PHYSICAL REVIEW B, VOLUME 65, 165318

Excited states of an electron-hole pair in spherical quantum dots and their optical properties
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The energy-level structure of a correlated electron-hole pair confined in spherical quantum dots and their
optical properties are theoretically investigated. An efficient method of numerical calculation is presented for
the eigenvalue problem of the excited states of the electron-hole pair with an arbitrary total angular momentum,
which employs the Hylleraas coordinate system and a correlated-basis-set expansion. It is shown that the
picture of exciton confinement holds generally when the dot radius is several times larger than the effective
Bohr radius of the exciton, but the amount of blue shift in the excited states of the relative motion is larger than
that in the lowess-like state. In addition to the one-photon absorption spectra, the excited-state absorption and
the two-photon absorption spectra are investigated. The calculated spectra show good agreements with those
observed in CuCl nanocrystals.
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I. INTRODUCTION particle confinement regime foR/af<2.” In the former
case, the electron-hole pair behaves as an exciton, and its

Optical properties of semiconductor nanocrystals, ofcenter-of-mass motion is quantized due to the confinement.
guantum dot$QD’s), have been a subject of much interest inIn the latter case, the kinetic motions of the electron and hole
recent years. The three-dimensional confinement of elec-are individually quantized, and a well-separated discretized
trons and holes drastically changes the electronic structure istructure of energy levels are formed, which is slightly modi-
QD’s from that of bulk crystals with a continuous energy fied by the order of R due to the Coulomb interaction be-
spectrum to that with essentially discretized energy levelstween electron and hole.
This is called a quantum size effect. Recent advances in ma- CUCl nanocrystals are typical examples of QD's in the
terial growth and optical measurement techniques allow fo¥veak confinement regime. The optical properties of this sys-
the observation of optical responses of an assembly of QDM 5‘5‘{\{? been extensively studied from various points of
with a narrow size distributidnand even a single QBThe  View. However, most of these studies are concerned with

concentration of oscillator strength in discrete energy leveldransitions between the ground state of the nanocrystal and
of QD’s is a major key in this field, which makes QD's a the excited states, althou_gh_some data on infrared abs_orptlon
promising candidate for electro-optic and nonlinear opticalungcetrré%%?dﬁéo':a;doe)ézﬁ'b:gag?t;;voggggg ex\gtr?]t;]r;ka
applications in the future device technology. sp 122 op Vd S0 bee pd b. . Y, | )
The interacting electrons and holes confined in QD’s poséat al observed transient infrared a sorptions of C.UC QDS.
eémbedded in NaCl crystals under size-selective direct exci-

_atyplcal few-body problem and have attr_acted much theore.tfations. The observed spectra show a characteristic depen-
ical interest. A number of theoretical studies on the electroni

) ) . i MHence on the dot size, namely, a gradual blue shift of the
structure of QD’s have been carried out since the p'onee”ngbsorption peak and a remarkable broadening of the spec-

work by Efros and Efro‘ba”q Brus? Among these studies, & ym for the smallest size of QD. In a previous paper, we
model of a spherical QD with an effective-mass approximahaye shown a brief report of the theoretical analysis of these
tion has been widely used to clarify essential features ofyperimental data based on the model of spherical QD with
quantum size effects?™** As a few-body problem, the the effective-mass approximatigh.
electron-hole system with an attractive interaction is of inter-  The transient absorption spectrum is of special interest,
est even in the two-body case because of the presence pécause it contains detailed information on the excited states
bound states. The competition between the attractive Couhat cannot be obtained from the direct absorption spectra
lomb force and the repulsive confinement force gives rise tdrom the ground state. The interacting electron-hole pair in
a distinct size-dependent change of motional state of theemiconductors is described by the product of wave func-
electron-hole pair. This is in contrast to the electron systemions of the Bloch part and the envelope function. Then,
with repulsive interaction alone, where the main concern isyithin the long-wavelength limit, the envelope function of
the occurrence of shell structures and the emergence of cahe electron-hole pair created optically should haveStike
lective movements. The electronic states of confined twosymmetry in spherical QD’s with a direct allowed energy
electron system show only a rather monotonous sizgap. The transient absorption at low temperatures, on the
dependencé’** other hand, occurs from the loweStlike state. Since the
The quantum size effects of an electron-hole pair confinegransition dipole moment acts primarily on the envelope
in a spherical QD are characterized by two parameters, thinction in such an intraband excitation, the final states of
dot radiusR and the effective Bohr radiusg of the exciton.  transitions in the transient absorption should h#&ike
There are two extreme situations: the weak, or exciton consymmetry. Thus, the information of tHelike states can be
finement regime foR/ag=4 and the strong, or individual obtained from the analysis of the transient absorption spec-
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tra. An analogous argument holds also for the two-photon 7 A o
absorption process.
Most theoretical studies performed to this time have been e
concerned with th&like excited states of QD’s, while only h
a few low-lying P- and D-like excited states have been
calculated®® In the present paper, we show first a general 06 )
theoretical framework to calculate the electronic states of an !
electron-hole pair confined in a spherical QD for excited N VA A s -
states with essentially arbitrary total angular momentum 0
This scheme proves efficient in calculating electronic states
of QD’s over a wide range of the dot radius. The obtained ¢
accurate eigenstates and eigenvalues form a good basis to
calculate the responses of the confined electron-hole pair to
various external perturbations. As applications of the
scheme, we investigate in detail the one-photon absorption
spectra, the transient absorption spectra, and the two-photon
absorption spectra in the present paper. FIG. 1. Coordinate system used in the formalism for an
The rest of this paper is organized as follows. In Sec. ll,gjectron-hole pair in a spherical quantum dot.
we provide a calculation scheme of the eigenvalue problem

for an electron-hole pair confined in spherical QD’s with ansystem in terms of a coordinate set including the Euler

