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Interface electronic states and boundary conditions for envelope functions
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The envelope-function method with generalized boundary conditions is applied to the description of local-
ized and resonant interface states. A complete set of phenomenological conditions that restrict the form of
connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical
coefficients in the connection rules play the role of material parameters that characterize an internal structure
of every particular heterointerface. As an illustration we present the derivation of the most general connection
rules for the one-band effective mass and four-band Kane models. The conditions for the existence of Tamm-
like localized interface states are established. It is shown that a nontrivial form of the connection rules can also
result in the formation of resonant states. The most transparent manifestation of such states is the resonant
tunneling through a single-barrier heterostructure.
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I. INTRODUCTION they work quite well for GaAs/Al_,GaAs heteropair, but
fail to describe properly more complicated situatiéfisThe

Over 50 years the effective-mass or envelope-functiorfailure of the standard boundary conditions was also explic-
method is widely used to describe physical properties oftly demonstrated for a number of particular microscopic
various spatially inhomogeneous semiconductor systemsnodels of heterostructurést®
Originally the envelope-function approach was developed A natural phenomenological way to take into account the
for external potentials that vary slowly on the atomic scale. above-mentioned results is to relax the assumption of appli-
Nonetheless the application of this method to semiconductagability of Eq. (1) near an interface and to allow for the
nanostructures with microscopically abrupt heterointerfacesliscontinuity of both, the envelops and their first derivatives.
is commonly accepted and frequently gives unexpectedlypue to the superposition principle, wave functions at oppo-
good results. site sides of the interface must be connected by a linear re-

The central question to the effective-mass method in theation. Assuming locality of this relation, we arrive at the
context of heterostructure applications is how to connect enfollowing connection rules:
velopes at a heterointerface. The simplest and historically the
first connection rules follow from the assumption that the
effective Schrdinger equation for the envelope function
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) . . o whereT;;=T is the transfer matrix. Boundary conditions of
is valid everywhere in space, and any abrupt variation otne form Eq.(3) were introduced by Ando and Mori for the
material parameters can be viewed as a limit of smooth funcyne-pand effective-mass modellater they were also
tion. This assumption allows one to obtain boundary condiyqgpted to different miltiband models that describand X
tions by integrating Eq(1) over an infinitesimally small dis-  ~onduction band&:'2 degenerate heavy-hole and light-hole
tance across the interfat@s a result we get the connection valence band® and conduction and valence bands within

rules? the spherical Kane approximatidf.
(+0)=(—0) The transfer-matrix approach unifies all possible bound-
4 =y ' ary conditions that have been suggested in the literdfare

JH particular examples see Refs. 7,15 18 fact, the standard
=— (2)  boundary conditions, Eq2), are described by the diagonal
p; transfer matrix:-T{1=1, T1,=T,;=0 and Too,=m(—0)/m

(p, is the component of momentum perpendicular to the in{+0); T matrix with T;3=1, T;,=0 and T,;#0 corre-
terface which are commonly called the standard orsponds to the introduction of as-function interface
BenDaniel-Duke boundary conditions. For the one-bandotential**~*®if only off-diagonal elements contribute to
effective-mass model the boundary conditions, B, are  the transfer matrix we obtain “inverted” boundary
reduced to the continuity af and (1m)d,i, wheremis the conditions® (see also Ref.)5 which hold with a high accu-
effective mass. Obviously, the standard connection rules caacy for Gasb/InAs interfacesetc. In general, all compo-
not be universal, since they contain only bulk parameters ofients of the transfer matriX can be nonzero. They reflect
materials that constitute the heterojunction and thus cominternal structure of the heterointerface and cannot be ex-
pletely neglect internal properties of the interface. In fact,pressed in terms of only bulk parameters. For different par-

v (+0)=0,(—0), v,
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ticular cases components ®f matrix were calculated using fects that come from the complex structure of boundary con-
empirical tight-binding and/or pseudopotential ditions. For example, in multiband models the off-diagonal

approache&l 1320 elementT,; (which is equivalent to an interface potentia)

The general connection rules, E®), can be rigorously 1S respoggizglée for the interface heavy-light Hland ' — X
justified within the generalized effective-mass thedn?® electrort**** mixing. In the present paper we concentrate

This approach leads to a set of integral-differential equationS" Ia ?g;;ri_f_’tior;ﬁgf dinterfacte [[ocaaliﬁed "’!”f' reson]:':mlt s'E[ates.
for envelope functions that are defined using a single Bloch n am emonstrated the existence ol e'ectronic

basis for the whole structure. The coefficients in these equasitates localized at a surface of a semiconductor. It is quite

tions and, therefore, the envelopes, are smooth and Continnatural to expect that similar localized states with energies

