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Excited states of an electron-hole pair in spherical quantum dots and their optical properties
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The energy-level structure of a correlated electron-hole pair confined in spherical quantum dots and their
optical properties are theoretically investigated. An efficient method of numerical calculation is presented for
the eigenvalue problem of the excited states of the electron-hole pair with an arbitrary total angular momentum,
which employs the Hylleraas coordinate system and a correlated-basis-set expansion. It is shown that the
picture of exciton confinement holds generally when the dot radius is several times larger than the effective
Bohr radius of the exciton, but the amount of blue shift in the excited states of the relative motion is larger than
that in the lowestS-like state. In addition to the one-photon absorption spectra, the excited-state absorption and
the two-photon absorption spectra are investigated. The calculated spectra show good agreements with those
observed in CuCl nanocrystals.
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I. INTRODUCTION

Optical properties of semiconductor nanocrystals,
quantum dots~QD’s!, have been a subject of much interest
recent years.1 The three-dimensional confinement of ele
trons and holes drastically changes the electronic structu
QD’s from that of bulk crystals with a continuous ener
spectrum to that with essentially discretized energy lev
This is called a quantum size effect. Recent advances in
terial growth and optical measurement techniques allow
the observation of optical responses of an assembly of Q
with a narrow size distribution2 and even a single QD.3 The
concentration of oscillator strength in discrete energy lev
of QD’s is a major key in this field, which makes QD’s
promising candidate for electro-optic and nonlinear opti
applications in the future device technology.

The interacting electrons and holes confined in QD’s p
a typical few-body problem and have attracted much theo
ical interest. A number of theoretical studies on the electro
structure of QD’s have been carried out since the pionee
work by Efros and Efros4 and Brus.5 Among these studies,
model of a spherical QD with an effective-mass approxim
tion has been widely used to clarify essential features
quantum size effects.4,6–12 As a few-body problem, the
electron-hole system with an attractive interaction is of int
est even in the two-body case because of the presenc
bound states. The competition between the attractive C
lomb force and the repulsive confinement force gives rise
a distinct size-dependent change of motional state of
electron-hole pair. This is in contrast to the electron syst
with repulsive interaction alone, where the main concern
the occurrence of shell structures and the emergence of
lective movements. The electronic states of confined tw
electron system show only a rather monotonous s
dependence.13,14

The quantum size effects of an electron-hole pair confi
in a spherical QD are characterized by two parameters,
dot radiusR and the effective Bohr radiusaB* of the exciton.
There are two extreme situations: the weak, or exciton c
finement regime forR/aB* >4 and the strong, or individua
0163-1829/2002/65~16!/165318~12!/$20.00 65 1653
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particle confinement regime forR/aB* <2.7 In the former
case, the electron-hole pair behaves as an exciton, an
center-of-mass motion is quantized due to the confinem
In the latter case, the kinetic motions of the electron and h
are individually quantized, and a well-separated discreti
structure of energy levels are formed, which is slightly mo
fied by the order of 1/R due to the Coulomb interaction be
tween electron and hole.

CuCl nanocrystals are typical examples of QD’s in t
weak confinement regime. The optical properties of this s
tem have been extensively studied from various points
view.15–18However, most of these studies are concerned w
transitions between the ground state of the nanocrystal
the excited states, although some data on infrared absorp
under band-to-band excitation19 and two-photon excitation
spectra20,21 have also been reported. Recently, Yamana
et al.22 observed transient infrared absorptions of CuCl QD
embedded in NaCl crystals under size-selective direct e
tations. The observed spectra show a characteristic de
dence on the dot size, namely, a gradual blue shift of
absorption peak and a remarkable broadening of the s
trum for the smallest size of QD. In a previous paper,
have shown a brief report of the theoretical analysis of th
experimental data based on the model of spherical QD w
the effective-mass approximation.23

The transient absorption spectrum is of special inter
because it contains detailed information on the excited st
that cannot be obtained from the direct absorption spe
from the ground state. The interacting electron-hole pair
semiconductors is described by the product of wave fu
tions of the Bloch part and the envelope function. The
within the long-wavelength limit, the envelope function
the electron-hole pair created optically should have theS-like
symmetry in spherical QD’s with a direct allowed ener
gap. The transient absorption at low temperatures, on
other hand, occurs from the lowestS-like state. Since the
transition dipole moment acts primarily on the envelo
function in such an intraband excitation, the final states
transitions in the transient absorption should haveP-like
symmetry. Thus, the information of theP-like states can be
obtained from the analysis of the transient absorption sp
©2002 The American Physical Society18-1
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tra. An analogous argument holds also for the two-pho
absorption process.

Most theoretical studies performed to this time have b
concerned with theS-like excited states of QD’s, while only
a few low-lying P- and D-like excited states have bee
calculated.24 In the present paper, we show first a gene
theoretical framework to calculate the electronic states o
electron-hole pair confined in a spherical QD for excit
states with essentially arbitrary total angular momentumL.
This scheme proves efficient in calculating electronic sta
of QD’s over a wide range of the dot radius. The obtain
accurate eigenstates and eigenvalues form a good bas
calculate the responses of the confined electron-hole pa
various external perturbations. As applications of t
scheme, we investigate in detail the one-photon absorp
spectra, the transient absorption spectra, and the two-ph
absorption spectra in the present paper.

The rest of this paper is organized as follows. In Sec.
we provide a calculation scheme of the eigenvalue prob
for an electron-hole pair confined in spherical QD’s with
arbitrary total angular momentum. The formulas for the o
tical processes are also given here. The results of nume
calculations are given in Sec. III, where the eigenvalues
the electron-hole pair are shown forL50,1, and 2. The dot-
size dependence of the optical spectra, the one-photon
sorption spectra, the transient absorption spectra, and
photon absorption spectra, are also shown and discu
here. Finally, the conclusion is given in Sec. IV.

