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Superconductor coupled to two Luttinger liquids as an entangler for electron spins

Patrik Recher and Daniel Loss
Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

~Received 17 December 2001; published 10 April 2002!

We consider ans-wave superconductor~SC! which is tunnel coupled to two spatially separated Luttinger-
liquid ~LL ! leads. We demonstrate that such a setup acts as an entangler, i.e., it creates spin singlets of two
electrons which are spatially separated, thereby providing a source of electronic Einstein-Podolsky-Rosen
pairs. We show that in the presence of a bias voltage, which is smaller than the energy gap in the SC, a
stationary current of spin-entangled electrons can flow from the SC to the LL leads due to Andreev tunneling
events. We discuss two competing transport channels for Cooper pairs to tunnel from the SC into the LL leads.
On the one hand, the coherent tunneling of two electrons into the same LL lead is shown to be suppressed by
strong LL correlations compared to single-electron tunneling into a LL. On the other hand, the tunneling of two
spin-entangled electrons into different leads is suppressed by the initial spatial separation of the two electrons
coming from the same Cooper pair. We show that the latter suppression depends crucially on the effective
dimensionality of the SC. We identify a regime of experimental interest in which the separation of two
spin-entangled electrons is favored. We determine the decay of the singlet state of two electrons injected into
different leads caused by the LL correlations. Although the electron is not a proper quasiparticle of the LL, the
spin information can still be transported via the spin-density fluctuations produced by the injected spin-
entangled electrons.

DOI: 10.1103/PhysRevB.65.165327 PACS number~s!: 73.40.Gk, 71.10.Pm
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I. INTRODUCTION

Pairwise and nonlocal entangled quantum states, so-ca
Einstein-Podolsky-Rosen~EPR! pairs,1 represent the funda
mental resource for quantum communication2 schemes like
dense coding, quantum teleportation, or quantum
distribution;3 more fundamentally, they can be used to t
Bell’s inequalities.4 Experiments tested Bell’s inequalities5

dense coding,6 and quantum teleportation7,8 using photons,
but to date no experiments formassiveparticles like elec-
trons in a solid-state environment exist. This is so becaus
is difficult, first, to produce entangled electrons and also
detect them afterward in a controlled way due to other e
trons interacting with the entangled pair. On the other ha
the spin of an electron was pointed out to be a most nat
candidate for a quantum bit~qubit!.9,10 This idea was also
supported by experiments which showed unusually lo
dephasing times for electron spins in semiconductors~ap-
proaching microseconds! and phase-coherent transport up
100 mm.11–13 In addition, the electron also possesses
charge which makes it well suited for transporting the s
information.14,15 Further, the Coulomb interaction betwee
the electron charges can be exploited to spatially separat
spin-entangled electrons, resulting in electronic EPR pa
As first pointed out in Refs. 14 and 15, such electronic E
pairs can be used for testing Bell inequalities and for qu
tum communication schemes in the solid state. The first s
toward this goal is to have a scheme by which the electr
can be reliably entangled. One possibility is to use coup
quantum dots.14,15Alternatively, we recently proposed an e
tangler device16 which creates mobile and nonlocal spi
entangled electrons, consisting of ans-wave superconducto
~SC!, where the electrons are correlated in Cooper pairs w
spin-singlet wave functions.17 The SC is tunnel coupled via
two quantum dots in the Coulomb blockage regime18 to two
0163-1829/2002/65~16!/165327~13!/$20.00 65 1653
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spatially separated Fermi-liquid leads. By applying a bias
stationary current of spin-entangled electrons can flow fr
the SC to the leads. The quantum dots are used to med
the necessary interaction between the two electrons initi
forming a Cooper pair in the SC, so that the two electro
tunnel preferably not into the same lead but instead into
ferent leads. This entangler then satisfies all requirement
detect entanglement via the current noise in a beam spl
setup.15 It is straightforward to formulate spin measuremen
for testing Bell inequalities~it is most promising to measur
spin via charge9,19,20!. We refer to related work,21–23 which
also made use of Andreev tunneling, but in a regime oppo
to the one considered in Ref. 16 and here, where
superconductor/normal interface is transparent and no C
lomb blockade nor strong correlations are present.

In the present work we propose and discuss an alterna
realization of an entangler which is based on strongly int
acting one-dimensional wires which show a Luttinger-liqu
~LL ! behavior. In comparison to our earlier proposal w
quantum dots,16 we now replace the Coulomb blockade b
havior of the dots by strong correlations of the LL. We
known examples for LL candidates are carbon nanotube24

The low-energy excitations of these LL’s are collecti
charge and spin modes rather than quasiparticles, which
semble free electrons as they exist in a Fermi liquid. A
consequence, the single-electron tunneling into a LL is s
pressed by strong correlations. The question then arises q
naturally of whether these strong correlations can even
ther suppress the coherent tunneling oftwo electrons into the
same LL, as provided by a correlated two-particle tunnel
event~Andreev tunneling!, so that the two electrons prefe
ably separate and tunnel into different LL leads. It turns o
that the answer is positive. To address this question we
troduce a setup consisting of ans-wave SC which is weakly
tunnel coupled to the center~bulk! of two spatially separated
©2002 The American Physical Society27-1
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one-dimensional wires 1 and 2 described as Luttinger
uids, see Fig. 1 and 2. In this model we calculate the stat
ary current generated by the tunneling of a singlet~spin-
entangled electrons!, transferred from the SC into two
separate leads~nonlocal process! or into the same lead~local
process!, 1 or 2. We show that the ratio of these two com
peting current channels depends on the system parame
and that it can be made large in order to have the des
injection of the two electrons in two separate leads, whe
again, the two spins, forming a singlet, are entangled in s
space while separated in orbital space, and therefore re
sent an electronic EPR pair. It is well known that the tunn
ing of single electrons into LL’s is suppressed compared
that in Fermi liquids due to strong many-body correlatio
In addition, we now find that subsequent tunneling of a s
ond electron into the same LL is further suppressed, agai
a characteristic interaction-dependent power law, provi
the applied voltage bias between the SC and the LL is m
smaller than the energy gapD in the SC so that single
electron tunneling is suppressed. The two-particle tunne
event is strongly correlated within the uncertainty time\/D,
characterizing the time delay between subsequent tunne
events of the two electrons of the same Cooper pair. In o

FIG. 1. A possible implementation of the entangler setup: T
quantum wires 1 and 2, described as infinitely long Luttinger l
uids ~LL !, are deposited on top of ans-wave superconductor~SC!
with a chemical potentialmS . The electrons of a Cooper pair ca
tunnel by means of an Andreev process from two pointsr1 and r2

on the SC to the center~bulk! of the two quantum wires 1 and 2
respectively with a tunneling amplitudet0. The interaction between
the leads is assumed to be negligible.

FIG. 2. An alternative implementation of the proposed entang
setup: two quantum wires 1 and 2, with a chemical potentialm l ,
described as infinitely long Luttinger liquids~LL !, are tunnel
coupled with an amplitudet0 from two pointsx1 and x2 to two
points r1 and r2 of a superconducting~SC! tip with a chemical
potentialmS .
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words, the second electron of a Cooper pair is incluenced
the existence of its preceding partner electron already pre
in the LL. This effect can also be interpreted as a Coulo
blockade effect, similar to what occurs in quantum dots
tached to a SC.25,16 Similar Coulomb blockade effects als
occur in a mesoscopic chiral LL within a quantum d
coupled to macroscopic chiral LL edge states in the fr
tional quantum Hall regime.26 There the Coulomb-blockade
like energy gap is quantized in units of the noninteract
energy-level spacing of the quantum dot, and its existenc
therefore a finite-size effect, whereas in the present case
will see that the suppression comes from strong correlati
in a two-particle tunneling event which is present even in
infinitely long LL as considered here. On the other hand
the two electrons of a Cooper pair tunnel to different lea
they will preferably tunnel from different pointsr1 andr2 of
the SC, with a distancedr5r12r2 due to the spatial sepa
ration of the leads; see Figs. 1 and 2. We find that the cur
is exponentially suppressed if the distancedr exceeds the
coherence lengthj of a Cooper pair on the SC. This limita
tion poses no severe experimental restriction, sincej is on
the order of micrometers for typicals-wave materials, anddr
can be assumed to be on the order of nanometers. St
power-law suppression}1/(kFdr )2, with kF being the Fermi
wave vector in the SC, remains and is more relevant.
show, however, that in lower dimensions of the SC this s
pression is less pronounced~with smaller powers!. Further,
we then discuss the decay in time of a spin-singlet s
injected into two LL’s, one electron in each lead, due to t
interaction present in the LL, and find a characteristic pow
law decay in time at zero temperature. Despite this deca
the singlet state, spin information can still be transpor
through the LL wires via the spin-density fluctuations crea
by the injected electrons.

