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Superconductor coupled to two Luttinger liquids as an entangler for electron spins
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We consider ars-wave superconductdSC) which is tunnel coupled to two spatially separated Luttinger-
liquid (LL) leads. We demonstrate that such a setup acts as an entangler, i.e., it creates spin singlets of two
electrons which are spatially separated, thereby providing a source of electronic Einstein-Podolsky-Rosen
pairs. We show that in the presence of a bias voltage, which is smaller than the energy gap in the SC, a
stationary current of spin-entangled electrons can flow from the SC to the LL leads due to Andreev tunneling
events. We discuss two competing transport channels for Cooper pairs to tunnel from the SC into the LL leads.
On the one hand, the coherent tunneling of two electrons into the same LL lead is shown to be suppressed by
strong LL correlations compared to single-electron tunneling into a LL. On the other hand, the tunneling of two
spin-entangled electrons into different leads is suppressed by the initial spatial separation of the two electrons
coming from the same Cooper pair. We show that the latter suppression depends crucially on the effective
dimensionality of the SC. We identify a regime of experimental interest in which the separation of two
spin-entangled electrons is favored. We determine the decay of the singlet state of two electrons injected into
different leads caused by the LL correlations. Although the electron is not a proper quasiparticle of the LL, the
spin information can still be transported via the spin-density fluctuations produced by the injected spin-
entangled electrons.
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[. INTRODUCTION spatially separated Fermi-liquid leads. By applying a bias, a
stationary current of spin-entangled electrons can flow from
Pairwise and nonlocal entangled quantum states, so-calletie SC to the leads. The quantum dots are used to mediate
Einstein-Podolsky-RosefEPR) pairs! represent the funda- the necessary interaction between the two electrons initially
mental resource for quantum communicafischemes like forming a Cooper pair in the SC, so that the two electrons
dense coding, quantum teleportation, or quantum keyunnel preferably not into the same lead but instead into dif-
distribution? more fundamentally, they can be used to testferent leads. This entangler then satisfies all requirements to
Bell's inequalities’ Experiments tested Bell’'s inequalitigs, detect entanglement via the current noise in a beam splitter
dense codin§,and quantum teleportati6f using photons, setup® It is straightforward to formulate spin measurements
but to date no experiments fonassiveparticles like elec- for testing Bell inequalitiesit is most promising to measure
trons in a solid-state environment exist. This is so because #pin via charg&!®?y. We refer to related work:~? which
is difficult, first, to produce entangled electrons and also taalso made use of Andreev tunneling, but in a regime opposite
detect them afterward in a controlled way due to other electo the one considered in Ref. 16 and here, where the
trons interacting with the entangled pair. On the other handsuperconductor/normal interface is transparent and no Cou-
the spin of an electron was pointed out to be a most naturdbmb blockade nor strong correlations are present.
candidate for a quantum bitubit).®'° This idea was also In the present work we propose and discuss an alternative
supported by experiments which showed unusually longealization of an entangler which is based on strongly inter-
dephasing times for electron spins in semiconductays  acting one-dimensional wires which show a Luttinger-liquid
proaching microsecongsnd phase-coherent transport up to(LL) behavior. In comparison to our earlier proposal with
100 um.M~1 In addition, the electron also possesses ajuantum dots® we now replace the Coulomb blockade be-
charge which makes it well suited for transporting the spinhavior of the dots by strong correlations of the LL. Well-
information’*® Further, the Coulomb interaction between known examples for LL candidates are carbon nanotébes.
the electron charges can be exploited to spatially separate thighe low-energy excitations of these LL's are collective
spin-entangled electrons, resulting in electronic EPR pairscharge and spin modes rather than quasiparticles, which re-
As first pointed out in Refs. 14 and 15, such electronic EPRsemble free electrons as they exist in a Fermi liquid. As a
pairs can be used for testing Bell inequalities and for quaneonsequence, the single-electron tunneling into a LL is sup-
tum communication schemes in the solid state. The first stepressed by strong correlations. The question then arises quite
toward this goal is to have a scheme by which the electronsaturally of whether these strong correlations can even fur-
can be reliably entangled. One possibility is to use coupledher suppress the coherent tunnelingweb electrons into the
quantum dot$*®Alternatively, we recently proposed an en- same LL, as provided by a correlated two-particle tunneling
tangler devic® which creates mobile and nonlocal spin- event(Andreev tunneling so that the two electrons prefer-
entangled electrons, consisting of sswave superconductor ably separate and tunnel into different LL leads. It turns out
(SO), where the electrons are correlated in Cooper pairs withhat the answer is positive. To address this question we in-
spin-singlet wave function¥. The SC is tunnel coupled via troduce a setup consisting of awave SC which is weakly
two quantum dots in the Coulomb blockage regfifite two  tunnel coupled to the centéulk) of two spatially separated
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words, the second electron of a Cooper pair is incluenced by
the existence of its preceding partner electron already present
in the LL. This effect can also be interpreted as a Coulomb
blockade effect, similar to what occurs in quantum dots at-
tached to a SE>!° Similar Coulomb blockade effects also
occur in a mesoscopic chiral LL within a quantum dot
coupled to macroscopic chiral LL edge states in the frac-
tional quantum Hall regim& There the Coulomb-blockade-
like energy gap is quantized in units of the noninteracting
energy-level spacing of the quantum dot, and its existence is
FIG. 1. A possible implementation of the entangler setup: Twotherefore a finite-size effect, whereas in the present case we
quantum wires 1 and 2, described as infinitely long Luttinger lig-will see that the suppression comes from strong correlations
uids (LL), are deposited on top of awave superconductdSC)  in a two-particle tunneling event which is present even in an
with a chemical potentiaks. The electrons of a Cooper pair can infinitely long LL as considered here. On the other hand, if
tunnel by means of an Andreev process from two pointandr,  the two electrons of a Cooper pair tunnel to different leads,
on the SC to the Centébulk) of the two quantum wires 1 and 2, they will preferab|y tunnel from different point% andrz of
respectively with a tunneling amplitudg. The interaction between o SC, with a distancér=r;—r, due to the spatial sepa-
the leads is assumed to be negligible. ration of the leads; see Figs. 1 and 2. We find that the current
is exponentially suppressed if the distanée exceeds the
one-dimensional wires 1 and 2 described as Luttinger lidzoherence lengtl§ of a Cooper pair on the SC. This limita-
Uids, see F|g 1 and 2. In this model we calculate the Statiorﬁon poses no severe experimenta| restriction, Slf](te on
ary current generated by the tunneling of a sindgiin-  {he order of micrometers for typicelwave materials, andr
entangled electrons transferred from the SC into tWo can pe assumed to be on the order of nanometers. Still, a
separate lead®ionlocal procegsor into the same lealocal  power-law suppression1/(kqor)2, with ke being the Fermi
procesy 1 or 2. We show that the ratio of these two com-\yaye vector in the SC, remains and is more relevant. We
peting current channels depends on the system parametegpow, however, that in lower dimensions of the SC this sup-
and that it can be made large in order to have the desirefression is less pronouncédith smaller powers Further,
injection of the two electrons in two separate leads, wheréye then discuss the decay in time of a spin-singlet state
again, the two spins, forming a singlet, are entangled in spifhjected into two LL's, one electron in each lead, due to the
space while separated in orbital space, and therefore reprgyeraction present in the LL, and find a characteristic power-
sent an .electromc EPR pair. It |s.weII known that the tunnelg,y decay in time at zero temperature. Despite this decay of
ing of single electrons into LL's is suppressed compared tqne singlet state, spin information can still be transported

that in Fermi liquids due to strong many-body correlations.through the LL wires via the spin-density fluctuations created
In addition, we now find that subsequent tunneling of a secpy the injected electrons.