arbitrary total angular momentum. The formulas for the OP-5 gles. Such a situation is similar to that in the eigenvalue

tical processes are alsq given here. The result_s of numericF oblem for a He atorf A general argument on the symme-
calculations are given in Sec. lll, where the eigenvalues o ry of the eigenstates of the two-electron system of a He
the electron-hole pair are shpwn for-0,1, and 2. The dot- tom has been given by Bhatia and Tenfiin the present
size dependence of the optical spectra, the one-photon a tudy, however, we formulate the eigenvalue problem in a

scr)]rptlon sbpectre_l, the transient absiorptlc;]n spectrg, ;nd tw%f(gferent fashion. Our formulation given below is more trans-
photon absorption spectra, are aiso shown an 'SCUSS% rent and best suited to numerical calculations for electron-
here. Finally, the conclusion is given in Sec. IV. hole pair systems with a spherical symmetry.
Figure 1 illustrates the coordinate system employed here.
Il. FORMULATION The coordinates are classified intternal coordinatesand
external coordinatesThe internal coordinates ame,, ry,
_ ) ) ) ~and @', where#' is the angle between, andry,. We may
CotnS|ertan_tﬁltteﬁtron;jho;a _?ﬁ" cf(;nﬂtr_]ed in a aphe_rl'cahse Fen=\ra+ra—2rrncosé, the distance between the
quantum dot with the radius. 1he elfective-mass Hamil- - haticles, in place of’. The external coordinates are, on the

tonian is given by other hand, the Euler anglés ¢, ande’, whered and¢ are
p? p? o2 the polar and azimuthal angles fiqr, r_espe_ctlvely, an@g’ is
He —© 4 ————+V(rg +V(ry), (2.2 the an_gle be_tween the plane m_cludmgms andr, and the
2me - 2my,  k|re—ry plane includingr, andr,,. The eigenvalue problem for Eq.
(2.1 is fully simplified by describing the Hamiltonian in the
. : resent coordinate system, because the terms concernin
the effective mass of the electron<(e) and hole (=h); « \F/)vith the external coo)r/dinates are replaced by several con-g

Is the_ dielectric constant of the quantum d.Ot' In this study, W&tants related with the angular momentum of the system. The
consider a situation of the complete confinement of the par=

. : - ) six-dimensional eigenvalue problem for Eg.1) is then es-
ticles. Then the confinement potential in Eg.1) is taken as - ; : :

; ntially r hr imensional one rel nly with
V(r;)=0 forr;=<R andV(r;) =+« for r;>R, which means sentially reduced to three dimensional one related only wit

that th funci th | funci for th the internal coordinates.
a e wave lunction, the envelope function for the  pafyre going to the formulation, we need to construct
electron-hole pair, vanishes whep or ry, is equal toR. It

h _ .simultaneous eigenstates for the angular momentum opera-
should be noted that our formulation given here can be easﬂy?rsl_z L,, andL,. , whereL , is the projection ot in the
’ Z1 z' z'

extended to a more general case of confinement POteNtigh e ction ofr.. These operators are represented in terms of
with spherical symmetry, as mentioned at the end of Secl.he Euler angles as

IMA.

The eigenvalue problem for the Hamiltoniéh1) is sim-
plified owing to the spherical symmetry of the system. Since , 1 ARG 92 92
both the squaré?2L?2 andz componentiL, of the total an- ) sinf—2) + F”L o2 —2 Cos% o' |’
gular momentum7L commute with the Hamiltonian, the ® ® ¢ ?2_2)
eigenstates of the system can be classified in terms of a set of
guantum numbersL(M), whereL(L+1) and M are the
eigenvalues fot.? andL,, respectively. Moreover, we can . d
further simplify the eigenvalue problem by describing the 120

,
/

;
<y

A. Solution of eigenvalue problem

wherer;, p;, andm; are the position, the momentum, and
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) (2.9
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R a2+2a L2
. rpari  r2’

(2.10

In analogy with a problem for a symmetric top, the simulta-whereL; is the angular momentum of the electrar=E) or
neous eigenstate ,M,K) for these operators is easily con- hole (i=h). The representation fdrﬁ is given by

structed, where the integét is the eigenvalue ot ,, and
satisfies the conditiofK|<L. Actually, |L,M,K) is just the

eigenstates of the symmetric top and is described in terms of
a hypergeometric functiof. We need, however, only a for-

mal expression ofL,M,K) as shown below.
We start from|L,0K). The derivatives ofp in Eq. (2.2)

can be omitted in this case, because the eigenfunctidrn of

for M=0 is a constant 4/27. Then Egs.(2.2) and (2.4)
give an expressionY x(6,¢')/y2m for |L,0K), where

L2 ” +cotd’ i + (2.11)

=—|——+tcotd'— — 1, .

"o lae2 90" S0’ ag’?

while that forL2 is obtained from the relation,
L2=L2+L2—2Lp-L. (2.12

However, it is more convenient to represérft in terms of
the angular momentum operatots, L,., andL. .. This is

Y. k(6,¢") is the spherical harmonic function. The other carried out using an identity,
states withM #0 are obtained by successive operations of

ladder operator& .. on|L,0K), whereL .. is given by

L.=L,*iLy,

=—je*lel +j J —coté i + 7 (2.5
- ~ 90 de sind g T

The operatorg . changeM into M =1, and thugL,M,K) is
given by

(L=[M)!
(L+[M])!

Note thatL . change only the quantum numblel; because
[L.,L?]=0 and[L.,L,]=0.

