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Interface electronic states and boundary conditions for envelope functions
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The envelope-function method with generalized boundary conditions is applied to the description of local-
ized and resonant interface states. A complete set of phenomenological conditions that restrict the form of
connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical
coefficients in the connection rules play the role of material parameters that characterize an internal structure
of every particular heterointerface. As an illustration we present the derivation of the most general connection
rules for the one-band effective mass and four-band Kane models. The conditions for the existence of Tamm-
like localized interface states are established. It is shown that a nontrivial form of the connection rules can also
result in the formation of resonant states. The most transparent manifestation of such states is the resonant
tunneling through a single-barrier heterostructure.
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I. INTRODUCTION

Over 50 years the effective-mass or envelope-funct
method is widely used to describe physical properties
various spatially inhomogeneous semiconductor syste
Originally the envelope-function approach was develop
for external potentials that vary slowly on the atomic sca1

Nonetheless the application of this method to semicondu
nanostructures with microscopically abrupt heterointerfa
is commonly accepted and frequently gives unexpecte
good results.2

The central question to the effective-mass method in
context of heterostructure applications is how to connect
velopes at a heterointerface. The simplest and historically
first connection rules follow from the assumption that t
effective Schro¨dinger equation for the envelope functio
c(r )

Hc~r !5Ec~r ! ~1!

is valid everywhere in space, and any abrupt variation
material parameters can be viewed as a limit of smooth fu
tion. This assumption allows one to obtain boundary con
tions by integrating Eq.~1! over an infinitesimally small dis-
tance across the interface.3 As a result we get the connectio
rules4,2

c~10!5c~20!,

v̂zc~10!5 v̂zc~20!, v̂z5
]H

]pz
, ~2!

(pz is the component of momentum perpendicular to the
terface! which are commonly called the standard
BenDaniel-Duke boundary conditions. For the one-ba
effective-mass model the boundary conditions, Eq.~2!, are
reduced to the continuity ofc and (1/m)]zc, wherem is the
effective mass. Obviously, the standard connection rules
not be universal, since they contain only bulk parameters
materials that constitute the heterojunction and thus c
pletely neglect internal properties of the interface. In fa
0163-1829/2002/65~16!/165328~10!/$20.00 65 1653
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they work quite well for GaAs/Al12xGaxAs heteropair, but
fail to describe properly more complicated situations.5,6 The
failure of the standard boundary conditions was also exp
itly demonstrated for a number of particular microscop
models of heterostructures.7–10

A natural phenomenological way to take into account
above-mentioned results is to relax the assumption of ap
cability of Eq. ~1! near an interface and to allow for th
discontinuity of both, the envelops and their first derivativ
Due to the superposition principle, wave functions at opp
site sides of the interface must be connected by a linear
lation. Assuming locality of this relation, we arrive at th
following connection rules:

S c~10!

]zc~10!
D 5S T11 T12

T21 T22
D S c~20!

]zc~20!
D , ~3!

whereTi j [T̂ is the transfer matrix. Boundary conditions o
the form Eq.~3! were introduced by Ando and Mori for th
one-band effective-mass model.5 Later they were also
adopted to different miltiband models that describeG andX
conduction bands,11,12 degenerate heavy-hole and light-ho
valence bands,13 and conduction and valence bands with
the spherical Kane approximation.14

The transfer-matrix approach unifies all possible bou
ary conditions that have been suggested in the literature~for
particular examples see Refs. 7,15–19!. In fact, the standard
boundary conditions, Eq.~2!, are described by the diagona
transfer matrix:T1151, T125T2150 and T225m(20)/m
(10); T̂ matrix with T1151, T1250 and T21Þ0 corre-
sponds to the introduction of ad-function interface
potential;7,16–18 if only off-diagonal elements contribute t
the transfer matrix we obtain ‘‘inverted’’ boundar
conditions19 ~see also Ref. 5!, which hold with a high accu-
racy for GaSb/InAs interface;5 etc. In general, all compo
nents of the transfer matrixT̂ can be nonzero. They reflec
internal structure of the heterointerface and cannot be
pressed in terms of only bulk parameters. For different p
©2002 The American Physical Society28-1
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ticular cases components ofT̂ matrix were calculated using
empirical tight-binding and/or pseudopotenti
approaches.11–13,20

The general connection rules, Eq.~3!, can be rigorously
justified within the generalized effective-mass theory.21–25

This approach leads to a set of integral-differential equati
for envelope functions that are defined using a single Bl
basis for the whole structure. The coefficients in these eq
tions and, therefore, the envelopes, are smooth and con
ous functions even for a system with microscopically abr
interfaces. Near an interface the coefficients depend on
croscopic details of the interface. Normally a perturbati
which is caused by the interface, is localized at the ato
scale. Hence, if we are interested in the behavior of enve
functions on the scale which is larger than the lattice c
stant, we can use extrapolated bulk envelopes instead o
exact envelop functions. Though the exact envelopes
smooth and continuous, the extrapolated functions obey g
eral connection rules, Eq.~3!, with parameters that depen
on details of the interface.26 The regular calculation of the
transfer matrix using the generalized effective-ma
theory21–23,26 is an extremely tedious task. However th
theory can be considered as a foundation for the phenom
logical introduction of the transfer matrix.