ond electron into the same LL is further suppressed, again in

a characteristic interaction-dependent power law, provided Il. MODEL AND HAMILTONIAN
the applied voltage bias between the SC and the LL is much . o
smaller than the energy gap in the SC so that single- We consider answave SC which is weakly tunnel

electron tunneling is suppressed. The two-particle tunnelin(‘]}c’uF’led to the centefbulk) of two spatially separated LL

event is strongly correlated within the uncertainty tifmgs, ~ 1eads(see Figs. 1 and)2The Hamiltonian of the whole

characterizing the time delay between subsequent tunnelin?/s'[em is represented asl=Ho+Hr with Ho=Hs
e

events of the two electrons of the same Cooper pair. In othef Zn=12HLn describing the isolated SC and LL leads 1 and
2, respectively. Tunneling between the SC and the leads is

governed by the tunneling Hamiltoni&h, . Each part of the
system will be described in the following.

The swave SC, with a chemical potentialg, is de-
scribed by the BCS Hamiltonidh

Hs— Mst:kES Ex¥isVks: 1)

wheres=(T1,]) and NS=EkSclScks is the number operator

for electrons in the SC. The quasiparticle operatgrs de-

scribe excitations out of the BCS ground stglgs defined

by yx|0)s=0. They are related to the electron annihilation
FIG. 2. An alternative implementation of the proposed entanglerand creation operatorss and ¢ through the Bogoliubov

setup: two quantum wires 1 and 2, with a chemical potential  transformatiof’

described as infinitely long Luttinger liquidé_L), are tunnel

coupled with an amplitude, from two pointsx; and x, to two CkT:ukykT"'Uk?’ikL
pointsr; andr, of a superconductingSQO) tip with a chemical + 2
potential ug. Ck| = Uk¥Y—k| ~Uk¥xki»
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where u,=(142)(1+&/E)Y? and v,=(142)(1 erator¥¢(r,) annihilates an electron with spimat pointr,,

— &/E) " are the usual BCS coherence factorg,=e€,  on the SC, and)! creates it again with an amplitudg at

— ps s the normal-state single-electron energy counted fronpointx,, in the LL n which is nearest to,,, see Figs. 1 and 2.

the Fermi levelug, andEy= \/§2k+A2 is the quasiparticle We assume that the spin is conserved during the tunneling

energy. The field operator for an electron with sgiris  process, and thus the tunneling amplitutigsglo not depend

W (r)=V Y23,e" ¢, whereV is the volume of the SC.  on spin, and, for simplicity, are the same for both leads
The two leads 1 and 2 are supposed to be infinite one=1 and 2. We remark that our point-contact approach for

dimensional interacting electron systems described by Lldescribing the electron transfer from the SC to the LL is the

theory. We only include forward-scattering processes whiclsimplest possible description, but it presumably captures the

describe scattering events in which electrons stay in the smelevant features of a real device. The scheme shown in Fig.

branch(left or right mover$. We neglect backscattering in- 2 has a geometry which suggests that electrons tunnel from

teractions which involve large momentum transfers of ordeipoint r,— x,, which are closest to each other, due to the fact

2pg , wherepg is the Fermi wave vector in the L# The LL
Hamiltonian for the low-energy excitations of lead=1,2
can then be written in a bosonized fornfas

+L/2

Hin—uiNp= 2 dx
v=p,0 J—L/2

.

where the fieldd1,(x) and ¢,(x) satisfy bosonic commuta-
tion relations[ ¢y,,(x), 1, (X")] =i,md,,0(x—x"), and

wu, is the chemical potential of the LL leadassumed to be
identical for both leads andNn=25fdxwgS(x) ¥ns(X) is the
number operator for electrons in k. Hamiltonian(3) de-
scribes long-wavelength charger<€p) and spin ¢=o0)
density oscillations in the LL, propagating with velocities
andu,, respectively. The velocitieg, and the stiffness pa-
rameterK , depend on the interactions between the electron
in the LL. In the limit of vanishing backscattering, we have
u,=ve andK, =1, and the LL is described by only two
parameter& ,<1 andu, . In a system with full translational
invariance we haveu,=ve/K,. We decompose the field
operator describing electrons with sgEinto right- and left-
moving parts, #ns(X) =Py o, (X) +e PPy (X). The
right (left) moving field operatoi),s. (X) [ ¥ns—(X)] is then
expressed as an exponential of bosonic field$#s

mu,

2

KV 2 u, 2
an+27TKV((9X¢nV) 1 (3)

7+ .ns

V27ma

¢nst(x) = lim

a—0

exp{ té{¢np<x>+s¢ng<x>

1[0np(x)+89no(x)]}] ; (4)

where[ ¢,,(X), O (X') ] = —i(7/2) 6ymd,,SgNK—X"), and
therefore d,6,,(x)=mII,,(x). The operatorszn. ,s are

thatt, depends exponentially on the tunneling distance. In
the setup shown in Fig. 1, a pointlike tunnel contact between
the SC and the LL might be induced by slightly bending the
guantum wires(e.g., nanotubes If the contact area has a
finite extension, we note that the two electrons preferably
tunnel from the same point on the SC, when they tunnel into
the same lead, since the two-particle tunneling event is co-
herent and already shows a suppression in the probability on
a length scale given by ¢, as we discuss in detail below.

Ill. STATIONARY CURRENT FROM THE SC
TO THE LL LEADS

We now calculate the current of singlets, i.e., pairwise
spin-entangled electrori€ooper pairg from the SC to the
LL leads due to Andreev tunneliffg®in first nonvanishing
order, starting from a general-matrix approach? We
thereby distinguish two transport channels. First we calculate

e current when two electrons tunnel from different points
r, andr, of the SC intodifferentinteracting LL leads, which
are separated in space such that there is no interlead interac-
tion. In this case the only correlation in the tunneling process
is due to the superconducting pairing of electrons which re-
sults in a coherent two-electron tunneling process of opposite
spins from different points, andr, of the SC, and with a
delay time~#/A between the two tunneling events. Since
the total spin is a conserved quantltid,S*]=0, the spin
entanglement of a Cooper pair is transportediiféerent LL
leads, thus leading to nonlocal spin entanglement. On the
other hand, if two electrons tunnel from the same point of the
SC into thesameLL lead, there is an additional correlation
in the LL lead itself due to the intralead interaction. It is the
goal of this work to investigate how the transport current for
tunneling of two electrons from the SC into teemel L lead
is affected by this additional correlation. In the following we
will use units such that =1.

needed to ensure the correct fermionic anticommutation re-

lations. In the thermodynamid@ D) limit (L— ), 7. ,scan

be presented by Hermitian operators satisfying the anticom-

mutation relatio®® {7, ,7,/}=28,, with r==+ ns. We
adopt the convention throughout the paper that+1 for
s=1, ands=—1 for s= |, if sdoes not have the meaning of
an operator index.