It is convenient to introduce ladder operatars, for the
guantum numbekK, which are defined as

IL,*[M[,K)= LMIL0K). (28

Lo=—ie®te| 12 _corpLy 7 2.7)
=—ie *i—g—co 2o Tsnaag) @

The operation rule of. .., on|L,M,K) is similar to that of
L., ie,

L.oo|L,M,K)=VL(L+1)—K(K=1)|L,M,K=1).
(2.9

This is a consequence of the fact that. ,L..,]=0 and that
commutation relations amorig?, L,., andL. . are similar
to those among 2, L,, andL .., which is obvious from the
symmetric property ofp and ¢’ in Egs. (2.2—-(2.5 and

(2.7).

From now on, we adopt the effective Bohr radia§

L+!_L_! (9 L+1+L_r

— o ’ , 2
L,-L= 5 Ow,+cot9 > Ly+L5 .

(2.13
Finally, from Eqgs.(2.10—(2.13, we obtain the representa-
tion of the Hamiltonian in Eq(2.9) in terms of the present
coordinate system,

1 Ce Ch| o Ce 2
H=Hgs+ —+ —|L5+—=(L2-2L%)
S sinza’(ré rg) % r2 z
Ce d
+_2 (L+I_L,/)__COtG,(L+/+L,/)Lz/ y
re a0’

(2.19

whereHg is the reduced Hamiltonian for tilike subspace
(L=0) and is given by

y 1 & 1 . 2
=—Co|— —Tet —5——| sing'—
S Trear2 © rZsintg’ 90’

15 .
“Chl 7 5Th
Thord

2

leh

(2.1

The expression fad g, which has been derived by one of the
authors® includes only the internal coordinates. Also the ex-
pression forH in Eq. (2.14 essentially includes only the
internal coordinates: All the terms concerning with external

————| sing’'—
rZsirfg’ 26’

coordinates have been replaced by the angular momentum

operators. In a specific subspadeg 1) for the electron-hole

= xh?/ue? as the unit of length and the effective Rydberg Pair, we can replace the angular momentum operators in Eq.

energy E’F;yzﬁzlz,ua’gz as the unit of energy, wherg

(2.14 by constants. Then the originally six-dimensional ei-

[=mem,,/(m+m,)] is the reduced mass. The Hamiltonian genvalue problem is reduced to three dimensional one con-

in this units is written as

2
H=—ccAe—CpAp— o
e

(2.9

where the coefficientz, and c, are my/(m,+m,) and
me/(mg+my,), respectively. The transformation of E@.9)

cerning only with the internal coordinates. This is an essen-
tial advantage of our formulation, which allows for a
systematic calculation of the correlated electron-hole pair
with an arbitrary angular momentum.

The commutability ofH with L? andL, is obvious from
Eq. (2.14), since bothL? and L, commute withL; (i=2',
+'). This fact, of course, means thatand M are constants

into our coordinate system is carried out using the formula,of motion. HoweverK is not a constant of motion because
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the last term in Eq(2.14 does not commute with, . In K2 [c, cn| cJL(L+1)—2K?2]
order to show this clearly, we introdu¢e,M,K), (A==) Hkk=Hst —5— —j - ° > ,
defined by sirfo’ \rg  rp re 220
IL,M K>+=i[|L M,K)= (=1 KL,M, —K)] CoVL(L+1)—K(K+1)[ &
- \/E HK+1,K: ° 2 (——Kcotﬁ’)
(2.16 re '
forK=1,2,...L, and by (K=1) 2.21)
IL,M,0),=[L,M,0), (2.17)
_ . CoVL(L+1)—K(K+1)
for K=0, where\ in Eq.(2.17 is chosen as- (—) whenL Hg k1= 5
is an evenodd integer. The last term in Eq2.14) couples Fe
|L,M,K), with |L,M,|K=1]),, so thatK is not a constant p
of motion. However, it should be noted thatis unchanged X| ———=(K+1)cotg' | (K=1),
through this coupling, i.eX becomes a constant of motion. a6’
This means that the vector space for the electron-hole pair is (2.22
subdivided by the index in addition to the angular momen- '
tum (L,M). In fact, A is just the parity of the system:
Y. k(8,¢") transforms into € 1)- XY, _¢(8,¢") under the H _Cev2L(L+1) 2.23
spatial inversior, which is composed of a combined opera- 1.0 ré 96" '
tion of 6—m—0, op—m+e¢, and ¢' —>7—¢', so that
I|lL,0K).==|L,0K).. This is also true for|L,M,K), YTy
with M #0 becausd commutes with_ ... 0 1zw — i—cote’) ) (2.24
As discussed above, the eigenstates of the system are clas- ' rg a0’

sified in terms of the angular momenturh,M) and the
parity \. Thus, we expand the wave function of the electron-
hole pair in L,M,\) subspace in the form

Note that each element satisfies a Hermitian relation,
(Hk k)=(Hk- k), which is easily verified by the partial in-
tegration with respect t@’.

L From now on, we adopt a conventional notation
b (fe.Tn) = > F-M e th Ten)|L,M,K)y SP.D,... for L=0,1,2.... Consider the case for
K=Ko (L,M,\)=(P,0,—), as an example. In this case, the wave

(218 function of the electron-hole pair is described by

whereKg is taken to bed(1) when\=+ andL is an even
(odo) integer or wherh = — andL is an odd(even integer. /3 p_

Since the operation of angular momentum operators on Ypo-(Te.Tn)= 82 [fo (re.rn.rep)cose
|L,M,K), is easily taken into account using the algebra o ) )

shown above, the six-dimensional Sofirmer equation, —f1 (re.rh.ren)sind cose’],
HwLMK(_re,rh)_: EwLM)\(re,_rh), is transfc_)rmed into a set of (2.29
three-dimensional equations for théternal function _ _ _

fi (re.rn.Ten). Note that the internal function is indepen- and we obtain a set of simultaneous equations

dent of M because the Hamiltonian does not include In

fact, using the relations,(i) \(L,M,K|L',M’ K"}, '

