u andJ2,'}ur 2u, whereJ1,' andJ2,'
are the coupling constants for the two channels in the Ko
model. The mapping allowed us to calculate the shift of
ground-state energy of our Hamiltonian due to the ba
scattering at the point contact and in turn to find the cap
tance of the quantum dot. While the capacitance is logar
mically divergent for values of the gate voltage close toN
5n11/2 (n is an integer! in the isotropic limit9 (ur 1u
5ur 2u), this divergence iscut off by a small anisotropy be
tween the reflection amplitudes of different channels.14 This
can be interpreted as a manifestation of the restoration of
Fermi-liquid behavior close to the degeneracy points N5n
11/2 due to the asymmetry between channels.

Note that a similar conclusion can be reached investig
ing the conductance behavior in a two-contact setup i
strong magnetic field whereur 1u and ur 2u denote the back-
scattering amplitudes at the two different point contacts. T
on-resonance behavior (G5G05e2/2h) for N51/2 is re-
ducedfor a small anisotropy betweenur 1u and ur 2u.

There are two intrinsic energy scales@Gb}(ur 1u1ur 2u)2

and Ga}(ur 1u2ur 2u)2] in the channel-anisotropic Kond
model. Each can be interpreted as the resonance energ
lated to coupling half an impurity to the conduction ele
trons. In the channel-isotropic case only half the impur
spin is screened by the conduction electrons. Coupling b
the second half of the impurity to the conduction electro
leads to the emergence of a second energy scaleGa . It is this
new energy scale that enters the expression for the cap
tance and cuts off the divergence atN5n11/2. Unfortu-
nately there is no direct correspondence between the m
netic susceptibility in the Kondo model and the capacita
of the quantum dot. Such an equivalence exists only in
limit of small transmission. It is true, however, that the b
havior of the capacitance~found from the Kondo model a
the Emery-Kivelson line! is reminiscent of the impurity sus
ceptibility x5]2(de)/]h2 away from the Emery-Kivelson
line or of the local magnetic susceptibilityx l5]^Ŝz&/]h at
the Emery-Kivelson line.

In this paper we have extended our previous work14 de-
riving the mapping on the anisotropic Kondo model in
pedagogical way and carefully discussing its limits of val
ity. We have then given an alternative way for calculating
16533
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charge on the quantum dot using a mapping17 on a channel-
isotropic two-channel Kondo model. In this approach, t
coupling constant is a complex parameter depending on b
ur 1u and ur 2u. While the latter approach has the advantage
being exact, it seems less intuitive since the anisotropy of
reflection coefficients is not directly reflected as an anis
ropy between coupling parameters in the Kondo model.
have in addition used a simple scaling argument to reco
the intrinsic energy scalesGa and Gb that occur in the ex-
pression of the capacitance.

We relied on purely mathematical arguments to show
equivalence between the Coulomb-blockade problem and
Kondo Hamiltonian in the strong tunneling limit (ur 1u,ur 2u
!1). In the opposite limitut1u,ut2u!1 the similarity of these
two problems can be understood using a comparably sim
physical argument~see Ref. 9 and Appendix C!. The main
observation is that at low enough temperaturesT!EC and
for voltages close toN5n11/2 only two charge states o
the quantum dot are energetically accessible~e.g.,Q50, Q
51). The charge state of the dot is then interpreted a
pseudo-spin-1/2 degree of freedom, which corresponds to
impurity spin in the Kondo model. The real spin of the co
duction electrons in the Kondo model is replaced by an ind
a indicating the location of an electron~distinguishing be-
tween electrons to the left and to the right of the QPC! in the
Coulomb-blockade problem.

A first-order process in the Kondo problem that flips t
impurity spin from up to down and the spin of a conducti
electron from down to up is then equivalent to a tunneli
process that takes an electron from the left to the right
changes the charge on the dot fromQ50 to Q51. The
Kondo coupling parameters simply areJ1(2),'}ut1(2)u and
J1(2),z50. As it is clear from the derivation of the mappin
there exists an equivalence between the charge on the
and the impurity spin, namely,^Q&}^Sz&. It was furthermore
shown that the capacitance is basically the same~up to some
constant! as the impurity susceptibility. Since the model wi
J1(2),'}ut1(2)u and J1(2),z50 flows to the usual spin-
isotropic fixed point we have been able to use the kno
result for the impurity susceptibility in the channe
anisotropic two-channel Kondo model withJs,'5Js,z@0,34

to discuss the effect of channel anisotropy on the cap
tance. Exactly as in the limit of strong transmission the
pacitance diverges in the channel-isotropic case,5 but the di-
8-12
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vergence is cut by the anisotropy. Note that no immed
connection can be made with the Kondo model at the Em
Kivelson line (J1(2),z52pvF), which we obtained when
treating the small reflection limit.