IV. T-MATRIX

We apply aT-matrix (transmission matrixapproacff to
calculate the currertf. The stationary current dfivo elec-
trons passing from the SC to the leads is then given by

Transfer of electrons from the SC to the LL leads is de-

scribed by the tunneling Hamiltoniaklt=X,H+,+H.c.,
whereH+, is defined as-ITnztoESzprﬁs‘lfs(rn). The field op-

|:292 Wsip; - ®)
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HereW;; is the transition rate from the superconductor to theof the tunneling Hamiltonian we can integrate out all final

leads, given byW;;=27|(f|T(&;)|i)|28(e;—e;). Here and virtual states. The forward current for tunneling of
two electrons into different leads can then be written as
T(S'):HT'—(‘S'_HO) *® * * Py r_4m
: gitI 77_H : |l=2e|im E dtfo dtrfo dtuefn(t +t")+i2t—-t' -t"u
is the on-shell transmission @rmatrix, with 7 being a posi- rmontn

tive infinitesimal which we set to zero at the end of the R .
calculation. TheT matrix can be expanded in a power series  X(Hy(t—=t")H; ,()H(t ) Hyp ), (7)

in the tunneling Hamiltoniari, where(- - -) denotes Tp{- - - }. The bias has been introduced

in a standard way’ and the time dependence of the operators
@® In Eq. (7)) is then governed by Hy(t)
= (KintKItH e I(KintKIt - with K ,+Ks=H_,+Hsg
—mNp—usNg. The transport process involves two elec-

where.si Is the energy of the initial ;tat|e), wh|ch,_|n our rons ofdifferentspins which suggests that the average in Eq.
case, is the energy of a Cooper pair at the Fermi surface ?g) is of the form (suppressing time variables(- --)

the SC,e;=2us. Finally, p;={i|pli) is the stationary occu- " 1 + _
pation probability for the entire system to be in the state _ESS’<HT[ﬂ—S’HTm’_S’HT”—SHT”’S>' where HT_“S describes
We work in the regimeA> u>kgT, where u=ue— ; is the tunneling of spirs governed byH,. The time sequence

the applied voltage bias between the SC and the leadsT and" Ed- (7) contains the dynamics of the hopping of a Cooper
the temperature witkg the Boltzmann constant. The regime P&r from the SC to the LL lead®ne electron per leacgind

H ! n 4
A>p ensures that single-electron tunneling from the SC td*@ck- The timed’ andt” are delay times between subse-
the leads is excluded and only tunneling tofo coherent ~duent hoppings of two electrons from tkameCooper pair,
electrons of opposite spins is allowed. In the regime whereast is the time between injecting and taking out a

>ksT we only have transport from the SC to the leads, andCOPer pair. We evaluate the thermal average in (nat
not in the opposite direction. Since the temperature is asZero temperature where the expectation value is to be taken

sumed to be the smallest energy scale in the system, w8 the ground ?t?‘te OKOZE”KhL”JFKS which is the E’%S
assumegT=0 in the calculation. The set of initial stat@$, ground state of the SC .and the .bOSOHIC. vacuum of the LL
virtual states|v) and final statedf) consists of the BCS leads. We remark that since the interaction between the dif-

e + ferent subsystems (SIC,,L,) is included in the tunneling-
g;%ugi osrtrz]igla((a(t?aS)s%']%So? 2: efgilé?ggggakflt(gs fo{rbth(;) So? perturbation, the expectation value factorizes into a SC part
nrv» nv

the LL HamiltonianH , given in Eq.(3). N,,., is the number tlmes a.LL part. In addltlon,' the LL corrglatlon fu.nct|on fac-
o A . torizes into two single-particle correlation functions due to
of excess sping= o) and charge ¢=p) in branchr relative

. the negligible interaction between LL leads 1 angHis will
1 1 O e, Bose SRErlcy, frh & corous Shet e ot the case f wo Glecirons tumnl o Selead
introduced in Eqs(10) and (11). The GS of the LL is then ote that in the TD limit the time dynamics of all LL corre-

. . lation functions will be goverened by a Hamiltonian that
|0,0), which means that we have no integral excess chargaepenols only on Bose operatfsee Eq(12)]. The operators

and spin and no bosonic excitations. The energy contribution .
P 9y +rs commute with all Bose operators, and as a conse-

of the excess charge and spin is included in the so-calledf . ind d heref ; :
zero mode k=0) terms in the diagonalized Hamiltonian quencer..s are time independent. Therefore, interaction

Tt ;
K.n [EQ. (12)] and are of no importance in the TD limit( terms of the LL of the formy, ¢,y can be written as
) considered here, since the contribution of these termde 77677, (Bose opgratfxpiwherea,ﬁ,y, ands are com-
due to an additional electron on top of the GIELIL) and posite |nd_|ces containing= = ,ns. The correlation function
is neglected in Eq(12). For a detailed description of the LL in Eq. (7) is then of the form

Hamiltonian[Eq. (3)] including the zero modes, see Appen-

dix A. Since we want to calculate the transition rate for trans- >, (H$m(t—t”)H$m,(t)HTn(t’)Han>

port of a Cooper pair to the leads, the final staftfs of ”*“’,

interest contain two additional electrons of opposite spins if"* ™

the leads compared to the initial stat. , )
=tol* 2 (Undt=t") 4 (Y- stV

* n
T(e))=Hr+ HTHZ mHT) ,

=1

V. CURRENT I; FOR TUNNELING OF TWO ELECTRONS n#m
INTO DIFFERENT LEADS X(‘Pl(rn vt_t")q’ts(rm,t)‘l’—s(rm,t')q's(rn»
We first calculate the current for tunneling of two spin-
entangled electrons into different leads. We expand the —|to|* E <¢m,s(t—t'—t")¢;,s><¢ns(t)¢;s>
S

T-matrix to second order ikl+, and go over to the interac-
tion representation by using(e)=(1/2w)f*Zdte<, and s et )
<U|(Ei_Ho+i7])7l|U> :_ifgdtei(eifevﬂn)t_ By trans- ><<\I’_s(|'m,t_t )\Ps(rn,t)‘lf_s(rm,t )\Ps(rn)). (8)

forming the time-dependent phases into a time dependencihe four-point correlation functions of the SC can be calcu-

n#m
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lated by Fourier decomposing W(r,,t)
:Vil/zzk(uksykseiiEkt"'UksyikfseiEkt)eikrna with Uy
=Uy, andvy, = —vy =vy. For the first correlation function
in Eq. (8), we then obtain

VI t=t") T (r DT (1, t)P(ry)

—1 r_ ,717 !
=E Uw Uy v e B~ Bt = (k) or)
Kk’

+ E (Ukvk,)Ze*i[Ek(tft”)JrEkr(tft’)],
Kk’

9

where 6r=r,—r, is the distance vector between the two
tunneling points in the SC. The first sum in E) describes
the (time-dependentcorrelation of creating and annihilating
a quasiparticléwith same spijy whereas the second term in
Eq. (9) describes the correlation of creatihgo quasiparti-
cles(with different sping. It is obvious that the second term
describes processes which involve final statfs in the
T-matrix elemen{ f|T(&;)]i) that contain two excitations in

the SC and, therefore, does not describe an Andreev proceggore v, =(K,+K Y /4—1/2>0

PHYSICAL REVIEW &5 165327

for the p dependence of the interaction, we apply a high
momentum-transfer cutofA on the order of g, so that
Ku(p)=K,, u,(p)=u, for [p|<L/A and K,(p)=1,u,(p)
=vg  for |p|>1/A. By  writing Pnsi(X,1)
=(2ma) Y2y, ,s€'PrsD with r=+ and®, defined ac-
cording to Eq.(4), we can represent the single-particle LL
correlation function as

(PnsiX D) sy = (27m0) " 2exp{(® g (X, 1) D g,
— (D24 (x,1) + D )/2)},

with the well-known resuff—°

Girs(x,t)E@//nsr(X,t) '//Esr>

1  A+i(vgt—rx) 1
=—1lim - :
27, oo ti(Vet=rx)v=pe JA+i(u,t—rx)
Az Y12
X|————— (13
(A+iu,t)?+x?
is an interaction-

In the regimeA > such a process is not allowed by energy yenendent parameter which describes the power-law decay

conservation. We will see this explicitly by calculating the
integral overt which originates from the Fourier representa-
tion of the 6 function present in the raté/;; . Similarly, for
the correlator(‘lfis(rm,t—t”)\If;‘(rn DV _(rm, t)W(ry)
in Eqg. (8), we obtain Eq(9) with a minus sign, and we have
to replacet—t"” by t—t’'—t", andt—t’ by t, in the second
term of Eq.(9).