II. FORMULATION

A. Solution of eigenvalue problem

Consider an electron-hole pair confined in a spher
quantum dot with the radiusR. The effective-mass Hamil
tonian is given by

H5
pe

2

2me
1

ph
2

2mh
2

e2

kure2rhu
1V~r e!1V~r h!, ~2.1!

where r i , pi , andmi are the position, the momentum, an
the effective mass of the electron (i 5e) and hole (i 5h); k
is the dielectric constant of the quantum dot. In this study,
consider a situation of the complete confinement of the p
ticles. Then the confinement potential in Eq.~2.1! is taken as
V(r i)50 for r i<R andV(r i)51` for r i.R, which means
that the wave function, the envelope function for t
electron-hole pair, vanishes whenr e or r h is equal toR. It
should be noted that our formulation given here can be ea
extended to a more general case of confinement pote
with spherical symmetry, as mentioned at the end of S
II A.

The eigenvalue problem for the Hamiltonian~2.1! is sim-
plified owing to the spherical symmetry of the system. Sin
both the square\2L2 andz component\Lz of the total an-
gular momentum\L commute with the Hamiltonian, the
eigenstates of the system can be classified in terms of a s
quantum numbers (L,M ), where L(L11) and M are the
eigenvalues forL2 and Lz , respectively. Moreover, we ca
further simplify the eigenvalue problem by describing t
16531
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system in terms of a coordinate set including the Eu
angles. Such a situation is similar to that in the eigenva
problem for a He atom.25 A general argument on the symme
try of the eigenstates of the two-electron system of a
atom has been given by Bhatia and Temkin.26 In the present
study, however, we formulate the eigenvalue problem in
different fashion. Our formulation given below is more tran
parent and best suited to numerical calculations for electr
hole pair systems with a spherical symmetry.

Figure 1 illustrates the coordinate system employed h
The coordinates are classified intointernal coordinatesand
external coordinates. The internal coordinates arer e , r h ,
and u8, whereu8 is the angle betweenre and rh . We may
use r eh5Ar e

21r h
222r er hcosu8, the distance between th

particles, in place ofu8. The external coordinates are, on th
other hand, the Euler anglesu, w, andw8, whereu andw are
the polar and azimuthal angles forre , respectively, andw8 is
the angle between the plane includingz axis andre and the
plane includingre and rh . The eigenvalue problem for Eq
~2.1! is fully simplified by describing the Hamiltonian in th
present coordinate system, because the terms conce
with the external coordinates are replaced by several c
stants related with the angular momentum of the system.
six-dimensional eigenvalue problem for Eq.~2.1! is then es-
sentially reduced to three dimensional one related only w
the internal coordinates.

Before going to the formulation, we need to constru
simultaneous eigenstates for the angular momentum op
torsL2, Lz , andLz8 , whereLz8 is the projection ofL in the
direction of re . These operators are represented in terms
the Euler angles as

L252
1

sin2u
F S sinu

]

]u D 2

1
]2

]w2
1

]2

]w82
22 cosu

]2

]w]w8
G ,

~2.2!

Lz52 i
]

]w
, ~2.3!

FIG. 1. Coordinate system used in the formalism for
electron-hole pair in a spherical quantum dot.
8-2
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Lz852 i
]

]w8
. ~2.4!

In analogy with a problem for a symmetric top, the simul
neous eigenstateuL,M ,K& for these operators is easily con
structed, where the integerK is the eigenvalue ofLz8 and
satisfies the conditionuKu<L. Actually, uL,M ,K& is just the
eigenstates of the symmetric top and is described in term
a hypergeometric function.27 We need, however, only a for
mal expression ofuL,M ,K& as shown below.

We start fromuL,0,K&. The derivatives ofw in Eq. ~2.2!
can be omitted in this case, because the eigenfunction oLz

for M50 is a constant 1/A2p. Then Eqs.~2.2! and ~2.4!
give an expressionYLK(u,w8)/A2p for uL,0,K&, where
YLK(u,w8) is the spherical harmonic function. The oth
states withMÞ0 are obtained by successive operations
ladder operatorsL6 on uL,0,K&, whereL6 is given by

L65Lx6 iL y ,

52 ie6 iwS 6 i
]

]u
2cotu

]

]w
1

1

sinu

]

]w8
D . ~2.5!

The operatorsL6 changeM into M61, and thusuL,M ,K& is
given by

uL,6uM u,K&5A~L2uM u!!
~L1uM u!!

L6
uM uuL,0,K&. ~2.6!

Note thatL6 change only the quantum numberM, because
@L6 ,L2#50 and@L6 ,Lz8#50.

It is convenient to introduce ladder operatorsL68 for the
quantum numberK, which are defined as

L6852 ie6 iw8S 6 i
]

]u
2cotu

]

]w8
1

1

sinu

]

]w D . ~2.7!

The operation rule ofL68 on uL,M ,K& is similar to that of
L6 , i.e.,

L68uL,M ,K&5AL~L11!2K~K61!uL,M ,K61&.
~2.8!

This is a consequence of the fact that@L6 ,L68#50 and that
commutation relations amongL2, Lz8 , andL68 are similar
to those amongL2, Lz , andL6 , which is obvious from the
symmetric property ofw and w8 in Eqs. ~2.2!–~2.5! and
~2.7!.