All the results on the behavior of the capacitance of
dot close toN51/2 are summarized in Table I.
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APPENDIX A: REFERMIONIZATION

In this Appendix we want to elaborate on the unus
refermionization procedure that we used in Sec. III. T
backscattering part of the bosonic Hamiltonian to be re
mionized is given in Eq.~18!. The kinetic energy is of the
form

HKin5vFE
2`

`

dx$@]xfs~x!#21ps~x!2%. ~A1!

It will turn out to be convenient to use the fieldps(x) instead
of us(x) for the moment. The two fields are related throu
ps(x)5]xus(x). The commutation relations for the field
fs(x) and ps(x) are @fs(x),ps(y)#5 id(x2y),
@fs(x),fs(y)#50, and@ps(x),ps(y)#50. The basic idea of
the refermionization procedure is to introduce an opera
c(x) such that cos@A2pfs(0)#}c(0)1c†(0) and
sin@A2pfs(0)#}c(0)2c†(0). It is clear that for such an
operator

c~0!5
1

A2pa
exp@ iA2pfs~0!#. ~A2!

In addition the operator must obey the usual fermionic a
commutation relations. Using the relationeAeB5eBeAe[A,B]

it can be seen that the obvious choice forc, namely,c(x)
5(2pa)21/2exp@iA2pfs(x)# does not obey anticommuta
tion relations. To construct a fermionic operator we introdu
the auxiliary fields

f6~x!5
1

A2
@fs~x!6fs~2x!#,

p6~x!5
1

A2
@ps~x!6ps~2x!#. ~A3!

In terms of these new fields the kinetic energy is

HKin5vF (
a56

E
0

`

dx@~]xfa!21~]xua!2#. ~A4!

We thus arrive at a theory that is confined to positive val
of x. The advantage of this restriction becomes clear w
we introduce the two additional right-going and left-goin
fields
16533
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FR,6~x!5f6~x!2E
0

x

dyp6~y!,

FL,6~x!5f6~x!1E
0

x

dyp6~y!. ~A5!

At x50 we haveFR,1(0)5FL,1(0)5A2fs(0) and also
FR,2(0)5FL,2(0)50, which makes these fields candidat
for the construction of our new fermions. The backscatter
Hamiltonian can be expressed through the fieldsFR,1(x)
andFL,1(x) only. There are in fact many ways in which th
can be done. However, we will soon get rid of this ambig
ity. The fieldsFR(L),2(x) occur only in the kinetic part of
the Hamiltonian and are thus of little interest to us. Later
we will need the commutation relations

@FR,1~x!,FR,1~y!#51 i sgn~x2y!,

@FL,1~x!,FL,1~y!#52 i sgn~x2y!. ~A6!

For completeness we also give the correlation functio
GR(L)5^FR(L),1(x)FR(L),1(0)2FR(L),1(0)2&, which take
the standard form

GR(L)5
1

p
lnS a

a6 ix D . ~A7!

The plus sign belongs to the labelR while the minus sign
belongs toL. The kinetic energy in terms of these new fiel
takes the form

HKin5
vF

2 (
a56

E
0

`

dx@~]xFR,a!21~]xFL,a!2#. ~A8!

We now drop theFR(L),2(x) part of the kinetic energy since
it is not coupled to the backscattering term. To refermion
the FR(L),1(x) part we introduce the operators

cR~x!5
1

A2pa
eiApFR,1(x), ~A9!

cL~x!5
1

A2pa
eiApFL,1(x). ~A10!

Using the commutation relations for the bosonic fields
can verify that the fieldscR,6(x) and cL,6(x) really are
fermions and obey

cp,1~x!cp,1~y!52cp,1~y!cp,6~x!, ~A11!

where p5R,L. Note, that for x50 we have cL,1(0)
5cR,1(0) @see Eqs.~A5! and~A9!# and there thus seems t
be more than one way to refermionize the backscatte
Hamiltonian Eq.~18!. To lift this ambiguity we reextend ou
theory on the fullx axis via the definition

c~x!5PH cR~x!, x.0,

cL~2x!, x,0.
~A12!