To evaluate the LL correlation functions in E) we
decompose the phase fields, (x,t) and8,,(x,t) into a sum
over the spin and charge bosaadso see Appendix A

T )
0., (Xx,H)=—2,s \/=———elPXgalpl2

><(bnype“”v‘m‘—bxy_pei“v“)“) (10)
and
[ mK, .
J(x,t)= Velpxefa|p|/2
B0 =2 Nl
X (by,pe UHPE D], ePlty (1)

of the long-time and long-distance correlations. The factor
containing the Fermi velocity g in Eq. (13) is only impor-
tant if one is interested ir,t satisfying|vgt—rx| <A, and is

a result of including the-dependence of the interaction pa-
rametersK, andu, . The LL correlation functioEqg. (13)]

has singular points as a function of time in the upper com-
plex plane. It is now clear that the integration oves only
nonzero if the phase of'“! in Eq. (7) is positive, i.e.,»
>0. Since the phases of the terms containing)t in Eq.

(9) also depend oy the requirement for a nonzero contribu-
tion to the current from these terms requires 2E,—Ey,
>0. However, this is excluded in our regime of interest,
since E,+E,,=2A; therefore, we will not consider these
terms any further in what follows. We remark that for
#r', the correlation functior ¢,s.(X,t) l//lsr,> gives a neg-
ligible contribution in the TD limit. This statement is true
also for a finite-size LL as long as the interaction preserves
the total number of right and left movers. In our model the
electrons tunnel into the same poigtin LL n, i.e.,x=0 in

Eqg. (13). In addition, LL's 1 and 2 are assumed to be similar.
In this case the single-particle correlation function does not
depend om andr, i.e.,Gﬁ,s(x,t)EGl(t), and the current;

The spin and charge bosons satisfy Bose commutation relgan then be written as

tions, in particulaf b, ,b;,v,p,]: S, Wherer=nvp, and

the LL ground state is defined bgyp|0)LL=O. Hamiltonian
(3) can then be written in terms of thHe operators agsee
Appendix A

KLnZEI; uv|p|blypbnvpv (12

where we have subtracted the zero-point energy coming from

the filled Dirac sea of negative-energy particle states. Ip all
sums we will explicitly excludep=0, as discussed in Sec.
IV, and explained in more detail in Appendix A. To account

I,=(32e|ty|*V?)

—1i r_ ,7/7 ’
« E Uw Uy v e B — Bt = (k) ar)
Kk’

X{GL(t—t")GY(t—t")+Gt—t' —t")G(t)}.

X lim
7—0

(14)

We evaluate Eq(14) in leading order in the small param-
eter /A, and remark that the delay time$ and t” are
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restricted tot’,t"<1/A. This becomes clear if we setr ~ The sine functions in Eq17) can be expanded in powers of
=0 and express the contribution in E@4) containing the and foru <A it is sufficient to keep just the leading order

dynamics of the SC as term in u since the integrals over andt” have the form
E i(Egt’ —Eyrt"”) - (n=iEt n!
UV Uy vy €7 1K 5K f dte” (7= ———— (18)
Kk’ 0 (nilEk)n+l

_ ) sn 2 ’
_(WVSAIZ)ZHS (t A)HE) (t'a), (15 wheren=1,2,3 .. ..SinceE,=A, higher powers irt’ and

t” produce higher powers ip/A, and, as expected, we can
therefore ignore the dependencetdérandt” in the LL cor-
o ) o relation functions. In contrast to this, when we consider the
per spin in the SC gs. For timest’,t">1/A, the Hankel ¢, rrent for tunneling of two electrons into the safirer-
funcl'/uzons are rapidly oscillating, since for largewe have  4¢ting LL lead, we will see that the two-particle correlation
Ho 2(x) ~ V2/mxexp(= [ix — (/4)]). In contrast, the time-  fynction will not allow for such a simplification. In leading
dependent phase in EQ.4) containing the biag. suppresses order in u/A, the integrals ovet’ andt” are evaluated ac-
the integrand in Eq(14) only for times|2t—t'—t"|>1/u  cording to Eq.(18) with n=0, and we obtain ateffective
>1/A. Being interested only in the leading orderdA, we  momentum sum for  the e correlations
can assume that|>t’,t" in the current formuldEq. (14)], |3, (uw,/E)cosk- 6r)]2. To evaluate this sum we use
since the LL correlation functions are slowly decaying iny, ;, = A/(2E,) and linearize the spectrum around the Fermi
time with the main contributiofin the integral coming from  |eyel 4, since the Fermi energy in the SG>A, with the

large timesit|. In addition, since J>A/vg, we can ne-  Fermj wave vectokg. We then obtain §r denoted or|)
glect the term containing the Fermi velocity in Eq. (13).

whereH{ and H{?) are Hankel functions of the first and
second kinds, andg is the energy density of statéBOS)

To test the validity of our approximations, we first consider oo 7 sin(keor)

the noninteracting limit witlK,=1 andu,=v¢, for which S K cogk- 8r) == vg—— = (/T8 (19)
an analytical expression is also available for higher-order Ey 2 kg or

terms inu/A.

In Eg. (19) we introduced the coherence length of a Cooper
pair in the SCé=vg/7A. We finally obtainl(l), the current

VI. NONINTERACTING LIMIT FOR CURRENT |, I, in the noninteracting limit:

Let us first consider a one-dimensiondD) Fermi gas

(i.e.,K,=1 andu,=v), and evaluate the integral ovein 10— g2 sin(kgor) |2 201 20

Eq. (14) in the noninteracting limit. The LL correlation func- 1= emyu Kg or - T,_g : (20
tions simplify toGl(t)=(1/27-r)lima_>01/(a+iv,:t), and we

are left with the integral Here we have defineg=4mvgy|to|?/LV, which is the

dimensionless conductance per spin to tunnel from the SC to

o - L o ) N R the LL leads. The non-interacting DOS of the LL per spjn
fﬁxdte HGHt—t")G (1=t )+ G (t—t' —t")G (1)} is given by yy=L/mvg. [We remark in passing that this
result agrees with ar-matrix calculation in the energy
( 1 )me 1 domain?® In this case we sum explicitly over the final states,
=|=— dtef2te given by a singlet|f)=(1/y2)[al al, —al, al, 1]i)
H ” : ’ pr<2ql 1pl“2q7 !
2m) J-x [etive(t=t)][ative(t=t")]  \yhere thea operators describe electrons in a noninteracting