From now on, we adopt the effective Bohr radiusaB*
[k\2/me2 as the unit of length and the effective Rydbe
energy ERy* [\2/2maB*

2 as the unit of energy, wherem
@5memh /(me1mh)# is the reduced mass. The Hamiltonia
in this units is written as

H52ceDe2chDh2
2

r eh
, ~2.9!

where the coefficientsce and ch are mh /(me1mh) and
me /(me1mh), respectively. The transformation of Eq.~2.9!
into our coordinate system is carried out using the formu
16531
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D i5
]2

]r i
2

1
2

r i

]

]r i
2

L i
2

r i
2

, ~2.10!

whereL i is the angular momentum of the electron (i 5e) or
hole (i 5h). The representation forLh

2 is given by

Lh
252S ]2

]u82
1cotu8

]

]u8
1

1

sin2u8

]

]w82D , ~2.11!

while that forLe
2 is obtained from the relation,

Le
25L21Lh

222Lh•L . ~2.12!

However, it is more convenient to representLe
2 in terms of

the angular momentum operators,L2, Lz8 , andL68 . This is
carried out using an identity,

Lh•L52
L182L28

2

]

]u8
1cotu8

L181L28
2

Lz81Lz8
2 .

~2.13!

Finally, from Eqs.~2.10!–~2.13!, we obtain the representa
tion of the Hamiltonian in Eq.~2.9! in terms of the presen
coordinate system,

H5HS1
1

sin2u8
S ce

r e
2

1
ch

r h
2D Lz8

2
1

ce

r e
2 ~L222Lz8

2
!

1
ce

r e
2 F ~L182L28!

]

]u8
2cotu8~L181L28!Lz8G ,

~2.14!

whereHS is the reduced Hamiltonian for theS-like subspace
(L50) and is given by

HS52ceF 1

r e

]2

]r e
2

r e1
1

r e
2sin2u8

S sinu8
]

]u8
D 2G

2chF 1

r h

]2

]r h
2

r h1
1

r h
2sin2u8

S sinu8
]

]u8
D 2G2

2

r eh
.

~2.15!

The expression forHS , which has been derived by one of th
authors,6 includes only the internal coordinates. Also the e
pression forH in Eq. ~2.14! essentially includes only the
internal coordinates: All the terms concerning with extern
coordinates have been replaced by the angular momen
operators. In a specific subspace (L,M ) for the electron-hole
pair, we can replace the angular momentum operators in
~2.14! by constants. Then the originally six-dimensional e
genvalue problem is reduced to three dimensional one c
cerning only with the internal coordinates. This is an ess
tial advantage of our formulation, which allows for
systematic calculation of the correlated electron-hole p
with an arbitrary angular momentum.

The commutability ofH with L2 andLz is obvious from
Eq. ~2.14!, since bothL2 and Lz commute withLi ( i 5z8,
68). This fact, of course, means thatL andM are constants
of motion. However,K is not a constant of motion becaus
8-3
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the last term in Eq.~2.14! does not commute withLz8 . In
order to show this clearly, we introduceuL,M ,K&l (l56)
defined by

uL,M ,K&65
1

A2
@ uL,M ,K&6~21!L1KuL,M ,2K&],

~2.16!

for K51,2, . . . ,L, and by

uL,M ,0&l5uL,M ,0&, ~2.17!

for K50, wherel in Eq. ~2.17! is chosen as1 (2) whenL
is an even~odd! integer. The last term in Eq.~2.14! couples
uL,M ,K&l with uL,M ,uK61u&l , so thatK is not a constant
of motion. However, it should be noted thatl is unchanged
through this coupling, i.e.,l becomes a constant of motion
This means that the vector space for the electron-hole pa
subdivided by the indexl in addition to the angular momen
tum (L,M ). In fact, l is just the parity of the system
YL,K(u,w8) transforms into (21)L1KYL,2K(u,w8) under the
spatial inversionI, which is composed of a combined oper
tion of u→p2u, w→p1w, and w8→p2w8, so that
I uL,0,K&656uL,0,K&6 . This is also true foruL,M ,K&l

with MÞ0 becauseI commutes withL6.
As discussed above, the eigenstates of the system are

sified in terms of the angular momentum (L,M ) and the
parity l. Thus, we expand the wave function of the electro
hole pair in (L,M ,l) subspace in the form

cLMl~re ,rh!5 (
K5K0

L

f K
Ll~r e ,r h ,r eh!uL,M ,K&l ,

~2.18!

whereK0 is taken to be0(1) whenl51 andL is an even
~odd! integer or whenl52 andL is an odd~even! integer.
Since the operation of angular momentum operators
uL,M ,K&l is easily taken into account using the algeb
shown above, the six-dimensional Schro¨dinger equation,
HcLMl(re ,rh)5EcLMl(re ,rh), is transformed into a set o
three-dimensional equations for theinternal function
f K

Ll(r e ,r h ,r eh). Note that the internal function is indepen
dent ofM because the Hamiltonian does not includeLz . In
fact, using the relations, ~i! l^L,M ,KuL8,M 8,K8&l8
5dL,L8dM ,M8dK,K8dl,l8 , ~ii ! Lz8uL,M ,K&l5KuL,M ,K&2l ,
and ~iii ! L68uL,M ,K&5AL(L11)2K(K61)uL,M ,K61&,
we obtain a set of simultaneous equations,

(
K85K0

L

HK,K8 f K8
Ll

~r e ,r h ,r eh!5E fK
Ll~r e ,r h ,r eh!

~K5K0 , . . . ,L !,
~2.19!

whereE is the eigenenergy of the system. The Hamilton
in Eq. ~2.14! changes the quantum numberK at most by61.
Thus, the block elementHK,K8 in Eq. ~2.19! has a tridiagonal
form, i.e., HK,K850 unlessuK2K8u<1. The nonzero ele-
ments are given as follows:
16531
is

las-

-

n

n

HK,K5HS1
K2

sin2u8
S ce

r e
2

1
ch

r h
2D 1

ce@L~L11!22K2#

r e
2

,

~2.20!