. ) . . Miside the forbidden gap can occur at an abrupt heterojunc-
ous functions even for a system with microscopically abrupttion_ Such a possibility was qualitatively considered by

interfaces. Near an interface the coefficients depend on Mijame and later by Zhu and Kroem&.In Ref. 36 the
croscopic details of the interface. Normally a perturbation,gyistence of interface donor states was postulated to explain

which is causgd by the.interface, .is localized <_':1t the atomignomalous transport properties of undoped InAs/AISb
scale. Hence, if we are interested in the behavior of envelogyantum-well structures. However, general conditions for
functions on the scale which is larger than the lattice conpccurrence of interface states remained unclear for a long
stant, we can use extrapolated bulk envelopes instead of thgne. This problem was addressed in Ref. 37 and recently in
exact envelop functions. Though the exact envelopes arref. 38 using the tight-binding approach. Since the effective-
smooth and continuous, the extrapolated functions obey gemass method is of extreme importance for heterostructure
eral connection rules, Eq3), with parameters that depend applications, it is desirable to have a description of interface
on details of the interfac®. The regular calculation of the states in terms of envelope functions.
transfer matrix using the generalized effective-mass It is known that envelope-function models with the stan-
theory?>=228 i an extremely tedious task. However this dard boundary conditions possess interface stdf@d-ow-
theory can be considered as a foundation for the phenomenever the corresponding energy levels always lie in the region
logical introduction of the transfer matrix. of band offsets outside the energy gap of a

In this paper we follow such a phenomenological ap-heterojunctiorf’.g"‘OAn interesting exception is the formation
proach and develop a general method for construction of thef localized states at heterojunctions with band
transfer matrix(Sec. 1). Namely, we assume that the differ- inversion®**142These states have a topological nature and
ential equatior(or system of equationsEg. (1), with piece- are related to the supersymmetry of an inverse cofitact.
wise smooth coefficients is not applicable at interface points In Sec. Il of our paper we show that different types of
[which are the points of discontinuity of the coefficients in interface states, which have energies in the forbidden gap,
Eg. (1)]. The HamiltoniarH in Eqg. (1) is defined on a space can be described using generalized connection rules. We ap-
of piecewise smooth and continuous functions with lineaply the boundary conditions derived in Sec. Il to the one-
connection rules at the points of discontinuity. We show thaband effective-mass model and to the four-band Kane model
the Hermiticity of the Hamiltonian on this space of functions that describd’-point states in Ill-V semiconductors. We de-
imposes the first set of restrictions on the form of connectiorfive general conditions for the existence of interface states,
rules. A particular consequence of these restrictions is thand discuss the physical meaning of the off-diagonal compo-
conservation of the flow at the interface. Similar methodol-nents in the transfer matrix. In Sec. IV we study a scattering
ogy, which can be found in quantum mechanics text bdks, problem and demonstrate the existence of resonant states and
has been recently applied to the one-band effective-magesonant tunneling through a single barrier stricture, which
model with a general form of the kinetic-energy operafor. are related to nonzero off-diagonal elements in the transfer
The second set of restrictions follows from the symmetry—matrix. In Sec. V we summarize our results.
the transfer matrix must be invariant with respect to transfor-
mations of the interface symmetry group. These two sets of
restrictions strongly reduce the number of components in the
transfer matrix. The rest of matrix along with band offsets ~ To establish a general form of connection rules we con-
should be considered as empirical parameters, which are déider the standard statement of a problem within the
fined from experimentsee for example Ref. 3Gand/orab  €nvelope-function approach that is to find eigen functions
initio calculations. The method developed in Sec. Il is¥(r) and eigen value& of a Hamilton operatoH. Let, as
closely related to the common method of invaridhthat  usual, the Hamiltoniaii be a second-order matrix differen-
allows to construct effectivek-p Hamiltonians for bulk tial operator
semiconductors using only Hermiticity and symmetry re-
quirements. H=Ho(r) = 3M 9,35+l 40, (4

The general connection rules, E@®), allow to describe
various physical consequences of nontrivial internal detailsvhereHgy(r), M,z, andL, are mXxXm Hermitian matrixes
of a heterointerface. It has been demonstrated in Ref. 30 thaind «, 8=X,y,z. We assume that the growth direction of a
the use of general boundary conditions removes quantitativetructure coincides witlz axis and the system is spatially
discrepancies between square well calculations andomogeneous ix-y plane. In this case wave functions take
experiment! There are also more transparent qualitative efthe formy(r)=e'*."y(z) (k, is the momentum perpendicu-

Il. GENERAL APPROACH AND BASIC EQUATIONS
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lar to z axis). The function#(z) is a solution to the one-
dimensional Schidinger equation with the Hamiltonian

H,=h(z)— yd>+iPa,, (5
where
h(Z): HO(r)_ %MaﬁkLakLﬁ_FiLakLou
')’:%MZZi (6)

P=L,+iM K, .