1D Fermi gas. Note that triplet states are excluded as final
i (16  States since our HamiltoniaH does not change the total
spin] We see that the currelhf is exponentially suppressed
on the scale o€, if the tunneling of the twdcoherenk elec-
which can be evaluated by closing the integration contour irtrons takes place from different points andr, of the SC.
the upper complex plane. Inserting the result into B¢, For conventionak-wave SC the coherence lengihs typi-
we obtain cally on the order of micrometers, and therefore this poses
not severe experimental restrictions. Thus, in the regime of
interestdor < ¢, the suppression of the currelr?tis only poly-
nomial, i.e.,<(1/kg6r)2. It was showf! that a supercon-
ductor on top of a two-dimensional electron gaBEG) can
induce superconductivityvia the proximity effect in the
2DEG with a finite order parameter. The 2DEG then be-
comes an effective 2D SC. More recently, it was suggested
that superconductivity should also be present in ropes of
]. (17) single-walled carbon nanotub&swhich are 1D systems. It
is therefore interesting also to calculate EfQ) in two di-

1
i [a+ivF(t—t’—t”)][a+ith]}

a—0

1= (32e|to|*/V?) lim f dt’ f dt’e 7' +t")
7—0Y0 0

—1 r_ ,!/7 ’
x> Uw g0 e B — Bt = (k) or)
Kk’

1 [Sir{(t"—t’)u] L St 4t

w2 t—t’ t'+t”
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mensions and one dimension. In the case of a 2D SC wimteraction dependent exponeng 2+ 1. The parametey,, is
evaluateX  (u,v, /E,)cosk- or) in leading order indr/7¢&,  the exponent for tunneling into the bulk of a single #1i,e.,

and we find p(g)~|e|”, wherep(e) is the single-particle DOS. Note
. that the current, does not show a dependence on the cor-
Uvk Tf Jo,(Kgor) relation time 1A, which is a measure of the time separation
Gb) Ex cogk- or)= 27Vs ‘]O(kFéerZl Ty : between the two electron-tunneling events. This is so since

(21  the two partners of a Cooper pair tunneldifferentLL leads

) with no interaction-induced correlations between the leads.
whereJ,(x) denotes the Bessel function of orderfor large

keor, we obtain J,(kgdr)~+2/kg 6rcogke o — (vml2)
— (m/4)], which allows an approximation of the right-hand VIII. CURRENT 1, FOR TUNNELING OF TWO
side of Eq.(21) for large kesr by (7/2)vsdo(kedr)[1 ELECTRONS INTO THE SAME LEAD
—(2/7)In 2]. This result is exact to leading order in an ex-
pansion in IKgor. So asymptotically, the current decays \a4ing from an Andreev process, tunnel into the same lead, is
only = 1/kgor. For ér=0, the bracket on the right-hand side o\ that the four-point correlation function of the LL no
of Eq. (21) becomes 1 as in the 3D. case. longer factorizes, as is the case when the two electrons tun-
In the case of a 1D SC we obtain nel into different leadgsee Eq.(8)]. In addition the two
Uy . electrons will tunnel into the lead preferably from the same
> —=Zcogk-r)==rvscogkpsr)e (/T (22)  spatial point on the SC, i.egr=0. We denote byl, the
K1) Exk 2 current for coherent transport of two electrons into saene
where there are only oscillations and no decay of the Anlead, either lead dr lead 2. It can be written in a similar way

dreev amplitudéfor or/7&<1). We see that the suppression 2S!1 [see Eq(7)], with the difference that now we consider
of the current due to a finite separation of the tunnelingfin@! states with two additional electrosf opposite spinin

points on the SC can be reduced considerdblyeven ex- the same leaceither 1 or 2 compared to the initial state. For
cluded completely by going over to lower-dimensional 2> We then obtain

The main feature of the case where two electrons, origi-

SC'’s.
l.=4elim ” ” ’ ” o=t +t")+i2t—t" —t")u
VII. CURRENT 1|, INCLUDING INTERACTION 2 e”ﬂoszs:, ﬂcdtjo dt fo dt’e
We now are ready to treat the interacting case. Havin T t
Y g 9 X(HI,_o(t—t)H] (OHTa ot Hrng, (25

obtained confidence in our approximation schemes from the

noninteracting case above, we can now neglect thndt” where we have assumed that leads 1 and 2 are identical
dependences of the LL correlation function appearing in Eq. , . . . . ’
L . . L . which results in an additional factor of 2. Again, the thermal

(14), valid in leading order inu/A. In this limit thet integral . .
considerably simplifies to average is to be taken'atzo, and this ground-state expec-
tation value factorizes into a SC part times a LL part. How-

ever, the LL part no longer factorizes due to strong correla-

J’ dte @V -Gt —t")GY(t—t") tions between the two tunneling electrons. In this case we
o obtain
+Gt—t' —t")GY(t)}
1 9A20m7) F N oi2ut Z (HI L (t=t)HI (OHr ((t)H1ne
~ S,S
2 . '
LA | BT | I (VIR RR N O . .o
r=pa veeo :|t0| ES <¢ns(t_t”)wnfs(t)wnfs(t,)‘zbns)

(23

An analytical expression for this integral is availabtend
is given in Appendix B. The treatment of the remaining in-

XUl t=t") Wl (r, )W _(r,,t)Wy(ry)

tegrals overt’ andt” and the calculation of the Andreev +|to|42 (wn,s(t—t”)gbns(t)dxl,s(t’)zpﬁs)
contribution is the same as in the noninteracting case and for s
the currentl, in leading or<_jer inw/A and in the small X(‘I’ts(fn,t—t")‘l’l(rn,t)‘I’fs(rn,t')‘I’S(fn))-
parameters & u/u,, we obtain
(26)
19 ve[2uA]?

(24 The four-point correlation functions for the SC in EQ6)

are the same as in E(B) for the case when the two electrons
In Eq. (24) we usedK,=1 andu,=vg. The interaction tunnel into different leads, except that n@wn=0. The(nor-
suppresses the current considerably, and the bias dependemaalized four-point correlation functions in Eq26) for
has a characteristic nonlinear forhgo(w)2? %2, with an  the LL are

'1:r(2yp+2) u,| U

p
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Grzr ,1(t,t, ,t”)E<l[lan(t—tH) '/fnr’—s(t) 'r/f:rr_s(t,)lr/flrsw
<l/fnrs(t_t”) wzrsanr’ —s(t_t,)w;rr _S>!

which can be calculated using similar methods as describe
above for the single-particle correlation function. After some e

calculation we obtain
2
G, (t,t't")

A—iu.t” Nyrr?
14
A+iu(t—t' —t")

A+iu '\ Mo
A+iut

v=p,0

(27)
where\ ., =§&,(rr 'K, +(1/K,))/4 with £,,,=*= 1. For the
other sequence

Grzr ’2:<¢nr73(t_t") ’pnr’s(t) ’ﬁgrfs(t’)dllr’sw
<¢nrfs(t_t, _t”)‘/’;rfs><¢nr’s(t)¢lr’s>'

we obtain
2
Grr ,z(t,t, yt,,)

A—iu,t”

M A it
A+iu,(t—t")

Noprr!
A+iu,,(t—t')> '
(28)

v=p,0

PHYSICAL REVIEW B65 165327

the small parameterg/A, AA/u, and Aul/u,. In this
limit we obtain G’.,,=—G?%,,=(t't")% /[(Alu,)