In this paper we follow such a phenomenological a
proach and develop a general method for construction of
transfer matrix~Sec. II!. Namely, we assume that the diffe
ential equation~or system of equations!, Eq. ~1!, with piece-
wise smooth coefficients is not applicable at interface po
@which are the points of discontinuity of the coefficients
Eq. ~1!#. The HamiltonianH in Eq. ~1! is defined on a spac
of piecewise smooth and continuous functions with line
connection rules at the points of discontinuity. We show t
the Hermiticity of the Hamiltonian on this space of functio
imposes the first set of restrictions on the form of connect
rules. A particular consequence of these restrictions is
conservation of the flow at the interface. Similar method
ogy, which can be found in quantum mechanics text book27

has been recently applied to the one-band effective-m
model with a general form of the kinetic-energy operato28

The second set of restrictions follows from the symmetry
the transfer matrix must be invariant with respect to trans
mations of the interface symmetry group. These two set
restrictions strongly reduce the number of components in
transfer matrix. The rest ofT̂ matrix along with band offsets
should be considered as empirical parameters, which are
fined from experiment~see for example Ref. 30! and/orab
initio calculations. The method developed in Sec. II
closely related to the common method of invariants29 that
allows to construct effectivek•p Hamiltonians for bulk
semiconductors using only Hermiticity and symmetry
quirements.

The general connection rules, Eq.~3!, allow to describe
various physical consequences of nontrivial internal det
of a heterointerface. It has been demonstrated in Ref. 30
the use of general boundary conditions removes quantita
discrepancies between square well calculations
experiment.31 There are also more transparent qualitative
16532
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fects that come from the complex structure of boundary c
ditions. For example, in multiband models the off-diagon
elementT21 ~which is equivalent to an interfaced potential!
is responsible for the interface heavy-light hole18 andG2X
electron12,32,33 mixing. In the present paper we concentra
on a description of interface localized and resonant state

In 1932 Tamm34 demonstrated the existence of electron
states localized at a surface of a semiconductor. It is q
natural to expect that similar localized states with energ
inside the forbidden gap can occur at an abrupt heteroju
tion. Such a possibility was qualitatively considered
James35 and later by Zhu and Kroemer.16 In Ref. 36 the
existence of interface donor states was postulated to exp
anomalous transport properties of undoped InAs/Al
quantum-well structures. However, general conditions
occurrence of interface states remained unclear for a l
time. This problem was addressed in Ref. 37 and recentl
Ref. 38 using the tight-binding approach. Since the effecti
mass method is of extreme importance for heterostruc
applications, it is desirable to have a description of interfa
states in terms of envelope functions.

It is known that envelope-function models with the sta
dard boundary conditions possess interface states.39,40 How-
ever the corresponding energy levels always lie in the reg
of band offsets outside the energy gap of
heterojunction.39,40An interesting exception is the formatio
of localized states at heterojunctions with ba
inversion.39,41,42These states have a topological nature a
are related to the supersymmetry of an inverse contact.41

In Sec. III of our paper we show that different types
interface states, which have energies in the forbidden g
can be described using generalized connection rules. We
ply the boundary conditions derived in Sec. II to the on
band effective-mass model and to the four-band Kane mo
that describeG-point states in III-V semiconductors. We de
rive general conditions for the existence of interface sta
and discuss the physical meaning of the off-diagonal com
nents in the transfer matrix. In Sec. IV we study a scatter
problem and demonstrate the existence of resonant state
resonant tunneling through a single barrier stricture, wh
are related to nonzero off-diagonal elements in the tran
matrix. In Sec. V we summarize our results.

II. GENERAL APPROACH AND BASIC EQUATIONS

To establish a general form of connection rules we c
sider the standard statement of a problem within
envelope-function approach that is to find eigen functio
c(r ) and eigen valuesE of a Hamilton operatorH. Let, as
usual, the HamiltonianH be a second-order matrix differen
tial operator

H5H0~r !2 1
2 Mab]a]b1 iL a]a , ~4!

whereH0(r ), Mab , and La are m3m Hermitian matrixes
and a,b5x,y,z. We assume that the growth direction of
structure coincides withz axis and the system is spatiall
homogeneous inx-y plane. In this case wave functions tak
the formc(r )5eik'rc(z) (k' is the momentum perpendicu
8-2
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lar to z axis!. The functionc(z) is a solution to the one
dimensional Schro¨dinger equation with the Hamiltonian

Hz5h~z!2g]z
21 iP]z , ~5!

where

h~z!5H0~r !2 1
2 Mabk'ak'b1 iL ak'a ,

g5 1
2 Mzz, ~6!

P5Lz1 iM azk'a .