We consider a system that consistshbfegions with differ-
ent material parameters and introduce notatpns andz,
for the left and the right boundaries of thmgh region
=1,... N). Assume thah(z) is a piecewise smooth func-
tion of z, whereasy andP are piecewise constant functions.
In the nth region @,_,<z<z,) matricesh(z), y and P,
respectively, take the valuds,(z), y,, and P,, where
h,(z) is a smooth and continuous function, amg and P,
are constants.

Let Wi be the space of functiong(z), which are piece-
wise smooth and square integrable on every intepjal
<z<z,. Besides, at every poing, values ¥(z,+0),
d,4(z,+0), and ¥(z,—0), d,¥(z,—0) are connected by
linear relations

( ‘//(Zn+0) _ lﬂ(Zn—O) ) 7
Gz 0)] "\ a2, 0) ) "
whereT, (n=1, ... N) are 2nX2m matrixes.

The differential operatoH,, Eq. (5), is well defined on
the spacéV;, but not necessarily Hermitian. The Hermitic-

ity condition imposes a restriction on a possible form of the

transfer matriced .
By the definition the operatoH, is Hermitian on the
spaceWr if

I=<‘P|Hz|¢>_<¢|Hz|(P *=0, (8)
wheree andy belong toWW; . Matrix elements in Eq(8) are
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N

=i >, A {PTIVY, (12)
n=1

where A {®FJW¥} is a jump of the quantityp “JW¥ at the

point z=z,,

Af®TIV}=D"(2,+0)IV¥(z,+0)
-®*(z,—0)J¥(z,—0).
The Hermiticity conditionl =0 is fulfilled if
A{®FIV}=0
for every boundary and any pair of functiogisand ¢ from
Wr. Using the definition of transfer matrixes, E(), we
arrive at the Hermiticity condition of the following form:

‘]n:TrTJm—lTni (13

which means the invariance of the “current” operatbun-
der the transfer across a discontinuity point.

To simplify formulas, we consider bellow a system with a
single boundary at=0, which separates lefn=1=L) and
right (n=2=R) regions. Hence the connection rules, Eq.
(7), take the form

YR(0)=T¥(0), (14)
where the transfer matriX must satisfy the following Her-
miticity condition:

J,=T"JT. (15

Another set of restrictions follows from the fact that the
matrix in Eq. (14) should be invariant with respect to the
symmetry groupG of the interface plane

D(g)TD Y(g)=T,

whereD(g) is 2mx 2m matrix that corresponds to an ele-
ment g of the groupG. Since #(0) and d,#(0) have the
same transformation properties with respect to operations of

defined as integrals over the whole structure with the pointshe interface symmetry grou@, matricesD (g) take a block

of discontinuity being excluded

N
<€D|H|Ir/j>:nzl fzn (P+[hn(z)_7na§+ipn&z]¢dz- 9

We assume for definiteness thaj= —«, zy=o, and ¢
(+»)=0. It is convenient to introducer@d-component vec-
%(2) ®(2)

tors
W:(azmz))‘ 40(2)

and a “current” operatod,, which acts on these vectors,

: (10

Pn
i ¥n
Integration by parts in Eg8) leads to the following expres-
sion for the quantityi:

—ivn
0

n

(11)

diagonal form

0
D(g)

wheremXx m matricesD(g) form a representatiotreducible
in general caseof the groupG in the basis that corresponds
to the bulk Hamiltonian Eq(4). Hence the symmetry re-
quirements can be written independently for evemxm
block Tj; (i,j=1,2) of the full transfer matrix,

D(9)

0 ; (16)

D<g>={

17

Equations(15) and (17) provide a complete set of phe-
nomenological requirements that restrict the form of the gen-
eral connection rules Eq14). All transfer matrices in Eq.
(14) that satisfy Eqs(15) and (17) irrespective of their par-
ticular structure provide current conservation at a heteroint-
erface. The structure af matrix contains information about

D(g)T;;D *(9)=Tj.
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A V@) kr=VBK{+q%,  g?=2mgV+(1-pB)kI. (23

Parameten in Eq. (23) describes a degree of the heteroint-
V.= erface asymmetry, which is related both to the band offset
7 and to the difference of effective masses.
Substitution of EQ.(22) into the boundary conditions
leads to the following dispersion equation fey :

0 2

tort ook
FIG. 1. One-band potential profile of the heterojuncticee VBKrE+qP=— S (24)
text. 1tk

It is natural to assume that the diagonal elements of the
natrix t are positive {;,>0t,,>0). In this case, Eq(24)
as real solutions only if,; and/ort,, are negative. There
are two types of solutions. Solutions of the first type corre-
spond to the casé&,;<0, t1,=0. The existence condition
takes the form

internal physical properties of the interface. In the following
section we present a solution of these equations for the on
band effective-mass model and the four-band Kane model.