+it] 2o [(Alvg)+it] A2 where y,, =[(1K,)
grr "K,—(1+rr")]/4>0. The exponenty,,, is related to
introduced in the single-particle correlation function
[Eq. (13)] via y,, =7y, for r=r’, and y,, =vy,+(1
—K,)/2 forr#r’. The current , for tunneling of two elec-
trons into thesamelead 1 or 2 then becoméfor 6r =0)

2mvAlto|?\2 A%
I,=2e 5
u

= 1
\% Yp UE

p
J'wdt, fwdt,,67 n(t’ +t") (t/tr/)ypb
0 0

L[
m)2) =

a=n)2-

X lim 2,

7]i}Ob:il

ng”(t"A)HgZ)(t'A)(Z

eiZ,ut
A - 2\ ,p T2y, +1
—+it
uP

X

. (30
—+it
Uk

Again, the integrals appearing in E(R0) can be evaluated
analytically*® with the results given in Appendix B. Note that
according to the two-particle LL correlation functiofsgs.
(27) and (28)], we find that the dynamics coming from the
delay timest’ andt” cannot be neglected anymore, as was

We remark that contributions from other combinationsdone in Ref. 33. We evaluate E(BO) in leading order in

of left and right movers, as indicated in Eq&7) and
(28, are negligible. A contribution like (it

4 T ! 1 1 1
") (V) (L Y 2 is only nonzero if spin ex-

change between right and left movers is possible, but this is

2uAlu, and finally obtain, for the currert,

2\ 270
=1, > Ab(T> . (31)
b=+1

a backscattering process which we explicitly exclude. Using

Egs. (25—(28) together with Eq.(15), we obtain a formal
expression foil, (with &r=0):

mrAlty|?) 2 ® ®
|2=4e(ﬂ> Iimf dtf dt’
V — 0

7n—0

< JO dtuei(Zt*t'ft"),u,fn(t'+'(")H(01)(t"A)H(02)(t’A)

X > [GE(t,t' G t—t")GY(t—t")
b==*1

— GE,(t,t' "G t—t' —t")G(1)]. (29

In Eqg. (29 the meaning of the summation indexbs +1
for rr'=+1, andb=-1 for rr'=-1. We proceed to
evaluate the current with K,=1 andu,=uv. To calculate
the current , we assume that the time scaletu, andA/ve
are the smallest ones in the problem. The timédsi, and

The interaction dependent constdqgtin Eq.(31) is given
by

22‘ypb*l

A_
T2 T(2ypt2vy,+2)

I'(2y,+2) 4( 7pl)2+1), @2

which is decreasing when interactions in the leads are in-
creased. The functioh'(x) is the gamma function. We re-
mark that in Eq(31) the current; is to be taken a#r =0.
The noninteracting Iimil|2=ll=lg is recovered by putting
Yo= Ypb=0 andu,=vg. The result forl, shows that the
unwanted injection of two electrons into the same lead is
suppressed compared Itp by a factor ofA, (2u/A)2%+ if
both electrons are injected into the same brafhet or right
movers, or by A_(2u/A)?7 if the two electrons travel in
different directions. Since it holds thay, =1v,, +(1
—-K,)/[2>v,, , itis more favorable that two electrons travel
in the same direction than in opposite directions. The sup-

Alvg are both on the order of the inverse Fermi energy in thepression of the current, by 1/A very nicely shows the two-
LL, which is larger than the energy gdpand the biag:.. By  particle correlation effect for the coherent tunneling of two
applying the same arguments as in Sec. V for the cullrgnt electrons into the same lead. The larders, the shorter the
we approximate the currenti,, assuming [t|>t’,t”  delay time between the arrivals of the two partner electrons
>Alvg,Alu,, which is accurate in leading order in of a given Cooper pair, and, in turn, the more the second
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electron will be influenced by the presence of the first onghe Aharonov-Bohm oscillations in the current, when leads 1
already in the LL. By increasing the biasthe electrons can and 2 are formed into a loop enclosing a magnetic flux. Due
tunnel faster through the barrier due to more channels bede the different paths by which the electrons can choose to go
coming available into which the electron can tunnel; there-around the loop, we expect to shée and h/2e oscillation
fore, the effect ofA is less pronounced. Also note that this periods, as a function of magnetic flux, in the current like in
correlation effect disappears when interactions are absent the case of noninteracting leatfsThe interference of contri-

the LL (y,=v,,=0). butions where the two electrons travel through different
leads, with contributions where they travel through the same
IX. EEEICIENCY AND DISCUSSION lead, then leads th/e oscillations, whereas the interference

of contributions where both electrons travel through the
We have established that there indeed exists a suppressigsame arm 1 or 2 of the loop leads to th&e oscillations.
for the tunneling of two spin-entangled electrons into theThe amplitudes of these oscillations must be related to the
same LL lead compared to the desired process where the twsurrents describing the interfering processes. We expect that
electrons tunnel into different leads. However, we have tahe h/e oscillation contribution should be(l141,)* and the
take into account that the process into different leads als@/2e oscillation contribution should bel5®, with an expo-

suffers a suppression due to a finite tunneling separaion nentq that has to be determined by explicit calculations. In
of the two electrons forming a Cooper pair in the SC. In Secthe noninteracting limitx should be 1/2° The different pe-

VI we showed that this suppression can be considerably re&jods then allow for an experimental test of how successful
duced if one uses effectively low-dimensional SC's. To estithe separation of the two electrons is. For instance, if the two
mate the efficiency of the entangler, we form the ra{iél,  electrons can only tunnel into the same lead, e.d; & is

and demand that |t iS |al’gel’ than 1. Th|S requirement iS ful'too |arge or the interaction in the leads too Weak, tmgn
filled if approximately ~0 and we would only see the/2e oscillations in the cur-
rent. The determination of the precise value of the exponents
will be deferred to another publication since it requires a
separate calculation including finite size properties of the LL

) _ _ o along the lines discussed in Ref. 49.
whered is the dimension of the SC, and it is assumed that

the coherence length of the SC is large compared idr.
The leading term of , is proportional to (2./A)2%+ de-
scribing the power-law suppression, with an exponent
2y,+=2y,, of the process where two electrons, entering We have shown in the preceding sections that the interac-
the same lead, will propagate in the same direction. The exion in a LL lead can help to separate two spin-entangled
ponenty, . is the exponent for the single-particle tunneling electrons so that the two electrons entifferent leads. A
DOS from a metalSQO) into the centerbulk) of a LL. Ex-  natural question then arises: what is the lifetime ¢hanlo-
perimentally accessible systems which exhibit LL behaviorcal) spin-singlet state formed of two electrons which are in-
are metallic carbon nanotubes. It was pointedbftithat the  jected into different LL leads, one electron per lead? To ad-
long range part of the Coulomb interaction, which is domi-dress this issue we introduce the following correlation
nated by forward-scattering events with small momentunfunction:

transfer, can lead to a LL behavior in carbon nanotubes with

very small values of K,~0.2-0.3, as measured P(r,t)=[(S(r,1)[S(0,0))|%. (34)
experimentally**® and predicted theoreticalf§. This would
correspond to an exponentg~0.8-1.6, which seems very
promising. Note that in this scenario of smél, the inter-

20\ 2+
TM) <1(keor)d1, (33)

Ay

X. DECAY OF THE ELECTRON-SINGLET
DUE TO LL-INTERACTIONS

This function is the probability density that a singlet state,

injected at point=(x4,X,)=0 and at tim& =0, is found at

action dependent constarkg, also become much smaller some later tim and at pointr. Therefore P(r,t) is a mea-

than unity. ForK ,=0.3 we obtain from Eq(32) thatA,  Sure of how much of the initial singlet state remains after the
. »=0. - ) .

