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Capacitance of a quantum dot from the channel-anisotropic two-channel Kondo model
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We investigate the charge fluctuations of a large quantum dot coupled to a two-dimensional electron gas via
a quantum point contact following the work of Matvefi. A. Matveev, Phys. Rev. B1, 1743(1995; Z.
Eksp. Teor. Fiz98, 1598(1990 [Sov. Phys. JETRP2, 892(1991)]]. We limit our discussion to the case where
exactlytwo channels enter the dot and we discuss the role of an anisotropy between the transmission coeffi-
cients(for these two channelst the constriction. Experimentally, a channel anisotropy can be introduced by
applying a relatively weak in-plane magnetic field to the system when only one “orbital” channel is open. The
magnetic field leads to different transmission amplitudes for spin-up and spin-down electrons. In a strong
magnetic field the anisotropic two-channel limit corresponds to (spin polarized orbital channels entering
the dot. The physics of the charge fluctuations can be captured using a mapping on the channel-anisotropic
two-channel Kondo model. For the case of weak reflection at the point contact this has already been briefly
stressed by one of UK. Le Hur, Phys. Rev. B34, 161302R) (2001)]. This mapping is also appropriate to
discuss the conductance behavior of a two-contact setup in strong magnetic field. Here, we elaborate on this
approach and also discuss an alternative solution using a mapping on a channel-isotropic Kondo model. In
addition we consider the limit of weak transmission. We show that the Coulomb-staircase behavior of the
charge in the dot as a function of the gate voltage, is already smeared out by a small channel anisotropy both
in the weak- and strong-transmission limits.
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I. INTRODUCTION in a very general form to be used as a point of reference for

later discussion$.Here S is an impurity spin ancﬁa(O) is
In the past few years a great amount of work has beelhe spin of conduction electrons with flaverat the place of
devoted to studying the Kondo effect in mesoscopicthe impurity. We will consider only the two-channel case
systems. A motivation for these efforts was the recent ex- =1,2. In the discussion of the Coulomb-blockade problem

perimental observation of the Kondo effect in tunnelingwe will encounter Kondo Hamiltonians that are both spin

through a small quantum d&t In these experiments the (Ja.,#3,.) and channel anisotropid{, #J,,).

effective (or excesselectronic spin of the dot acts as a mag- e now want to return to the original problem and first

netic impurity. want to discuss the limit of weak tunneling between the dot
A different set of problems relating the Kondo effect to gnd the reservoifstrong reflection at the QPCFor low

the physics of quantum dots is encountered when studyingnough temperatured &€E) the charge on the dot is quan-

fluctuations of the charge of a large Coulomb-blockadedjzed. \When the gate voltagé; is increased the charge on

quantum dot. The setup we have in mind consists of a largghe dot changes in a steplike manner. This behavior is re-

quantum dot coupled to a reservoir via a quantum point Conferred to as a Coulomb staircase. Charge fluctuations are

tact (QPQ and capacitively coupledwith a capacitance jmportant only for those values of the gate voltage at which

Cga) to a back gatésee Fig. 1. The amount of charge on the o neighboring charge statés.g., withn andn+1 elec-

dot can be changed through the gate volt¥ge The term  rons on the dotare energy degenerate. Matveev demon-

“large” implies that the spacing\ of the energy levels on strated the equivalence of the effective Hamiltonian describ-

the dOt(almOS) vanishes and is much smaller than the do'.t’Sing the Charge dynamics close to such a degeneracy point to
charging energEC=e2/(Zng). We assume that the capaci-

tance between the two-dimensional electron @B3EG) and v
the dot can be neglected. 5
There are two limits in which a mapping to a Kondo

Hamiltonian can be used to calculate the charge on the quan-
tum dot. These two limits roughly correspond to the cases of
very strong and very weak reflection at the QPC. Before
elaborating on this point we will give here the standard mul-
tichannel Kondo Hamiltonian,

FIG. 1. Alarge quantum dot is coupled to a 2DEG via a quan-
H.=H.. -+ J. .S, ,(0)S tum point contact. The number of electrons in the dot can be con-
: Kin ; { 2.2520)S; trolled through the gate voltagé; . The auxiliary voltagev, can
i i be used to open or close the point contact and thus to adjust the
+‘]a,L[Sa,X(0)SX+Sa,y(o)sy]} () reflection amplitudes for the transport channels in the QPC.
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a spin-anisotropic Kondo Hamiltonignlf the dot and the will elaborate on this mapping and discuss its limitations.
reservoir are connected by transport channels with the Although the physical picture associated with ttteannel-
same transmission probability the problem can be mapped oanisotropictwo-channel Kondo model is very appealing, the
a channel-isotropian-channel Kondo mod&lwith J,,=0  Coulomb-blockade problem in the high transparency limit
and\]a’L<1_5 The similarity of the charge dynamics on the with two transport channels with different reflection coeffi-
dot to the spin dynamics in a Kondo model was alreadycients can also be solved through a mapping orcti@nel-
observed by Glazman and Matveev in there discussion on tH&Otropic two-channel Kondo model as we will show. Such a
conductance of a metallic graifa quantum dot tunnel ~ Procedure was applied by Furusaki and Matvéeshen they
coupled to two reservoirs. calculated the inelastic cotunneling through a quantum dot

The limit of a point contact with onéelectrons without ~Strongly coupled to two quantum point contacts with one
spin or two (electrons with spintransport channels close to transport channel eadklectrons in a strong magnetic figld
perfect transmission has also been treated. An effectivelyVe Will see furthermore that in the case of tunnel coupling
one-dimensional model for the dot-QPC system, which sma_II transm|s§|o)1 an asymmetry between transmission
makes it possible to calculate the total charge on the do@MPlitudes of different channels will lead to a mapping of
using bosonization, was developed by Flensbeagd by the Hamiltonian on a channel-anisotropic Kondo model with
Matveev® MatveeV also calculated the dot's capacitance as(J1z=J2.=0)- .
a function of the gate voltage and the reflection amplitude at Our paper is structured as follows. In a first part we con-
the point contact. In his calculation he demonstrated that th&ider the weak coupling limit. We start by developing the
Hamiltonian of the original problem can be mapped onto gnodel Hamiltonian in Sec. II. In Sec. Ill we discuss the
Kondo Hamiltonian in the generalized Toulouse limi ¢ ~ Mapping on the channel-anisotropic two-channel Kondo
=J,,=27v¢). In this limit the two-channel Kondo model is moqel and use it to cal_culgte the capacitance of the quantum
exaéﬂy solvable as was shown by Emery and Kivelbi. dot in a weak magnetic field. In Sec. IV we show that the
was one of the main results of Ref. 9 that Coulomb-blockad&@me results can also be found from a mapping to a channel-
oscillations(accompanied by a logarithmic singularity in the 1S0tropic Kondo model and in addition look at the case of a
expressions for the charge or the capacitance close to “halftrong magnetic field applied to the QPC-dot system. In Sec.
integer” values of the number of electrons in the)dagrsist ¥ @ Simple scaling argument is used to rederive the main
also in the limit of weak reflection, as recently checked ex-(€xac) results of Secs. lll and IV. In Sec. VI, we will show
perimentally by Bermanetall® They are completely that the channel—amsotropm two-channel ando model can
smeared out only if at least one transport channel is at perfe@SC be used to discuss the conductance in a two-contact
transmission, the charge in the dot then increases linear§€tup With a strong in-plane magnetic field. The limit of
with the gate voltag®12A review of these results and more smal! transr_mssmn through the quantum dot will finally be
generally of interaction effects in quantum dots can be foungonsidered in Sec. VII.
in Ref. 13.