II. MODEL AND HAMILTONIAN

We consider ans-wave SC which is weakly tunne
coupled to the center~bulk! of two spatially separated LL
leads ~see Figs. 1 and 2!. The Hamiltonian of the whole
system is represented asH5H01HT with H05HS
1(n51,2HLn describing the isolated SC and LL leads 1 a
2, respectively. Tunneling between the SC and the lead
governed by the tunneling HamiltonianHT . Each part of the
system will be described in the following.

The s-wave SC, with a chemical potentialmS , is de-
scribed by the BCS Hamiltonian27

HS2mSNS5(
k,s

Ekgks
† gks , ~1!

wheres5(↑,↓) and NS5(kscks
† cks is the number operato

for electrons in the SC. The quasiparticle operatorsgks de-
scribe excitations out of the BCS ground stateu0&S defined
by gksu0&S50. They are related to the electron annihilatio
and creation operatorscks and cks

† through the Bogoliubov
transformation27

ck↑5ukgk↑1vkg2k↓
†

~2!
c2k↓5ukg2k↓2vkgk↑

† ,

o
-

r
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where uk5(1/A2)(11jk /Ek)
1/2 and vk5(1/A2)(1

2jk /Ek)
1/2 are the usual BCS coherence factors,27 jk5ek

2mS is the normal-state single-electron energy counted fr
the Fermi levelmS , and Ek5Ajk

21D2 is the quasiparticle
energy. The field operator for an electron with spins is
Cs(r )5V21/2(ke

ikrcks , whereV is the volume of the SC.
The two leads 1 and 2 are supposed to be infinite o

dimensional interacting electron systems described by
theory. We only include forward-scattering processes wh
describe scattering events in which electrons stay in the
branch~left or right movers!. We neglect backscattering in
teractions which involve large momentum transfers of or
2pF , wherepF is the Fermi wave vector in the LL.28 The LL
Hamiltonian for the low-energy excitations of leadn51,2
can then be written in a bosonized form as29

HLn2m lNn5 (
n5r,s

E
2L/2

1L/2

dx

3S punKn

2
Pnn

2 1
un

2pKn
~]xfnn!2D , ~3!

where the fieldsPn(x) andfn(x) satisfy bosonic commuta
tion relations @fnn(x),Pmm(x8)# 5 idnmdnmd(x2x8), and
m l is the chemical potential of the LL leads~assumed to be
identical for both leads!, andNn5(s*dxcns

† (x)cns(x) is the
number operator for electrons in LLn. Hamiltonian~3! de-
scribes long-wavelength charge (n5r) and spin (n5s)
density oscillations in the LL, propagating with velocitiesur

andus , respectively. The velocitiesun and the stiffness pa
rametersKn depend on the interactions between the electr
in the LL. In the limit of vanishing backscattering, we ha
us5vF and Ks51, and the LL is described by only tw
parametersKr,1 andur . In a system with full translationa
invariance we haveur5vF /Kr . We decompose the field
operator describing electrons with spins into right- and left-
moving parts,cns(x)5eipFxcns1(x)1e2 ipFxcns2(x). The
right ~left! moving field operatorcns1(x) @cns2(x)# is then
expressed as an exponential of bosonic fields as30,31

cns6~x!5 lim
a→0

h6,ns

A2pa
expH 6

i

A2
$fnr~x!1sfns~x!

7@unr~x!1suns~x!#%J , ~4!

where@fnn(x),umm(x8)# 52 i (p/2)dnmdnmsgn(x2x8), and
therefore ]xunn(x)5p Pnn(x). The operatorsh6,ns are
needed to ensure the correct fermionic anticommutation
lations. In the thermodynamic~TD! limit ( L→`), h6,ns can
be presented by Hermitian operators satisfying the antic
mutation relation29 $h r ,h r 8%52d rr 8 , with r 56,ns. We
adopt the convention throughout the paper thats511 for
s5↑, ands521 for s5↓, if s does not have the meaning o
an operator index.

Transfer of electrons from the SC to the LL leads is d
scribed by the tunneling HamiltonianHT5(nHTn1H.c.,
whereHTn is defined asHTn5t0(scns

† Cs(rn). The field op-
16532
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eratorCs(rn) annihilates an electron with spins at point rn

on the SC, andcns
† creates it again with an amplitudet0 at

point xn in the LL n which is nearest torn , see Figs. 1 and 2
We assume that the spin is conserved during the tunne
process, and thus the tunneling amplitudest0 do not depend
on spin, and, for simplicity, are the same for both leadsn
51 and 2. We remark that our point-contact approach
describing the electron transfer from the SC to the LL is
simplest possible description, but it presumably captures
relevant features of a real device. The scheme shown in
2 has a geometry which suggests that electrons tunnel f
point rn→xn which are closest to each other, due to the f
that t0 depends exponentially on the tunneling distance.
the setup shown in Fig. 1, a pointlike tunnel contact betwe
the SC and the LL might be induced by slightly bending t
quantum wires~e.g., nanotubes!. If the contact area has
finite extension, we note that the two electrons prefera
tunnel from the same point on the SC, when they tunnel i
the same lead, since the two-particle tunneling event is
herent and already shows a suppression in the probabilit
a length scale given by 1/kF , as we discuss in detail below

III. STATIONARY CURRENT FROM THE SC
TO THE LL LEADS

We now calculate the current of singlets, i.e., pairw
spin-entangled electrons~Cooper pairs!, from the SC to the
LL leads due to Andreev tunneling32,33 in first nonvanishing
order, starting from a generalT-matrix approach.34 We
thereby distinguish two transport channels. First we calcu
the current when two electrons tunnel from different poin
r1 andr2 of the SC intodifferentinteracting LL leads, which
are separated in space such that there is no interlead int
tion. In this case the only correlation in the tunneling proce
is due to the superconducting pairing of electrons which
sults in a coherent two-electron tunneling process of oppo
spins from different pointsr1 and r2 of the SC, and with a
delay time;\/D between the two tunneling events. Sin
the total spin is a conserved quantity@H,S2#50, the spin
entanglement of a Cooper pair is transported todifferentLL
leads, thus leading to nonlocal spin entanglement. On
other hand, if two electrons tunnel from the same point of
SC into thesameLL lead, there is an additional correlatio
in the LL lead itself due to the intralead interaction. It is th
goal of this work to investigate how the transport current
tunneling of two electrons from the SC into thesameLL lead
is affected by this additional correlation. In the following w
will use units such that\51.