P- _pfP- -
:5L,L’6M,M’5K,K’5)\,)\" (”) LZ/|L1M1K>)\:K|L1M1K>7)\1 KZ:O HKxK’fK'(re’rh’rEh)_EfK (re!rhvreh) (K—O,l),
and (i) L./|L,M,K)=L(L+1)-K(K=1)|L,M,K*+1), (2.26
we obtain a set of simultaneous equations,
where
L
2 HK,K’f:Z}:(revrh1reh):Efk)\(revrhvreh) 2Ce
K'=Kg HO‘OZHSJF o
re
(K=Kg, ... ,L),
(219 1 [ce cp
. . L Hii=Hst ——| 5+,
wherekE is the eigenenergy of the system. The Hamiltonian sirfe’ \rs
in Eq. (2.14 changes the quantum numbB€at most by+ 1.
Thus, the block elemetidy - in Eq.(2.19 has a tridiagonal 2¢ P
form, i.e., Hx x»=0 unless|K—K’|<1. The nonzero ele- H0,1=——2e cotd' + —|,
ments are given as follows: le a0
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2c, 9 electron-hole pair is obviously satisfied from the beginning

1= (2.27 by such a choice of the correlated basis set.

r2 90"

e

This is essentially the same as that given in a previous B. Optical response of QD's

paper The optical response of QD’s is obtained from the eigen-
The eigenvalue problem in E.19 is transformed into  states and eigenenergies of an electron-hole pair. The one-

a diagonalization of the Hamiltonian matrix by expandingphoton absorption spectrum is calculated, apart from irrel-

the wave function in terms of a set of basis functions. In thisevant factors, by

study, we employ aonorthogonalcorrelated basis sét,

I (0)=2 |F?8(w+E—EX,), (2.30
len(reyrhvreh):(Pm(re/R*)‘Pn(rh/R*)rlehqu_areh)i K I "

(1=0,1,2; --, and m,n=1,2,3; - -), whereE; andEY), are the initial anckth Slike state energy,
29 respectively,w is the photon energy, arlé,|? is the oscil-
(2.28 lator strength per unit volume. Within the effective-mass ap-

whereR* =R/a% , ¢n(X) is a (2m—1)th order polynomial proximation, the transition amplitude, is given by

defined by the Legendre polynomi&,(x) as ¢n(X)=(1 253
—X)Pom—1(X)/x, anda is an adjustable parameter chosen to Fre=\ /MJ drypdd , (r,r), (2.30
minimize the lowest energy in each ,M,\) subspace. By Q "

. . . >\
expanding the internal functiof*(re,ry.rer) as wheref,, is the oscillator strength per unit volume for bulk

b e e fcrystals,kaishthtlakvolume of QD, ands¥) , is the wave
LA _ LAK unction of kth Slike state.
f (re’rh’reh)_Zﬁ m§=:1 ,Z‘l Cimn Ximn(T'eshFen), The transient absorption process is a kind of two-photon
(2.29 process composed of two successive transitions, the inter-
band transition and the intraband transition. First a valence
Eq. (2.19 is transformed into an eigenvalue equation for aelectron is excited into the conduction band, and the created
Hamiltonian matrix represented by nonorthogonal basesglectron-hole pair relaxes to the loweSiike state at low
which can be numerically solved by a standard recipe. Notgemperature. The infrared photons then give rise to the intra-
that the boundary conditionj v, (re,r,) =0 atre=R* or  band transition of the electron and hole. The infrared absorp-
r,=R*, is automatically satisfied by the choice @f,(x). tion spectrum is described by
An advantage of the correlated basis expansion is a rapid
convergence of low-lying energy levels, owing to the expo- - -
nential part in Eq(2.28. This is crucially important for the 'IR(“’):; |<9[’(F4,)0,7|V| '/’(51,3,+>|25(“’+ E(S%)+_ E(FJ’),),
description of the electron-hole pair, in order to describe the (2.32
correct behavior of an exciton in the weak confinement re- 4 . _ )
gime (R>af). The actual calculation has been carried outWherelﬂ(',)og— andEY)_ are thejth P~ state and its energy. In.
with a choice, [nax Mmax.Nmax) = (6,6,6), which is enough this equafﬂon, we have assumed, wlthogt loss of generality,
to obtain converged results at least for relatively low-lyingthat the infrared photon ig polarized, i.e.,V=—eE(z,
energy levels shown below. The basis function in 82§  —Zn), whereE is the electric field. o
includes an adjustable parameterbut the calculated low-  The two-photon absorption spectrum is given by
lying energy levels are rather insensitive to a moderate . ‘ 2
change ofa. These facts mean that our basis set is almost (o, IVIWEY Fk‘ i
e l(w)=2 | > 52w+E—EY.).
complete for low-lying eigenstates and guarantees the nu- ; Y w+E —E® Fiy ‘ i~ Ep,
. . . . . i S+
merical accuracy beyond simple variational calculations. ' (2.33
Here, we illustrate our formalism to solve the eigenvalue
problem for a correlated electron-hole pair confined in aln this process, the system makes a sequential transition from
spherical quantum dot for the case with the infinite potentiathe initial state toP~ excited states by two photons with the
barrier. However, the formulation given above is obviously€nergyw, which is roughly half of the band-gap energy. In
applicable to the problem with an arbitrary confinement pozhe first excitation, an electron-hole pair wii symmetry
tential barrier with spherical symmetry, for example, theis virtually created with the lifetimey. Then it undergoes a
problem with a finite potential barrié.In such a case, we transition toP~ states by the second photon. Here we have
need a proper correlated basis set for the given problem. Th@ssumed that the photons azepolarized. In the present
is obtained by solving numerically or analytically the prob- study, we takey to be O and neglect the light-polarization
lem of one-particle confinement first. Then a nonorthogonaflependenc® for simplicity.
correlated basis set is constructed as the product function The transition amplitudes appeared above can be ex-
among the one-particle wave function for the electron andgressed as integrals for the internal functidhé, since the
hole and the binding part of the particles as in Eg28.  external coordinates are easily integrated using the Wigner-
The boundary condition for the wave function of the Eckart theorem. Th& is given by
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2mal>foy (R
Fo= \/Texjo r2drfS O r0, (2.39

while (% _|V|4& ,) is given by
) ag R* R*
(ol V1) = " | e [ o,

2w
xf sing’'do’ f57 M (rq,ry,ren
0

X[(re=rncos® ) fE D(rg,rp,ren
—rpsing 5 O(rgryrep], (2.39

apart from irrelevant factors.