Extending our previous wotk we here want to discuss Il. THE MODEL
the effect of achannel anisotropyn the results for the ca-
pacitance in the two limits of almost perfect transmission and We consider here a large quantum dot weakly coupled to
almost total reflection discussed above. We will show tha@ 2DEG via a point contat{see Fig. 1 The shape of the
the Coulomb-staircase behavior is smeared out by a smafPC is defined through metallic gates put on top of a 2DEG.
channel anisotropy both in the weak and strong reflectiodf he lateral confinement potential in the QPC can be con-
limit. We will concentrate on the case of two transport chan-rolled by changing the voltage applied to these gates. As a
nels. Channel anisotropy then means that the refle¢bon Cconsequence of the lateral confinement the conductance of
transmissioh amplitudes for the two channels are different. the QPC is quantized and electron motion in the vicinity of
Such a situation can be realized by applying a magnetic fielthe QPC is essentially one dimensional. The one-dimensional
to the sample. A weak in-plane magnetic field leads to dif-wave-function¥ for motion along thex axis is character-
ferent reflection amplitudes for spin-up and spin-down elecized by the spin indexsr=1,| and the (orbital) channel
trons. In a strong magnetic field electrons are spin polarizequantum numben due to the lateral confinemetft.Note,
and the number of open channels in the QPC and their rghat from here on we will use the word channel to mean
spective reflection amplitudes depend on the opening of thelectrons with a certain pair of indicesn. As a short nota-
QPC. The confinement potential at the QPC and thus it§on we introduce the channel index=o,n and we denote
opening can be tuned by changing the auxiliary gate voltagée wave function of an electron in this channel by, . In
V, (see Fig. L In the limit of small reflection an intuitive the further analysis we neglect transport channels that are
physical picture for the transition from the channel symmet-otally reflected at the QPC, since electrons from these chan-
ric casé to the case of a weak asymmetry between the twaels are confined to the reservoir and will not contribute to
channels can be obtainédfrom the use of thechannel- the charging of the dot. We will concentrate on the case
anisotropic two-channel Kondo model at the Emery- where only two channels are open. This can be realized in
Kivelson line!® This model has also been investigated intwo different ways. If a weaKor zerg in-plane magnetic
Ref. 16. The two coupling constants of the asymmetricfield is applied(see Sec. ll), the two channels correspond to
Kondo model are directly related to the reflection amplitudeghe two spin polarizations of electrons in the lowest(1)
of the two transport channels in the QPC. In this paper weenergy eigenstate of the lateral Hamiltoniaﬂ1(=\1f%,\lf2
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=‘Iff). The role of the magnetic field is to introduce an asym- i

metry between the reflection coefficients for spin-up and [ba(X),05(y)]= 5SGNX—Y) 0 .
spin-down electron¥! In a strong magnetic field the elec-

trons are spin-polarized and the two-channel case corre-

sponds to two orbital channels entering the constrictég., [Ha(X),dy05(Y)1=18(X—Y) s,p.,
V=¥, ¥,=¥?%); see Sec. IV.
Since we are interested in energies much smaller than the [Da(X),Pp(y)]=[0,(X),05(y)]=0. (7)

Fermi energy, we linearize the spectrum around the Fermi

points. Furthermore, it is convenient to decompose the wavin the new variables the kinetic energy takes the form
function into a right-going and a left-going contribution

¥, =exp(kex) ¥, r(X) +exp(—ikex) ¥,  (X). For two o

open transport channels the Hamiltonian for the electrons in Hiin=vF > f AX[(dypa)?+ (940,)%]. (8
the point contact is azlz o=

To bosonize the Coulomb Hamiltonian we use the relation:

Hyin=—ive 2, J dX[ U] ()0, r(X) U W, P! W, gi=— 0, /7. The total charge in
a=12 J-e the dot then is
— WL L 000 4 ()], ) )
_ gt t .
where the sum is ovefopern quantum channels. Electron Q_Q:Em 0 AXCV o g art Vo, Wa,L0)- ©)
interactions in the quantum dot are taken into account via the

Coulomb Hamiltonian The charge in the dot is now measured in unitseofVe
neglect both finite-size effects in the 46t? (supposed to be
Hc=Ec(Q—N)?~EcN?, (3 ideal with no dephasing procésand mesoscopic corrections
to the capacitanc€yq.°*** Expressing the charge in terms
of the bosonic variables we obtainQ=[¢4(0)
+ ¢,(0)]/\/7. The term at spatial infinity is independent of
the gate voltage. We choogg(e°) =0 in such a way that the
total chargeQ on the dot is zero wheN=0. Consequently

Hos=vr 2, [rl[W RO W, (0)+He]. (4 Wegel

The parameteeN=VC,q is proportional to the gate volt-
age andEC=e2/(2ng) is the charging energy. In addition
we allow for a weak backscatterifign the point contact:

2
The transmission is supposed to be globally adiatafithe HC:E S $.(0)— 7N (10)
reflection amplitudesr,| and|r,| can be tuned applying a T \o=12

voltage to the gates defining the QPC. The main goal in the

following will be to calculate the shift in the ground-state for the Coulomb Hamiltonian. In writing E¢10) we have

energy de due to the backscattering in the point contact.only considered th€@-dependent part of Eq3). Finally we
From the correctione it is possible to obtain the average also have to bosonize the backscattering Hamiltonian, which

charge in the dot and the dot’s capacitance via leads us to
d( Se) =
(Q=CoaVe— Zy Hps=— QZELZ Ir,/co§ \amp,(0)]. (12)
HQ) 7% 5€) Now we introduce the new standard variables, g
C=—y. ~Coa™ N2 B =(1/V2)[$1() = h2(X)] and b 5= (1/2)[ 61(X) = 62(X)]
¢ G where the positive sign belongs to the labelcharge and

the negative sign belongs &1spin). Note that in the case of
To manipulate the Hamiltonian of the one-dimensionaly strong magnetic field electrons are spin polarized. The in-
interacting system we have introduced above, it is convedex s then labels a “pseudospin” and not physical spin
nient to use the bosonization technique. Bosonizing in thetates. The kinetic energy in the new variables has the stan-
standard way we express the Fermi field operators throughard form of Eq.(8). The Coulomb Hamiltonian
the bosonic fields,(x) and 6,(x) and writé®2

2E
Ho="""[$c(0)~ Jm/2N]? (12

1 .
W, riL(X) = mexp{%{—p%(xwaa(x)}}. (6)

is a function of the charge field only which is the main mo-
Herep=1 for right movers(R) andp=—1 for left movers tivation for the introduction of this new set of variables. Fur-
(L). The bosonic fields obey the commutation relations  thermore we get for the backscattering part
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Ill. CHANNEL-ANISOTROPIC

v
HbS:W—;(|rl| +|r,)cod V27 (0)]cog V2mhs(0)] TWO-CHANNEL KONDO MODEL
v In this section we will concentrate exclusively on the case
F . . . .
— Edrl' —|ry])sir V27 ¢ (0)Isin V27 $<(0)]. where the reflection amplitudés;| and|r,| are very close to

each other. It is then convenient to introduce the parameters
(13 |RI=Ira|+[ro| and |ér|=|ra|—[r,| where |or|<|R|<1.
For the sake of clarity we have split up this section into three
We now introduce the charge fluctuation fiel&c(O) subsections. In the first subsection we will discuss the rela-

= ¢.(0)— V72N The total charge in the dot is pinned at its 'O" between our problfm and the channel-anisotrgigio-
classical valueQ = ¢.(0)= a/2N to minimize the Cou- channel Kondo modef* In the second subsection we will
lomb energy,. Fc;rl We;k bacchatterihgl Ir,|<1 and for derive an expression for the impurity correction to the

ies below the charai ¢ round-state energy while a physical realization of the case
energies below the charging energy we can average overtivg, | <|rj<1 is discussed in the third subsection. There we

charge fluctuationsh¢(0). Whenaveraging over the term | also explicitly calculate the charge in the dot and the
cog\2mpc(0)]=cogy2mp.(0)+7N] in Eq. (13) we ob-  dot’s capacitance.
tain the expression

A. Equivalence to the Kondo model

e~ ™40 cog wN) = arEe cog7N). (14 We will now see that our theory for the Coulomb-
UF blockade problem can be mapped on the anisotropic two-

channel Kondo model at the Emery-Kivelson line, i&,,
Here the angular brackets mean averaging with regard to the 27y, with o=1,2. The solution of this mod&t?® was

ground state of the free Hamiltonian E@). An analogous gjven by Fabrizio, Gogolin, and Nozies*®
expression can also be found for the ternf gl ¢c(0)] in Introducing the auxiliary impurity-spin operatog and

Eq. (13). When calculating the correlator éy we rewrite the backscattering teffiaq. (16)] as

~ o 1 ayEc Jy ~ ‘]y . &
(¢e(0)%)= =57 In =~ (19 Hye=—_c0§\2m¢(0)]S+ —sinV2m4(0)]5,,

(18)
we have taken into account that only fluctuation modes with ] ]
energies larger than the charging eneBgy can enter into  Where the Kondo coupling parameters are defined through
the dot. Herey is defined throughy=e® whereC~0.577 is
Euler’s constant. After the averaging, the backscattering part J=2|R|VayEcvr cog 7N),
of the Hamiltonian can thus be written as

Jy=2|ér|VayEcvg sin(mN). (19

VyaEcve Starting wi

_ g with a standard Kondo model, we rather det

= + N

Hos ma (Iral +Iral)cos mN)cog v2mp(0)] «(Jy, +Jp,) andJy=(Jy; —J,,), whereJ, , denotes the
transverse Kondo coupling of each conduction-band channel
_ WaECUF(lrﬂ—|r2|)sin(7rN)sir[\/§¢ (0)] with the magnetic impurity. The total Hamiltonian, which we
S0)].

ma will denote Hf., is given by HEc=Hin(dbs,0s)

(16) +Hpdés), where the kinetic term is of the form E@B).
Both S, andASy can be considered as good quantum numbers
Using simple trigonometric relations the Hamiltonian Eg.since their commutators with the Hamiltonilalr@K are small,