IV. T-MATRIX

We apply aT-matrix ~transmission matrix! approach34 to
calculate the current.16 The stationary current oftwo elec-
trons passing from the SC to the leads is then given by

I 52e(
f ,i

Wf ir i . ~5!
7-3
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HereWf i is the transition rate from the superconductor to
leads, given byWf i52pu^ f uT(« i)u i &u2d(« f2« i). Here

T~« i !5HT

1

« i1 ih2H
~« i2H0!

is the on-shell transmission orT matrix, withh being a posi-
tive infinitesimal which we set to zero at the end of t
calculation. TheT matrix can be expanded in a power ser
in the tunneling HamiltonianHT ,

T~« i !5HT1HT(
n51

` S 1

« i1 ih2H0
HTD n

, ~6!

where« i is the energy of the initial stateu i &, which, in our
case, is the energy of a Cooper pair at the Fermi surfac
the SC,« i52mS . Finally, r i5^ i uru i & is the stationary occu
pation probability for the entire system to be in the stateu i &.
We work in the regimeD.m.kBT, wherem5mS2m l is
the applied voltage bias between the SC and the leads, aT
the temperature withkB the Boltzmann constant. The regim
D.m ensures that single-electron tunneling from the SC
the leads is excluded and only tunneling oftwo coherent
electrons of opposite spins is allowed. In the regimem
.kBT we only have transport from the SC to the leads, a
not in the opposite direction. Since the temperature is
sumed to be the smallest energy scale in the system
assumekBT50 in the calculation. The set of initial statesu i &,
virtual statesuv& and final statesu f & consists of the BCS
ground state~GS! u0&S and excitationsgks

† u0&S for the SC
and a complete set30,31of energy eigenstatesuNnrn ,$bnn%& of
the LL HamiltonianHLn given in Eq.~3!. Nnrn is the number
of excess spin (n5s) and charge (n5r) in branchr relative
to the GS. The Bose operatorsbnn form a continuous spec
trum describing collective spin and charge modes and wil
introduced in Eqs.~10! and ~11!. The GS of the LL is then
u0,0&, which means that we have no integral excess cha
and spin and no bosonic excitations. The energy contribu
of the excess charge and spin is included in the so-ca
zero mode (k50) terms in the diagonalized Hamiltonia
KLn @Eq. ~12!# and are of no importance in the TD limit (L
→`) considered here, since the contribution of these te
due to an additional electron on top of the GS isO(1/L) and
is neglected in Eq.~12!. For a detailed description of the L
Hamiltonian@Eq. ~3!# including the zero modes, see Appe
dix A. Since we want to calculate the transition rate for tra
port of a Cooper pair to the leads, the final statesu f & of
interest contain two additional electrons of opposite spins
the leads compared to the initial stateu i &.

V. CURRENT I 1 FOR TUNNELING OF TWO ELECTRONS
INTO DIFFERENT LEADS

We first calculate the current for tunneling of two spi
entangled electrons into different leads. We expand
T-matrix to second order inHT , and go over to the interac
tion representation by usingd(e)5(1/2p)*2`

1`dtei et, and
^vu(e i2H01 ih)21uv& 52 i *0

`dtei (e i2ev1 ih)t. By trans-
forming the time-dependent phases into a time depende
16532
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of the tunneling Hamiltonian we can integrate out all fin
and virtual states. The forward currentI 1 for tunneling of
two electrons into different leads can then be written as

I 152e lim
h→0

(
nÞn8
mÞm8

E
2`

`

dtE
0

`

dt8E
0

`

dt9e2h(t81t9)1 i (2t2t82t9)m

3^HTm
† ~ t2t9!HTm8

†
~ t !HTn~ t8!HTn8&, ~7!

where^•••& denotes Trr$•••%. The bias has been introduce
in a standard way,35 and the time dependence of the operat
in Eq. ~7! is then governed by HTn(t)
5ei (KLn1KS)tHTne

2 i (KLn1KS)t, with KLn1KS5HLn1HS
2m lNn2mSNS . The transport process involves two ele
trons ofdifferentspins which suggests that the average in E
~7! is of the form ~suppressing time variables!, ^•••&
5(ss8^HTm2s8

† HTm8s8
† HTn2sHTn8s&, where HTns describes

the tunneling of spins governed byHTn . The time sequence
in Eq. ~7! contains the dynamics of the hopping of a Coop
pair from the SC to the LL leads~one electron per lead! and
back. The timest8 and t9 are delay times between subs
quent hoppings of two electrons from thesameCooper pair,
whereast is the time between injecting and taking out
Cooper pair. We evaluate the thermal average in Eq.~7! at
zero temperature where the expectation value is to be ta
in the ground state ofK05(nKLn1KS which is the BCS
ground state of the SC and the bosonic vacuum of the
leads. We remark that since the interaction between the
ferent subsystems (SC,L1 ,L2) is included in the tunneling-
perturbation, the expectation value factorizes into a SC p
times a LL part. In addition, the LL correlation function fac
torizes into two single-particle correlation functions due
the negligible interaction between LL leads 1 and 2~this will
be not the case if two electrons tunnel into thesamelead!.
Note that in the TD limit the time dynamics of all LL corre
lation functions will be goverened by a Hamiltonian th
depends only on Bose operators@see Eq.~12!#. The operators
h6,rs commute with all Bose operators, and as a con
quenceh6,rs are time independent. Therefore, interacti
terms of the LL of the formcacbcg

†cd
† can be written as

hahbhghd3~Bose operators!, wherea,b,g, andd are com-
posite indices containingr 56,ns. The correlation function
in Eq. ~7! is then of the form

(
nÞn8
mÞm8

^HTm
† ~ t2t9!HTm8

†
~ t !HTn~ t8!HTn8&

5ut0u4 (
s

nÞm

^cns~ t2t9!cns
† &^cm2s~ t2t8!cm2s

† &

3^Cs
†~rn ,t2t9!C2s

† ~rm ,t !C2s~rm ,t8!Cs~rn!&

2ut0u4 (
s

nÞm

^cm2s~ t2t82t9!cm2s
† &^cns~ t !cns

† &

3^C2s
† ~rm ,t2t9!Cs

†~rn ,t !C2s~rm ,t8!Cs~rn!&. ~8!

The four-point correlation functions of the SC can be calc
7-4
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lated by Fourier decomposing Cs(rn ,t)
5V21/2(k(uksgkse

2 iEkt1vksg2k2s
† eiEkt)eikr n, with uks

5uk , andvk↑52vk↓5vk . For the first correlation function
in Eq. ~8!, we then obtain

V2^Cs
†~rn ,t2t9!C2s

† ~rm ,t !C2s~rm ,t8!Cs~rn!&

5(
kk8

ukvkuk8vk8e
2 i [Ekt82Ek8t92(k1k8)dr ]

1(
kk8

~vkvk8!
2e2 i [Ek(t2t9)1Ek8(t2t8)] , ~9!

where dr5r12r2 is the distance vector between the tw
tunneling points in the SC. The first sum in Eq.~9! describes
the ~time-dependent! correlation of creating and annihilatin
a quasiparticle~with same spin!, whereas the second term
Eq. ~9! describes the correlation of creatingtwo quasiparti-
cles~with different spins!. It is obvious that the second term
describes processes which involve final statesu f & in the
T-matrix element̂ f uT(« i)u i & that contain two excitations in
the SC and, therefore, does not describe an Andreev pro
In the regimeD.m such a process is not allowed by ener
conservation. We will see this explicitly by calculating th
integral overt which originates from the Fourier represent
tion of thed function present in the rateWf i . Similarly, for
the correlator̂ C2s

† (rm ,t2t9)Cs
†(rn ,t)C2s(rm ,t8)Cs(rn)&

in Eq. ~8!, we obtain Eq.~9! with a minus sign, and we hav
to replacet2t9 by t2t82t9, and t2t8 by t, in the second
term of Eq.~9!.

To evaluate the LL correlation functions in Eq.~8! we
decompose the phase fieldsfnn(x,t) andunn(x,t) into a sum
over the spin and charge bosons~also see Appendix A!:

unn~x,t !52(
p

sgn~p!A p

2LKnupu
eipxe2aupu/2

3~bnnpe2 iunuput2bnn2p
† eiunuput! ~10!

and

fnn~x,t !5(
p
A pKn

2Lupu
eipxe2aupu/2

3~bnnpe2 iunuput1bnn2p
† eiunuput!. ~11!

The spin and charge bosons satisfy Bose commutation
tions, in particular@bnnp ,bn8n8p8

†
#5d rr 8 , wherer[nnp, and

the LL ground state is defined asbnnpu0&LL50. Hamiltonian
~3! can then be written in terms of theb operators as~see
Appendix A!