HK11,K5
ceAL~L11!2K~K11!

r e
2 S ]

]u8
2K cotu8D

~K>1!, ~2.21!

HK,K115
ceAL~L11!2K~K11!

r e
2

3S 2
]

]u8
2~K11!cotu8D ~K>1!,

~2.22!

H1,05
ceA2L~L11!

r e
2

]

]u8
, ~2.23!

H0,15
ceA2L~L11!

r e
2 S 2

]

]u8
2cotu8D . ~2.24!

Note that each element satisfies a Hermitian relati
^HK,K8&5^HK8,K&, which is easily verified by the partial in
tegration with respect tou8.

From now on, we adopt a conventional notatio
S,P,D, . . . for L50,1,2, . . . . Consider the case fo
(L,M ,l)5(P,0,2), as an example. In this case, the wa
function of the electron-hole pair is described by

cP,0,2~re ,rh!5A 3

8p2 @ f 0
P2~r e ,r h ,r eh!cosu

2 f 1
P2~r e ,r h ,r eh!sinu cosw8#,

~2.25!

and we obtain a set of simultaneous equations

(
K850

1

HK,K8 f K8
P2

~r e ,r h ,r eh!5E fK
P2~r e ,r h ,r eh! ~K50,1!,

~2.26!

where

H0,05HS1
2ce

r e
2

,

H1,15HS1
1

sin2u8
S ce

r e
2

1
ch

r h
2D ,

H0,152
2ce

r e
2 S cotu81

]

]u8
D ,
8-4
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H1,05
2ce

r e
2

]

]u8
. ~2.27!

This is essentially the same as that given in a previ
paper.23

The eigenvalue problem in Eq.~2.19! is transformed into
a diagonalization of the Hamiltonian matrix by expandi
the wave function in terms of a set of basis functions. In t
study, we employ anonorthogonalcorrelated basis set,7

x lmn~r e ,r h ,r eh!5wm~r e /R* !wn~r h /R* !r eh
l exp~2ar eh!,

~ l 50,1,2,•••, and m,n51,2,3,••• !,

~2.28!

whereR* [R/aB* , wm(x) is a (2m21)th order polynomial
defined by the Legendre polynomialPn(x) as wm(x)5(1
2x)P2m21(x)/x, anda is an adjustable parameter chosen
minimize the lowest energy in each (L,M ,l) subspace. By
expanding the internal functionf K

Ll(r e ,r h ,r eh) as

f K
Ll~r e ,r h ,r eh!5(

l 50

l max

(
m51

mmax

(
n51

nmax

clmn
Ll,Kx lmn~r e ,r h ,r eh!,

~2.29!

Eq. ~2.19! is transformed into an eigenvalue equation fo
Hamiltonian matrix represented by nonorthogonal bas
which can be numerically solved by a standard recipe. N
that the boundary condition,cLMl(re ,rh)50 at r e5R* or
r h5R* , is automatically satisfied by the choice ofwm(x).

An advantage of the correlated basis expansion is a r
convergence of low-lying energy levels, owing to the exp
nential part in Eq.~2.28!. This is crucially important for the
description of the electron-hole pair, in order to describe
correct behavior of an exciton in the weak confinement
gime (R@aB* ). The actual calculation has been carried o
with a choice, (l max,mmax,nmax)5(6,6,6), which is enough
to obtain converged results at least for relatively low-lyi
energy levels shown below. The basis function in Eq.~2.28!
includes an adjustable parametera, but the calculated low-
lying energy levels are rather insensitive to a moder
change ofa. These facts mean that our basis set is alm
complete for low-lying eigenstates and guarantees the
merical accuracy beyond simple variational calculations.

Here, we illustrate our formalism to solve the eigenva
problem for a correlated electron-hole pair confined in
spherical quantum dot for the case with the infinite poten
barrier. However, the formulation given above is obviou
applicable to the problem with an arbitrary confinement p
tential barrier with spherical symmetry, for example, t
problem with a finite potential barrier.28 In such a case, we
need a proper correlated basis set for the given problem.
is obtained by solving numerically or analytically the pro
lem of one-particle confinement first. Then a nonorthogo
correlated basis set is constructed as the product func
among the one-particle wave function for the electron a
hole and the binding part of the particles as in Eq.~2.28!.
The boundary condition for the wave function of th
16531
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electron-hole pair is obviously satisfied from the beginni
by such a choice of the correlated basis set.

B. Optical response of QD’s

The optical response of QD’s is obtained from the eige
states and eigenenergies of an electron-hole pair. The
photon absorption spectrum is calculated, apart from ir
evant factors, by

I 1~v!5(
k

uFku2d~v1Ei2ES,1
(k) !, ~2.30!

whereEi andES,1
(k) are the initial andkth S-like state energy,

respectively,v is the photon energy, anduFku2 is the oscil-
lator strength per unit volume. Within the effective-mass a
proximation, the transition amplitudeFk is given by29

Fk5ApaB*
3f ex

V E drcS,0,1
(k) ~r ,r !, ~2.31!

where f ex is the oscillator strength per unit volume for bu
crystals,V is the volume of QD, andcS,0,1

(k) is the wave
function of kth S-like state.