(16) can be rewritten in an alternative fotfras close to perfect transmission through the quantum point
contact:
VAYECUE i 526.0) . % e ivZ76(0) A 2 PP
Hps= g (re 770 rme 7o), (1) [He. 8= ~iIRIS,,
where r is the complex parameterr=(|r |e'™ [HEk.S]xilor[S,. (20)

+|r,le”"™)/2. The first form of the backscattering term Eq. . . A .
(16) will be used in Sec. lll when discussing the two-channeIThe impurity spin inHg,c can oscillate between the two val-

anisotropic version of the Kondo model, while E47) will ~ uesS,=1/2 andS,=—1/2. It is important to note that the
be useful as a starting point for the mapping on the isotropi®ackscattering part of the total Hamiltonig&q. (16)] and
form of the two-channel Kondo modésee Sec. IV, The the coupling term of the two-channel anisotropic Kondo
charge part of the kinetic energy can now be dropped since fodel[Eq. (18)] are exactly equivalent only in the channel
is completely decoupled from the perturbation due to thesymmetric casésr|=0, sinceS, andASy do not commute.
backscattering. However, we will see in the following section that the ap-
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proximation made in writing Eq(18) is good as long as Ec dw
|6r|<|R] or N~0,+1/2+1 . ... 5€=—f 57 @[Na(@) +Np(w)]. (26)
We now want to find the shift of the energy due to the “min

backscattering or, in the language of the Kondo problem, the'he occurrence of a high-energy cutoff&g in Eq. (26) is
impurity correction to the ground-state energy. To make fur-an intrinsic property of the theory developed so far. The low-
ther progress it is useful to refermionize the Hamiltonian.energy cutoffw,,;,, needs some additional explanation. We
The basic idea is to introduce a unique operakfx) such  can distinguish two different situations. In the neighborhood
that co$\2mp<(0)]xy(0)+¢T(0) and sifiyV27p(0)]  of integer values ofN the resonance width', is negligibly
«(0)—¢'(0). Furthermore, we use the Majorana represensmall. Already at temperatures of the orderlgf spin fluc-

tation tuations will get pinned, since the coupling constanpgoes
to strong couplingcompare Sec. ¥
V25,=a=(d+d"/2, Very close to half-integer values ®f, however, we have
I'y<I', even though ér|<|R|. Thus the coupling, will go
\/E”Sy: —b=(dT—d)/(i\/§), (21) to strong coupling beford, and spin fluctuations will be

frozen atl',. An expression forw,;, that correctly repro-
to express the spin operators through fermionic operatorsiuces these two limits i®,;,=maxXI,,I'y}. The density of
The d operators §=a+ib) obey{d",d}=1 and{d,y(x)}  statesn,(w) of impurity k in Eq. (26) is related to the cor-
=0. The(unusual refermionization procedure will be exten- responding impurity Green’s function through
sively discussed in Appendix A. There we also give a precise
definition of the new fermionic fieldg. After refermioniza- 2l sgnw)

tion the kinetic energy takes the standard form (@) ==21MGy(w)}= W2 T2 (27)
) o With this expression fon,(w) the integration in Eq(26)
__ t
Hkin= 'UFffde‘/’ (X)Ixh(X), (22)  can easily be performed and we get
while the backscattering Hamiltonian is 1 E2+T7
Se=—— > |Iiln (28)
27 kZab maxl,,[p}2+ T2
i3, . 3, .
Hps= \/4—[¢(0)+ #'(0)]b+ 2 [#(0)—¢'(0)]a. For most purposes it is sufficient to approximate this expres-
ma ma 23 sion by the more simple forfh
So we finally arrive at gstandargl solvable resonant level Se=— E(F +Fb)ln( Ec _ 29)
type of model for the two Majorana fermioasand b.*>2° m @ max 'y, I'p}

We have used’ <E. and have dropped an additive con-
B. Impurity corrections and scattering phase shifts stant. A quantity that is interesting is the scattering phase
Our next step is to calculate the impurity corrections toshift (extracted from the Friedel sum rule
the ground-state energy from the impurity Green’s functions
G.=—(T,a(na(0)) and G,=—(T.b(7)b(0)). The Fou- Syt amta,(&) 30
rier transforms of these Green’s functions can be found in a 2 k5 0]

convenient way from the equations of motitf. Appendix . . . .
y q (ot. App of the conduction electrong due to the impurity scattering.

B). We get
) g In the channel symmetric case we halig=0 and é(w
1 <I'p)=w/4. The Friedel sum rule can also be rewrittén
Gy(w)= wF T sgw)’ (24  =2%(21+1)6/7 whereZ is the impurity charge screened
kSgne by the electrons. Fawave scatteringl=0) andZ=1/2 we

recovers= m/4. The particular value of can thus be under-
stood as a consequence of the fact that only “half” of the
fermiond (the parta) is coupled to the conduction electrons.
In general, if botH", andI", are finite we findS= /2 in the
72 E limit «—0 andZ=1 since nowa andb are screened. Here,
- Y ﬂ| sr|? sirf(wN), (even for afinite channel asymmetry, we still find= 7/4 at
dmave  w the fixed point because close kb=1/2 we havel',—0 and
close toN=0,+1 we havel',—0. This gives a physical
J>2< c? 52 justification on the validity of the mapping in Sec. IV. It is
1ﬂb:47TavF - T|R| cog(mN). (25) important to remember that the “spin fermiong’ are not
the real electrons but are related to the spin degrees of free-
The impurity correction to the ground-state energy at zeralom of the original electronic wave functions. However, they
temperature is play the part of the conduction electrons of the real Kondo

where the labek is k=a,b. The width of the resonara(b)
level T',(T'y) is related to the respective Kondo coupling
constantl,(Jy) via

a
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problem. In the case of spinless electraiedectrons in a SC

strong magnetic fielddand for a single transmitted channel 25

[r]<1 the scattering phase shift of the real electrons is re- '

lated to the average charge on the dot&am(Q), again as

a consequence of Friedel’s rule. It was shown by Aleiner and 2

Glazmar? that in the one-channel limit this relation can be

used to calculate the impurity correctifgee Eq(35)] in an 1.5

intuitive way. The physics resembles closely the one of the

one-channel Kondo problef. 1
0.5

C. Applications

The case|or|<|R|<1 can be realized in our setup by
applying a weak in-plane magnetic field. In a nonzero field
the reflection amplitudels ;| and|r,| for electrons with spin _ _ _
up and spin down are different due to the Zeeman effect. The FIG. 2. The correction to the capacitance E2f) is shown for
channel indexa here distinguishes between spin-up anddifferent values of the anisotropy paramefér|=|r,|—|r,|. The
spin-down electrons in the lowest orbital channel1. The ~ ParametefR|=|r,|+[ry| is set to|R|=0.4. The solid line corre-

(original) electronic wave functions for electrons in the two §ponds fo the channel isotropic case| =0 where the capacitance

channels arwa:1:q,?:1 andTa:2=WT:l “We first want is logarithmically divergent. In order of decreasing peak height the

. | S . remaining three curves correspond [tér|=0.1, |6r|=0.2, and
to consider the special case of zero magnetic field, Whlcf|15r|_ J P | o]

. 8 . =0.3. The units of the capacitance are arbitrary.
was solved by Matveev in Ref. 9. The reflection amplitudes
for the two channels, corresponding to spin-up and spin- £
down electrons are equalr¢|=|r,|=|R|/2) and thus|ér| _ . YEc o2 2 i
=0. It follows from Egs.(19) and(25) that J,=0 andI', o=+ 2 [IRI* cosi(arN) +| or|* sirP(mN)]
=0. Furthermore, from Eq.(25 we know that I'y .
=|R|?yE cof(mN)/=. Calculating the energy with E¢29) X In[ y/ wrmax{| or|? sirf(7N),|R|? cos'(mN)}].
we find’ 33)

Due to the appearance of the max the logarithm does not
yEc diverge anymore. Still it can be very large due to the small-
se=+-—"|R|* cog(7N)In[ y/ 7|R|* cog(7N)]. ness of| 8r| and the logarithmic term will dominate in the
™ (31 capacitancéSee Fig. 2

S5C=—2yEcB?(|R|?—|6r|?)cog27N)

The correction to the capacitance can then easily be calcu- 1
lated using Eq(5) and is found to be

" max{| or |2 sir?(7N),|R|2 cof(7N)} |

(39

We see from Eqgs(33) and (34) that an arbitrary weak an-
(32) isotropy between the two reflection coefficients is sufficient
to cut off the logarithmic divergence. At the degeneracy
point N=1/2, we find 5CoIn|ét|. There is some analogy
Here we have kept only the logarithmically divergent contri-With the behavior of the magnetic susceptibility of the impu-
i i : rity x=d(Jd€)/dh? away from the Emery-Kivelson lifé
bution that will dominate all other terms close kb= 1/2. y x=0d°(de) Yy ery n
The parameteg=e/(2E.) is the ratio of the dimensionless @nd with that of the local magnetic susceptibility;
parameteN and the gate voltagés, 3=N/Vg. This seems =d(S,)/dh at the Emery-Kivelson linéthe magnetic fieldh
to be in agreement with the recent capacitance experiment &fould only act on the impurify?® even though for weak
Ref. 11. backscattering at the QPC there is no real correspondence
As we can see from Eq18) in the channel-symmetric between the charge in the d@ and S,. From the two-
case only fermiorb is coupled to the fields. If we allow for ~ channel anisotropic Kondo model we see that the appearance
a weak magnetic field the reflection coefficients for spin-upof the second energy scale that leads to the suppression of
and spin-down electrons are slightly different gdl|#0.  the divergence follows in a natural manner from the coupling
As a consequence the Kondo couplidig does not vanish of the second Majorana fermion to the conduction electrons.