We consider a system that consists ofN regions with differ-
ent material parameters and introduce notationszn21 andzn
for the left and the right boundaries of thenth region (n
51, . . . ,N). Assume thath(z) is a piecewise smooth func
tion of z, whereasg andP are piecewise constant function
In the nth region (zn21,z,zn) matricesh(z), g and P,
respectively, take the valueshn(z), gn , and Pn , where
hn(z) is a smooth and continuous function, andgn and Pn
are constants.

Let WT be the space of functionsc(z), which are piece-
wise smooth and square integrable on every intervalzn21
,z,zn . Besides, at every pointzn values c(zn10),
]zc(zn10), and c(zn20), ]zc(zn20) are connected by
linear relations

S c~zn10!

]zc~zn10!
D 5TnS c~zn20!

]zc~zn20!
D , ~7!

whereTn (n51, . . . ,N) are 2m32m matrixes.
The differential operatorHz , Eq. ~5!, is well defined on

the spaceWT , but not necessarily Hermitian. The Hermiti
ity condition imposes a restriction on a possible form of t
transfer matricesTn .

By the definition the operatorHz is Hermitian on the
spaceWT if

I 5^wuHzuc&2^cuHzuw&* 50, ~8!

wherew andc belong toWT . Matrix elements in Eq.~8! are
defined as integrals over the whole structure with the po
of discontinuity being excluded

^wuHuc&5 (
n51

N E
zn21

zn
w1@hn~z!2gn]z

21 iPn]z#cdz. ~9!

We assume for definiteness thatz052`, zN5`, and c
(6`)50. It is convenient to introduce 2m-component vec-
tors

C5S c~z!

]zc~z!
D , F5S w~z!

]zw~z!
D , ~10!

and a ‘‘current’’ operatorJn , which acts on these vectors,

Jn5F Pn 2 ign

ign 0 G . ~11!

Integration by parts in Eq.~8! leads to the following expres
sion for the quantityI:
16532
ts

I 5 i (
n51

N

Dn$F
1JC%, ~12!

whereDn$F
1JC% is a jump of the quantityF1JC at the

point z5zn ,

Dn$F
1JC%5F1~zn10!JC~zn10!

2F1~zn20!JC~zn20!.

The Hermiticity conditionI 50 is fulfilled if

Dn$F
1JC%50

for every boundary and any pair of functionsc andw from
WT . Using the definition of transfer matrixes, Eq.~7!, we
arrive at the Hermiticity condition of the following form:

Jn5Tn
1Jn11Tn , ~13!

which means the invariance of the ‘‘current’’ operatorJ un-
der the transfer across a discontinuity point.

To simplify formulas, we consider bellow a system with
single boundary atz50, which separates left (n515L) and
right (n525R) regions. Hence the connection rules, E
~7!, take the form

CR~0!5TCL~0!, ~14!

where the transfer matrixT must satisfy the following Her-
miticity condition:

Jr5T1JlT. ~15!

Another set of restrictions follows from the fact that theT
matrix in Eq. ~14! should be invariant with respect to th
symmetry groupG of the interface plane

D̂~g!TD̂21~g!5T,

whereD̂(g) is 2m32m matrix that corresponds to an ele
ment g of the groupG. Sincec(0) and ]zc(0) have the
same transformation properties with respect to operation
the interface symmetry groupG, matricesD̂(g) take a block
diagonal form

D̂~g!5FD~g! 0

0 D~g!
G , ~16!

wherem3m matricesD(g) form a representation~reducible
in general case! of the groupG in the basis that correspond
to the bulk Hamiltonian Eq.~4!. Hence the symmetry re
quirements can be written independently for everym3m
block Ti j ( i , j 51,2) of the full transfer matrixT,

D~g!Ti j D
21~g!5Ti j . ~17!

Equations~15! and ~17! provide a complete set of phe
nomenological requirements that restrict the form of the g
eral connection rules Eq.~14!. All transfer matrices in Eq.
~14! that satisfy Eqs.~15! and ~17! irrespective of their par-
ticular structure provide current conservation at a hetero
erface. The structure ofT matrix contains information abou
8-3
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internal physical properties of the interface. In the followi
section we present a solution of these equations for the
band effective-mass model and the four-band Kane mod

III. LOCALIZED TAMM-LIKE INTERFACE STATES
WITHIN THE ENVELOPE-FUNCTION APPROACH

A. One-band effective-mass approximation

In this section we consider a single heterointerface loca
at the pointz50. The corresponding band diagram is sho
in Fig. 1. The one-band effective mass Hamiltonian takes
form

Hn52
¹2

2mn
1Vn , ~18!

wheren5L,R and mL,R and VL,R are effective masses an
potentials in the left~L! and the right~R! bulk regions, re-
spectively. The ‘‘current’’ operator, Eq.~11!, for this model is
Jn5sy/2mn (sy is the Pauli matrix!. Hence the Hermiticity
condition, Eq.~15!, takes the form

bsy5T1syT, b5
mR

mL
. ~19!

The general solution to this equation is

T5teixAb, ~20!

wherex is an arbitrary phase andt is a real 232 matrix with
unit determinant

dett5t11t222t12t2151. ~21!