In the above definition of the fermionc(x) @Eq. ~A12!# we
have introduced an additional phase factor
8-13



w
th
t

r

of

re

-
th

o

ac

ies

n

he
t to

e.
. In
the

il-

ke

ow-
e
m’s
il-

rs

KARYN LE HUR AND GEORG SEELIG PHYSICAL REVIEW B65 165338
P5exp~ ipd†d!5122d†d ~A13!

to ensure thatc(x) anticommutes with the spin operatorsŜx

and Ŝy written in terms of Majorana fermionsd andd† @cf.
Eq. ~21!#. The second equality in Eq.~A13! holds because
d†d50,1 at zero temperature. In the fermionic operators
have defined above, the kinetic energy finally takes
simple form given in Eq.~22! while the backscattering par
of the Hamiltonian is

Hbs5
Jx

A2pa
~c~0!1c†~0!!PŜx

2
iJy

A2pa
@c~0!2c†~0!#PŜy . ~A14!

Using Eqs.~A13! and ~21!, together with the commutation
relations for the operatorsd and d†, we can show thatPŜx

52 iŜy and PŜy52 iŜx . With these relations we recove
Eq. ~23!.

APPENDIX B: GREEN’S FUNCTIONS

Although this is rather standard material~see, e.g., Ref.
25! we believe that it is useful to give a short derivation
the Green’s functions Eq.~24!. The Fourier transforms of the
impurity Green’s functionsGa(t)52^Tta(t)a(0)& and
Gb(t)52^Ttb(t)b(0)& can conveniently be found from
the equations of motion. We will here only derive the cor
lation function fora, the correlator forb can be found along
the same lines. The HamiltonianHEK

A 5HKin1Hbs of our
system is given in Eqs.~22! and ~23!. The fieldsc and d
5a1 ib @see Eq.~21!# obey standard fermionic anticommu
tation relations. Introducing the Majorana components of
field c through z1(x,t)5@c†(x,t)1c(x,t)#/A2 and
z2(x,t)5@c(x,t)2c†(x,t)#/( iA2) we see already from
the Hamiltonian in Eq.~23! that a couples only toz2. We
introduce the additional propagator Gz2a(x,t)

52^Ttz2(x,t)a(0)&. The equations of motion for the tw
coupled correlatorsGa(t) andGz2a(x,t) are

]tGa~t!52d~t!1 i
Jy

A2pa
Gz2a~0,t!,

]tGz2a~x,t!51 ivF]xGz2a~x,t!2 i
Jy

A2pa
d~x!Ga~t!.

~B1!

To solve these equations it is best to go to Fourier sp
making use of the relations

Ga~t!5
1

b (
vn

e2 ivntGa~vn!,

Gz2a~x,t!5
1

b (
vn

E dp

2p
e2 ivnt1 ipxGz2a~p,vn!, ~B2!
16533
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where the sum is over the fermionic Matsubara frequenc
vn5(2n11)p/b. To calculate the correlatorGa(t) we only
need to understand the local physics inx50. The local equa-
tions of motion in Fourier space are

ivnGa~vn!512 i
Jy

A2pa
Gz2a~vn!, ~B3!

Gz2a~vn!5 i
Jy

A2pa
G(0)~vn!Ga~vn!. ~B4!

To alleviate the notation we have introducedG(0)(vn)
52 i sgn(vn)/2vF . To find G(0)(vn) we Fourier transform
the free electron propagatorG(0)(p,vn)5( ivn2vFp)21

with regard top and take the limitx→0. Furthermore, we
have definedGz2a(vn)5Gz2a(x50,vn).

Substituting Eq.~B4! into Eq. ~B3! we can solve for
Ga(vn) and obtain

Ga~vn!5
1

ivn1 iGa sgn~vn!
. ~B5!

After an analytic continuationivn→v1 id we recover
Eq. ~24!.

APPENDIX C: MAPPING TO THE KONDO MODEL
IN THE SMALL TRANSMISSION LIMIT

In this Appendix first we want to fill in the gaps betwee
Eq. ~61! and the Kondo Hamiltonian Eq.~62!. Let us con-
sider the tunneling part of the effective Hamiltonian. T
first term takes an electron from the 2DEG and transfers i
the QD, the projection operatorP0 makes sure that the
charge on the dot isQ50 before the tunneling takes plac
The second term takes an electron from the dot to the lead
our truncated system this process is allowed only when
charge on the dot isQ51. This restriction is implemented
through the operatorP1. The main goal of the following
manipulations will be to show the equivalence of the Ham
tonian Eq.~61! to a Kondo Hamiltonian.

To explicitly account for the charge on the dot we ma
the replacementuF&→uF&uQ&. HereuF& is any state of our
system with chargeQ on the dot. The values ofQ are limited
to Q50,1 and the statesuQ&5u0& anduQ&5u1& can be con-
sidered as the basis of a two-dimensional vector space. H
ever, the productuF&uQ& is no tensor product since th
charge of the dot is of course not independent of the syste
state. The stateuQ& should rather be considered as an aux
iary label touF&. In addition to introducing the labeluQ& we
make the replacement

Cs,1
† Cs,0P0→Cs,1

† Cs,0S
1,

Cs,0
† Cs,1P1→Cs,0

† Cs,1S
2 ~C1!

in Eq. ~61!. HereS1 andS2 are pseudospin ladder operato
acting only on the charge partuQ&.