KLn5(
np

unupubnnp
† bnnp , ~12!

where we have subtracted the zero-point energy coming f
the filled Dirac sea of negative-energy particle states. In ap
sums we will explicitly excludep50, as discussed in Sec
IV, and explained in more detail in Appendix A. To accou
16532
ss.
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for the p dependence of the interaction, we apply a hi
momentum-transfer cutoffL on the order of 1/pF , so that
Kn(p)5Kn , un(p)5un for upu,1/L and Kn(p)51,un(p)
5vF for upu.1/L. By writing cnsr(x,t)
5(2pa)21/2h r ,ns eiFnsr(x,t) with r 56 andFnsr defined ac-
cording to Eq.~4!, we can represent the single-particle L
correlation function as

^cnsr~x,t !cnsr
† &5~2pa!21exp$^Fnsr~x,t !Fnsr

2~Fnsr
2 ~x,t !1Fnrs

2 !/2&%,

with the well-known result36–39

Gnrs
1 ~x,t ![^cnsr~x,t !cnsr

† &

5
1

2p
lim
a→0

L1 i ~vFt2rx !

a1 i ~vFt2rx ! )
n5r,s

1

AL1 i ~unt2rx !

3F L2

~L1 iunt !21x2G gn/2

, ~13!

where gn5(Kn1Kn
21)/421/2.0 is an interaction-

dependent parameter which describes the power-law de
of the long-time and long-distance correlations. The fac
containing the Fermi velocityvF in Eq. ~13! is only impor-
tant if one is interested inx,t satisfyinguvFt2rxu,L, and is
a result of including thep-dependence of the interaction p
rametersKn andun . The LL correlation function@Eq. ~13!#
has singular points as a function of time in the upper co
plex plane. It is now clear that the integration overt is only
nonzero if the phase ofeivt in Eq. ~7! is positive, i.e.,v
.0. Since the phases of the terms containing (vk)

2 in Eq.
~9! also depend ont, the requirement for a nonzero contribu
tion to the current from these terms requires 2m2Ek2Ek8
.0. However, this is excluded in our regime of intere
since Ek1Ek8>2D; therefore, we will not consider thes
terms any further in what follows. We remark that forr
Þr 8, the correlation function̂cnsr(x,t)cnsr8

† & gives a neg-
ligible contribution in the TD limit. This statement is tru
also for a finite-size LL as long as the interaction preser
the total number of right and left movers. In our model t
electrons tunnel into the same pointxn in LL n, i.e., x50 in
Eq. ~13!. In addition, LL’s 1 and 2 are assumed to be simil
In this case the single-particle correlation function does
depend onn andr, i.e.,Gnrs

1 (x,t)[G1(t), and the currentI 1

can then be written as

I 15~32eut0u4/V2!

3 lim
h→0

E
2`

`

dtE
0

`

dt8E
0

`

dt9e2h(t81t9)1 i (2t2t82t9)m

3 (
kk8

ukvkuk8vk8e
2 i [Ekt82Ek8t92(k1k8)dr ]

3$G1~ t2t9!G1~ t2t8!1G1~ t2t82t9!G1~ t !%. ~14!

We evaluate Eq.~14! in leading order in the small param
eter m/D, and remark that the delay timest8 and t9 are
7-5
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restricted tot8,t9&1/D. This becomes clear if we setdr
50 and express the contribution in Eq.~14! containing the
dynamics of the SC as

(
kk8

ukvkuk8vk8 e2 i (Ekt82Ek8t9)

5~pnSD/2!2H0
(1)~ t9D!H0

(2)~ t8D!, ~15!

where H0
(1) and H0

(2) are Hankel functions of the first an
second kinds, andnS is the energy density of states~DOS!
per spin in the SC atmS . For timest8,t9.1/D, the Hankel
functions are rapidly oscillating, since for largex we have
H0

(1/2)(x);A2/pxexp„6@ ix2(p/4)#…. In contrast, the time-
dependent phase in Eq.~14! containing the biasm suppresses
the integrand in Eq.~14! only for times u2t2t82t9u.1/m
.1/D. Being interested only in the leading order inm/D, we
can assume thatutu.t8,t9 in the current formula@Eq. ~14!#,
since the LL correlation functions are slowly decaying
time with the main contribution~in the integral! coming from
large timesutu. In addition, since 1/m.L/vF , we can ne-
glect the term containing the Fermi velocityvF in Eq. ~13!.
To test the validity of our approximations, we first consid
the noninteracting limit withKn51 andun5vF , for which
an analytical expression is also available for higher-or
terms inm/D.

VI. NONINTERACTING LIMIT FOR CURRENT I 1

Let us first consider a one-dimensional~1D! Fermi gas
~i.e., Kn51 andun5vF), and evaluate the integral overt in
Eq. ~14! in the noninteracting limit. The LL correlation func
tions simplify toG1(t)5(1/2p)lim

a→0
1/(a1 ivFt), and we

are left with the integral

E
2`

`

dtei2tm$G1~ t2t9!G1~ t2t8!1G1~ t2t82t9!G1~ t !%

5S 1

2p D 2E
2`

`

dtei2tmH 1

@a1 ivF~ t2t9!#@a1 ivF~ t2t8!#

1
1

@a1 ivF~ t2t82t9!#@a1 ivFt#
J U

a→0

, ~16!

which can be evaluated by closing the integration contou
the upper complex plane. Inserting the result into Eq.~14!,
we obtain

I 15~32eut0u4/V2! lim
h→0

E
0

`

dt8E
0

`

dt9e2h(t81t9)

3(
kk8

ukvkuk8vk8e
2 i [Ekt82Ek8t92(k1k8)dr ]

3
1

pvF
2 H sin@~ t92t8!m#

t92t8
1

sin@~ t81t9!m#

t81t9
J . ~17!
16532
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The sine functions in Eq.~17! can be expanded in powers o
m, and form,D it is sufficient to keep just the leading orde
term in m since the integrals overt8 and t9 have the form

E
0

`

dte2(h6 iEk)ttn5
n!

~h6 iEk!n11
, ~18!

wheren51,2,3, . . . . SinceEk>D, higher powers int8 and
t9 produce higher powers inm/D, and, as expected, we ca
therefore ignore the dependence ont8 and t9 in the LL cor-
relation functions. In contrast to this, when we consider
current for tunneling of two electrons into the same~inter-
acting! LL lead, we will see that the two-particle correlatio
function will not allow for such a simplification. In leading
order inm/D, the integrals overt8 and t9 are evaluated ac
cording to Eq.~18! with n50, and we obtain an~effective!
momentum sum for the SC correlation
@(k(ukvk /Ek)cos(k•dr )#2. To evaluate this sum we us
ukvk5D/(2Ek) and linearize the spectrum around the Fer
level mS , since the Fermi energy in the SC«F.D, with the
Fermi wave vectorkF . We then obtain (dr denotesudr u!

(
k

ukvk

Ek
cos~k•dr !5

p

2
nS

sin~kFdr !

kFdr
e2(dr /pj). ~19!

In Eq. ~19! we introduced the coherence length of a Coop
pair in the SC,j5vF /pD. We finally obtainI 1

0, the current
I 1 in the noninteracting limit:

I 1
05epg2mFsin~kFdr !

kFdr G2

expS 2
2dr

pj D . ~20!