1
5C=—2yEq|RI282 cog27N)In| ——— .
YEc|R[?B* cog 2 )n(|R|zco§(ﬂ-N))

anymore and both Majorana fermioagndb are coupled to At this point it is also interesting to compare these results
the bath. The total energy shifk from Eqgs.(25) and(29) is  to the result obtained in the case of a single transmitted chan-
found to bé* nel (reflection amplituddr;|<1 and|r,|—1). Such a situ-
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ation can be realized in a strong magnetic fiéltspinless L,k
electrong and was also treated in Ref. 9. The energy shift for
this case is 0.15
Sex|r,|Eccog2mN) (35 0.125
0.1
and therefore no logarithmic contribution occurs anymore in
the expressions for the charge and the capacitance. We only 0.075
get a periodic oscillation as a function of the gate voltage. 0.05
In the following section we want to demonstrate that the
approximation made in writing Eq18) is justified. Further- 0.025
more, we will address the case of strong asymmetry between g : N
the conduction channels. 02 04 06 08 1
V. MAPPING FIG. 3. The resonance energig¢s and I'y, of Eq. (25) are

shown. The paramet¢R| in ', (solid line) is |R|=0.4. The size of
the resonancé’, grows with increasing anisotropy and thus with

We have seen in the preceding section that the bacld.ncreasing| 6r| The Iong-dashed line in the graph Corresponds to
scattering term Eq(18) is not exactly equivalent to the origi- |0r/=0-1, the short-dashed line tér|=0.2, and the dotted line to
nal Hamiltonian Eq(16). We will now justify the approxi- |9'|=0.3. The energies are measured in unit&gfy/ .

mation made and will rederive the results we have found , . . .
from the two-channel anisotropic Kondo model in an exact! Ne second equation can be verified by explicit calculation

way, following in our derivation Furusaki and MatveEv. of the sum of the two resonance energies given in(Eg).
This section is structured in a similar way as Sec. Ill. Thelhe impurity correction can be found from E6) in the

mathematical mapping will be discussed in a first subsectiofh@nnel-symmetric limit. Furthermore, the density of states
while a second short subsection will be devoted to the dis®f the impurity was defined in Eq27). Combining these

TO A CHANNEL-ISOTROPIC KONDO MODEL

cussion of an application. expressions we find for the impurity energy
. I [EZ+T? r (E
A. Mapping - c ~——Inl ==
e o n T2 7_rln( Tl (39

As a starting point we use the form Ed.7) of the origi-

nal backscattering Hamiltonian, which we rewrite as In the second equation we have udedEc . It is now clear

3 that the use of the two-channel anisotropic model is justified
Hbs=—0(rei V2T6(0) 4 % @~ 1V2TH(0))§ | (36)  whenever mad",,[',}~T 4+ T, . This condition is certainly
2ma met whenN is very close either to an integer or to a half-
7N integer value. Furthermore, the rangeMfalues for which

i _ the equation is approximately true will be larger for stronger
iN — /
*|role”!™)/2 andJo=4yayEcve. Exactly as in the pre- asymmetry betweeh, andT',, i.e., for a weak asymmetry

ceding section we have introduced an auxiliary impurity Spinbetween the reflection amplitudés| and|r |
2 .

Sc- The spinS, is a good quantum number since it com-  |n the two cases of electrons with spin in zero magnetic
mutes with the total HamiltoniathereS,=1/2). It is impor-  field or with a weak magnetic field we have mdx]
tant to note that therefore E¢36) is exactly equivalent to <max([',) and the channel-anisotropic Kondo model is
the original expression Eq(17). Reformionizing as de- more convenientSee Fig. 3 In particular, the asymmetry
scribed in Appendix A gives simply produces a new energy scale obviously affecting the
properties of the system close to the degeneracy @dint

Here r is the complex parameterr=(|ri|e

iJo .t =1/2. This also allows to make explicit links with the small
Hps= \/m[“ﬂ(o)'” ' (0)]b, (37)  transmission limitsee Sec. VI\.
where we again use the Majorana representation for the im- B. Applications

purity spin. The Hamiltonian Eo(37) Is very si_milar o the We will now discuss a case for which the isotropic model
resonant level model that occurs in the solution of the two-

channel isotropic Kondo model at the Emery-Kivelson line'> particularly well suited. This is the case of strong asym-
P ) X mery . metry between the reflection amplitudes of the two transmit-
[compare Eq(23) with J,=0]. The impurity correction to

the around-state eneray can acain be obtained from thted channels. We assume that one of the two channels is very
gr ; 9y 9 ! - _glose to perfect transmission, e.gry|—0 and |rq|<|ry|
Green’s function. The propagator for the impurity has ex 1. Such S b hed i .
actly the form Eq.(24) with T, replaced by <1. Such a situation can be reached in a strong magnetic
’ k field where the electrons are essentially spin polarized. The
number of open channels and their reflection amplitudes can
= —T,+T,. (39) then be adjysted by changing the voltagge applied to the gates
used to define the QPC. The wave functions for the electrons
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in the two channels ar#,—; = " and¥ ,_,= "5 -In «yalry itis clear thatT,| grows under the renormalization
the limit of interest here the energle with the help of Eqs. 5, 4 =aexp(). The renormalization flow equation f&ﬂ

(38) and(39) is found to be is given by
Ee, o d~ 1.
de="—|r,|[1+2\ cog2mN)] —[ra(O]=5[ru(D]. (45)
- dl 2

X In{(y|ro|% m)(1+ 2\ cog2N))}, (40)  We can now integrate this equation frdm 0 (a’=a) to |
=l. [a'=a.=aexp(.)], wherea. is the value ofa’ for

which J,[r,| departs to strong coupling, that is,;(a’)]
~1. Integrating we gefr,(a.)|?=(a./a)[r1(a)|>=1. The
5C=+8yEcB2|r]|r,lIn(|r,?) cog 27N). (41  corresponding critical energy scale is defined through

where\=|r,|/|r,| is a small parameter. To leading order in
\ the correction to the capacitance is given by

First we observe that at perfect transmissijiof=0 there_ is _ Ex,c”UF/aczUF|?1(3)|2/a=J§/(aUF)- (46)
no signature of Coulomb blockade left as it is ] .
expected:>1328 Furthermore, it is interesting to notice that Comparing Eq(46) to Eq. (25 we see thak, . is equal to
with one channel very close to perfect transmission thd b UP to & numerical factor. Further evaluation of E46)
Coulomb-blockade oscillations are strongly reminiscent ofd!Ves
he one-channel I i in Ref. 9.
the one-channel case, also discussed ef. 9 E, o= 167 1|2yEca cod(mN). @7
V. RENORMALIZATION-GROUP FORMULATION Similar considerations can be used in the more general case
_ where|r,|#|r,|. Then we have to use, e.g., the backscatter-
We will now show that the energy scaleg andT'y can g Hamiltonian Eq(16) as a starting point. Expanding the

also be found from a renormalization-group treatment. To doyaition function to the second order in this perturbatitme
this we will use a similar argument as was put forward ing 4| parameters arfR|=|r,|+|r,| and |8r|=|ro|—|ry|)

Ref. 13 which in turn is based on Ref. 29. We will first |, o get
discuss the channel symmetric céisg=|r,| (electrons with

spin and zero magnetic fieldThe backscattering Hamil- 12432 (8
tonian for this case is given by 0Z=— uf drdr,——, (48
(2ma)?Jo V| T1— 7
2 ” L I
Hps= |rll«/ayECvF cog mN)cog \2m¢<(0)]. (420  where the partition function is again independent of the lat-
ma tice stepa. Furthermore, it is important to note that terms

The basic idea of the renormalization-group treatment apProportional toJ, andJ, do not mix in the expansion of the
plied here is to calculate the partition function to secondPartition function up to second order.