Let us study the localized solutions that are allowed
the boundary condition, Eq.~14!, with the transfer matrix Eq
~20!. We assume for definiteness thatVL50, and VR5V
.0 is a band offset~see Fig. 1!. Wave functions of interface
states take the following general form:

cR5Aeik're2kRz, z.0

cL5Beik'rekLz, z,0. ~22!

The energy of the localized state is defined as

E52
kL

2

2mL
1

k'
2

2mL
,

wherekL
2/2mL is the binding energy. QuantitykR in Eq. ~22!

is related tokL by the equation

FIG. 1. One-band potential profile of the heterojunction~see
text!.
16532
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kR5AbkL
21q2, q252mRV1~12b!k'

2 . ~23!

Parameterq in Eq. ~23! describes a degree of the heteroin
erface asymmetry, which is related both to the band off
and to the difference of effective masses.

Substitution of Eq.~22! into the boundary conditions
leads to the following dispersion equation forkL :

AbkL
21q252

t211t22kL

t111t12kL
. ~24!

It is natural to assume that the diagonal elements of
matrix t are positive (t11.0,t22.0). In this case, Eq.~24!
has real solutions only ift21 and/or t12 are negative. There
are two types of solutions. Solutions of the first type cor
spond to the caset21,0, t12>0. The existence condition
takes the form

2
t21

t11
.q. ~25!

These states occur near the lowest band edge and move
into the energy gap with an increase inut21u. Equation~25!
shows that the existence of such solutions is restricted by
value of the asymmetry parameterq, Eq. ~23!. It was men-
tioned in the Introduction that a nonzero elementt21 can be
modeled by an interfaced potential. Negativet21 corre-
sponds to an attractive interface potential. Hence Eq.~25! is
analogous to the well-known condition for the existence
bound states in a potential well with asymmetric barriers.43 If
mLÞmR (bÞ1) the asymmetry parameterq depends on
two-dimensional~2D! momentumk' @see Eq.~23!#. There-
fore Eq. ~25! defines a line ink' space, which separate
localized 2D interface states and delocalized 3D continu
states. Analogous 2D-3D transformations were recently s
ied in asymmetric quantum wells.44

Solutions of the second type are related to negative va
of the second off-diagonal elementt12. They exist at arbi-
trary t12,0 and t21>0. At small negativet12 the energy
levels, which correspond to these states, lie deep in the
bidden gap and approach the band edge with an increas
ut12u. The solutions of the second type can be natura
viewed as states that originate from a lower~for example,
valence! band and move up with an increase in an effect
interface potential. In Sec. III C we shall return to this po
and discuss a possible interpretation of the elementt12 in
terms of a local perturbation of remote bands.

Obviously, the solutions of both types can coexist if bo
off-diagonal elements are negative.

B. Interface states in the four-band Kane model

To study interface states in multiband systems and to
lustrate the importance of the symmetry requirements
~17!, we consider the four-band Kane model, which d
scribesG-point states in III-V zinc blend semiconducto
without spin-orbit splitting. We focus our attention on th
conditions of formation of interface states. These conditio
can be obtained withk' being taken zero, which is assume
8-4



d

n

)

bl

n
-

s

ts.
ion

n-

bi-

olu-

g
-

t
the

ub-

trix

d-
e

c-
a-

’’

INTERFACE ELECTRONIC STATES AND BOUNDARY . . . PHYSICAL REVIEW B65 165328
below. Specifically we consider a single~001! heterojunction
and find the interface states that originate fromD-line states
(k'50).

It is convenient to introduce the following basis:

$x j%5$uS&,uZ&,uX1&,uX2&%, ~26!

whereuX6&5
1

A2
(uX&6uY&). In this basis theD-line Hamil-

tonian takes a block diagonal form29

Hn5FHsz
n 0

0 H6
n G , ~27!

whereHsz
n andH6

n are 232 matrices that correspond touS&,
uZ&, anduX1&, uX2& pairs of states, respectively, (n5L,R)

Hsz
n 5F Ecn2

]z
2

2mn

Pn]z

2Pn]z Evn2
]z

2

2mn8

G ,

H6
n 5S Evn1

]z
2

2mvn
D I . ~28!

In Eq. ~28! Ecn andEvn are the energies of conduction an
valence band edges, respectively, andI is the 232 unit ma-
trix.

First we establish the general form of boundary conditio
for this system. The transfer matrix

T5F T̂11 T̂12

T̂21 T̂22
G , ~29!

which enters the connection rules, Eq.~14!, consists of four
434 blocks. Every blockT̂i j ( i , j 51,2) must satisfy the
symmetry conditions Eq.~17!. The symmetry group of (001
plane for zinc blend structure is the groupC2v ~Ref. 18!
which has four elements: the unit elementE, a second-order
axisC2, and two mutually perpendicular reflection planess1
ands2. This group has four classes and thus four irreduci
representations. Each function from the set$x j%, Eq. ~26!, is
the basis function for one of the irreducible representatio
Namely, functionsuS& and uZ& correspond to the same rep
resentationA1, whereas functionsuX1& anduX2& are related
to the representationsB1 andB2, respectively. Thus matrice
D(g)—which enter the symmetry conditions, Eq.~17!—
have a diagonal form in the basis Eq.~26!