lll. LOCALIZED TAMM-LIKE INTERFACE STATES
WITHIN THE ENVELOPE-FUNCTION APPROACH

A. One-band effective-mass approximation try (25)
——>q.
In this section we consider a single heterointerface located tiy a

at the pointz=0. The corresponding band diagram is shown

in Fig. 1. The one-band effective mass Hamiltonian takes th ; ) .
g |élr—1to the energy gap with an increase|tp,|. Equation(25)

hese states occur near the lowest band edge and move down

form . . . :
shows that the existence of such solutions is restricted by the
V2 value of the asymmetry parametgrEq. (23). It was men-
Hp=— erVn, (18 tioned in the Introduction that a nonzero elemssntcan be
n

modeled by an interface& potential. Negativet,; corre-
wheren=L,R andm_g andV, r are effective masses and sponds to an attractive interface potential. Hence(E5). is
potentials in the lef(L) and the right(R) bulk regions, re- analogous to the well-known condition for the existence of
spectively. The “current” operator, Eq11), for this modelis  bound states in a potential well with asymmetric barrféiis.
Jn=0y/2m, (o is the Pauli matrix Hence the Hermiticity m, #mg (8#1) the asymmetry parametey depends on

condition, Eq.(15), takes the form two-dimensional2D) momentumk, [see Eq.(23)]. There-
fore Eq. (25) defines a line ink, space, which separates
Bo,=T e T, B= E_ (19) localized 2D interface states and delocalized 3D continuum
Y v my states. Analogous 2D-3D transformations were recently stud-

ied in asymmetric quantum welfé.
Solutions of the second type are related to negative values
theix\//—g, (20) of the second off-diagonal elemeti,. They exist at arbi-

) ] o trary t,,<0 andt,;=0. At small negativet;, the energy
wherey is an arbitrary phase ands a real 2<2 matrix with  |eyels; which correspond to these states, lie deep in the for-
unit determinant bidden gap and approach the band edge with an increase in

_ _ [t15]. The solutions of the second type can be naturally
dett_tlltZZ_t12t21_1' (21) ; ..
: i viewed as states that originate from a low#sr example,
Let us study the localized solutions that are allowed byyajence band and move up with an increase in an effective
the boundary condition, Eq14), with the transfer matrix EQ.  jnterface potential. In Sec. 111 C we shall return to this point

(20). We assume for definiteness thef =0, andVe=V 54 discuss a possible interpretation of the elentgnin
>0 is a band offsetsee Fig. 1. Wave functions of interface terms of a local perturbation of remote bands.

states take the following general form: Obviously, the solutions of both types can coexist if both

The general solution to this equation is

Yr=Adkle "R 7>0 off-diagonal elements are negative.
Yy =Be*Ter?,  z<0. (22 B. Interface states in the four-band Kane model
The energy of the localized state is defined as To study interface states in multiband syster_ns and to il-
lustrate the importance of the symmetry requirements Eq.
KE kf (17), we consider the four-band Kane model, which de-
E=- 2m, + 2m,’ scribesI'-point states in 1lI-V zinc blend semiconductors

without spin-orbit splitting. We focus our attention on the
wherex?/2m__is the binding energy. Quantityg in Eq.(22)  conditions of formation of interface states. These conditions
is related tox, by the equation can be obtained witk, being taken zero, which is assumed

165328-4
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below. Specifically we consider a sindl@01) heterojunction
and find the interface states that originate frantine states
(k,=0). . . . _

It is convenient to introduce the following basis:

Db =A19)12) XXt (26)
1 : . . .
where|X.. )= E(|X>i |Y)). In this basis the\-line Hamil-
tonian takes a block diagonal fofth
H, O
Hn: 0 Hni 1 (27)

whereH{, andH'". are 2<2 matrices that correspond (8),
|Z), and|X,), |X_) pairs of states, respectivelyp€L,R)

2

d
Ecn__z Pnd;
) 2m,
Hsz: (92 ’
Pl Enmo
n
&2
HY=|E,,+ 2mz )I. (28)
vn

In Eqg. (28) E;, andE,, are the energies of conduction and

valence band edges, respectively, &nslthe 2X2 unit ma-
trix.

PHYSICAL REVIEW B5 165328

where diag(--) stands for the set of diagonal elements.
Straightforward calculations show that the general solution
to Eq. (17) with D(g) Eq. (30) takes the form

T, 0 0
T;=| 0 TL 0], (31
o o TI

whereT!, is an arbitrary 2 2 matrix andT"! are arbitrary
numbers. Consequently, pairs of statefS)(Z)) and
(IX,),|X_)) as well as the statgX, ) and|X_) are decou-
pled due to the symmetry requirements. It is worth mention-
ing that the solution, Eq31), to Eq.(17) for C5, interface
symmetry group is absolutely general and is valid for arbi-
trary 4x 4 Hamiltonian in the basis E¢26). For a particular
case of theA-line Kane Hamiltonian Eq(27), we get three
independent problems. Two of them correspond to the solu-
tion of two independent one-band Schimger equations
with general boundary conditiorisee Sec. Il A for decou-
pled |X,) and|X_) valence bands. It is worth mentioning
that if T #T" , which is allowed by the symmetry, the con-
nection rules, Eqg14), (29), (31), lead to a heavy-light hole
mixing. In fact, the connection rules