The transient absorption process is a kind of two-pho
process composed of two successive transitions, the in
band transition and the intraband transition. First a vale
electron is excited into the conduction band, and the crea
electron-hole pair relaxes to the lowestS-like state at low
temperature. The infrared photons then give rise to the in
band transition of the electron and hole. The infrared abso
tion spectrum is described by

I IR~v!5(
j

u^cP,0,2
( j ) uVucS,0,1

(1) &u2d~v1ES,1
(1) 2EP,2

( j ) !,

~2.32!

wherecP,0,2
( j ) andEP,2

( j ) are thej th P2 state and its energy. In
this equation, we have assumed, without loss of genera
that the infrared photon isz polarized, i.e.,V52eE(ze
2zh), whereE is the electric field.

The two-photon absorption spectrum is given by

I 2~v!5(
j
U(

k

^cP,0,2
( j ) uVucS,0,1

(k) &Fk

v1Ei2ES,1
(k) 1 ig

U2

d~2v1Ei2EP,2
( j ) !.

~2.33!

In this process, the system makes a sequential transition f
the initial state toP2 excited states by two photons with th
energyv, which is roughly half of the band-gap energy.
the first excitation, an electron-hole pair withS1 symmetry
is virtually created with the lifetimeg. Then it undergoes a
transition toP2 states by the second photon. Here we ha
assumed that the photons arez polarized. In the presen
study, we takeg to be 0 and neglect the light-polarizatio
dependence,30 for simplicity.

The transition amplitudes appeared above can be
pressed as integrals for the internal functionsf K

Ll , since the
external coordinates are easily integrated using the Wig
Eckart theorem. TheFk is given by
8-5
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Fk5A2paB*
3f ex

V E
0

R*
r 2dr f 0

S1(k)~r ,r ,0!, ~2.34!

while ^cP,0,2
( j ) uVucS,0,1

(k) & is given by

^cP,0,2
( j ) uVucS,0,1

(k) &5
aB*

A3
E

0

R*
r e

2dreE
0

R*
r h

2drh

3E
0

2p

sinu8du8 f 0
S1(k)~r e ,r h ,r eh!

3@~r e2r hcosu8! f 0
P2( j )~r e ,r h ,r eh!

2r hsinu8 f 1
P2( j )~r e ,r h ,r eh!#, ~2.35!

apart from irrelevant factors.

III. NUMERICAL RESULTS

A. Energy scheme of an electron-hole pair

Figures 2~a!–2~c! show the calculated energy levels of a
electron-hole pair withS1, P2, andD1 symmetry, respec-
tively, where the effective-mass ratio is taken asmh /me53.
In each figures, only the lowest 24 energy levels are plo
against the radiusR of the quantum dot.

The arrows in Figs. 2~a!-2~c! indicate the characteristi
levels in the limit of large dot size. These energy levels
rather insensitive to the change ofR whenR is much larger
thanaB* . In the bulk limit (R→1`), these levels approac
21/nex

2 ERy* (nex51,2, and 3!, the energy of an exciton with
the principal quantum numbernex . This behavior clearly
illustrates a character of a weakly confined electron-hole
for R@aB* , which is known as the weak confinement regim
or the exciton confinement regime. In this regime an exci
formed by an electron-hole pair moves in a quantum dot a
it were a single particle. The motional state of an electr
hole pair is then well described as an exciton with quant
numbers (nexl ex) whose center-of-mass motion is quantiz
due to the confinement with quantum numbers (nCMl CM),
wherel ex and l CM mean the angular momentum of the re
tive motion and the center-of-mass motion, respectively.
denote the electron-hole pair in the weak confinement reg
as (nexl ex ,nCMl CM)Ll . The energy of the pair is approx
mately given by

Enexl ex ,nCMl CM
.2

1

nex
2

1
mlnCM ,l CM

2

MR* 2
, ~3.1!

in the unit ofERy* , whereln,l is thenth zero of thel th-order
spherical Bessel function andM (5me1mh) is the total
mass of the electron and hole. The energy levels approac
2ERy* in Fig. 2~b!, for example, are assigned a
(1s,nCMP)P2 state, and those approaching21/4 ERy* as
(2s,nCMP)P2 , (2p,nCMS)P2 , or (2p,nCMD)P2 . It should
be noted that such levels as (2p,nCMP)P2 do not appear in
Fig. 2~b! because the total symmetryP2 cannot be obtained
from such a product of states. The energy levels in the o
figures are assigned in the similar way: Those ofS1 state are
16531
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FIG. 2. Energy schemes of a confined electron-hole pair~EHP!

with ~a! S1, ~b! P2, and~c! D1 symmetry. The effective-mass rati
is taken asmh /me53.
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EXCITED STATES OF AN ELECTRON-HOLE PAIR IN . . . PHYSICAL REVIEW B65 165318
assigned as (1s,nCMS)S1 , (2s,nCMS)S1 , (2p,nCMP)S1 ,
and so on, while those ofD1 state as (1s,nCMD)D1 ,
(2s,nCMD)D1 , (2p,nCMP)D1 , (2p,nCMF)D1 , and so on.

The approximate formula~3.1! for the energy of the
electron-hole pair is improved by taking into account t
finite size of the exciton. This is known as the dead-la
effect.7,31 Actually, the center of mass of the exciton cann
reach the surface of the quantum dot because this sh
accompany a deformation of an exciton that requires so la
energy of the order ofERy* . Thus the center of mass of th
pair is confined in a sphere with the effective radius sma
thanR. Equation~3.1! is then improved as

Enexl ex ,nCMl CM
.2

1

nex
2

1
mlnCMl CM

2

M ~R* 2h* !2
, ~3.2!

whereh[h* aB* , almost corresponding to the radius of th
exciton, is the thickness of the dead layer. In fact, the ene
of (1s,nexS)S1 and (1s,nexP)P2 states in the weak confine
ment regime can be excellently fitted by Eq.~3.2! by choos-
ing h51.1aB* , and the energy of (2p,nexS)P2 state by
choosingh54.4aB* , for example. Note that these values f
h almost correspond to the mean radius for 1s exciton
(^r &1s51.5aB* ) and that for 2p exciton (̂ r &2p55aB* ).