Here we have definedg54pnSn l ut0u2/LV, which is the
dimensionless conductance per spin to tunnel from the S
the LL leads. The non-interacting DOS of the LL per spinn l
is given by n l5L/pvF . @We remark in passing that thi
result agrees with aT-matrix calculation in the energy
domain.40 In this case we sum explicitly over the final state
given by a singlet u f &5(1/A2)@a1p↑

† a2q↓
† 2a1p↓

† a2q↑
† #u i &,

where thea operators describe electrons in a noninteract
1D Fermi gas. Note that triplet states are excluded as fi
states since our HamiltonianH does not change the tota
spin.# We see that the currentI 1

0 is exponentially suppresse
on the scale ofj, if the tunneling of the two~coherent! elec-
trons takes place from different pointsr1 and r2 of the SC.
For conventionals-wave SC the coherence lengthj is typi-
cally on the order of micrometers, and therefore this po
not severe experimental restrictions. Thus, in the regime
interestdr ,j, the suppression of the currentI 1

0 is only poly-
nomial, i.e.,}(1/kFdr )2. It was shown41 that a supercon-
ductor on top of a two-dimensional electron gas~2DEG! can
induce superconductivity~via the proximity effect! in the
2DEG with a finite order parameter. The 2DEG then b
comes an effective 2D SC. More recently, it was sugges
that superconductivity should also be present in ropes
single-walled carbon nanotubes,42 which are 1D systems. I
is therefore interesting also to calculate Eq.~19! in two di-
7-6
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mensions and one dimension. In the case of a 2D SC
evaluate(k(ukvk /Ek)cos(k•dr ) in leading order indr /pj,
and we find

(
k(2D)

ukvk

Ek
cos~k•dr !5

p

2
nSS J0~kFdr !12(

n51

`
J2n~kFdr !

pn D ,

~21!

whereJn(x) denotes the Bessel function of ordern. For large
kFdr , we obtain Jn(kFdr );A2/pkFdrcos@kFdr2(np/2)
2(p/4)#, which allows an approximation of the right-han
side of Eq. ~21! for large kFdr by (p/2)nSJ0(kFdr )@1
2(2/p)ln 2#. This result is exact to leading order in an e
pansion in 1/kFdr . So asymptotically, the current deca
only }1/kFdr . For dr 50, the bracket on the right-hand sid
of Eq. ~21! becomes 1 as in the 3D case.

In the case of a 1D SC we obtain

(
k(1D)

ukvk

Ek
cos~k•dr !5

p

2
nScos~kFdr !e2(dr /pj), ~22!

where there are only oscillations and no decay of the A
dreev amplitude~for dr /pj,1). We see that the suppressio
of the current due to a finite separation of the tunnel
points on the SC can be reduced considerably~or even ex-
cluded completely! by going over to lower-dimensiona
SC’s.

VII. CURRENT I 1 INCLUDING INTERACTION

We now are ready to treat the interacting case. Hav
obtained confidence in our approximation schemes from
noninteracting case above, we can now neglect thet8 and t9
dependences of the LL correlation function appearing in
~14!, valid in leading order inm/D. In this limit thet integral
considerably simplifies to

E
2`

`

dtei (2t2t82t9)m$G1~ t2t9!G1~ t2t8!

1G1~ t2t82t9!G1~ t !%

;
1

~2p!2

2L2(gr1gs)

)
n5r,s

un
2gn11

E
2`

`

dt
ei2mt

)
n5r,s

@~L/un!1 i t #2gn11

.

~23!

An analytical expression for this integral is available,43 and
is given in Appendix B. The treatment of the remaining i
tegrals overt8 and t9 and the calculation of the Andree
contribution is the same as in the noninteracting case and
the currentI 1, in leading order inm/D and in the small
parameters 2Lm/un , we obtain

I 15
I 1

0

G~2gr12!

vF

ur
F2mL

ur
G2gr

. ~24!

In Eq. ~24! we usedKs51 and us5vF . The interaction
suppresses the current considerably, and the bias depend
has a characteristic nonlinear formI 1}(m)2gr11, with an
16532
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interaction dependent exponent 2gr11. The parametergr is
the exponent for tunneling into the bulk of a single LL,29 i.e.,
r(«);u«ugr, where r(«) is the single-particle DOS. Note
that the currentI 1 does not show a dependence on the c
relation time 1/D, which is a measure of the time separati
between the two electron-tunneling events. This is so si
the two partners of a Cooper pair tunnel todifferentLL leads
with no interaction-induced correlations between the lead

VIII. CURRENT I 2 FOR TUNNELING OF TWO
ELECTRONS INTO THE SAME LEAD

The main feature of the case where two electrons, or
nating from an Andreev process, tunnel into the same lea
now that the four-point correlation function of the LL n
longer factorizes, as is the case when the two electrons
nel into different leads@see Eq.~8!#. In addition the two
electrons will tunnel into the lead preferably from the sam
spatial point on the SC, i.e.,dr 50. We denote byI 2 the
current for coherent transport of two electrons into thesame
lead, either lead 1or lead 2. It can be written in a similar wa
as I 1 @see Eq.~7!#, with the difference that now we conside
final states with two additional electrons~of opposite spin! in
the same lead~either 1 or 2! compared to the initial state. Fo
I 2, we then obtain

I 254e lim
h→0

(
s,s8

E
2`

`

dtE
0

`

dt8E
0

`

dt9e2h(t81t9)1 i (2t2t82t9)m

3^HTn2s8
†

~ t2t9!HTns8
†

~ t !HTn2s~ t8!HTns&, ~25!

where we have assumed that leads 1 and 2 are ident
which results in an additional factor of 2. Again, the therm
average is to be taken atT50, and this ground-state expec
tation value factorizes into a SC part times a LL part. Ho
ever, the LL part no longer factorizes due to strong corre
tions between the two tunneling electrons. In this case
obtain

(
s,s8

^HTn2s8
†

~ t2t9!HTns8
†

~ t !HTn2s~ t8!HTns&

5ut0u4(
s

^cns~ t2t9!cn2s~ t !cn2s
† ~ t8!cns

† &

3^Cs
†~rn ,t2t9!C2s

† ~rn ,t !C2s~rn ,t8!Cs~rn!&

1ut0u4(
s

^cn2s~ t2t9!cns~ t !cn2s
† ~ t8!cns

† &

3^C2s
† ~rn ,t2t9!Cs

†~rn ,t !C2s~rn ,t8!Cs~rn!&.

~26!

The four-point correlation functions for the SC in Eq.~26!
are the same as in Eq.~8! for the case when the two electron
tunnel into different leads, except that nowdr50. The~nor-
malized! four-point correlation functions in Eq.~26! for
the LL are
7-7
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Grr 81
2

~ t,t8,t9![^cnrs~ t2t9!cnr82s~ t !cnr82s
†

~ t8!cnrs
† &/

^cnrs~ t2t9!cnrs
† &^cnr82s~ t2t8!cnr82s

† &,

which can be calculated using similar methods as descr
above for the single-particle correlation function. After som
calculation we obtain

Grr 81
2

~ t,t8,t9!

5 )
n5r,s

S L2 iunt9

L1 iun~ t2t82t9!
D lnrr 8S L1 iunt8

L1 iunt D lnrr 8
.

~27!

wherelnrr 85jn(rr 8Kn1(1/Kn))/4 with jr/s561. For the
other sequence

Grr 82
2

5^cnr2s~ t2t9!cnr8s~ t !cnr2s
† ~ t8!cnr8s

† &/

^cnr2s~ t2t82t9!cnr2s
† &^cnr8s~ t !cnr8s

† &,

we obtain

Grr 82
2

~ t,t8,t9!

52 )
n5r,s

S L2 iunt9

L1 iun~ t2t9!
D lnrr 8S L1 iunt8

L1 iun~ t2t8!
D lnrr 8

.

~28!

We remark that contributions from other combinatio
of left and right movers, as indicated in Eqs.~27! and
~28!, are negligible. A contribution like ^cnr8s(t
2t9)cnr2s(t)cnr82s

† (t8)cnrs
† & rÞr 8 is only nonzero if spin ex-

change between right and left movers is possible, but th
a backscattering process which we explicitly exclude. Us
Eqs. ~25!–~28! together with Eq.~15!, we obtain a formal
expression forI 2 ~with dr 50):

I 254eS pnSDut0u2

V D 2

lim
h→0

E
2`

`

dtE
0

`

dt8

3E
0

`

dt9ei (2t2t82t9)m2h(t81t9)H0
(1)~ t9D!H0

(2)~ t8D!

3 (
b561

@Gb1
2 ~ t,t8,t9!G1~ t2t9!G1~ t2t8!