D~E!5diag~1,1,1,1!,

D~C2!5diag~1,1,21,21!,

D~s1!5diag~1,1,1,21!, ~30!

D~s2!5diag~1,1,21,1!,
16532
s

e

s.

where diag(•••) stands for the set of diagonal elemen
Straightforward calculations show that the general solut
to Eq. ~17! with D(g) Eq. ~30! takes the form

T̂i j 5F T̂sz
i j 0 0

0 T1
i j 0

0 0 T2
i j
G , ~31!

where T̂sz
i j is an arbitrary 232 matrix andT6

i j are arbitrary
numbers. Consequently, pairs of states (uS&,uZ&) and
(uX1&,uX2&) as well as the statesuX1& anduX2& are decou-
pled due to the symmetry requirements. It is worth mentio
ing that the solution, Eq.~31!, to Eq. ~17! for C3v interface
symmetry group is absolutely general and is valid for ar
trary 434 Hamiltonian in the basis Eq.~26!. For a particular
case of theD-line Kane Hamiltonian Eq.~27!, we get three
independent problems. Two of them correspond to the s
tion of two independent one-band Schro¨dinger equations
with general boundary conditions~see Sec. III A! for decou-
pled uX1& and uX2& valence bands. It is worth mentionin
that if T1

i j ÞT2
i j , which is allowed by the symmetry, the con

nection rules, Eqs.~14!, ~29!, ~31!, lead to a heavy-light hole
mixing. In fact, the connection rules

]zcXR~0!5]zcXL~0!1Tl 2hcY~0!,

cX,YL~0!5cX,YR~0!, ~32!

which are used18 to describe the heavy-light hole mixing a
the normal hole incidence, represent a particular case of
T matrix Eqs.~29!, and ~31!, with T6

j j 51, T6
1250 andT1

21

52T2
215Tl 2h .

To describe localized states that correspond to the s
space$uS&,uZ&% we have to solve the two-band Schro¨dinger
equation with the HamiltonianHsz Eq. ~28!. The boundary
conditions to this equation are defined via the transfer ma
T̂sz, which has no symmetry restrictions since bothuS& and
uZ& correspond to the same representationA1 of the interface
groupC2v .

To simplify further calculations we neglect the secon
derivative terms inHsz. This reduces the problem to th
solution of two coupled first-order differential equations

FEcn2E Pn]z

2Pn]z Evn2EGcn~z!50. ~33!

Since the highest spatial derivative in Eq.~33! is of the first
order we should not include the derivatives of wave fun
tions in the boundary condition. Therefore, the transfer m
trix T̂sz has only one nonzero 232 blockTsz

11[Tsz, which is
restricted only by the Hermiticity condition. The ‘‘current
operator for the problem Eq.~33! takes the form Jj
5Pjsy . Hence the Hermiticity condition, Eq.~15!, formally
coincides with Eq.~19!

gsy5Tsz
1syTsz, g5

PL

PR
. ~34!
8-5
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The solution to Eq.~34! is an arbitrary real 232 matrix with
fixed determinant and with an arbitrary phase~see Sec. III A!

Tsz5teixAg, dett51. ~35!

Considering a localized interface solution

cR~z!5AS uR

vR
D e2kRz, cL~z!5BS uL

vL
D ekLz, ~36!

we get the following dispersion equation:

FR~E!5
t122t11FL~E!

t222t21FL~E!
, ~37!

where

Fn~E!5AE2Evn

Ecn2E
. ~38!

The localized solution of the form Eq.~36! exists if the en-
ergy E lies in the forbidden gap of the heterojunction

max$EvL ,EvR%,E,min$EcL ,EcR%,

which is shown by shaded region in Fig. 2. It is convenie
to introduce a new variable

x~E!5FL~E!5AE2EvL

EcL2E
~39!

and rewrite the dispersion equation, Eq.~37!, in the form

FR~x!5
t122t11x

t222t21x
, ~40!

where the functionFR(x) is defined as follows:

FR~x!5AEvL2EvR1x2~EcL2EvR!

EcR2EvL1x2~EcR2EcL!
. ~41!

FIG. 2. ~a! Band digram for a heterojunction of the I type;~b!
Band digram for a heterojunction of the II type
16532
t

We analyze the solutions of Eq.~40! under the natural as
sumption t11.0 and t22.0. We also assume thatEcR
.EcL , i.e., the conduction-band offsetV5EcR2EcL is posi-
tive ~see Fig 2!. Therefore, a heterointerface of the I typ
@Fig. 1~a!# corresponds to the condition

EvR,EvL , ~42!

whereas the inverse inequality

EvR.EvL ~43!

holds if the heterostructure belongs to the II type@see Fig.
2~b!#.