IIl. NUMERICAL RESULTS
A. Energy scheme of an electron-hole pair

Figures 2a)—2(c) show the calculated energy levels of an
electron-hole pair witt8", P~, andD™* symmetry, respec-
tively, where the effective-mass ratio is takennasg/m.=3.

In each figures, only the lowest 24 energy levels are plotted
against the radiuR of the quantum dot.

The arrows in Figs. @)-2(c) indicate the characteristic
levels in the limit of large dot size. These energy levels are
rather insensitive to the change RfwhenR is much larger
thanaj . In the bulk limit (R— +«), these levels approach
- 1/n§xE§y (nexy=1,2, and 3, the energy of an exciton with
the principal quantum numbaer,,. This behavior clearly
illustrates a character of a weakly confined electron-hole pair
for R>ajg , which is known as the weak confinement regime,
or the exciton confinement regime. In this regime an exciton
formed by an electron-hole pair moves in a quantum dot as if
it were a single particle. The motional state of an electron-
hole pair is then well described as an exciton with quantum
numbers Qq,le,) Whose center-of-mass motion is quantized
due to the confinement with quantum numbens \lcm),
wherel ., andl ¢y mean the angular momentum of the rela-
tive motion and the center-of-mass motion, respectively. We
denote the electron-hole pair in the weak confinement regime
as (Nexdex.Ncmlem)Ly - The energy of the pair is approxi-
mately given by

2
1 ’u)\”chICM

Enexlex’nCMICMz_ rg)(+ MR*Z ! (31)
in the unit ofE’FZy, where\, | is thenth zero of the th-order
spherical Bessel function antl(=m.+m,) is the total
mass of the electron and hole. The energy levels approaching
—ERy in Fig. 2b), for example, are assigned as
(1s,ncyP)p_ state, and those approachingl/4 E’F;y as
(2s,ncuP)p-, (2p,NncwS)p_, Or (2p,NcyD)p- . It should
be noted that such levels asg,2-yP)p_ do not appear in
Fig. 2(b) because the total symmetB/ cannot be obtained
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PR T TR T N T N N . |
0 2 4 6 8 1012 14 16 18
Radius (a;)

P |
0 2 4 6 8 101214 16 18
Radius (a;)

10} —
PR U R I T . |

o
NN S
»~

1
6 8 10 12 14 16 18
Radius (a, )

FIG. 2. Energy schemes of a confined electron-hole (EttP)

from such a product of states. The energy levels in the othegith (a) S*, (b) P~, and(c) D* symmetry. The effective-mass ratio
figures are assigned in the similar way: Thos&bfstate are s taken asn, /me=3.
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assigned as EncuS)s+, (28,ncmS) s+, (2p,NcwP)s+
and so on, while those oD* state as (%ncyD)p+ ,
(2s,ncuD)p+, (2p,ncyP)o+, (2p,NncmF)p+ , and so on.
The approximate formulg3.1) for the energy of the
electron-hole pair is improved by taking into account the
finite size of the exciton. This is known as the dead-layer
effect”*! Actually, the center of mass of the exciton cannot
reach the surface of the quantum dot because this should
accompany a deformation of an exciton that requires so large
energy of the order oEf,. Thus the center of mass of the
pair is confined in a sphere with the effective radius smaller [
thanR. Equation(3.1) is then improved as 051

2
1 Mg i ]
En i e 2__""&1 (3.2 4ol ]
exex''cMm'cMm ngx M(R*—”)‘]*)Z M T T T
0 2 4 6 8 1012 14 16 18

where = n*a} , almost corresponding to the radius of the Radius (a, )

exciton, is the thickness of the dead layer. In fact, the energy

of (18,n,S)s: and (Is,n.,P)p_ states in the weak confine- S
ment regime can be excellently fitted by E§.2) by choos- [
ing »=1.1a%, and the energy of (2n.S)p_ state by ol

choosingn=4.4a} , for example. Note that these values for
7 almost correspond to the mean radius fa éxciton I
((r)1s=1.5ag) and that for d exciton (r),,=5ag). —~o05F

The concept of an exciton as an elementary excitation T
loses its meaning when the dot size becomes comparable to = I
or smaller tharag (R<a}), because in this case the kinetic g 0.0 [
energy of the particles of the order oRF/exceeds the Cou- TR

lomb potential energy of the order ofR./Then the electron- [ ]
hole pair is well described as a product of one-particle states 0.5 ]
(n;l;) of the electron (=€) and hole {=h), which are in-
teracting through the Coulomb force. This is known as the I ]
strong confinement regime or the individual confinement re- A0 T
gime. The leading terms of the energy of the electron-hole 0 2 4 6 8 1012 14 16 18
pair in this regime are given by Radius (a )

M)\Z | M)\Z | FIG. 3. Energy schemes of a confined electron-hole (&titP)
L= Merle " 'h 3.3 With@ P* and(b) D~ symmetry. The effective-mass ratio is taken
Nele Mplp meR*Z mhR*Z ! asmy,/me=3.