2Gb2
2 ~ t,t8,t9!G1~ t2t82t9!G1~ t !#. ~29!

In Eq. ~29! the meaning of the summation index isb[11
for rr 8511, and b[21 for rr 8521. We proceed to
evaluate the currentI 2 with Ks51 andus5vF . To calculate
the currentI 2 we assume that the time scalesL/ur andL/vF
are the smallest ones in the problem. The timesL/ur and
L/vF are both on the order of the inverse Fermi energy in
LL, which is larger than the energy gapD and the biasm. By
applying the same arguments as in Sec. V for the currenI 1,
we approximate the currentI 2, assuming utu.t8,t9
.L/vF ,L/ur , which is accurate in leading order i
16532
ed

is
g

e

the small parametersm/D, LD/un and Lm/un . In this
limit we obtain Grr 81

2
5 2Grr 82

2
5 (t8t9)grrr 8 / @(L/ur )

1 i t # 2lrrr 8 @ (L / vF )1 i t #2(11rr 8)/2, where grrr 85@(1/Kr)
1rr 8Kr2(11rr 8)#/4.0. The exponentgrrr 8 is related to
gr , introduced in the single-particle correlation functio
@Eq. ~13!# via grrr 85gr for r 5r 8, and grrr 85gr1(1
2Kr)/2 for rÞr 8. The currentI 2 for tunneling of two elec-
trons into thesamelead 1 or 2 then becomes~for dr 50)

I 252eS 2pnSDut0u2

V D 2 L2gr

ur
2gr11vF

3 lim
h→0

(
b561

E
0

`

dt8E
0

`

dt9e2h(t81t9) ~ t8t9!grb

3H0
(1)~ t9D!H0

(2)~ t8D!
1

~2p!2E2`

`

dt

3
ei2mt

S L

ur
1 i t D 2lrb12gr11S L

vF
1 i t D (12b)/2 . ~30!

Again, the integrals appearing in Eq.~30! can be evaluated
analytically43 with the results given in Appendix B. Note tha
according to the two-particle LL correlation functions@Eqs.
~27! and ~28!#, we find that the dynamics coming from th
delay timest8 and t9 cannot be neglected anymore, as w
done in Ref. 33. We evaluate Eq.~30! in leading order in
2mL/un and finally obtain, for the currentI 2,

I 25I 1 (
b561

AbS 2m

D D 2grb

. ~31!

The interaction dependent constantAb in Eq. ~31! is given
by

Ab5
22grb21

p2

G~2gr12!

G~2grb12gr12!
G4S grb11

2 D , ~32!

which is decreasing when interactions in the leads are
creased. The functionG(x) is the gamma function. We re
mark that in Eq.~31! the currentI 1 is to be taken atdr 50.
The noninteracting limitI 25I 15I 1

0 is recovered by putting
gr5grb50 and ur5vF . The result forI 2 shows that the
unwanted injection of two electrons into the same lead
suppressed compared toI 1 by a factor ofA1(2m/D)2gr1 if
both electrons are injected into the same branch~left or right
movers!, or by A2(2m/D)2gr2 if the two electrons travel in
different directions. Since it holds thatgr25gr11(1
2Kr)/2.gr1 , it is more favorable that two electrons trav
in the same direction than in opposite directions. The s
pression of the currentI 2 by 1/D very nicely shows the two-
particle correlation effect for the coherent tunneling of tw
electrons into the same lead. The largerD is, the shorter the
delay time between the arrivals of the two partner electr
of a given Cooper pair, and, in turn, the more the seco
7-8
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electron will be influenced by the presence of the first o
already in the LL. By increasing the biasm the electrons can
tunnel faster through the barrier due to more channels
coming available into which the electron can tunnel; the
fore, the effect ofD is less pronounced. Also note that th
correlation effect disappears when interactions are abse
the LL (gr5grb50).

IX. EFFICIENCY AND DISCUSSION

We have established that there indeed exists a suppre
for the tunneling of two spin-entangled electrons into t
same LL lead compared to the desired process where the
electrons tunnel into different leads. However, we have
take into account that the process into different leads a
suffers a suppression due to a finite tunneling separationdr
of the two electrons forming a Cooper pair in the SC. In S
VI we showed that this suppression can be considerably
duced if one uses effectively low-dimensional SC’s. To e
mate the efficiency of the entangler, we form the ratioI 1 /I 2
and demand that it is larger than 1. This requirement is
filled if approximately

A1S 2m

D D 2gr1

,1/~kFdr !d21, ~33!

whered is the dimension of the SC, and it is assumed t
the coherence lengthj of the SC is large compared todr .
The leading term ofI 2 is proportional to (2m/D)2gr1 de-
scribing the power-law suppression, with an expon
2gr152gr , of the process where two electrons, enter
the same lead, will propagate in the same direction. The
ponentgr1 is the exponent for the single-particle tunnelin
DOS from a metal~SC! into the center~bulk! of a LL. Ex-
perimentally accessible systems which exhibit LL behav
are metallic carbon nanotubes. It was pointed out44,45that the
long range part of the Coulomb interaction, which is dom
nated by forward-scattering events with small moment
transfer, can lead to a LL behavior in carbon nanotubes w
very small values of Kr;0.2–0.3, as measure
experimentally24,46 and predicted theoretically.44 This would
correspond to an exponent 2gr;0.8–1.6, which seems ver
promising. Note that in this scenario of smallKr the inter-
action dependent constantsAb also become much smalle
than unity. ForKr50.3 we obtain from Eq.~32! that A1

;0.11, and forKr50.2 we obtainA1;0.02 ~note thatA2

,A1). In addition, single-wall nanotubes show similar tu
neling exponents, as derived here. The tunneling DOS f
single-wall nanotube is predicted44,45 to ber(«);u«uh with
h5(Kr

211Kr22)/8, which is half of gr , and was
measured24,46 to be ;0.3–0.4. Similar values were foun
also in multiwall nanotubes.47 It is known that the power-law
suppression of the single-particle DOS is even larger if o
considers tunneling into theend of a LL. For single-wall
nanotubes one finds44,45 hend5(Kr

2121)/4.h, or for con-
ventional LL theory again an enhancement by a factor of48

We therefore expect to obtain an even stronger suppressi
the Cooper pairs tunnel into the end of the LL’s. We rema
that the nonlocality of the two electrons could be probed
16532
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the Aharonov-Bohm oscillations in the current, when lead
and 2 are formed into a loop enclosing a magnetic flux. D
to the different paths by which the electrons can choose to
around the loop, we expect to seeh/e and h/2e oscillation
periods, as a function of magnetic flux, in the current like
the case of noninteracting leads.16 The interference of contri-
butions where the two electrons travel through differe
leads, with contributions where they travel through the sa
lead, then leads toh/e oscillations, whereas the interferenc
of contributions where both electrons travel through t
same arm 1 or 2 of the loop leads to theh/2e oscillations.
The amplitudes of these oscillations must be related to
currents describing the interfering processes. We expect
the h/e oscillation contribution should be}(I 1I 2)a and the
h/2e oscillation contribution should be}I 2

2a , with an expo-
nenta that has to be determined by explicit calculations.
the noninteracting limita should be 1/2.16 The different pe-
riods then allow for an experimental test of how success
the separation of the two electrons is. For instance, if the
electrons can only tunnel into the same lead, e.g., ifkFdr is
too large or the interaction in the leads too weak, thenI 1
;0 and we would only see theh/2e oscillations in the cur-
rent. The determination of the precise value of the expone
will be deferred to another publication since it requires
separate calculation including finite size properties of the
along the lines discussed in Ref. 49.

X. DECAY OF THE ELECTRON-SINGLET
DUE TO LL-INTERACTIONS

We have shown in the preceding sections that the inte
tion in a LL lead can help to separate two spin-entang
electrons so that the two electrons enterdifferent leads. A
natural question then arises: what is the lifetime of a~nonlo-
cal! spin-singlet state formed of two electrons which are
jected into different LL leads, one electron per lead? To
dress this issue we introduce the following correlati
function:

P~r ,t !5u^S~r ,t !uS~0,0!&u2. ~34!