First we consider heterointerfaces of the I type. In th
case the region of the energy gap@shaded region in Fig. 2~a!#

EvL,E,EcL

maps to the region

0,x,`

of the variablex. When x goes from 0 to`, the function
FR(x) in the right-hand side of Eq.~40! monotonically in-
creases from

Fmin
I 5A~EvL2EvR!/~EcR2EvL! ~44!

at x50 ~which corresponds toE5EvL) to the value

Fmax
I 5A~EcL2EvR!/~EcR2EcL! ~45!

at x5` (E5EcL). The functionFR(x) for a heterojunction
of the I type is shown by solid line in Fig. 3. The behavior
the right-hand side in Eq.~40! depends on the signs of th
off-diagonal elementst12 and t21. The dispersion equation
Eq. ~40!, has real solutions if at least one of the off-diagon
elements is positive. Ift12 and t21 have opposite signs ther
exists only one solution to Eq.~40!.

Let us analyze different cases separately.
~i! t12.0, t21<0. In this case the right-hand side in E

~40! is a decreasing function ofx. A solution exists if

t12

t22
.AEvL2EvR

EcR2EvL
5Fmin

I . ~46!

FIG. 3. DependenceFR vs x @see Eq.~40! in the text#. Solid
~dotted! line showsFR(x) for the heterojunction of the I~II ! type.
8-6
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This solution can be identified with an acceptor interfa
state that originates from the valence band and moves
from the edge of the valence bandEvL to the edge of the
conduction bandEcL with an increase int12.

~ii ! t21.0, t12<0. A solution to Eq.~40! exists under the
following condition

t21

t11
.AEcR2EcL

EcL2EvR
5~Fmax

I !21. ~47!

This is a donor interface state originated from the conduc
band. With an increase int21 the energy level, which corre
sponds to this state, moves through the energy gap fromEcL
to EvL .

If the heterointerface belongs to the II type, thenEvR
forms a lower bound of the energy gap@shaded region in Fig
2~b!#. Hence the energy gap

EvR,E,EcL

maps to the region

xmin[A~EvR2EvL!/~EcL2EvR!,x,`

in the x axis.
The functionFR(x) in Eq. ~40! increases from zero atx

5xmin (E5EvR) to the valueFmax
II 5Fmax

I Eq. ~45! at x5`
(E5EcL). This function is shown by the dotted line in Fig
3. Consequently, only the condition for the existence of
acceptor state is changed. For the heterointerface of th
type, the existence condition, Eq.~46!, is replaced by the
inequality

t12

t11
.AEvR2EvL

EcL2EvR
5xmin . ~48!

The condition for the existence of the donor state, Eq.~47!,
remains unchanged.

Acceptor and donor interface states coexist ift12t21
,t11t22 (t12.0,t21.0) and the conditions~46! @Eq. ~48! for
the II-type structure# and ~47! are fulfilled simultaneously.

C. Physical meaning of the off-diagonal elements
in the transfer matrix

In this section we discuss a possible interpretation of
elementsT12 andT21 in the transfer matrix for the one-ban
effective mass model.

It is well known20,17 that the elementT21 can be inter-
preted as an interfaced-function potential. Indeed, a nonzer
T21 introduces a jump of the first derivative, which is pr
portional to the value of the wave function, exactly as
interfaced potential does. The physical meaning of the s
ond elementT12 is less clear~see, for example, discussion
in Refs. 20,17, and 26!. In Sec. III A we have shown tha
there exist localized states that are related to nonzeroT12.
These states behave as ‘‘acceptor’’ states that originate f
remote lower bands. Therefore, it is natural to expect that
elementT12 is related to a local perturbation of these remo
bands though they are not explicitly included in the bu
one-band Hamiltonian. To confirm this interpretation w
16532
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consider a one-band model as the limit of the two-ba
model with the following Hamiltonian:

H5F Ec~z! P]z

2P]z Ev~z!
G1Fgc 0

0 gv
Gd~z!, ~49!

whereEc(v)(z) describes the profile of the conduction~va-
lence! band. The first term in Eq.~49! corresponds to bulk
regions, whereas the second term models a local perturba
caused by the interface.

The boundary conditions for the two-component envelo
function can be obtained by the integration of the Sch¨-
dinger equation

HS c

w
D 5ES c

w
D ~50!

over a small segment@2a,a# and taking the limita→0. The
result of the integration takes the form

cR~0!2cL~0!5
gv

P
lim
a→0

E
2a

a

d~z!w~z!dz,

wR~0!2wL~0!52
gc

P
lim
a→0

E
2a

a

d~z!c~z!dz.

Using the identity

E
2a

a

d~z!u~z!dz5
1

2

@u(z) is the Heaviside function# we arrive at the connection
rules

S cR

wR
D 5S t11 t12

t21 t22
D S cL

wL
D , ~51!

where

t115t225
12gcgv/4P2

11gcgv/4P2
, ~52!

t125
gv /P

11gcgv/4P2
, t2152

gc /P

11gcgv/4P2
. ~53!