Since S1uQ51&50 and S2uQ50&50 these operators
ensure in the same way as the projection operatorsP0 andP1
8-14
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that only transitions between states withQ50 and Q51
take place. In addition the chargeQ on the dot is adjusted
whenever a tunneling process takes place sinceS1u0&5u1&
andS2u1&5u0&. We would like to emphasize again that on
the combinations of pseudospin ladder operators and h
ping operators introduced above are meaningful sinceuQ&
and uF& are not independent.

To get rid of the remaining projection operato
in Eq. ~61! we rewrite (eUP1) as @eU(P01P1)/2
1eU(P12P0)/2#. We observe that

~P16P0!u0&56u0&,

~P16P0!u1&51u1&. ~C2!

This leads us to identify (P12P0) with 2Sz and (P11P0)
with the identity operator on the space spanned byu0& and
u1&. Here we used that for thez-componentSz of the pseu-
dospin we haveSzu1&5u1&/2 andSzu0&52u0&/2. Gathering
all terms we can rewrite the effective Hamiltonian Eq.~61!
as

He f f5~Hkin
0 1Hkin

1 !1eU~2Sz11!/2

1 (
s51,2

~ utsuCs,1
† Cs,0S

11utsuCs,0
† Cs,1S

2!.

~C3!

We now introduce an additional pseudospin operatorss
6(x)

via

ss
15Cs,0

† Cs,1 ,

ss
25Cs,1

† Cs,0 , ~C4!

where the matricess65sx6 isy are standard combination
of Pauli matrices. It is important to note that these ps
hy

h

en

16533
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dospin operators again have nothing to do with the true
of the electrons but are related to the location of an elec
(a50 for an electron in the 2DEG,a51 for an electron in
the QD!. Introducing the definition of these pseudospins i
Eq. ~C3! finally leads us to Eq.~62!.

Finally, we want to show that in this limit the bosoniz
tion approach does not allow us to precisely build a ps
dospin operator describing the dot from the original tun
Hamiltonian. For simplicity, we restrict the discussion to t
case of spinless fermions, i.e., we ignore the spin indexs.
The main problem we encounter is that atx50 we have
open boundaries, implying thatC1(0)5C0(0)50. Intro-
ducing right ~R! and left ~L! movers as in Eq.~6!, this is
equivalent to write, e.g., for the dot,C1,R(0)1C1,L(0)50.
This has the effect to pin the~charge! fields f1 and f0 at
x50: f1(0)5f0(0)5Ap/2. Therefore, this provides us

Ca,p~0!5
7 i

A2pa
eiApua(0). ~C5!

From the form of the tunnel term~which can be rewritten
either withC1,R or with C1,L) we would be tempted to ex
plicitly build the pseudospin operator in the dot, as37

S15C1,R/L
† ~0!,

S25C1,R/L~0!,

Sz5C1,R/L
† ~0!C1,R/L~0!21/2. ~C6!

However, due to theopenboundary condition atx50, the
fermion operatorC1,R/L at x50 now only depends on th
superfluid phaseu1.29 Then,S1 would commute withSz and
thenSW would not be a quantum spin object. The only way
proceed in order to recover the~correct! Kondo mapping is
to introduce the extra labeluQ&.
an,

J.
an

,

.

-
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18M. Büttiker, Phys. Rev. B41, R7906~1990!.
19L. I. Glazman, G. B. Lesovik, D. E. Khmel’nitskii, and R. I

Shekhter, Pis’ma Zh. E´ksp. Teor. Fiz.48, 218~1988! @JETP Lett.
48, 238 ~1988!#.

20F. D. M. Haldane, J. Phys. C14, 2585~1981!.
21M. P. A. Fisher and L. I. Glazman, inMesoscopic Electron Trans
8-15



p
L.

,

cy
-

h a
ev.

ter

and

.

tt.

KARYN LE HUR AND GEORG SEELIG PHYSICAL REVIEW B65 165338
port, Vol. 345 of NATO Advanced Study Institute, Series E: A
plied Sciences, edited by L. Kouwenhoven, G. Schoen, and
Sohn~Kluwer, Dordrecht, 1997!; also cond-mat/9610037.

22I. L. Aleiner and L. I. Glazman, Phys. Rev. B57, 9608~1998!.
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