The concept of an exciton as an elementary excita
loses its meaning when the dot size becomes comparab
or smaller thanaB* (R<aB* ), because in this case the kinet
energy of the particles of the order of 1/R2 exceeds the Cou
lomb potential energy of the order of 1/R. Then the electron-
hole pair is well described as a product of one-particle sta
(ni l i) of the electron (i 5e) and hole (i 5h), which are in-
teracting through the Coulomb force. This is known as
strong confinement regime or the individual confinement
gime. The leading terms of the energy of the electron-h
pair in this regime are given by

Enel e ,nhl h
.

mlne ,l e
2

meR* 2
1

mlnh ,l h
2

mhR* 2
, ~3.3!

in the unit of ERy* , where the first and second terms a
one-particle energies of the electron and hole. The Coulo
interaction gives rise to the corrections to the above ene
of order ofR21 andR0, as discussed in Ref. 7. In the stron
confinement regime, the energy levels in Figs. 2~a!–2~c! are
denoted as (nese ,nhsh)S1 , (nepe ,nhph)S1 , and so on for
S1 pair, (nese ,nhph)P2 , (nepe ,nhsh)P2 , and so on forP2

pair, and (nese ,nhdh)D1 , (nepe ,nhph)D1 , (nede ,nhsh)D1 ,
and so on forD1 pair.

In Figs. 2~a!–2~c!, several levels seem to be crossing w
each other whenR is changed. However, they are not re
crossings but avoided crossings, although the energy re
sions are too small, typically;0.03ERy* , to be resolved in
the figures. Such a feature of the avoided level crossing
an electron-hole pair in a quantum dot has been pointed
in Ref. 7, but we reveal here that energy separations at cr
ings are further smaller than those obtained in the previ
study. This improvement is achieved by the use of the lar
basis set in the present calculation.
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Figures 3~a! and 3~b! show calculated energy levels of a
electron-hole pair with symmetryP1 andD2, respectively,
where the effective-mass ratio is taken asmh /me53. In both
figures, only the lowest 24 energy levels are plotted aga
the quantum dot radiusR.

The energy-level structures shown in Figs. 3~a! and 3~b!
quite differ from their couterparts with the symmetryP2 and
D1 shown in Figs. 2~b! and 2~c!: The energy levels assoc
ated with the 1s excitonic state are missing in Figs. 3. Th
remarkable difference between Figs. 2 and 3 is due to
difference in the parity conditions. Consider aP1 electron-
hole pair in the weak confinement regime, for example.
order to make a total angular momentumP, the center-of-
mass motion of annexs excitons should benCMP. However,
such a combination obviously violates the parity conditio

The energy levels in Figs. 3 can be discussed in paralle
Figs. 2 except the difference mentioned above. The elect
hole pair is well described as a product of excitonic st
nexl ex and the center-of-mass motionnCMl CM when R is

FIG. 3. Energy schemes of a confined electron-hole pair~EHP!
with ~a! P1 and~b! D2 symmetry. The effective-mass ratio is take
asmh /me53.
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TAKAYUKI UOZUMI AND YOSUKE KAYANUMA PHYSICAL REVIEW B 65 165318
larger than several times ofaB* , i.e., the picture of the exci
ton confinement holds well also in the present cases.
energy levels in this regime are assigned
@2p(3p),nCMP#P1 , (3d,nCMD)P1 , and so on forP1 pair
and as@2p(3p),nCMD#D2 and @3d,nCMP(F)#D2 , and so
on for D2 pair. Then the energy of the pair is well describ
by Eq. ~3.2!. The picture of the individual confinement als
holds in the present cases when the dot radiusR is compa-
rable to or smaller thanaB* , and the levels are assigned
(nepe ,nhph)P1, (nede ,nhdh)P1, and so on forP1 pair and
as (nepe ,nhdh)D2, (nede ,nhph)D2, and so on forD2 pair.
Theseanomalousparity states are dark states in the sen
that they are inactive both in the one-photon and two-pho
processes. However they play an important role in the p
turbation by an external magnetic field.

B. Optical response of QD’s

Figure 4 shows the direct absorption spectra from

FIG. 4. Dot-size dependence of one-photon absorption spe
of spherical quantum dots. The effective-mass ratio is taken
mh /me53.
16531
e
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groud state of the quantum dots, where the effective-m
ratio is taken asmh /me53 and the dot sizeR is changed
from 1aB* to 10aB* . In each panels, the vertical lines are t
oscillator strength per unit volume calculated from E
~2.31!, and the continuous lines are the convolution of t
vertical lines with a Gaussian function with the half widt
0.1ERy* , at the half maximum~HWHM!. The spectra show a
drastic change whenR is reduced from 10aB* . The overall
feature in the spectral change, such as the blue shift of
lines and the enhancement of the oscillator strength du
the confinement of particles, is similar to that obtained
Ref. 7. In bulk crystals of semiconductors with the dire
allowed gap, only the excitonic statenexs with the zero-
translational momentum can be excited in the one-pho
absorption process because of the momentum conserva
The transition probability is then in proportion to 1/nex