in the unit of E*y, where the first and second terms are Figures 3a) and 3b) show calculated energy levels of an
one-particle energies of the electron and hole. The Coulomelectron-hole pair with symmetr?* andD ~, respectively,
interaction gives rise to the corrections to the above energyyhere the effective-mass ratio is takemag/m,= 3. In both

of order ofR™* andR®, as discussed in Ref. 7. In the strong figures, only the lowest 24 energy levels are plotted against
confinement regime, the energy levels in Figg)22(c) are  the quantum dot radiuR.

denoted asMeSe,NpSh)s+ » (NePe,NnPn)s+ ,» and so on for The energy-level structures shown in Figéa)3and 3b)
S* pair, (NeSe,NKPR)p—» (NePe,NhSh)p— , @nd so on folP~  quite differ from their couterparts with the symme®y and
pair, and Q1Se,Npdp)p + » (NePe,NhPR)D+ » (Nede,NnSh)p+, D™ shown in Figs. t) and 4c): The energy levels associ-
and so on foD* pair. ated with the % excitonic state are missing in Figs. 3. This

In Figs. 2a)-2(c), several levels seem to be crossing with remarkable difference between Figs. 2 and 3 is due to the
each other whemR is changed. However, they are not real difference in the parity conditions. ConsidePa electron-
crossings but avoided crossings, although the energy repuhole pair in the weak confinement regime, for example. In
sions are too small, typicallyb0.0ZE*y, to be resolved in order to make a total angular momentuinthe center-of-
the figures. Such a feature of the avoided level crossings ahass motion of am,,s excitons should bacyP. However,
an electron-hole pair in a quantum dot has been pointed owuch a combination obviously violates the parity condition.
in Ref. 7, but we reveal here that energy separations at cross- The energy levels in Figs. 3 can be discussed in parallel to
ings are further smaller than those obtained in the previoufigs. 2 except the difference mentioned above. The electron-
study. This improvement is achieved by the use of the largehole pair is well described as a product of excitonic state
basis set in the present calculation. Nexex and the center-of-mass motiamylcy wWhen R is
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1.0 groud state of the quantum dots, where the effective-mass
(1s,18) R=10a, 1 ratio is taken asn,/m,=3 and the dot siz&R is changed

- from 1a} to 10aj . In each panels, the vertical lines are the

d B B

(28’.18) ] oscillator strength per unit volume calculated from Eq.
0.0 I i sl =g (2.31), and the continuous lines are the convolution of the
1.0 pH++HHHHHHHH vertical lines with a Gaussian function with the half width,
[ o (18.25) R=6 ] 0.1E%,, at the half maximunfHWHM). The spectra show a
05 F [\ (1539) ; drastic change wheR is reduced from 18 . The overall

feature in the spectral change, such as the blue shift of the

] translational momentum can be excited in the one-photon
/ | | | y absorption process because of the momentum conservation.
H ] The transition probability is then in proportion tong/.

* R=3 Such a transition is found in the spectrum = 10a} as
the marked lines, where the line marked by a solid circle
corresponds to the transition tog1S)s, state and the line
marked by a solid square corresponds to the transition to
(2s,1S)5, state. We also see a series of lines corresponding
to the transition to (&ncyS)s:(Ncw=2,3,--) on the
high-energy side of the @1S)g, line in the spectrum for
R=10ag . These transitions are accompanied by the excita-
tion of the center-of-mass motion and become optically al-
lowed because of the breaking of the translational symmetry.

0.0 [N O Dl By v A lines and the enhancement of the oscillator strength due to
1.0 S the confinement of particles, is similar to that obtained in

f o R=4 ] Ref. 7. In bulk crystals of semiconductors with the direct
05 F allowed gap, only the excitonic state,s with the zero-

Oscillator Strength per Unit Volume (f_)

1.0

0.5

0.0 . -
sebocnbinbien b bea From Eg.(2.31), the oscillator strength per unit volume for
il .0, —_— T 2 .3| — such transitions in the weak confinement regime is given by
[ Rt (1P 1P| ]
4k (139.,13,1) ]
i . 3
2 F (1s,2s,) | - 6fex (1_2)
[ A ] 2,2 '
U Srererere nASrarare Srararer T New R
0 5 10 15

Energy (Eg,) where the termy/R originates from the dead-layer effect.

2_ 2 ;
FIG. 4. Dot-size dependence of one-photon absorption spectr'a:lrom the formuled,,— ,1in"= 7°/6, we see that the oscillator

of spherical quantum dots. The effective-mass ratio is taken agtrengthfex '!" the pUIk I|r,n|t is distributed over the cen'Fer-
my, /m,=3 of-mass excitation in QD’s. TheiZ,, dependence was first
=3.

pointed out by Efros and Efrds.

larger than several times af; , i.e., the picture of the exci- When the dot size is reduced frof=10ag , the order of
ton confinement holds well also in the present cases. ThE'€ levels is interchanged at avoided crossings shown in Fig.
energy levels in this regime are assigned as2(@, and the trgnsmon probability of the2 low-lying levels
[2p(3p),NemPles , (3d,newD)ps , and so on foP* pair bgcome to deviate from thg i, and_lhCM depende_nce
and as[2p(3p),ncyD]p- and[3d,ncyP(F)]p-, and so discussed above.. By tracing the I_me correspongﬂng to
on for D~ pair. Then the energy of the pair is well described (18,25)s, state(solid trianglg and the line corresponding to
by Eq.(3.2. The picture of the individual confinement also (25,15)s, state(solid squarg from the weak confinement
holds in the present cases when the dot rafius compa- eégime to the strong confinement regime passing through the
rable to or smaller tham} , and the levels are assigned as axmded prfstsr:ngé; ;"Se) f'ndt t[\a_t t&e f?rmer co?tmuoustly
I v, (nde.nd)os. and so on foP* pair and changes into the (& ,2s,)s; state in the strong confinemen
;se%eepeh,pnhh)gh);,e(need:,r:ggh)m, and so on forlg* pair.  regime, while the latter changes into thep(lipy)s, state.
Theseanomalousparity states are dark states in the sensd{OWeVer, these correspondences between the character of
that they are inactive both in the one-photon and two-photof’® Wo linés are not unique but depend on the mass ratio
processes. However they play an important role in the pef™h/Me. Whenm,/me<1.9, (1s,2S)s, state changes into