Equations~51!–~53! show that both off-diagonal elemen
for two-band model are reproduced by the simple interfa
term @Eq. ~49!#, though the transfer matrix in Eq.~51! is still
not of the most general form@compare to Eq.~35!#. We can
also clarify the physical meaning of the interface solutio
for the two-band model which has been considered in S
III B. According to the results of Sec. III B the interface s
lution of acceptor type exists ift12 is positive. Positivet12
corresponds to positivegv @see Eq.~53!# and, consequently
to a local perturbation of the valence band, which is attr
tive for holes. Analogously, the solution of the donor type
related to a positive value oft21, which corresponds to nega
tive gc and a local perturbation of the conduction band,
tractive for electrons.
8-7
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Let us derive the one-band model, which is related to
two-band Hamiltonian Eq.~49!. If the energyE in Eq. ~50! is
close to the edge of the conduction band

uE2Ec~z!u/D~z!!1

(2D5Ec2Ev is the energy gap!, we can express the lowe
component of the spinor in Eq.~50! in terms of the upper
component

w~z!'2
P

2D~z!
]zc~z!. ~54!

The upper componentc(z) plays the role of the wave func
tion, which in the bulk regions satisfies the one-band Sch¨-
dinger equation

2]z

1

2m
]zc~z!5@E2Ec~z!#c~z!, ~55!

wherem(z)5D(z)/P2 is the effective mass. Equation~55!
should be supplemented by boundary conditions that are
tained by the substitution, Eq.~54!, to the connection rules
@Eq. ~51!#. The final boundary conditions for the one-ba
model take the form

S cR

]zcR
D 5S T11 T12

T21 T22
D S cL

]zcL
D , ~56!

with the following elements of the transfer matrix:

T115
mL

mR
T225

12gcgv/4P2

11gcgv/4P2
, ~57!

T1252
gv/2DL

11gcgv/4P2
, T215

2mRgc

11gcgv/4P2
. ~58!

Thus, the off-diagonal elementT12, Eq. ~57!, is proportional
to the strengthgv of the local perturbation of the remot
valence band. A potential, which is attractive for holes, c
responds to positivegv and thus negativeT12. This explains
the results of Sec. III A and confirms our interpretation of t
interface state related to the elementT12.

IV. RESONANT TUNNELING THROUGH A SINGLE
BARRIER WITH COMPLEX INTERFACES

As we have seen in Sec. III, a nontrivial internal structu
of a single heterointerface, which is described by the ge
alized boundary conditions, allows for the existence of loc
ized interface states. In this section we show that the in
ference effects in a system with more than one interface
result in the formation of resonant interface state. The m
transparent manifestation of these states is the resonant
neling through a single-barrier structure. We shall dem
strate this effect for the one-band effective-mass model.

Let us consider a single-barrier heterostructure with
rectangular potential barrier of the heightV and the widthL.
The standard scattering solution to the Schro¨dinger equation
is defined by the following asymptotic form of the wav
function:
16532
e

b-

-
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r-
n

st
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-

a

c~z!5H eikz1r ke
2 ikz, z→2`

tke
ikz, z→1`,

~59!

where the wave vectork is related to the energy of the inc
dent waveE5k2/2m. Using the general connection rule
Eq. ~14!, and performing straightforward calculations we a
rive at the following expression for the transparency coe
cient Dk5utku2:

Dk54k2k2$@~k2T11
2 1k2T22

2 1T21
2 1k2k2T12

2 !sinhkL

12k~T11T211k2T22T12!coshkL#214k2k2%21,

~60!

where

k5A2mV2k2.

The transparencyDk , Eq. ~60!, has an explicit resonan
structure and turns into unity at the condition

tanhkL52
2k~T11T211k2T22T12!

k2T11
2 1k2T22

2 1T21
2 1k2k2T12

2
. ~61!

If L→`, Eq. ~61! has no solutions. However, the resonan
occurs if the width of the barrierL becomes smaller than
some critical valueLc and if at least one of the off-diagona
elements is negative.

To reveal the physical nature of the resonance condit
Eq. ~61!, we consider the simplest nontrivial transfer matr
with only one nonzero off-diagonal element. Namely, we
sume thatT115T2251, T1250, and T21Þ0. This transfer
matrix corresponds to thed-function interface potential of
the strengthg52mT21. Since the resonant solution exis
only for negativeT21, we also assume thatT21,0. Under
the above assumptions the resonance condition, Eq.~61!, re-
duces to the equation

tanhkL5
2kuT21u

2mV1T21
2

. ~62!

Introducing the following dimensionless variables:

x5
k

A2mV
5A12

E

V
, ~63!

t52
uT21u/A2mV

11~ uT21u/A2mV!2
, ~64!

l 5LA2mV, ~65!

we transform Eq.~62! to the form

tanhxl5tx. ~66!