order in the small parametér,| and to choosér,| as a For a small channel anisotropy, either the couplingr
function of the lattice step in such a way that the partition Jy grows under renormalization, which gives rise to tine
function remains invariant under the transformatmr-a’  dependenenergy scales. The critical energy for whidh
—aexp(). The correction to the partition function due to the (Jy) departs to strong coupling isE, .=J7/(vea)
backscattering perturbation is *Ec|R|?co(aN) [E, o= J5/(va)e|or|?E sirP(mN)]. Of

course we have recovered here, up to a numerical factor the

B B two energied",(*E, ;) andT'p(<E, ;) [see Eq(25)]. More
0Z="~ fo d71d75(Hps(71)Hos( 72)) generally, using Eq(48) we find:
L[ a G R P+ Br A= [[ROP+ B2, (49
=— f drdr,——. (43) dl[| (O2+[or(HIFI=[IRM[Z+[or (D], (49
(2ma)?Jo V| T 7

where we definediR|=J,/ve and[dr|=J,/ve. In the case

of a strong channel anisotropy, we deduce that the effective
coupling J§+ J§ flows off to strong coupling at the critical
energy Ec=(E,.+Ey ). Again, we recoverE.xI'=T",
+I',. For a small anisotropy, of course this reduce<to
cemaxl,, [}

Using the definition ofd, given in Eqg.(19) it can be seen
that the partition function5Z is independent of the lattice
stepa and thus|r,| is invariant under rescaling. We now

introduce adimensionlesparameterr,| via [r|=J,/ve.
With the help of this parameter we can rewrite the back-
scattering Hamiltonian in the standard form

UF|?1| VI. REALIZATION IN A TWO-CONTACT SETUP
" 2ra

Hp cog 27 ps(0)]. (44)

Let us now briefly emphasize that the channel-anisotropic
_ two-channel Kondo model of Sec. Il is also well suited to
From this we can see thaty|=4|r|JyEca/ve cos@N) has  discuss the conductance behavior of a two-contact setap
the meaning of an effective reflection amplitude. Sificg ~ Furusaki-Matveev. In this setup, which is a natural extension
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of the geometry shown in Fig. 1, a single dot is coupled to ' '
two different electron reservoirs via two point contacts. A
back gate or side gate is used to vary the Coulomb energy.
The device is illustrated in Ref. 17.

Let us start with a strong magnetic field such that the
electrons of each reservoir are fully polarized. We obtain an
effective two-channel model where=1(2) now denotes
the electrons of the leftright) QPC. Again, we are mainly
interested in the case of small channel anisotropyvhere
reflection amplitudes at each contact, namfly, and|r,|,
are close to each othejr,|<|r,/<1. It is convenient to
associate the centers of the two constrictions with the point N
x=0, meaning that electrons in the dot are described by
V. (ry atx>0 and by¥,  atx<0." We introduce the
variables¢, and ¢ via

FIG. 4. Conductance in the two-contact setup as a functidw of
for different values of theésmal) anisotropy parametdir|=|r|
—|r4|. The parametejR|=|r,|+]r,| is here set tdR|=7/10. The
different curves have been calculated TéE.= 1/50 and have been
1 1 normalized toGy. In order of decreasing conductance peak height
d’lzﬁ(‘l’t"' be), 9{’2:%(@_ ¢, (50 the different curves here correspond ér|=0.2 (top), |or|
=0.25,|6r|=0.3, | 6r|=0.35, and| ér|=0.4 (bottom).

and similarly forg, and6,. Typically, hereg¢, is the bosonic

variable associated to ttehargein the dot, whileg; is the oy = 2
one related to theurrent passing through the dot. The main HbS_ES'r[ 21 ¢(0)]Sy,
difference with the one-contact setup is that here the charge
on the dot rather readsote the minus sign’ Jy L0(0)— ¥(0)] 53
= - a.
Vama
1
Q= \/——[¢1(0) —¢2(0)]. (51)  This produces the same physics as a nonmagnetic impurity in
a

a Luttinger liquid with the Luttinger exponent being
g=1/22° The problem becomes exactly solvable using the
refermionization procedure of Appendix A. In particular, the
current through the device takes the required fétm:

It is straightforward to show that the backscattering Hamil-
tonian is of the form of Eq(16) or Eq.(18) with ¢4 replaced
by ¢, explicitely
I =evey'(0)%(0). (54
J, AN .
Hps=— co$ V27 (0)15+ %S'r[\/ﬂ(bt(o)]sy- For temperature§ <E, . and N close to 1/2, the effective
(52)  potential scattering, (or the asymmetry paramejefiverges
and the conductance then obéys:
The Kondo parameters are given in Ed.9) where |4r|
<|R|<1, and the kinetic energy for the symmetric charge 2lg—2
modeH i, (¢, 6,) is still of the form of Eq.(8). Again, we G(T;N%1/2)=Go< E ) “( >
insist on the fact that this mapping is more intuitive than the y.e EcN
one of Eq.(17) because the anisotropy of the reflection co-ynhere the second equation is true fpe=1/2. The energy
ef_ficients is directlly related to the anisotropy between couEy . was defined in the last paragraph of the preceding sec-
pling parameters in the Kondo model. In consequence, Wgon. For nonsymmetric barriers the conductance peak height
have two independent energy scalgsandl'y. The behav- (jike the capacitance peak height befobecomes strongly
ior of the conductance close to the degeneracy pdint gependent on the finite asymmetry between reflection ampli-
=1/2 becomes really transparent. tudes at the QPQSig. 4). This naturally reflects the fact that

In the absence of any backscattering, the system ige on-resonance behavior of the systemNer 1/2 is very
equivalent to two resistancesm2/e® (those of the two gifferent if the two barriers are not identical.

QPCs)zconnected_in_ series. Therefore, the conductance is A simple explanation can be given using the channel-
Go=e“/(4mh). This is in fact still the case fdinite barriers  anisotropic two-channel Kondo model. On resonance, the
in the symmetric caséry|=|r| at the degeneracy poifft, ~small asymmetry inevitably grows under renormalization. At

where bOthJX andJy are zero folN=1/2. As was found in low temperature§'< max{l—‘a,l_‘b}, the conductance behav-
Ref. 17 the conductance is still at its resonant vaB4eand jor for all values ofN is given by

the tails of the peak aN=1/2 are not LorentzianGo (N

2

. (59

—1/2)~* due to thel, coupling. When|ér| is finite, from T 2

Eq. (52) we immediately see that the asymmetry between G(T;N)=Go(m) <Go. (56)
channels engenders a finite backscattering proceshl at artb

=1/2 (again,J, | 5r|): This can also be rewritten Hs
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2 the problem is solved, since these quantiti€s), x) can be
G(T;N)“(F) : (57 found in the literature. The channel- and sfsntropic mul-
tichannel Kondo problem was solved exactly in this limit in
where[see Eq(39)] Refs. 32,33, while the impurity susceptibility for the
channel-anisotropidbut spin-isotropig two-channel Kondo
Locl|r g ?+[ro|2+2|ryf|rolcog2N)], (58)  problem can be simply extracted from Ref. 34. Note in pass-
ing that the channel-anisotropic case was also solexd
actly) using Bethe ansatz in Ref. 35. There, the Wilson ratio

is less apparent. It is worth noting that the quadratic tempera{—s c(;)rrp#ted (Tvenbln the_ casei[_ ofta dchan_nel amsfotrop?/. f'_l'r;(ljs
ture dependence is a universal property of inelastic cotunne[['0¢€! Nas also been investigated using coniormal he
ing. But, close toN=1/2 this can also be interpreted as atheory and numerical renormalization-group calculations in
nice manifestation of the restoration of tRermi-liquid be- Re\f/.v36..” dt iting d th del f

havior due to the finite asymmetry between chanfiie for € will now proceed fo writing down the modet for our
the capacitance problém system in the small transmission limit. Instead of formulating

Unfortunately, the present approach does not allow a co LIn momentum space as it was done by Matveev we will
plete solution for the case of fermions with spin in the two- ere use a real-space formulation that allows us to stress the

contact setup’ At zero magnetic field and for completely analogy with the corresponding model in the strong trans-

symmetric barriers at the two QPCs, there exists a mappin ission limit (seg Sec. )l In Appen@x C, we will also ad-
onto a four-channel Kondo model for the Hamiltonian %'€SS the question why the mapping on the Kondo model

(which could help to compute thermodynamical propeyties cannot be derived using bosonization as it was done in Sec.