3,xr(0) = 9% (0) + T _hipy(0),

Uy v (0)=thx yR(0),

which are usetf to describe the heavy-light hole mixing at

(32)

First we establish the general form of boundary conditionghe normal hole incidence, represent a particular case of the

for this system. The transfer matrix
-’I\—ll -,I\—lZ

T=|. -
Tar T2

, (29

which enters the connection rules, E4), consists of four

4X 4 blocks. Every bIock'T'i]- (i,j=1,2) must satisfy the
symmetry conditions Eq17). The symmetry group of (001)
plane for zinc blend structure is the gro@, (Ref. 18
which has four elements: the unit elemé&qta second-order
axisC,, and two mutually perpendicular reflection plamgs

T matrix Eqgs.(29), and (31), with Tl =1, T1?=0 andT?
= - T2,1: T| —h-

To describe localized states that correspond to the sub-
space{|S),|Z)} we have to solve the two-band Sctilnger
equation with the Hamiltoniailg, Eq. (28). The boundary
conditions to this equation are defined via the transfer matrix
Te,, which has no symmetry restrictions since bifth and
|Z) correspond to the same representafigrof the interface
groupC,, .

To simplify further calculations we neglect the second-
derivative terms inHg,. This reduces the problem to the

ando,. This group has four classes and thus four irreduciblg®lution of two coupled first-order differential equations

representations. Each function from the seff, Eq. (26), is

the basis function for one of the irreducible representations.
Namely, functiongS) and|Z) correspond to the same rep-

resentatiorA;, whereas functiongX ) and|X_) are related

E.,—E
_Pn[?z

Pnd;

e g|#n2=0. 33

to the representatior®, andB,, respectively. Thus matrices Since the highest spatial derivative in E§3) is of the first

D(g)—which enter the symmetry conditions, EQL7)—
have a diagonal form in the basis E@6)

D(E)=diag1,1,1,1,
D(C,)=diag1,1—1,—1),
D(o,)=diag1,1,1~1), (30)

D(o,)=diag1,1—1,1),

order we should not include the derivatives of wave func-
tions in the boundary condition. Therefore, the transfer ma-

trix T, has only one nonzero»22 block Til=T,,, which is
restricted only by the Hermiticity condition. The “current”
operator for the problem EQ(33) takes the formJ;
=P;o, . Hence the Hermiticity condition, E15), formally
coincides with Eq(19)

PL

Y= P_R (34)

YOy= T;—zo-yTsz’
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T

(@)

(b)

R
R
ECR

V.

AF(x)

FI

max

¥

-
»
0 Xmin

FIG. 3. Dependencé&y vs x [see EQ.(40) in the texi. Solid
(dotted line showsFg(x) for the heterojunction of the (ll) type.

We analyze the solutions of E¢40) under the natural as-
sumption t;;>0 and t,,>0. We also assume thdE.g

FIG. 2. (@) Band digram for a heterojunction of the | typ) >Ec, i.e., the conduction-band offsét=E g~ E. is posi-

Band digram for a heterojunction of the Il type

tive (see Fig 2. Therefore, a heterointerface of the | type
[Fig. 1(a)] corresponds to the condition

The solution to Eq(34) is an arbitrary real X2 matrix with

fixed determinant and with an arbitrary phdsee Sec.

T,=te\y, dett=1.
Considering a localized interface solution
Ur uc
yr(2)=A| |7, 4y (2)=B| |e"
UR UL

we get the following dispersion equation:

F (E):tlz_tllFL(E)
R tor—taF L (E)’

where

vn

E.n—E

Fn(BE)=

The localized solution of the form E36) exists if the en-

1A E,r<E,L. (42)

whereas the inverse inequality
(35

E,r>EuL (43

holds if the heterostructure belongs to the Il tyjsee Fig.

36 201
First we consider heterointerfaces of the | type. In this
case the region of the energy daaded region in Fig.(3)]

E, <E<E.
37) maps to the region
O0<x<>

of the variablex. Whenx goes from 0 to», the function
(38 Fr(X) in the right-hand side of Eq40) monotonically in-
creases from

ergy E lies in the forbidden gap of the heterojunction Finin= V(EyL —Er)/ (Ecr— E,) (44)

maxE, ,E,rt<E<min{E. ,E.g},

atx=0 (which corresponds t&=E,, ) to the value

which is shown by shaded region in Fig. 2. It is convenient Frac— V(EcL— E,r)/ (Ecr— Ecl) (45)

to introduce a new variable

atx=x (E=E. ). The functionFg(x) for a heterojunction
of the I type is shown by solid line in Fig. 3. The behavior of