Parametert in the right hand side in Eq.~66! cannot exceed
unity (t<1). In fact, the functiont(uT21u/A2mV) @Eq. ~64!#
~see Fig. 4! reaches its maximum valuetmax51 at

uT21u/A2mV51. ~67!
8-8
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Note, that Eq.~67! defines the critical value ofuT21u,
which is required for the existence of the localized state
the single heterointerface. Indeed, Eq.~25! shows that the
interface bound state exists ifuT21u/A2mV.1. Since the be-
havior of solutions to Eq.~66! is governed by the paramete
t, the existence of the under-the-barrier resonances is i
pendent of the presence or absence of bound states in
separate single interface. We shall see, however, that t
resonances are closely related to the bound states, whic
ist in the combined double-interface structure.

Under-the-barrier resonances correspond to the solut
to Eq. ~66! in the region 0,x,1 (0,E,V). Graphical
solution of Eq.~66! is illustrated in Fig. 5, where the func
tions tx and tanhxl are plotted by dashed and solid line
respectively. The required solution exists if parameterl,
which is proportional to the width of the barrier, satisfies t
inequalities

t, l , l c , ~68!

wherel c is the solution to the equation tanhlc5t

l c5
1

2
ln

11t

12t
. ~69!

Figure 5 shows that with a decrease inl we first meet the
resonance condition atl 5 l c . The solutionx51 corresponds
to the resonant transparencyDk51 at zero energyE50.
With the further decrease inl the resonance energy move

FIG. 4. Functional dependence oft on uT21u/A2mV @Eq. ~64!#.

FIG. 5. Graphical solution of the equation tanhxl5tx @Eq. ~66!#,
which defines the behavior of the under-the-barrier resonance.
16532
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up, reaches the the top of the barrierE5V (x50) at l 5t,
and enters the over-the-barrier continuum.

The asymptotic form of the scattering solution, Eq.~59!,
at k52 iq, t iq561 and r iq50 exactly coincides with the
asymptotic form of a localized solution. Hence the conditi
for the resonant transparency at zero energyutk50u51 is, in
fact, the condition for appearance/disappearance of a lo
ized state~symmetric or antisymmetric!. Thus, the resonan
state is nothing but the localized state~obviously antisym-
metric! pushed out of the band gap.

Now we are able to describe the evolution of both re
nant and localized states with the change of the barrier w
L at fixedV and uT21u. We consider separately two differen
cases.

~i! uT21u/A2mV.1. At L→` there exist two degenerat
localized states that are related to the well-separated he
interfaces. With a decrease inL the degeneracy is lifted and
at L5Lc5 l c /A2mV, the upper state is pushed out of th
band gap to form the resonance. With a further decreaseL
the resonance moves up and crosses the top of the barr
L5tA2mV. At L,tA2mV we have no resonance, but on
the localized state.

~ii ! uT21u/A2mV,1. At L.Lc there exists neither local
ized nor resonant state. The critical valueL5Lc corresponds
to the creation of the resonance-bound state pair. WheL
becomes smaller thanLc the resonance moves up an
reaches the top of the barrier atL5tA2mV, whereas the
localized state moves down into the energy gap.

Thus in either case the resonant transparency is alw
accompanied by the bound state. The resonance and th
calized state can be qualitatively interpreted as antibond
and bonding orbitals, respectively.

It is interesting to note that in the simple case of ze
elementT12 the resonant transparency of the single-barr
structure has a clear counterpart in the classical electro
namics. The corresponding system is a metallic slab, wh
is covered on either side by dielectric layers. The meta
region with«(v),0 models the barrier, whereas the diele
tric coating corresponds to the attractive interface poten
The resonant transparency of electromagnetic waves thro
such a system has been described theoretically45,46 and ob-
served experimentally in Ref. 46. If both off-diagonal el
ments are nonzero, the resononant tunneling throug
single-barrier heterostructure apparently has no opt
analog.

V. CONCLUSION

It it commonly accepted that the effects of a microsco
structure of a heterointerface can be incorporated into
envelope-function method by the use of generalized conn
tion rules. Such connection rules are normally formulated
terms of the interface transfer matrix. In this paper we p
sented the general method that allows to construct the tr
fer matrix for an arbitrary system. We showed that the H
miticity of the Hamiltonian and the symmetry of th
interface plane impose the restrictions on the form of
transfer matrix. These restrictions can be formulated as a
of equations for components of the transfer matrix. Solut
8-9
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of these equations defines the general form of the bound
conditions for a given interface. To illustrate this approa
we considered the one-band and four-band envelope-func
models and established the conditions for the existence
Tamm-like localized interface states. We have also dem
strated that in a system with more than one heterointerf
there exists a possibility for new physical effects, such as
resonant tunneling through a single potential barrier.

In this paper we did not discuss the application of o
general results to particular heterostructures, which often
quires a consideration of multiband Hamiltonians with t
spin-orbit interaction and in-plane dispersion being tak
into account and deserves a separate publication.47 It is, how-
ever, more important that such an application also require
knowledge of phenomenological parameters that enter
16532
ry
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on
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n-
ce
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r
e-

n

a
to

the generalized boundary conditions. Identification of th
parameters using the results of experiments orab initio cal-
culations is by far not a simple task. We believe, howev
that the physical effects that have been described in our
per and which originate solely from the nontrivial structu
of the boundary conditions, could be helpful in resolving th
problem.
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