but it is very difficult to rigorously compute current-current I the preceding section we have treated the backscatter-

correlation functions in the new basis and then to extract th&'9 ai a ;rgalll p:ahr.turbatltpn t(T':)han ot?erl;/w?e p_erfecttly tralns-
conductance behavior. The current operator indeed exhibi aren Q. - 1N this section he perturbation 1S a tunneling
an unusual form as indicated in Appendix B of Ref. 17. amiltonian that couples twa priori mde_pendent systems
Therefore, the height of the conductance peak cannot be cigt-he ZtEEGt andlth:e O?;tA Smi?th tranlsLtjlol_n (.iag be mt?‘de
culated in a rigorous manner even for completely symmetri rom the strongly 1o the weakly coupied fimit by continu-
barriers at zero temperature. Furthermore, the mapping on usly Increasing the g.uxmary gate voltage to plnqh off the
the Kondo problem is only valid atclose EQ N=1/2. To PC. In this transition a perfectly transmissive one-

extend the(four-channel Kondo mapping to the case of ﬂlrrensmlmatlhchanrje_itWlllfbt(; cut mtto twgt\;]veakll)a/((::oulpletd
asymmetric barriers remains a challenging task. alves. in the vicinity of the center ot the Q electron
motion is still quasi-one-dimensional. Electronic wave func-

tions to the left of the center of the QPR@ the reservoir
will be denoted¥} ,, wave functions to the right of the

Having so far concentrated on the limit where the quan<center[in the quantum dofQD)] are ¥y ;. Again o is the
tum dot is strongly coupled to a reservoir through a highlyspin index,n the channel index due to lateral confinement,
transmissive quantum point contact, we will in this sectionand herea=0,1 indicates the location of the electron. Hop-
consider the limit of weak coupling. The similarity between ping between the two sides of the QPC constitutes a small
the Coulomb-blockade problem in this limit and a Kondo perturbation. To model this perturbation we use the Hamil-
model was noticed by Glazman and MatvéeAn explicit  tonian
mapping of the Coulomb-blockade Hamiltonian on a Kondo
model was used by Matveev to calculate the charge and the Ho— Z
capacitance of the quantum dot in the weak transmission ™A
limit.> Note that recently a noncrossing approximation has
been generalized to this type of multichannel KondoNote that the kinetic energiesdy, ({W! ¥, o) and
models®! Hpin({¥! 1, W, 1) for electrons in the 2DEG and the dot

We will here rederive Matveev's mapping and discuss theéhave the form of Eq(22). The boundaries for the integration
straightforward extension of his model to the channel anisoalong thex axis are—,0 in HY,, and O in H{,,. The
tropic case. Again our discussion will be restricted to theCoulomb interaction can be modeled as in Sec. II,([Bythe
case of two transport channels through the point contact. Theharge on the dot being
anisotropy between the transmission amplitudes for the two
transport channels in the QPC will still give rise to a map- *
ping on a channel-anisotropic Kondo model; But here, the Q= fo AW [ ()W ,1(X) = pol. (60)
system flows off to the usuapin-isotropicfixed point, i.e.,

J,.1=J,,>0. We will see below that the problem of calcu- The equilibrium charge density, is chosen in such a way
lating the average charg®) on the dot is now equivalent to that the total charg® on the dot is zero when no voltage is
the problem of finding the average of taeomponentS,) applied to the gate\(g=0).

of the impurity spin in the Kondo model. In addition, the = We now want to concentrate on the polt 1/2 where
capacitance of the dot is the same as the magnetic susceptiie states withQ=0 andQ=1 are energy degenerdisee
bility y of the impurity. Once this equivalence is establishedEq. (3)], and therefore charge fluctuations are large. We in-

even though this formula seems a little bit less intuitive. In
particular, theN dependence of the conductance for 1/2

VIlI. SMALL TRANSMISSION LIMIT

2[ltgqu$,1(0>w0,o<0>+H.c.]. (59
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troduce the small parametd&t=e/(2Cyq4) —Vgx(N—1/2) =J,%t,| even if we start from a spin-anisotropic Kondo

to measure deviations dff from the degeneracy point. In model. The resulting spin-isotropic Kondo model was solved

terms ofU the electrostatic energies of the two stafgs0  in Refs. 32 and 33. In the zero-temperature limit the impurity

andQ=1 areEy=0 andE;=eU, respectively. susceptibilities for the one-channel case and the two-channel
If the two conditions|U|<e/Cyy and kT<E. are met isotropic limit are

only the two states witlQ=0 andQ=1 are accessible and

higher-energy states can be removed from our theory intro- . const, J,=0,

ducing the projection operatoR, andP,. Here P, and P, X1 in h, J;=J,.

are projecting on the state€3=0 and Q=1, respectively.

The effective Hamiltonian for this truncated system is

(64)

Note that the susceptibility for the two-channel case diverges
in the zero magnetic field limit. The channel-anisotroftiat
Hor=(HO +HL )(Py+Py)+eUP spin-isotropi¢ Kondo model was discussed, e.g., by Cole-
et~ (Fian* Hian) (Pot Py ! man and Schofief (also by Andrei and Jerdzand by Af-

+ t fleck et al®%) who found for the susceptibility at zero mag-
+0_=21 ) (|t0|\1}0,1‘{]0,0P0+ |t0|\I’(r,O\PG,lP1)1 netic field (h:O),

o X1, 69

where the operators in the tunneling part are evaluated at
=0 [see Eq. 589. From this equation we see thaH/JU
=eP,; and thereforé Q)= 9E,/dU whereE is the ground-
state energy of the Hamiltonian E¢(61). It can be shown
that the Hamiltonian Eq(61) is equivalent to the Hamil-

where the anisotropy parameter:|st|/7 with |8t|e|J;
—J,| and 7 «(J;+J,), is v=1 in the one-channel limit
(J,=0) andv=0 in the two-channel isotropic limit. Equa-
tion (65) thus reproduces correctly the main characteristics of

tonian the result Eq(64) in these two limiting situations. From the
1 results for the susceptibility we immediately obtain the ca-
Hc= >, H&,+2hS,+ 5 > {J,.0sH(0)S pacitance
a=0,1 o=1,2
B const, J,=0,
+5s,(0)S™]}, (62
. o 6Cocy IN(N—=1/2),  J,=J5, (66)

which has the form of a standard Kondo Hamiltonian. The In| st 3,#3,, N=1/2.

equivalence between the Hamiltonians E&fl) and Eq.(62)
was demonstrated by Matveev in Ref. 9. For completenesghe results for the one-channel and the two-channel isotropic
we rederive this relation in Appendix C taking channel an-cases are due to Matve&¥he main observation we want to
isotropy into account explicitely. In Eq62) we have intro- make here is that a small channel anisotropy cuts off the
duced the transversal Kondo coupling parametégs logarithmic divergence exactly in the same way as in the
=2|t,| and an effective external magnetic fielb=eU/2  case discussed in the previous sections where the reflection
«(N—1/2) applied along the axis. Note that Eq(62) cor-  amplitudes in the QPC could be treated as small parameters.
responds to the limitJ; ,=J,,=0 of Eq. (1). We have

dropped the constaetU/2 from the Hamiltonian in Eq(62). VIIl. CONCLUSIONS
Therefore, the ground-state enefgy , of the Kondo Hamil- ) ] _ _
tonian Eq.(62) is related to the ground-state enefgyof the We have applied the channé&nd spin} anisotropic two-

effective Hamiltonian Eq.(61) through Ex o+ eU/2=E,. channel Kondo model to study Coulomb-blockade oscilla-

Since 2S,)= dEy o/oh and(Q) = JE,/JU we are led to the tions in the capacitance of a quantum dot. Our main interest
obvious identification has been to investigate the effect of an asymmetry between

the reflection(or transmissiopnamplitudes of different open
1 channels in the QPC connecting the dot to a reservoir. Fol-
§+<Sz>>- (63 lowing Matveev® we have studied the two exactly soluble
limits of very weak (t;|,|t,|<1) and very strong coupling
Combining Eq.(5) with U=e/(2C4q) — Vg we find for the  (|r4/,|r,|<1). A summary of the results for the capacitance
correction to the capacitan€&= — 9(Q)/dUx xy=3(S,)/oh,  in different limits is given in Table I.

(Q)=e

wherey is the impurity susceptibilitfSinceh only acts on In both limits a mapping of the original problem onto a
S,, x is also equivalent to the local magnetic susceptibilityKondo model is possible. Remember that these results con-
x1)- cern the limit of very low temperature where quantum fluc-

So we have now shown that a calculation of the capacituations are prominent. At quite high temperature, the Kondo
tance of the quantum dot coupled to a 2DEG through a QP@hysics gets destroyed by thermal fluctuatidfs??
with two transport channels wittifferent transmission am- For weak backscattering at the point contaft,|(|r,]
plitudes is equivalent to a calculation of the impurity suscep<<1) the original problem can be mappé&dn a channel
tibility in the channel-anisotropic two-channel Kondo model. anisotropic Kondo model at the Emery-Kivel$8iine (J12
It is known that both),, ,=0 andJ,, ;, <1 grow under renor- =J,,=2mvg). For this particular value of the coupling con-
malization and that for small enough energigs,=J, | stant the Kondo model is exactly solvable. The anisotropy of
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TABLE I. We have listed here all the results for the capacitance of the quantum 8bt:d¥2 and the
respective references. The divergence occuringr-atl/2 in the channel-isotropimvo-channel limit is cut off
by a channel anisotropy for both weak and strong reflection at the QPC.