This function is the probability density that a singlet sta
injected at pointr[(x1 ,x2)50 and at timet50, is found at
some later timet and at pointr . Therefore,P(r ,t) is a mea-
sure of how much of the initial singlet state remains after
two injected electrons have interacted with all the other el
trons in the LL during the time intervalt. Here

uS~r ,t !&5Apa@c1↑
† ~x1 ,t !c2↓

† ~x2 ,t !

2c1↓
† ~x1 ,t !c2↑

† ~x2 ,t !#u0& ~35!

is the electron singlet state created on top of the LL grou
states. The extra normalization factorA2pa is introduced
to guarantee*dr P(r ,t)51 in the noninteracting limit, and
corresponds to the replacement ofcns by (2pa)1/4cns .
The singlet-singlet correlation function factorizes in
two single-particle Green’s functions due to the negligib
interaction between the leads 1 and 2. Theref
we have P(r ,t)5(2pa)2)nu^cns(xn ,t)cns

† (0,0)&u2, with
7-9
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^cns(xn ,t)cns
† (0,0)&5( r 56eikFrxnGnrs

1 (xn ,t). For sim-
plicity we just study the slow spatial variations o
u^cns(xn ,t)cns

† (0,0)&u2. Using Eq. ~13! together with
pd(x)5 lim

a→0
a/(a21x2), we can then write the remain

ing probability of the singlet as

P~r ,t !5)
n

1

2 (
r 56

F~ t !d~xn2rvFt !, ~36!

with a time decaying weight factor of thed function

F~ t !5 )
n5r,s

A L2

L21~vF2un!2t2

3S L4

@L21~vF
22un

2!t2#21~2Lunt !2D gn/2

. ~37!

From Eqs.~36! and ~37! we see that charge and spin of a
electron propagate with velocityvF , whereas charge~spin!
excitations of the LL propagate withur (us). Without inter-
action, i.e.,un5vF and Kn51, we haveF(t)51, which
means that there is no decay of the singlet state. Using a
us5vF , Ks51 andur5vF /Kr we see from Eq.~37! that as
interactions are turned on, the singlet state starts to deca
a time scale given byL/ur . For long timest and for us

5vF , Ks51, andur5vF /Kr , the asymptotic behavior o
the decay is

F~ t !;
L

ur~12Kr! F L2

ur
2~12Kr

2!
G grF1

t G
2gr11

,

which for very strong interactions in the LL leads, i.e.,Kr

much smaller than 1, becomesF(t);@L/urt#2gr11. We will
show in Sec. XI that although the singlet gets destroyed
to interactions, we still can observe charge and spin of
initial singlet via the spin and charge density fluctuations
the LL.

XI. PROPAGATION OF CHARGE AND SPIN

The charge and spin propagations as functions of tim
a stateuC& can be described by the correlation functi
^Cur(x,t)uC& for the charge, and̂Cusz(x,t)uC& for the
spin. The normal-ordered charge density operator for LLn is
rn(xn)5(s :cns

† (xn)cns(xn)ª(sr :cnsr
† (xn)cnsr(xn):, if we

only consider the slow spatial variations of the density o
erator. Similarly, the normal-ordered spin-density operato
the z direction is sn

z(xn)5(srs:cnsr
† (xn)cnsr(xn):. These

density fluctuations can be expressed in a bosonic form~see
Appendix A! as

rn~xn!5
A2

p
]xfnr~xn!, ~38!

and for the spin

sn
z~xn!5

A2

p
]xfns~xn!. ~39!
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We now consider a stateuC&5cnsr
† (xn)u0& where we in-

ject an electron at timet50 into branchr on top of the LL
ground state in leadn, and calculate the time-depende
charge and spin-density fluctuations according
^0ucnsr(xn)rn(xn8 ,t)cnsr

† (xn)u0& for the charge and similarly
for the spin,̂ 0ucnsr(xn)sn

z(xn8 ,t)cnsr
† (xn)u0&. If we express

the bosonic field operatorsfnn andunn in terms of the boson
modes shown in Eq.~10! and ~11! and the Fermi operator
according to the bosonization dictionary@Eq. ~4!# we obtain
for the charge fluctuations

~2pa!^0ucnsr~xn!rn~xn8 ,t !cnsr
† ~xn!u0&

5 1
2 ~11rK r!d~xn82xn2urt !

1 1
2 ~12rK r!d~xn82xn1urt !, ~40!

and for the spin fluctuations we obtain

~2pa!^0ucnsr~xn!sn
z~xn8 ,t !cnsr

† ~xn!u0&

5
s

2
~11rK s!d~xn82xn2ust !

1
s

2
~12rK s!d~xn82xn1ust !. ~41!

Results~40! and~41! are obtained by sendingL→0. We see
that in contrast to the singlet, the charge- and spin-den
fluctuations in the LL created by the injected electron do
decay and show a pulse shape with no dispersion in ti
This is due to the linear energy dispersion relation of the
model. In carbon nanotubes such a highly linear dispers
relation is indeed realized, and, therefore, nanotubes sh
be well suited for spin transport. Another interesting effe
that shows up in Eqs.~40! and~41! is the different velocities
of spin and charge, which is known as spin-charge sep
tion. It would be interesting to test Bell inequalities4 via spin-
spin correlation measurements between the two LL lea
and see if the initial entanglement of the spin singlet is s
observable in the spin-density-fluctuations. Although the
tection of single spins with magnitudes on the order of el
tron spins still has not been achieved, magnetic resona
force microscopy seems to be very promising for doing so50

Another scenario is to use the LL just as an intermedi
medium which is needed to first separate the two electron
a Cooper pair and then to take them~in general other elec-
trons! out again into two~spatially separated! Fermi-liquid
leads where the~possibly reduced! spin entanglement could
be measured via the current noise in a beamspli
experiment.15 Similarly, to test Bell inequalities one ca
measure the spin via the charge of the electron.9,19,20 In this
context we finally note that the decay of the singlet st
given by Eq.~36! sets in almost immediately after the inje
tion into the LL’s~the time scale is approximately the inver
of the Fermi energy!; however at least at zero temperatur
the suppression is only polynomial in time, which sugge
that some fraction of the singlet state can still be recover
7-10
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XII. CONCLUSIONS

We proposed ans-wave superconductor~SC!, coupled to
two spatially separated Luttinger-liquid~LL ! leads, as an en
tangler for electron spins. We showed that the strong co
lations present in the LL can be used to separate two e
trons, forming a spin-singlet state, which originate from
Andreev tunneling process of a Cooper pair from the SC
the leads. We have shown that the coherent tunneling of
electrons into the same lead is suppressed by a characte
power law in the small parameterm/D, wherem is the ap-
plied bias between the SC and the LL leads, andD is the gap
in the SC. On the other hand, when the two electrons tun
into different leads, the current is suppressed by the in
separation of the two electrons. This suppression, howe
can be considerably reduced by going over to effect
lower-dimensional SC. We also addressed the questio
how much of the initial singlet can be taken out of the LL
some later time, and we found that the probability is decre
ing in time, again with a power law~at zero temperature!.
Nevertheless, the spin information can still be transpor
through the wires by means of the~proper! spin excitations
of the LL.

While preparing this manuscript we have learned of
lated and independent efforts by Benaet al.51 who consid-
ered a similar setup as proposed here thereby arrivin
similar conclusions.
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APPENDIX A: FINITE-SIZE DIAGONALIZATION
OF THE LL HAMILTONIAN

In this appendix we derive the diagonalized form of t
LL Hamiltonian @Eq. ~3!# including terms of order 1/L,
which describe integer charge and spin excitations. For s
plicity, we consider only one LL and will therefore suppre
the subscriptn for the leads. We start with the exa
bosonization dictionary for the Fermi operator for electro
on branchr 56,30,31

c rs~x!5 lim
a→0

Ur ,s

A2pa
expH ir ~pF2p/L !x1

ir

A2
$fr~x!