turbation by an external magnetic field. 1pe,1pn)s+ state and (81S)s, into (1se,2sp), as dis-
cussed in Ref. 7. This is important for the assignment of the

lines in the strong confinement regime, because the transition
to (1pe,1lpy,) state is optically allowed but the transition to
Figure 4 shows the direct absorption spectra from the€1s,,2s,) state is forbidden, as clearly seen in the lowest

B. Optical response of QD’s
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2w

M(R* — ngp)Z'

(2p,15)

E2p,lS: —0.25+ (35)

in the unit of Ex, from Eq.(3.2). The values ofpjsag and
73p3p are estimated as Jaf and 4.4, respectively, by
fitting the energy levels in Figs.(@ and Zb) with above
equations, i.e., the effective radius op Z2xcitonic state is
larger than that of & state. This fact means that the dead-
layer effect becomes stronger fop Ztate than for & state

and thus causes the peak blue shift observed here. We also
see a transition to the 621P),_ state marked by a solid
triangle, which gains a weak oscillator strength because of
the breakdown of the translational symmetry. The size de-
pendence of the transient absorption spectra calculated here
reproduces fairly well the data observed for CuCl QD’s em-
bedded in NaCl crysta$?® without adjustable parameters.
The applicability of the complete-confinement model to this
system is partly owing to the wide band gap of the host
material, i.e., the band-gap energy of about 8.6 eV of NaCl
crystal$? is sufficiently larger than that of about 3.4 eV of
CuCl crystals.

As the dot size is further reduced, the blue shift of the
main line becomes salient. In the limit of strong confinement,
absorption lines are assigned as the individual excitations of
the confined electron and hole. For example, the two lines in
the bottom panel correspond to the transition of the electron
1s.— 1p. (solid circle and the hole &,— 1p;, (open circlg

/|I\ : : from the initial state (%,,1sy)s. . Here, it is instructive to
e see that the transition dipoké for the infrared excitation can

1 2 8 be written in two ways,
Energy (ERy)

AU I I

Intensity

=
»
—
T
=

LR I I I

o

V=—ery,=—€ery+er,. (3.6
FIG. 5. Dot-size dependence of transient absorption spectra of
spherical quandtum dots. The effective-mass ratio is taken ablamely, it is regarded as the polarization with respect to
my/mg=3. either the center of mass of the exciton, or the center of the
dot. Thus we can see the change of the picture of the induced
panel of Fig. 4. See how the absorption spectrum changes %oéanz?jtlon from the former to the latter as the dot size is
a series of well-isolated discrete lines as the dot size is ré*auced- ' . . . .
In the strong confinement regime, the intensity ratio be-

duced. he I i ircl
Figure 5 shows the dot-size dependence of the transief{’¢eN the lines corresponding tosel1py)p— (open circle
1s,)p_ state(solid circle) strongly depends on the

absorption spectrum. The effective-mass ratio is taken a@nd (lpe: S
m,/m,=3. The vertical lines in each panels are the normalMass ratian,/m, as shown in Fig. 6, where the spectra are
ized oscillator strength obtained from EQ.35. The con-  c@lculated fom,/m,=1,3, and 5 and foR=ag . In the case
tinuous spectra are obtained by convoluting the vertical line®f Me=M;, the lowest excitation becomes optically forbid-
with the Gaussian function with GEk, width (HWHM). In den. This is because of the following reason. Whep

the spectrum foR=10a% , the main line marked by a solid ~ M- (;he excnetd _St"#]es (Sl’ltﬁh) o and (lpeklsf}[)_P* '%?]'_ g
circle corresponds to the excitation of the internal motion ofcOME degenerate in the zeroth-order approximation. This de-

the exciton from % state to  state, while the line marked generacy is removed by the Coqlomb intergction betwgen .the
by a solid square corresponds to 'Ehe excitation posBate particles. Then, the lowest excited state is symmetric with

As the dot size is reduced, the main line gradually shifts tdespect to the exchange mfandry, because of the attractive

the high-energy side. This is attributed to the difference pelNteraction between the particles, while the second excited

tween the quantum size effect fos State and P state. In state has the antisymmetric property. Since the symmetric

the weak confinement regime, the initial-state energy and th?;t?é? dg:ﬁ innotﬁgl?r:;f:rtle%n,e;r::iallg\évr?St state becomes optically

final-state energy corresponding to the main line are given by0 Figure 7 summarizes the dot-size dependence of the blue

shift of the main line in Fig. 5(solid circleg, where the
excitation energy is shown by the solid curve. In this figure,
(3.4  we also show the excitation energy under the exciton con-

7T2,LL
+ * * \27 . . . .o
M(R* — 575 finement picturgdotted curve and that under the individual

Els,lS= -1
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Intensity
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Energy (E,,)
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TNT T[T 777

Intensity

-1 0 1 2 3
LB l LI ) l‘ LJ l L) l LI LI | I L I.

- F R=2 a .
= F 1p..1s L
g r (. I(113 2p,) ]
.‘d_J' L e h -
£ F a

(1s,1p,) / |
..|..'..|.|..:|'....|..