~0.11, and fork ,= 0.2 we obtainA., ~0.02 (note thatA_ two injected electrons have interacted with all the other elec-

<A,). In addition, single-wall nanotubes show similar tun- trons in the LL during the time interval Here

neling exponents, as derived here. The tunneling DOS for a

_ ot t
single-wall nanotube is predict&étf®to be p(e)~|e|” with IS(r )= vVmal (X1, 1) 2 (X2, 1)
n=(K, '+K,—2)/8, which is half of y,, and was — ot X ) (%,1)]]0 (35)
measured* to be ~0.3-0.4. Similar values were found 1009202 0]10)

also in multiwall nanotube¥’ It is known that the power-law is the electron singlet state created on top of the LL ground
suppression of the single-particle DOS is even larger if onestates. The extra normalization factgR 7« is introduced
considers tunneling into thend of a LL. For single-wall  to guaranteg/dr P(r,t)=1 in the noninteracting limit, and
nanotubes one fin#&*® 7, = (K, *—~1)/4> 7, or for con-  corresponds to the replacement ¢fs by (2ma)™ys.
ventional LL theory again an enhancement by a factor &f 2. The singlet-singlet correlation function factorizes into
We therefore expect to obtain an even stronger suppressiontifvo single-particle Green’s functions due to the negligible
the Cooper pairs tunnel into the end of the LL's. We remarkinteraction between the leads 1 and 2. Therefore
that the nonlocality of the two electrons could be probed viave have P(r,t)= (27 a)?,|{ ¥ns(Xn.t) ¥h(0,0))|?, with
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(PasXn 1) 1 (0,0) =2, _ e F*nGL (x,,t). For sim- We now consider a stat&) =y (x,)|0) where we in-
plicity we just study the slow spatial variations of ject an electron at timé=0 into branchr on top of the LL
[(ns(Xn 1) ! (0,0))|2. Using Eq. (13) together with ground state in lead, and calculate the time-dependent
wﬁ(X)ZIimaHOa/(az—l—Xz), we can then write the remain- charge and spin-density fluctuations according to
(O] hnsr(Xn) pr(Xh 1) 11 (X,) |O) for the charge and similarly

ing probability of the singlet as ; U T
for the spin (0] ¢nsi(Xn) 5 (X, 1) s (Xn)|0). If we express

1 the bosonic field operatoks,,, and 6, in terms of the boson
Prry=11 Z+ F(t) (X —rvet), (36)  modes shown in Eq10) and (11) and the Fermi operators
noeres according to the bosonization dictiondigq. (4)] we obtain
with a time decaying weight factor of th& function for the charge fluctuations

F(t)= H \ /A—z (Zﬂa)<0|¢nsr(xn)pn(xr’1-t)¢$sr(xn)|o>
v=p,0 A2+(U|:_UV)2t2

=3(1+TK ) 8(X)—Xn—U,t)

A4 Y2 .
+3(1—rK ) 8(X;,— Xyt u,t), 40
[A%+(vE—ud)t?]?+(2Au t)2> -7 2(171K ) 0 =Xa T U,t) (40)

From Egs.(36) and (37) we see that charge and spin of an @"d for the spin fluctuations we obtain

electron propagate with velocity:, whereas chargéspin)

excitations of the LL propagate with, (u,). Without inter- (2ma){0| Ynsr(Xn) TA(X}: 1t)‘//gsr(xn)|0>
action, i.e.,u,=vg and K,=1, we haveF(t)=1, which
means that there is no decay of the singlet state. Using again
U,=ve, K,=1 andu,=ve/K, we see from Eq(37) that as
interactions are turned on, the singlet state starts to decay on

S
= > (147K ) 80X =Xy — U,t)

a time scale given by\/u,. For long timest and foru S ,

. . +-(1- —Xp+ .
=vg, K,=1, andu,=ve/K,, the asymptotic behavior of 2(1 MK ) o0 =Xn + Ugt) 1)
the decay is

Results(40) and(41) are obtained by sending—0. We see
that in contrast to the singlet, the charge- and spin-density
' fluctuations in the LL created by the injected electron do not
decay and show a pulse shape with no dispersion in time.
which for very strong interactions in the LL leads, i.K,  This is due to the linear energy dispersion relation of the LL
much smaller than 1, becomBgt) ~[ A/u,t]?*»**. We will  model. In carbon nanotubes such a highly linear dispersion
show in Sec. XI that although the singlet gets destroyed dugelation is indeed realized, and, therefore, nanotubes should
to interactions, we still can observe charge and spin of thge well suited for spin transport. Another interesting effect
initial singlet via the spin and charge density fluctuations ofthat shows up in Eq$40) and(41) is the different velocities
the LL. of spin and charge, which is known as spin-charge separa-
tion. It would be interesting to test Bell inequalittaga spin-
XIl. PROPAGATION OF CHARGE AND SPIN spin correlation measurements between the two LL leads,
. . ) ) .and see if the initial entanglement of the spin singlet is still
The charge and spin propagations as functions of time iseryable in the spin-density-fluctuations. Although the de-
a state|W) can be described by the correlation functionection of single spins with magnitudes on the order of elec-
(¥[p(x,))| W) for the charge, and¥|o,(x,t)[¥) for the  yon gpins still has not been achieved, magnetic resonance
spin. The norrTnaI-ordered charge dTensr[y operator fonlit  force microscopy seems to be very promising for doing%o.
Pn(Xn) = Zs 1 hns(Xn) ¥ns(Xn) = Zsr 1 thns(Xn) ¥ns(Xn), if W& Another scenario is to use the LL just as an intermediate
only consider the slow spatial variations of the density op-medium which is needed to first separate the two electrons of
erator. Similarly, the normal-ordered spin-density operator irg Cooper pair and then to take théin general other elec-
the z direction is o5(Xn) = ZsrS: s (Xn) ¥nsi(Xn) . These  trong out again into two(spatially separatédFermi-liquid
density fluctuations can be expressed in a bosonic {se®  leads where thépossibly reducedspin entanglement could
Appendix A) as be measured via the current noise in a beamsplitter
experiment® Similarly, to test Bell inequalities one can
2 measure the spin via the charge of the electrbt°In this
Pn(Xn) = 7‘9X¢“P(X”)’ (38) context we finally note that the decay of the singlet state
_ given by Eq.(36) sets in almost immediately after the injec-
and for the spin tion into the LL's (the time scale is approximately the inverse
of the Fermi energy however at least at zero temperature,
the suppression is only polynomial in time, which suggests
that some fraction of the singlet state can still be recovered.