1sfs~x!2r @ur~x!1sus~x!#%J . ~A1!

The Ur ,s operator~often denoted as the Klein factor! is uni-
tary, and decreases the number of electrons with spins on
branchr by one. This operator also ensures the correct a
commutation relations forc rs(x). The normal ordered
charge density operator isr(x)5(sr :c rs

† (x)c rs(x):, where
:: measures the corresponding quantity relative to the gro
16532
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state. The normal-ordered spin-density operator is defined
sz(x)5(srs:c rs

† (x)c rs(x):. In addition, one can define
~bare! current densitiy operators for chargej r(x)
5(sr rc rs

† (x)c rs(x), and for the spin j s(x)
5(sr rs c rs

† (x)c rs(x), respectively. Note that the curren
density has not to be normal ordered, since its ground-s
expectation value vanishes. The normal-ordered prod
:c rs

† (x)c rs(x): is calculated according to

:c rs
† ~x!c rs~x!ª lim

Dx→0
:c rs

† ~x1Dx!c rs~x!:. ~A2!

By expanding the operator product in Eq.~A2! within the
normal-order sign, the right-hand side of Eq.~A2! is equal to
(1/2p)]x„fr(x)1sfs(x)2r @ur(x)1sus(x)#…/A2, from
which one easily finds

r~x!5
A2

p
]xfr~x!, sz~x!5

A2

p
]xfs~x! ~A3!

and, for the current densities,

j r~x!52A2Pr~x!, j s~x!52A2 Ps~x!. ~A4!

The field Pn(x) is related toun(x) by ]xun(x)5pPn(x).
We decompose the phase fields intofn(x)5fn

P(x)1fn
0(x)

and Pn(x)5Pn
P(x)1Pn

0(x), where the part with nonzero
momentum,fn

P and Pn
P , can be expanded in a series

normal modes

fn
P~x!5

1

AL
(
pÞ0

1

A2vpn

eipxe2aupu/2~bnp1bn2p
† !,

~A5!

and, for the canonical momentum,

Pn
P~x!5

2 i

AL
(
pÞ0

Avpn

2
eipxe2aupu/2~bnp2bn2p

† !.

~A6!

These fields have to satisfy bosonic commutation relati
@fn

P(x),Pm
P(x8)# 5 idnm@d(x2x8)21/L#, which in turn de-

mands@bnp ,bmp8
†

#5dnmdpp8 and @bnp ,bmp8# 5@bnp
† ,bmp8

†
#

50. The zero mode partsfn
0 and Pn

0 can be found by
considering the integrated charge~spin! and charge~spin!
currents, respectively. For instance the integrated cha
density ( rsNrs5*dxr(x)5(A2/p)@fr(L/2)2fr(2L/2)#
5(A2/p)@fr

0(L/2)2fr
0(2L/2)#. Similar results are ob-

tained for the other density operators, which then implies
zero modes to befn

0(x)5(p/L)(N1n1N2,n)x and Pn
05

2(1/L)(N1n2N2,n), where Nrr/s5(Nr↑6Nr↓)/A2. The
LL Hamiltonian @Eq. ~3!# is then diagonalized by the follow
ing expansion of the bosonic fields,

fn~x!5 (
pÞ0

A pKn

2upuL
eipx e2aupu/2~bnp1bn2p

† !

1
p

L
~N1n1N2,n!x, ~A7!
7-11
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and for the canonical conjugate momentum operator,

Pn~x!52 i (
pÞ0

A upu
2pLKn

eipxe2aupu/2~bnp2bn2p
† !

2
1

L
~N1n2N2,n!, ~A8!

where we have usedvpn5upu/Knp. For the operatorKL
5HL2m lN, we then obtain

KL5 (
pÞ0,n

unupubnp
† bnp1

2p

L F un

Kn
~N1n1N2,n!2

1unKn~N1n2N2,n!2G . ~A9!

In Eq. ~A9! we have subtracted the zero-point ener
(1/2)(pÞ0,nunupu, which originates from an infinite filled
Dirac sea of negative energy particle states in the LL mo
The zero modes in Eqs.~A7! and~A8! give rise to contribu-
tions of order 1/L in Hamiltonian ~A9!, and they are also
responsible for a shift of the Fermi wave vectorpF , appear-
ing in the Fermionic field operatorcns(x), by a contribution
of the same order. Since we are only interested in the t
modynamic limit, we have neglected the zero-mode con
butions in explicit calculations in the main text.

APPENDIX B: EXACT RESULTS FOR THE TIME
INTEGRALS

In this appendix we give the exact results for the tim
integrals in Eqs.~23! and ~30!. The integrals over the time
variablet appearing in Eqs.~23! and ~30! have the form

E
2`

`

dt
ei2mt

S L

ur
1 i t D QS L

us
1 i t D R

5
2pe22m

L
ur~2m!Q1R21

G~Q1R!

31F1@R;Q1R;2L~ur
212us

21!m#, ~B1!

This integral formula is valid forQ and R satisfying Re(Q
1R).1 ~see Ref. 43, p. 345! which is in the range of our
interest since we haveQ1R.2. The functionG(x) in Eq.
~B1! is the gamma function, and1F1(a;g;z) is the confluent
hypergeometric function given by
-
e

16532
l.

r-
i-

1F1~a;g;z!511
a

g

z

1!
1

a~a11!

g~g11!

z2

2!
1•••. ~B2!

In the main text we considered only the leading order term
1F1, since higher-order terms are smaller by the parame
2mL/ur and 2mL/us . The integrals over the delay timest8
and t9 in Eq. ~30! contain Hankel functions of the first an
second kinds, which are linear combinations of Bessel fu
tions of the first and second kinds, i.e.,H0

(1/2)(tD)5J0(tD)
6 iY0(tD). The integrals overt8 andt9 in Eq. ~30! are there-
fore linear combinations of integrals of the form

lim
h→0

E
0

`

dte2htY0~ tD!td

5 lim
h→0

S 2
2

p
G~d11!~D21h2!2(1/2)(d11)

3Qd~h/Ah21D2! D , ~B3!

and

lim
h→0

E
0

`

dte2htJ0~ tD!td

5 lim
h→0

@G~d11!~D21h2!2(1/2)(d11)

3Pd~h/Ah21D2!#. ~B4!

This result is valid ford.21 ~see Ref. 43 p. 691!. The
functionsQ and P are Legendre functions. The limith→0
for Qd(h/Ah21D2) is ~see Ref. 43, p. 959!

Qd~0!52
1

2
Apsin~dp/2!

GS d11

2 D
GS d

2
11D , ~B5!

and the limith→0 for Pd(h/Ah21D2) is

Pd~0!5
Ap

GS d

2
11DGS 12d

2 D 5
1

Ap
cos~dp/2!

GS d11

2 D
GS d

2
11D .

~B6!
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36J. Sólyom, Adv. Phys.28, 201 ~1979!.
37Y. Suzumura, Prog. Theor. Phys.63, 5 ~1980!.
38H.J. Schulz, J. Phys. C16, 6769~1983!.
39J. Voit, J. Phys. C5, 8305~1993!.
40P. Recher and D. Loss~unpublished!.
41A.F. Volkov, P.H.C. Magne, B.J. van Wees, and T.M. Klapwij

Physica C242, 261 ~1995!.
42M. Kociak, A.Yu. Kasumov, S. Guron, B. Reulet, I.I. Khodo

Yu.B. Gorbatov, V.T. Volkov, L. Vaccarini, and H. Bouchia
Phys. Rev. Lett.86, 2416~2001!.

43I.S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and
Products, 6th ed.~Academic, San Diego, 2000!.

44R. Egger and A. Gogolin, Phys. Rev. Lett.79, 5082 ~1997!; R.
Egger,ibid. 83, 5547~1999!.

45C. Kane, L. Balents, and M.P.A. Fisher, Phys. Rev. Lett.79, 5086
~1997!.
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