0 2 4 6
Two-photon Energy (E Fw)

FIG. 8. Two-photon absorption spectra of spherical quantum
dots. The dot radius is taken Rs= 2a§ and @f, , and the effective-
mass ratio is taken asy,/m,=3.

FIG. 6. Transient absorption spectra of spherical quantum dotsnain line in the transient absorption spectrum shifts from the
with the radiusR=aj. The effective-mass ratio is taken as weak confinement regime to the strong confinement regime
m,,/m,=1,3, and 5.

particle confinement picturédashed curve The former is
estimated from Eqg3.4) and (3.5), while the latter is esti-

mated from the approximate energies,

Elpe*lsh:

for initial and final state energies in the unit Bk,, where

_ w? 3572
Eis,1s,= 2 R

pNi, 3.240

M, R* 2 R*

u?
meR* 2

3.7

(3.9

when the dot size is reduced.

Figure 8 shows the two-photon absorption spectra calcu-
lated forR=6a} and 2ag . In this calculation we take the
effective-mass ratio as),/m.=3 and the band energy gap
as 3.4 eV, assuming the case of CuCl dots. The spectrum for
the weak confinement regim®E 6ag) is significantly dif-
ferent from that for the srtong confinement regimB (
=2ag). In the spectrum foR=6a% , we see the low-lying
lines corresponding to the transition t@ 2nd 3 excitonic
state and the wide absorption bands with a strong intensity
on the high-energy side. On the other hand, the spectrum for
R=2ag is composed of the well isolated lines, where the
lowest excited line corresponds to the transition to
(1se,1p,)p_ state and the second one corresponds to the
transition to (Je,1sy)p_ State. It is interesting to compare
the two-photon absorption spectra in Fig. 8 with the transient

\1p=4.493 and the coefficients for the Coulomb potentialypsorption spectra in Fig. 5. These spectra show quite differ-
are numerically estimated. Figure 7 clearly shows how the,nt structure from each other, though they have common

strong confinement 3

/

weak confinement

5 10 . 15
Radius (a,)

final states of the electron-hole pair with™ symmetry. The
difference between the two-photon absorption and the tran-
sient absorption comes from the difference of the intermedi-
ate state in both processes. In the transient absorption, the
system relaxes to the lowest state of tBé-like electron-

hole pair in the intermediate states. However, the two-photon
absorption occurs as a coherent second-order process de-
scribed in Eq.(3.1), so that essentially all of th&"-like
states contribute to the absorption process as intermediate
states. The spectral feature that the intensity steeply uprises
in the higher-energy side in the two-photon absorption pre-
sented here agrees with that of the observed data for CuCl
nanocrystals embedded in NaCf*

IV. CONCLUSION

FIG. 7. Dot-size dependence of the excitation energy in the

transient absorption spectfsolid line). The excitation energies in
the exciton confinement pictufdotted ling and the individual par-
ticle confinement picturédashed lingare also shown.

In this work, we presented an efficient formalism to solve
numerically an attractive two-body problem confined in
spherical nanospaces. The spherical symmetry of the system
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was fully exploited in the formalism. The correlated-basis-sethe enhancement of the exchange interaction by the quantum
expansion of the wave function is successfully applied to the&onfinement® In this connection, Ajiki and Ch’grecently
eigenvalue problem of an electron-hole pair confined inperformed a theoretical study of LT splitting of a confined
spherical quantum dots. It should be noted that, in the case @xciton by approximating the exciton as a point dipole. This
the attractive interaction, there is no region of “low density @pproximation is valid in the limit of the weak confinement.
limit” because of the presence of bound states. Therefore, YVe have recently carried out the calculation of the eigen-
is crucially important to take into account the formation of States of the coupled mode of the confined electron hole with
quasiparticleexcitor) from the beginning of the calculation, electromagnetic flelds_, on the basis of th_e present f(_)rmallsm,
especially in the weak confinement regime. The features of/€re the wave function of the system is systematically ex-
optical spectra such as the direct one-photon absorption, tHg@nded to the linear combination of the unperturbed eigen-
transient infrared absorption, and the two-photon absorptio ates. The detail of such a study will be shown elsewhere.

observed in CuCl nanocrystals were consistently reproduceg A$ glrgOthe[je);ﬁmp';z vi\(/_e maybmentl(()in Fhe persistent hole
by the theoretical calculation given here. urnin an € Diinking observed in some nano-

In the present study, we have adopted a simple model rystals®’~3°The origin of these phenomena is attributed to

confined electron and hole interacting through the attractivé"® perturbation by external point charges that are ejected

Coulombic force, in order to clarify the essential features Ofsomehow outside the quantum d8tsin our preliminary

40 ;
the quantum size effects and the size-dependent optical rEEpPort ™ we have shown the effects of an external point

sponses. We would like to stress here that the establishmeﬁlParge on the wave function of the conflneq electron-hole
of the method to calculate essentialiyl of the relatively system. It has been found that the deformation of the con-

low-lying eigenstates of the electron-hole pair opens a posf_med electron-hole wave function due to the electric field

sibility to calculate responses of the system to various per§trong|y suppresses the transition probability. A systematic

turbations with a high accuracy. In fact, various perturbativénvesngat'on of such an effect will be presented in the forth-

effects may become important for the analysis of actual ext0MINg papers.
perimental data. For example, it has been proposed that a

two-photon transition to the longitudinal exciton state is in-

duced by the quantum confinement and plays a role in the We thank Professor T. Itoh and Professor K. Edamatsu for
size-selective two-photon luminescence of CuCl nanovaluable discussions and for sharing the experimental data
crystals? This poses an interesting problem, i.e., the resobefore publication. This work was partially supported by the
nant interaction of electromagnetic fields with a confinedGrant in Aid for Scientific Research from the Ministry of
electron-hole system. This is also related with a conjecture oEducation, Science, Sports, and Culture of Japan.
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