X(E)=F_ (E)= E _”EL (39)  the right-hand side in Eq40) depends on the signs of the
oL off-diagonal elements;, andt,;. The dispersion equation,
and rewrite the dispersion equation, Eg7), in the form Eq. (40), has real solutions if at least one of the off-diagonal
elements is positive. If;, andt,, have opposite signs there
Eoix)= 1o 12X 40 exists only one solution to E40).
RIX)= top—tyX’ (40 Let us analyze different cases separately.
) ) _ (i) t;2>0, t54<0. In this case the right-hand side in Eq.
where the functiorFg(x) is defined as follows: (40) is a decreasing function of A solution exists if
2
F 0= \/EUL EUR+X2(ECL EUR). (41) t_12> ﬂ:p N (46)
Ecr—E,L + X (Ecr— Ecr) ty Ecr=E,. ™
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This solution can be identified with an acceptor interfaceconsider a one-band model as the limit of the two-band
state that originates from the valence band and moves umodel with the following Hamiltonian:
from the edge of the valence bafg, to the edge of the

conduction band,, with an increase iry,. _|Ed(2)  Po, 9. O 5 4
(i) t51>0, t1,<0. A solution to Eq.40) exists under the | =Pd, E,(2) + 0 g, (2), (49)
following condition ] . ]
whereE(,)(2) describes the profile of the conductiéva-
toy [Ecr—EecL L Ien(_:e) band. The first term in Eq49) corresponds to bulk '
t_11> ﬁ: (Fma) ™ (47)  regions, whereas the second term models a local perturbation

caused by the interface.

This is a donor interface state originated from the conduction The boundary conditions for the two-component envelope
band. With an increase iy, the energy level, which corre- function can be obtained by the integration of the Sehro
sponds to this state, moves through the energy gap Egm dinger equation

toE,..

If the heterointerface belongs to the Il type, thEpg H v _E 4 (50
forms a lower bound of the energy geghaded region in Fig. o] T\
2(b)]. Hence the energy gap ] o
over a small segmeifit-a,a] and taking the limia—0. The
E,r<E<E. result of the integration takes the form

maps to the region

50— 0= Lim [* sz)02102

Xmin=V(E,r— E,)/(EcL— E,r) <X< a0~ ~a
in the x axis. e a
The functionFg(x) in Eg. (40) increases from zero at er(0)— ¢ (0)=— Flimf 8(z)y(z)dz
=Xmin (E=E,g) to the valueF) =F'  Eq. (45) atx=o a—0- 2
(E=Ec.). This function is shown by the dotted line in Fig. ysing the identity
3. Consequently, only the condition for the existence of the
acceptor state is changed. For the heterointerface of the II a 1
type, the existence condition, E¢6), is replaced by the f_a5(z) 0(2)dz=3

inequality
[6(2) is the Heaviside functiojwe arrive at the connection

tio,  [E,r—EuL rules
t]_]_ E E Xmln (48)

cL—

R YR tiy ta) (0
The condition for the existence of the donor state, @3), o) o tool Lo ) (51
remains unchanged. R 21 2l v
Acceptor and donor interface states coexisttjft,;  where
<tytes (t1,>0,t,;>0) and the condition§46) [Eq. (48) for
the ll-type structurgand(47) are fulfilled simultaneously. - _1—gCgU/4P2 (52
Y 1 gug, /4P
C. Physical meaning of the off-diagonal elements
- - in th? transfer matn)-( - | - g,/P B g9./P
In this section we discuss a possible interpretation of the b= apr T T T g.aap? (53
elementsT;, andT,; in the transfer matrix for the one-band 9e8u 9e9y
effective mass model. Equations(51)—(53) show that both off-diagonal elements

It is well knowr®!” that the element,, can be inter- for two-band model are reproduced by the simple interface
preted as an interfac@&function potential. Indeed, a nonzero term[Eg. (49)], though the transfer matrix in E¢1) is still
T, introduces a jump of the first derivative, which is pro- not of the most general forfcompare to Eq(35)]. We can
portional to the value of the wave function, exactly as analso clarify the physical meaning of the interface solutions
interfaceé potential does. The physical meaning of the secfor the two-band model which has been considered in Sec.
ond elementT, is less clealsee, for example, discussions Ill B. According to the results of Sec. Il B the interface so-
in Refs. 20,17, and 261In Sec. IIl A we have shown that lution of acceptor type exists if;, is positive. Positivet;,
there exist localized states that are related to nonZggo  corresponds to positivg, [see Eq.(53)] and, consequently,
These states behave as “acceptor” states that originate frono a local perturbation of the valence band, which is attrac-
remote lower bands. Therefore, it is natural to expect that théve for holes. Analogously, the solution of the donor type is
elementT 1, is related to a local perturbation of these remoterelated to a positive value ¢§;, which corresponds to nega-
bands though they are not explicitly included in the bulktive g, and a local perturbation of the conduction band, at-
one-band Hamiltonian. To confirm this interpretation wetractive for electrons.
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Let us derive the one-band model, which is related to the eikz 4 rke—ikz, a——
two-band Hamiltonian Eq49). If the energyE in Eq. (50) is W(z)= ikz (59
close to the edge of the conduction band ters, Z— + o,
where the wave vectde is related to the energy of the inci-
[E-Ec(2)l/A(2)=<1 dent waveE=k?/2m. Using the general connection rules,
(2A=E.—E, is the energy gapwe can express the lower Ed.(14), and performing straightforward calculations we ar-
component of the spinor in E@50) in terms of the upper rive at the following expression for the transparency coeffi-