3 .
Such a transition is found in the spectrum forR510aB* as
the marked lines, where the line marked by a solid cir
corresponds to the transition to (1s,1S)S1 state and the line
marked by a solid square corresponds to the transition
(2s,1S)S1 state. We also see a series of lines correspond
to the transition to (1s,nCMS)S1(nCM52,3,•••) on the
high-energy side of the (1s,1S)S1 line in the spectrum for
R510aB* . These transitions are accompanied by the exc
tion of the center-of-mass motion and become optically
lowed because of the breaking of the translational symme
From Eq.~2.31!, the oscillator strength per unit volume fo
such transitions in the weak confinement regime is given

6 f ex

p2nCM
2 S 12

h

RD 3

,

where the termh/R originates from the dead-layer effec
From the formula(n511/n25p2/6, we see that the oscillato
strengthf ex in the bulk limit is distributed over the center
of-mass excitation in QD’s. The 1/nCM

2 dependence was firs
pointed out by Efros and Efros.4

When the dot size is reduced fromR510aB* , the order of
the levels is interchanged at avoided crossings shown in
2~a!, and the transition probability of the low-lying level
become to deviate from the 1/nex

3 and 1/nCM
2 dependence

discussed above. By tracing the line corresponding
(1s,2S)S1 state~solid triangle! and the line corresponding t
(2s,1S)S1 state ~solid square! from the weak confinemen
regime to the strong confinement regime passing through
avoided crossings, we find that the former continuou
changes into the (1se ,2sh)S1 state in the strong confinemen
regime, while the latter changes into the (1pe,1ph)S1 state.
However, these correspondences between the charact
the two lines are not unique but depend on the mass r
mh /me . When mh /me<1.9, (1s,2S)S1 state changes into
(1pe,1ph)S1 state and (2s,1S)S1 into (1se,2sh), as dis-
cussed in Ref. 7. This is important for the assignment of
lines in the strong confinement regime, because the trans
to (1pe ,1ph) state is optically allowed but the transition t
(1se,2sh) state is forbidden, as clearly seen in the lowe

tra
s

8-8
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panel of Fig. 4. See how the absorption spectrum change
a series of well-isolated discrete lines as the dot size is
duced.

Figure 5 shows the dot-size dependence of the trans
absorption spectrum. The effective-mass ratio is taken
mh /me53. The vertical lines in each panels are the norm
ized oscillator strength obtained from Eq.~2.35!. The con-
tinuous spectra are obtained by convoluting the vertical li
with the Gaussian function with 0.1ERy* width ~HWHM!. In
the spectrum forR510aB* , the main line marked by a solid
circle corresponds to the excitation of the internal motion
the exciton from 1s state to 2p state, while the line marked
by a solid square corresponds to the excitation to 3p state.
As the dot size is reduced, the main line gradually shifts
the high-energy side. This is attributed to the difference
tween the quantum size effect for 1s state and 2p state. In
the weak confinement regime, the initial-state energy and
final-state energy corresponding to the main line are given

E1s,1S5211
p2m

M ~R* 2h1s* !2 , ~3.4!

FIG. 5. Dot-size dependence of transient absorption spectr
spherical quandtum dots. The effective-mass ratio is taken
mh /me53.
16531
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E2p,1S520.251
p2m

M ~R* 2h2p* !2 , ~3.5!

in the unit ofERy* from Eq. ~3.2!. The values ofh1s* aB* and
h2p* aB* are estimated as 1.1aB* and 4.4aB* , respectively, by
fitting the energy levels in Figs. 2~a! and 2~b! with above
equations, i.e., the effective radius of 2p excitonic state is
larger than that of 1s state. This fact means that the dea
layer effect becomes stronger for 2p state than for 1s state
and thus causes the peak blue shift observed here. We
see a transition to the (2s,1P)P2 state marked by a solid
triangle, which gains a weak oscillator strength because
the breakdown of the translational symmetry. The size
pendence of the transient absorption spectra calculated
reproduces fairly well the data observed for CuCl QD’s e
bedded in NaCl crystals22,23 without adjustable parameters
The applicability of the complete-confinement model to th
system is partly owing to the wide band gap of the h
material, i.e., the band-gap energy of about 8.6 eV of Na
crystals32 is sufficiently larger than that of about 3.4 eV o
CuCl crystals.

As the dot size is further reduced, the blue shift of t
main line becomes salient. In the limit of strong confineme
absorption lines are assigned as the individual excitation
the confined electron and hole. For example, the two line
the bottom panel correspond to the transition of the elect
1se→1pe ~solid circle! and the hole 1sh→1ph ~open circle!
from the initial state (1se,1sh)S1 . Here, it is instructive to
see that the transition dipoleV for the infrared excitation can
be written in two ways,

V52ereh52ere1erh . ~3.6!

Namely, it is regarded as the polarization with respect
either the center of mass of the exciton, or the center of
dot. Thus we can see the change of the picture of the indu
polarization from the former to the latter as the dot size
reduced.

In the strong confinement regime, the intensity ratio b
tween the lines corresponding to (1se ,1ph)P2 ~open circle!
and (1pe ,1sh)P2 state~solid circle! strongly depends on the
mass ratiomh /me as shown in Fig. 6, where the spectra a
calculated formh /me51,3, and 5 and forR5aB* . In the case
of me5mh , the lowest excitation becomes optically forbid
den. This is because of the following reason. Whenme
5mh , the excited states (1se ,1ph)P2 and (1pe ,1sh)P2 be-
come degenerate in the zeroth-order approximation. This
generacy is removed by the Coulomb interaction between
particles. Then, the lowest excited state is symmetric w
respect to the exchange ofre andrh because of the attractiv
interaction between the particles, while the second exc
state has the antisymmetric property. Since the symme
state has no polarization, the lowest state becomes optic
forbidden in the infrared excitation.