AZ 2yp+1

|: ~
® u2(1-K2)

o[ 1
:

u,(1-K,)

2
Uﬁ(xn)z \/7—0”x¢no(xn)- (39
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XIl. CONCLUSIONS state. The normal-ordered spin-density operator is defined by
oA (X) =S 1(X) rs(X):. In addition, one can define

two spatially separated Luttinger-liqu{tiL ) leads, as an en- (barg cTurrent densitiy operators for charge_}p(x)
tangler for electron spins. We showed that the strong corre-:ESfr‘prsng) Yrs(), and  for the spin  j,(X)
lations present in the LL can be used to separate two elecs >sr 'S ¥is(X) #rs(X), respectively. Note that the current
trons, forming a spin-singlet state, which originate from andensity has not to be normal ordered, since its ground-state
Andreev tunneling process of a Cooper pair from the SC t¢*pectation value vanishes. The normal-ordered product
the leads. We have shown that the coherent tunneling of twas(X) #s(X): is calculated according to

electrons into the same lead is suppressed by a characteristic + _ +

power law in the small parametgs/A, whereu is the ap- s Prs(X):= ImM hrg(XHAX) Prg(X): (A2)

plied bias between the SC and the LL leads, And the gap X0

in the SC. On the other hand, when the two electrons tunnedy expanding the operator product in E@2) within the

into different leads, the current is suppressed by the initiahormal-order sign, the right-hand side of E42) is equal to
separation of the two electrons. This suppression, hOWGVG(JIZW)&X(qu(x)+s¢),,(x)—r[ep(x)+seg(x)])/\/§, from

can be considerably reduced by going over to effectivayhich one easily finds
lower-dimensional SC. We also addressed the question of

how much of the initial singlet can be taken out of the LL at 2

some later time, and we found that the probability is decreas- p(X)= " x,(X), o“(X)
ing in time, again with a power lawat zero temperatuye

Nevertheless, the spin information can still be transportedénd, for the current densities,
through the wires by means of tliprope) spin excitations

of the LL. J00==\2IL,00, [,(0==12I1,(x). (A4)
ated and indeponden: effots by Beamalo! who consid-  Te A 1,00 i related 100, by 70,09 =711, ().

: ; _ 4P 0
ered a similar setup as proposed here thereby arriving é/t\/e decomposg the phoase fields 'MQ(X)_%()?)’L%(X)
similar conclusions. and IT (x) =11, (x) +II,(x), where the part with nonzero

momentum, ¢’ and TI¥, can be expanded in a series of
normal modes

We proposed as-wave superconductdSC), coupled to

V2

w

Ixps(X)  (A3)
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APPENDIX A: FINITE-SIZE DIAGONALIZATION Hf(x)= - E —pe'pxe_“‘p‘/z(b,,p—b,t,p).
OF THE LL HAMILTONIAN JL $70 2

In this appendix we derive the diagonalized form of the (A6)
LL Hamiltonian [Eq. (3)] including terms of order 1/,  These fields have to satisfy bosonic commutation relations
which describe integer charge and spin excitations. For sin{-cﬁf(x),Hz(x’)] =i0,,[ o(x=x")—1/L], which in turn de-
plicity, we consider only one LL and will therefore suppressmandsb,, 'blp’]: 8,,0pp and[b,,,b,p0] :[b’f blp’]

the subscriptn for the leads. We start with the exact —g The zero mode part$’ and I1° can be :‘g;md by

bosonization dictionary for the Fermi operator for eleCtronSconsidering the integrated chargepin and charge(spin
— 30,31
on branchr ==, currents, respectively. For instance the integrated charge
. denj_ity Erslglrfdepo(X)=(ﬁ/W)[¢>p(L/2)—¢>p(—L/2)]
o rs : _ =(y2/m)[ ¢, (LI2)— ¢,(—L/2)]. Similar results are ob-
= + JR—
Yrs(X) iITO‘/zwanp{lr(pF L)X \/E{d)”(x) tained for th’é other depnsity operators, which then implies the
zero modes to bep’(x)=(m/L)(N,,+N_ )x and IT1%=
—(1L)(N;,—N_,), where N,,,=(N;; =N, )/\2. The
+8¢4(x) —r[6,(x) +S¢90(X)]}] - (A L Hamiltonian[Eq. (3)] is then diagonalized by the follow-
ing expansion of the bosonic fields,

The U, 5 operator(often denoted as the Klein facjds uni-
tary, and decreases the number of electrons with smn _ E 7K,
branchr by one. This operator also ensures the correct anti- ¢“(X)_p¢o 2|p|L
commutation relations fory,s(x). The normal ordered
charge density operator jzs(x)zES,:ers(x) Urs(X):, where

:: measures the corresponding quantity relative to the ground

i - 2 T
P e alPl2(p, +b! )

a
+E(N+V+N_,V)X1 (A7)
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and for the canonical conjugate momentum operator,

=i, LI

pXa—alpl/2 _ht
2 LK € (bvp bV*p)

N_.), (A8)

1
_E(N+v_

where we have used,,=|p|/K,7. For the operatoi
=H_— /N, we then obtain

277' u
= _v + 2
KL p%, u |p|bvp Vp L {KV(NvLV N*,V)

(A9)

+uVKV(N+V_N7,V)2

In Eq. (A9) we have subtracted the zero-point energy

(1/2)2p40,U,|pl, which originates from an infinite filled

Dirac sea of negative energy particle states in the LL model.

The zero modes in Eq$§A7) and(A8) give rise to contribu-
tions of order 1L in Hamiltonian (A9), and they are also
responsible for a shift of the Fermi wave vecpyr, appear-
ing in the Fermionic field operataf,«(x), by a contribution

of the same order. Since we are only interested in the ther-
modynamic limit, we have neglected the zero-mode contri-

butions in explicit calculations in the main text.

APPENDIX B: EXACT RESULTS FOR THE TIME
INTEGRALS

In this appendix we give the exact results for the time

PHYSICAL REVIEW B65 165327

ala+l) 22
y(y+1) 2!

In the main text we considered only the leading order term of
1F1, since higher-order terms are smaller by the parameters
2uAlu, and 2uA/u, . The integrals over the delay time's
andt” in Eq. (30) contain Hankel functions of the first and
second kinds, which are linear combinations of Bessel func-
tions of the first and second kinds, i.e1{*(tA)=Jy(tA)
*iY(tA). The integrals ovetr’ andt” in Eq. (30) are there-
fore linear combinations of integrals of the form

Fuayz) =1+ (B2)

y 1!

lim f dte” Y, (tA)t?
0

7n—0

= lim ( - —T(o+ 1)(A%+ 5?)~ (W2AE+1)

7—0

XQs( N7 +A%) |,

(B3)

and

lim f dte” "Jo(tA)t°

n—0

=Ilim[I'(5+ 1)(A2+ 772)_(1/2)(5“)
7—0

X Po( 7l n?+A%)].

(B4)

integrals in Eqs(23) and (30). The integrals over the time This result is valid foro>—1 (see Ref. 43 p. 691 The

variablet appearing in Eqs(23) and (30) have the form
[ a

_ 27T672/Lu—p(2M)Q+Rfl
I'Q+R)

X1F1[R;Q+R;2A(

|2,ut
QLA
— +it

(o8

R
+|t

u,'—u;Hul, (B

This integral formula is valid folQ and R satisfying ReQ
+R)>1 (see Ref. 43, p. 345which is in the range of our
interest since we hav®+R>2. The functionI'(x) in Eq.
(B1) is the gamma function, ang~(«; v;z) is the confluent
hypergeometric function given by

functionsQ and P are Legendre functions. The limi—0
for Qs(7/\n?+A?) is (see Ref. 43, p. 959

o+1
1 2
Qx(0)=— SVmsin(6m/2)——~—, (B5)
r §+l
and the limityp—0 for P4(n/\ 5%+ A?) is
S+ 1)
1 2
Ps(0)= \m =——coq 67/2)———F.
Y P i r[241
2 2 2
(B6)
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