component cientD=|t,|?:
@ P o2 54 D= 4k2k*{[ (k*T5,+ KT 5+ T3+ k?k?T3,) sinhkL
e(2)~— z—=9,4(2).
2A(Z) ’ +2K(T11T21+ k2T22T12)COSh(L]2+ 4k2K2}71,
The upper componenk(z) plays the role of the wave func- (60)
tion, which in the bulk regions satisfies the one-band Schro
dinger equation where
1 k=~/2mV—k.
_&Z%ﬁzl/l(Z):[E—EC(Z)]l/I(Z), (55

The transparencyD,, Eg. (60), has an explicit resonant

wherem(z)=A(z)/P? is the effective mass. Equatiab5) structure and turns into unity at the condition

should be supplemented by boundary conditions that are ob- )

tained by the substitution, E@54), to the connection rules tanhkl = — 21(TygTor+ K T2 1) 61)
[Eqg. (51)]. The final boundary conditions for the one-band K2T§l+ k2T§2+ T§l+ kzsziz'

model take the form

If L—oo, EQ.(61) has no solutions. However, the resonance
YR T T\ ¥ occurs if the width of the barriek becomes smaller than
= , (56) some critical valud_. and if at least one of the off-diagonal

2¥r) A\ Tar Taof |0 elements is negative.
with the following elements of the transfer matrix: To reveal the physical nature of the resonance condition,
Eq. (61), we consider the simplest nontrivial transfer matrix
oM 1—-9.9,/4P? 57 with only one nonzero off-diagonal element. Namely, we as-
Nmg 22 1+g.g,/4P?’ sume thatT,;=Tyx=1, T,=0, andT,;#0. This transfer

matrix corresponds to thé-function interface potential of
the strengthg=2mT,;. Since the resonant solution exists
= . (58 only for negativeT,;, we also assume that,;<<0. Under

1+9.9,/4P? the above assumptions the resonance condition(@. re-
duces to the equation

B 9,/2A, 2mMggc
1+9g.g,/4P2" %

Thus, the off-diagonal elemeift,, Eq. (57), is proportional
to the strengthg, of the local perturbation of the remote

valence band. A potential, which is attractive for holes, cor- tanhxl = 2k Tl _ (62)
responds to positivg, and thus negativé,,. This explains 2mV+ Tgl

the results of Sec. Il A and confirms our interpretation of the
interface state related to the elemdns.

12—

Introducing the following dimensionless variables:

IV. RESONANT TUNNELING THROUGH A SINGLE X= K =~/1— E, (63)
BARRIER WITH COMPLEX INTERFACES V2amvV \
As we have seen in Sec. Ill, a nontrivial internal structure Iy
of a single heterointerface, which is described by the gener- r= | Til/ y2mV (64)
alized boundary conditions, allows for the existence of local- 1+(|T21|/\/2m\/)2’
ized interface states. In this section we show that the inter-
ference effects in a system with more than one interface can [=Ly2mV, (65)

result in the formation of resonant interface state. The most

transparent manifestation of these states is the resonant tuff® transform Eq(62) to the form

neling through a single-barrier structure. We shall demon- tanhx| = 7x. (66)
strate this effect for the one-band effective-mass model.

Let us consider a single-barrier heterostructure with @Parameter in the right hand side in Eq66) cannot exceed
rectangular potential barrier of the heightand the widthL.  unity (r<1). In fact, the functionr(| T,,|/\2mV) [Eq. (64)]
The standard scattering solution to the Sdimger equation (see Fig. 4 reaches its maximum valug,,=1 at
is defined by the following asymptotic form of the wave

function: [Toal/V2mV=1. (67)
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TA up, reaches the the top of the barrier=V (x=0) atl=r,
and enters the over-the-barrier continuum.

The asymptotic form of the scattering solution, E59),
atk=—iq, ti;==*1 andr;,=0 exactly coincides with the
asymptotic form of a localized solution. Hence the condition
for the resonant transparency at zero enétgyy|=1 is, in
fact, the condition for appearance/disappearance of a local-
ized state(symmetric or antisymmetric Thus, the resonant
state is nothing but the localized stdt#bviously antisym-
> metric) pushed out of the band gap.