Figure 7 summarizes the dot-size dependence of the
shift of the main line in Fig. 5~solid circles!, where the
excitation energy is shown by the solid curve. In this figu
we also show the excitation energy under the exciton c
finement picture~dotted curve! and that under the individua

of
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particle confinement picture~dashed curve!. The former is
estimated from Eqs.~3.4! and ~3.5!, while the latter is esti-
mated from the approximate energies,

E1se,1sh
5

p2

R* 2
2

3.572

R*
, ~3.7!

E1pe,1sh
5

mp2

meR* 2
1

ml1p
2

mhR* 2
2

3.240

R*
, ~3.8!

for initial and final state energies in the unit ofERy* , where
l1p54.493 and the coefficients for the Coulomb potent
are numerically estimated. Figure 7 clearly shows how

FIG. 6. Transient absorption spectra of spherical quantum
with the radius R5aB* . The effective-mass ratio is taken a
mh /me51,3, and 5.

FIG. 7. Dot-size dependence of the excitation energy in
transient absorption spectra~solid line!. The excitation energies in
the exciton confinement picture~dotted line! and the individual par-
ticle confinement picture~dashed line! are also shown.
16531
l
e

main line in the transient absorption spectrum shifts from
weak confinement regime to the strong confinement reg
when the dot size is reduced.

Figure 8 shows the two-photon absorption spectra ca
lated for R56aB* and 2aB* . In this calculation we take the
effective-mass ratio asmh /me53 and the band energy ga
as 3.4 eV, assuming the case of CuCl dots. The spectrum
the weak confinement regime (R56aB* ) is significantly dif-
ferent from that for the srtong confinement regimeR
52aB* ). In the spectrum forR56aB* , we see the low-lying
lines corresponding to the transition to 2p and 3p excitonic
state and the wide absorption bands with a strong inten
on the high-energy side. On the other hand, the spectrum
R52aB* is composed of the well isolated lines, where t
lowest excited line corresponds to the transition
(1se ,1ph)P2 state and the second one corresponds to
transition to (1pe ,1sh)P2 state. It is interesting to compar
the two-photon absorption spectra in Fig. 8 with the transi
absorption spectra in Fig. 5. These spectra show quite di
ent structure from each other, though they have comm
final states of the electron-hole pair withP2 symmetry. The
difference between the two-photon absorption and the tr
sient absorption comes from the difference of the interme
ate state in both processes. In the transient absorption
system relaxes to the lowest state of theS1-like electron-
hole pair in the intermediate states. However, the two-pho
absorption occurs as a coherent second-order process
scribed in Eq.~3.1!, so that essentially all of theS1-like
states contribute to the absorption process as intermed
states. The spectral feature that the intensity steeply upr
in the higher-energy side in the two-photon absorption p
sented here agrees with that of the observed data for C
nanocrystals embedded in NaCl.33,34

IV. CONCLUSION

In this work, we presented an efficient formalism to sol
numerically an attractive two-body problem confined
spherical nanospaces. The spherical symmetry of the sys

ts

e

FIG. 8. Two-photon absorption spectra of spherical quant
dots. The dot radius is taken asR52aB* and 6aB* , and the effective-
mass ratio is taken asmh /me53.
8-10
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EXCITED STATES OF AN ELECTRON-HOLE PAIR IN . . . PHYSICAL REVIEW B65 165318
was fully exploited in the formalism. The correlated-basis-
expansion of the wave function is successfully applied to
eigenvalue problem of an electron-hole pair confined
spherical quantum dots. It should be noted that, in the cas
the attractive interaction, there is no region of ‘‘low dens
limit’’ because of the presence of bound states. Therefor
is crucially important to take into account the formation
quasiparticle~exciton! from the beginning of the calculation
especially in the weak confinement regime. The feature
optical spectra such as the direct one-photon absorption
transient infrared absorption, and the two-photon absorp
observed in CuCl nanocrystals were consistently reprodu
by the theoretical calculation given here.

In the present study, we have adopted a simple mode
confined electron and hole interacting through the attrac
Coulombic force, in order to clarify the essential features
the quantum size effects and the size-dependent optica
sponses. We would like to stress here that the establishm
of the method to calculate essentiallyall of the relatively
low-lying eigenstates of the electron-hole pair opens a p
sibility to calculate responses of the system to various p
turbations with a high accuracy. In fact, various perturbat
effects may become important for the analysis of actual
perimental data. For example, it has been proposed th
two-photon transition to the longitudinal exciton state is
duced by the quantum confinement and plays a role in
size-selective two-photon luminescence of CuCl na
crystals.21 This poses an interesting problem, i.e., the re
nant interaction of electromagnetic fields with a confin
electron-hole system. This is also related with a conjectur
m

.

.

.
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the enhancement of the exchange interaction by the quan
confinement.35 In this connection, Ajiki and Cho36 recently
performed a theoretical study of LT splitting of a confine
exciton by approximating the exciton as a point dipole. T
approximation is valid in the limit of the weak confinemen
We have recently carried out the calculation of the eig
states of the coupled mode of the confined electron hole w
electromagnetic fields, on the basis of the present formali
where the wave function of the system is systematically
panded to the linear combination of the unperturbed eig
states. The detail of such a study will be shown elsewhe

As another example, we may mention the persistent h
burning18 and the blinking observed in some nan
crystals.37–39 The origin of these phenomena is attributed
the perturbation by external point charges that are ejec
somehow outside the quantum dots.18 In our preliminary
report,40 we have shown the effects of an external po
charge on the wave function of the confined electron-h
system. It has been found that the deformation of the c
fined electron-hole wave function due to the electric fie
strongly suppresses the transition probability. A system
investigation of such an effect will be presented in the for
coming papers.
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