No. of Reflection or Capacitance
channels transmission coefficient atN=1/2 Ref.
1 [rq]<1, (ry|—1) constant Ref. 9
2 [rq]=r,|<1 —In|N—-1/2 Ref. 9
2 [rq|#]|ry<1 —In(Jrg —=]r4]) Ref. 14, Secs. IlI-V
1 [ti]<1, (|t,|—0) constant Ref. 5
2 [ty =]ty <1 —In|N—1/2| Ref. 5
2 [t,]# |ty <1 —In(Jty|—t,]) Sec. VI

the reflection amplitudes for different channels is directlycharge on the quantum dot using a mappiran a channel-
reflected in the channel anisotropy of the Kondo model. Inisotropic two-channel Kondo model. In this approach, the
fact we foundJ, , «|r;| andJ,, «|r,|, whered;, andJ,, coupling constant is a complex parameter depending on both
are the coupling constants for the two channels in the Kond¢r,| and|r,|. While the latter approach has the advantage of
model. The mapping allowed us to calculate the shift of thebeing exact, it seems less intuitive since the anisotropy of the
ground-state energy of our Hamiltonian due to the backreflection coefficients is not directly reflected as an anisot-
scattering at the point contact and in turn to find the capaciropy between coupling parameters in the Kondo model. We
tance of the quantum dot. While the capacitance is logarithhave in addition used a simple scaling argument to recover
mically divergent for values of the gate voltage closeNto the intrinsic energy scaleB, and T, that occur in the ex-
=n+1/2 (n is an intege)r in the iSOtI’OpiC Iimi? (|I’l| pression of the Capacitance_
=|r,|), this divergence isut off by a small anisotropy be- e relied on purely mathematical arguments to show the
tween the reflection amplitudes of different chanrté$his equivalence between the Coulomb-blockade problem and the
can be interpreted as a manifestation of the restoration of th&ondo Hamiltonian in the strong tunneling limitrg|,|ro|
Fermi-liquid behavior close to the degeneracy points N <1). In the opposite limift,|,|t,|<1 the similarity of these
+1/2 due to the asymmetry between channels. two problems can be understood using a comparably simple
Note that a similar conclusion can be reached investigatphysical argumentsee Ref. 9 and Appendix)CThe main
ing the conductance behavior in a two-contact setup in @bservation is that at low enough temperatufesE. and
strong magnetic field wherf,| and|r,| denote the back- for voltages close tdN=n+1/2 only two charge states on
scattering amplitudes at the two different point contacts. Thehe quantum dot are energetically accessielg.,Q=0, Q
on-resonance behavioiG(=Gy=e%/2h) for N=1/2 iste-  =1). The charge state of the dot is then interpreted as a
ducedfor a small anisotropy betwegn,| and|r|. pseudo-spin-1/2 degree of freedom, which corresponds to the
There are two intrinsic energy scalfBpc(|r{|+|r,[)>  impurity spin in the Kondo model. The real spin of the con-
and T',(|r4|—|r,)?] in the channel-anisotropic Kondo duction electrons in the Kondo model is replaced by an index
model. Each can be interpreted as the resonance energy rg-indicating the location of an electroflistinguishing be-
lated to coupling half an impurity to the conduction elec- tween electrons to the left and to the right of the QRCthe
trons. In the channel-isotropic case only half the impurityCoulomb-blockade problem.
spin is screened by the conduction electrons. Coupling back A first-order process in the Kondo problem that flips the
the second half of the impurity to the conduction electronsmpurity spin from up to down and the spin of a conduction
leads to the emergence of a second energy d¢alét is this  electron from down to up is then equivalent to a tunneling
new energy scale that enters the expression for the capagirocess that takes an electron from the left to the right and
tance and cuts off the divergence Mt=n+1/2. Unfortu- changes the charge on the dot fra@=0 to Q=1. The
nately there is no direct correspondence between the magondo coupling parameters simply aﬂ@(z)ﬁocltl(zﬂ and
netic susceptibility in the Kondo model and the capacitanCQ]l(z) ,=0. As it is clear from the derivation of the mapping
of the quantum dot. Such an equivalence exists only in thénere exists an equivalence between the charge on the dot
limit of small transmission. It is true, however, that the be-and the impurity spin, namelyQ)o<(S,). It was furthermore
havior of the capacitancéound from the Kondo model at shown that the capacitance is basically the sé@meto some
the Emery-Kivelson lingis reminiscent of the impurity sus- constantas the impurity susceptibility. Since the model with
ceptibility y=d%(de)/oh?> away from the Emery-Kivelson J12y. %[ty and Jiz,=0 flows to the usual spin-
line or of the local magnetic susceptibility =d(S,)/oh at isotropic fixed point we have been able to use the known
the Emery-Kivelson line. result for the impurity susceptibility in the channel-
In this paper we have extended our previous Wbde-  anisotropic two-channel Kondo model wiﬂgvlz\]a,z>0,34
riving the mapping on the anisotropic Kondo model in ato discuss the effect of channel anisotropy on the capaci-
pedagogical way and carefully discussing its limits of valid-tance. Exactly as in the limit of strong transmission the ca-
ity. We have then given an alternative way for calculating thepacitance diverges in the channel-isotropic calset the di-
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vergence is cut by the anisotropy. Note that no immediate X
connection can be made with the Kondo model at the Emery- O (X) = (Xx)— f dym.(y),
Kivelson line (J;(2),=2mvg), which we obtained when 0
treating the small reflection limit. M
All the results on the behavior of the capacitance of the ®L,¢(X)=¢¢(X)+f dym.(y). (A5)
dot close toN=1/2 are summarized in Table I. 0

At x=0 we havedg ,(0)=®, ,(0)=+2¢40) and also
ACKNOWLEDGMENT ®r _(0)=d_ _(0)=0, which makes these fields candidates
for the construction of our new fermions. The backscattering
“Hamiltonian can be expressed through the fiedds . (x)
and®_ , (x) only. There are in fact many ways in which this
can be done. However, we will soon get rid of this ambigu-
APPENDIX A: REFERMIONIZATION ity. The fields®g,_(x) occur only in the kinetic part of
tthe Hamiltonian and are thus of little interest to us. Later on
we will need the commutation relations

This work was supported by the Swiss National Scienc
Foundation.

In this Appendix we want to elaborate on the unusua

refermionization procedure that we used in Sec. Ill. The
backscattering part of the bosonic Hamiltonian to be refer- o o — 4 _
mionized is given in Eq(18). The kinetic energy is of the [Pr+(X),Pr+(y)]=Fisgrix—y),
form [@L4 (), 0. (y)]=—isgrix=y).  (A6)
o 5 5 For completeness we also give the correlation functions
HKin:va_de{[ax¢s(X)] +m (0T (AD Gy =(Pray. s () Prey,+ (0)— gy < (0)%), which take

the standard form

It will turn out to be convenient to use the fietel(x) instead
of 65(x) for the moment. The two fields are related through
ms(X) =04 0s(x). The commutation relations for the fields

¢s(x) and  my(x) are  [¢y(x),m(Y)]=i8(X=Y),  The plus sign belongs to the labRlwhile the minus sign
[$s(X), #s(y)]=0, and[ ms(x), ms(y) ]=0. The basic idea of pe|ongs ta_. The kinetic energy in terms of these new fields
the refermionization procedure is to introduce an operatofayes the form
#(x) such that cds/2mds(0)]xy(0)+4(0) and
si V27 ¢(0)]4(0)— 7(0). It is clear that for such an v >

rator Hin=% 2 | dX(Pro)2+ (5D 02 (A8)
operato 2 =+ Jo

a
axix

. (A7)

GR(L):;m

We now drop thebg _(x) part of the kinetic energy since
exdiv2mog(0)]. (A2) it is not coupled to the backscattering term. To refermionize
vema the ®g() 1 (X) part we introduce the operators

In addition the operator must obey the usual fermionic anti-

commutation relations. Using the relatiefie®=eBe”el# ] Yr(X) = o Qi TR 4 () (A9)
it can be seen that the obvious choice #larnamely, ¢(x) R V2ma ’
=(2ma) " Y2exdiV2m$(x)] does not obey anticommuta-

tion relations. To construct a fermionic operator we introduce

$(0)=

TS X) = e VTPL (), A10)
the auxiliary fields PL(x) oma (
1 Using the commutation relations for the bosonic fields we
. (X)= E[(ﬁs(x)i(ﬁs(—x)], can verify that the fieldsjg - (x) and ¢ .(x) really are

fermions and obey

U+ (X) i (V)= = thp 1 (Y) ¥p, = (X), (A11)

where p=R,L. Note, that forx=0 we have ¢ ,(0)