‘T21|/‘/2mv Now we are able to describe the evolution of both reso-

) — nant and localized states with the change of the barrier width
FIG. 4. Functional dependence ofon T,|/V2mV [Eq. (64)]. L at fixedV and|T,|. We consider separately two different
cases.

(i) |T2q/v2mV>1. At L—< there exist two degenerate
calized states that are related to the well-separated hetero-
interfaces. With a decrease linthe degeneracy is lifted and,
atL=L.=I./y/2mV, the upper state is pushed out of the
ﬁind gap to form the resonance. With a further decreake in

pendent of the presence or absence of bound states in the- reszonance moveszup and ETOSSES the top of ths barnler at
separate single interface. We shall see, however, that thegg~ 7V2MV. At L<7y2mVwe have no resonance, but only

resonances are closely related to the bound states, which e localized state. _ _
ist in the combined double-interface structure. (i) | Tql/2mV<1. At L>L, there exists neither local-

Under-the-barrier resonances correspond to the solutiorf4€d nor resonant state. The critical value L. corresponds
to Eq. (66) in the region 6<x<1 (0<E<V). Graphical [© the creation of the resonance-bound state pair. When
solution of Eq.(66) is illustrated in Fig. 5, where the func- becomes smaller tha. th_e resonance moves up and
tions 7x and tankl are plotted by dashed and solid lines, féaches the top of the barrier &t=72mV, whereas the
respectively. The required solution exists if paramdter localized state moves down into the energy gap.

which is proportional to the width of the barrier, satisfies the ~Thus in either case the resonant transparency is always
inequalities accompanied by the bound state. The resonance and the lo-

calized state can be qualitatively interpreted as antibonding
r<I<lg, (68 and bonding orbitals, respectively.

It is interesting to note that in the simple case of zero
elementT,, the resonant transparency of the single-barrier
structure has a clear counterpart in the classical electrody-
l.==In ) (69)  hamics. The corresponding system is a metallic slab, which

2 1-7 is covered on either side by dielectric layers. The metallic
region withe (w) <0 models the barrier, whereas the dielec-
tric coating corresponds to the attractive interface potential.
The resonant transparency of electromagnetic waves through
such a system has been described theoretfédfiyand ob-
served experimentally in Ref. 46. If both off-diagonal ele-
N ments are nonzero, the resononant tunneling through a
W ____ single-barrier heterostructure apparently has no optical
! s 1> analog.

I 1=1,
<<l V. CONCLUSION

N St

0

Note, that Eq.(67) defines the critical value ofT,,
which is required for the existence of the localized state a}
the single heterointerface. Indeed, Eg5) shows that the 0
interface bound state exists|if,|/y2mV>1. Since the be-
havior of solutions to Eq(66) is governed by the parameter
7, the existence of the under-the-barrier resonances is ind

wherel . is the solution to the equation tahk 7

1 1+~

Figure 5 shows that with a decreaseliwe first meet the
resonance condition &t 1. . The solutionx=1 corresponds
to the resonant transparen®,=1 at zero energye=0.
With the further decrease ihthe resonance energy moves

It it commonly accepted that the effects of a microscopic
structure of a heterointerface can be incorporated into the
envelope-function method by the use of generalized connec-
tion rules. Such connection rules are normally formulated in
terms of the interface transfer matrix. In this paper we pre-
sented the general method that allows to construct the trans-
fer matrix for an arbitrary system. We showed that the Her-
miticity of the Hamiltonian and the symmetry of the
interface plane impose the restrictions on the form of the

FIG. 5. Graphical solution of the equation taa7x [Eq. (66)],  transfer matrix. These restrictions can be formulated as a set
which defines the behavior of the under-the-barrier resonance.  of equations for components of the transfer matrix. Solution

I<t

|
|
I
I
I
I
I
I
I
I
I
I
d
1

0 X
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of these equations defines the general form of the boundaipe generalized boundary conditions. Identification of these
conditions for a given interface. To illustrate this approachparameters using the results of experimentalinitio cal-

we considered the one-band and four-band envelope-functiogulations is by far not a simple task. We believe, however,

models and established the conditions for the existence ahat the physical effects that have been described in our pa-
Tamm-like localized interface states. We have also demorper and which originate solely from the nontrivial structure

strated that in a system with more than one heterointerfacgf the boundary conditions, could be helpful in resolving this
there exists a possibility for new physical effects, such as thgroplem.

resonant tunneling through a single potential barrier.

In this paper we did not discuss the application of our
general results to particular heterostructures, which often re-
quires a consideration of multiband Hamiltonians with the
spin-orbit interaction and in-plane dispersion being taken This work has been supported by Russian Federal Pro-
into account and deserves a separate publicéfitiiis, how-  gram “Integratsiya” and Russian Program “Physics of Solid
ever, more important that such an application also requires 8tate Nanostructures.” I.T. is grateful to the Alexander von
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