, o ) =yr +(0) [see Egs(A5) and(A9)] and there thus seems to
In terms of these new fields the kinetic energy is be more than one way to refermionize the backscattering
Hamiltonian Eq.(18). To lift this ambiguity we reextend our

Huin=vE §+ . dx[ (dydo)2+(3,0,)%].  (A4)  theory on the fullx axis via the definition
] UR(9), x>0,
¢L(_X)' X< O

1
Wt(X)ZE[Ws(X)iWs(—X)]- (A3)

We thus arrive at a theory that is confined to positive values Y(x)="P (A12)
of x. The advantage of this restriction becomes clear when
we introduce the two additional right-going and left-going In the above definition of the fermiog(x) [Eq. (A12)] we

fields have introduced an additional phase factor
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P=expird'd)=1-2d"d (A13)

to ensure thaty(x) anticommutes with the spin operat@3g

andASy written in terms of Majorana fermiong andd™ [cf.
Eqg. (21)]. The second equality in EqA13) holds because

d'd=0,1 at zero temperature. In the fermionic operators we
have defined above, the kinetic energy finally takes the

simple form given in Eq(22) while the backscattering part
of the Hamiltonian is

Ix

V2ma

_ Dy o= o)1
G MO 40178,

Hps= ($(0)+47(0))PS,

(Al14)

Using Egs.(A13) and (21), together with the commutation
relations for the operator$ andd, we can show thaPS,

=—iS, and PS,=—iS,. With these relations we recover
Eq. (23.

APPENDIX B: GREEN'S FUNCTIONS

Although this is rather standard materiakee, e.g., Ref.

25) we believe that it is useful to give a short derivation of

the Green'’s functions E@24). The Fourier transforms of the
impurity Green’s functionsG,(7)=—(T,a(7)a(0)) and
Gp(7)=—(T,b(7)b(0)) can conveniently be found from

the equations of motion. We will here only derive the corre-

lation function fora, the correlator fob can be found along
the same lines. The Hamiltoniad g, =Hyi,+Hps Of our
system is given in Eq922) and (23). The fieldsy andd
=a+ib [see Eq(21)] obey standard fermionic anticommu-
tation relations. Introducing the Majorana components of th
field  through zy(x,7)=[¢"(x,7)+¢(x,7)]/V2 and
Zo(x, 1) =[¢(x,7)— ¢ (x,7)]/(iV2) we see already from
the Hamiltonian in Eq(23) that a couples only toz,. We
introduce  the  additional  propagator G ,(x,7)
—(T,z,(x,7)a(0)). The equations of motion for the two
coupled correlator&,(7) andGZza(x,r) are

J
9,Ga(7)=— () +i Jzymezzam,ﬂ,
_ y
&TGZZa(x,T)z+|vFaXGZZa(x,7)—|\/Z_Wa&(x)Ga(r).

(B1)
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where the sum is over the fermionic Matsubara frequencies
wn,=(2n+1) 7/ B. To calculate the correlat@,(7) we only
need to understand the local physicxin0. The local equa-
tions of motion in Fourier space are

i 0,Ga(wy)=1—1 2—yGZZa(wn), (B3)
\ama
Gzza(wn):i Jy G(O)(wn)Ga(wn)- (84)
mTa

To alleviate the notation we have introduc&®(®(w,)
—i sgn(w,)/2ve . To find G w,) we Fourier transform
the free electron propagato®®(p,w,)=(iw,—vep) *
with regard top and take the limitx— 0. Furthermore, we
have definedSZza(wn) = GZza(xz 0,w,).

Substituting Eq.(B4) into Eq. (B3) we can solve for
G,(w,) and obtain

1
" iwp+il,sgnwy)

Ga(wp) (B5)
After an analytic continuationw,—w+i8 we recover
Eq. (24).

APPENDIX C: MAPPING TO THE KONDO MODEL
IN THE SMALL TRANSMISSION LIMIT

In this Appendix first we want to fill in the gaps between
Eqg. (61) and the Kondo Hamiltonian Ed62). Let us con-
sider the tunneling part of the effective Hamiltonian. The
first term takes an electron from the 2DEG and transfers it to
the QD, the projection operatdP, makes sure that the
charge on the dot iQ=0 before the tunneling takes place.

®he second term takes an electron from the dot to the lead. In

our truncated system this process is allowed only when the
charge on the dot iQ=1. This restriction is implemented
through the operatoP,. The main goal of the following
manipulations will be to show the equivalence of the Hamil-
tonian Eq.(61) to a Kondo Hamiltonian.

To explicitly account for the charge on the dot we make
the replacementd)—|®)|Q). Here|®) is any state of our
system with charg® on the dot. The values @ are limited
to Q=0,1 and the statg®)=|0) and|Q)=|1) can be con-
sidered as the basis of a two-dimensional vector space. How-
ever, the produc{®) Q) is no tensor product since the
charge of the dot is of course not independent of the system’s
state. The statfQ) should rather be considered as an auxil-
iary label to|®). In addition to introducing the lab¢R) we
make the replacement

To solve these equations it is best to go to Fourier space

making use of the relations

Ga(7)= B <

eiiwnTGa(wn)a

1 dp . .
Gzza(XrT):_E Jze_lwnﬁ—lpxezza(pawn)v (B2

@n

v ;,1‘1’ fr,opo—> ‘I';,l‘l’ a,oS+ )

¥ oW, PVl W, S (CD

in Eq. (61). HereS" andS™ are pseudospin ladder operators
acting only on the charge pdi®).

Since S"|Q=1)=0 and S"|Q=0)=0 these operators
ensure in the same way as the projection oper&g@and P
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that only transitions between states wih=0 and Q=1

PHYSICAL REVIEW B 65 165338

dospin operators again have nothing to do with the true spin

take place. In addition the char@@ on the dot is adjusted of the electrons but are related to the location of an electron

whenever a tunneling process takes place sBic®)=|1)

(a=0 for an electron in the 2DEGy=1 for an electron in

andS~|1)=|0). We would like to emphasize again that only the QD). Introducing the definition of these pseudospins into
the combinations of pseudospin ladder operators and hopzq. (C3) finally leads us to Eq(62).

ping operators introduced above are meaningful sii@p
and|®) are not independent.

Finally, we want to show that in this limit the bosoniza-
tion approach does not allow us to precisely build a pseu-

To get rid of the remaining projection operators dospin operator describing the dot from the original tunnel

in Eg. (61) we rewrite @UP;) as [eU(Py+P;)/2
+eU(P,—Pgy)/2]. We observe that

(P1=Pg)|0)=*10),

(P1=Pg)|1)=+]1). (C2

This leads us to identifyR,— Pg) with 2S, and P+ Py)

with the identity operator on the space spanned®yand
|1). Here we used that for thecomponentS, of the pseu-
dospin we haves,|1)=|1)/2 andS,|0) = —|0)/2. Gathering
all terms we can rewrite the effective Hamiltonian K1)

as

Hetr=(Hgn+Hign) +€U(2S,+1)/2
+ 2 (|t0'|\I,Z-1\P008++|tU|\PZ-O\PU18_)-
o=1,2 ' ' ' '

(C3

We now introduce an additional pseudospin operafd(ix)
via

+ _pt
So’ - \I"U,OWU,l’

s, =V W, (C4)

Hamiltonian. For simplicity, we restrict the discussion to the
case of spinless fermions, i.e., we ignore the spin index
The main problem we encounter is that>at0 we have
open boundaries, implying tha¥,(0)=¥,(0)=0. Intro-
ducing right (R) and left (L) movers as in Eq(6), this is
equivalent to write, e.g., for the do¥/; g(0)+ ¥, (0)=0.
This has the effect to pin thecharge fields ¢, and ¢, at
x=0: ¢1(0)= ¢o(0)=/m/2. Therefore, this provides us

:I_i iV70,(0)
¥ ,p(0) \/_e B (CH

2ma

From the form of the tunnel terrfwhich can be rewritten
either with W, g or with ¥;,) we would be tempted to ex-
plicitly build the pseudospin operator in the dot*’as

SJr:‘I'I,R/L(O)v
S =V (0),

S,=W]g (0) W1 (0)—-1/2. (C6)

However, due to th@penboundary condition ak=0, the
fermion operatorV'; g, at x=0 now only depends on the
superfluid phas@l.29 Then,S* would commute witrs, and

thenS would not be a guantum spin object. The only way to

where the matrices™ = o4+ i o, are standard combinations proceed in order to recover tleorrecj Kondo mapping is
of Pauli matrices. It is important to note that these pseuto introduce the extra labéQ).
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