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Phonon-assisted relaxation kinetics of statistically degenerate excitons
in high-quality quantum wells
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Acoustic-phonon-assisted thermalization kinetics of excitons in quantum W@Wgs) is developed for
small concentrations of particles,p=<10° cm !, when particle-particle interaction can be neglected, while
Bose-Einstein statistics already strongly influences the relaxation processes at low temperatures. In this case
thermalization of QW excitons occurs through nonequilibrium states and is given by the following scenario.
During the first transient stage, which lasts a few characteristic scattering times, the correlations with an initial
distribution of QW excitons disappear. The next, adiabatic stage of thermalization usually takes many charac-
teristic scattering times, depends only upon two control parameters, the lattice temp€paanikthe degen-
eracy temperaturé,=p,y, and is characterized by a quasiequilibrated distribution of high-energy QW exci-
tons with effective temperaturg(t). We show that the thermalization law of high-energy particles is given by
ST(t)=T(t)— Tyxe *oY/t, where\, is a marginal value of the continuous eigenvalue spectrum of the linear-
ized kinetics. By analyzing the linearized phonon-assisted kinetics of statistically degenerate QW excitons, we
study the dependenoe,=\y(T,,Ty). Our numerical estimates refer to high-quality GaAs and ZnSe QW's.
Finally, we propose a special design of GaAs-based microcavities, which considerably weakens the bottleneck
effect in relaxation of excitongpolaritong and allows us to optimize the acoustic-phonon-assisted thermali-
zation processes.
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[. INTRODUCTION temperature of the cold lattice occurs mainly via scattering
by thermal bulk longitudinal acoustid.A) phonons and is
The formation, resonant or phonon assisted, of quantunmmuch more efficient for quasi-two-dimension@uasi-2D
well (QW) excitons and their following relaxation towards a systems as compared to bulk semiconductors. This follows
final (quasiy equilibrium thermodynamic state at low lattice from the relaxation of momentum conservation in thdi-
temperatureT,, are the subject of numerous experimehtal rection(the QW growth directiopfor quasi-2D systems: the
and theoreticar® studies. Recently, relaxation thermody- ground-state modk, =0, i.e., the energy staté=0, couples
namics has been formulated and developed in order to an#e the continuum energy statds=E,, rather than to the
lyze how Bose-Einstein statistics of high-density QW exci-single energy stat&=E,=2M,v?2 (v is the longitudinal
tons influences the phonon-assisted thermalizatiogound velocity andV, is the in-plane translational mass of
processed’ The above thermodynamics assumes a strongexcitong as occurs in bulk materials. As a result, the LA-
dominant exciton-exciton scattering and, therefore, relaxphonon-assisted kinetics of QW excitons becomes dominant
ation through quasiequilibrium thermodynamic states. Theyt pop=(1—3)X 10° cm~2: in this case exciton-exciton
relaxation thermodynamics has successfully been applied tecattering can be neglected while Bose-Einst&B) statis-
model thep,p-dependent thermalization and photolumines-tics already strongly influences the relaxation process at low
cence kinetics observed in early experimé&ntéwith high- temperature$’ Crossover from classical to quantum statis-
density excitons (%10° cm ?<p,p<10'" cm?) in  tics occurs near the degeneracy temperatgT,
GaAs QW's™® =(27h%p,p)/(gM,), whereg is the spin-degeneracy factor.
The long-lived indirect excitons in high-quality Forp,p=3%10° cm 2 the degeneracy temperature of indi-
GaAs/AlLGa, _As-coupled QW'’s provide a unique opportu- rect excitons in GaAs/AGa _,As-coupled QW's isT
nity for studying quantum degeneracy in a system of two-=0.79 K. This estimate refers tg=1, which can be
dimensional bosons. In this case, the long radiative lifetime@chieved in theb-type GaAs/A|Ga, _,As-coupled QW's by
of indirect excitons allow the system to cool down to tem-applying a static magnetic fielth|z.'> Note that the very
peratures where the dilute exciton gas becomes statisticallgcent experiment® deal with GaAs/A|Ga, _,As-coupled
degeneraté®?®  The  quality of  present-day QW'’s at extremely low cryostat temperatufg=0.05 K.
GaAs/AlLGa, _,As-coupled QW's has been considerably im- Because the binding energy of indirect excitons in
proved in comparison with those used in the pioneering5aAs/ALGa _,As-coupled QW's is about 3-5 méV, for
experiments*?1-?®decade ag®® Furthermore, the very re- concentrationg,p,<10° cm 2, the Mott parameter is much
cent magneto-optical experimefitslearly indicate that the less than unitypZDa)2(~0.001 @, is the in-plane radius of an
in-plane momentunv:k; of indirect excitons is a well- indirect exciton. In this case the ensemble of indirect exci-
defined quantum number in high-quality GaAsf8& _,As-  tons can be interpreted in terms of a rather dilute, nearly
coupled QW's. ideal quasi-2D gas of Bose particles.
Thermalization of hot photoexcited excitons down to the In this paper we study analytically and model numerically
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the acoustic-phonon-assisted relaxation kinetics of statisti-
cally degenerate QW excitons at low densities. The receni
experiment®? allow us to visualize, by means of LO-
phonon-assisted emission, the LA-phonon-assisted kinetic:
of quasi-2D excitons in ZnSe QW’s and, in particular, to
prove that forp,p=10° cm™ 2 the above kinetics indeed oc-
curs through nonequilibrium distributions of QW excitons. In
experiment¥*~*%18the concentration of BE-degenerate indi- 5
rect excitons in GaAs/AGa _,As-coupled QW’s usually £
varies fromp,p=10'"° cm 2 at the very end of an optical
excitation pulse top,p<10° cm ? at large delay times
=50 ns after the optical excitation. Thus, thermalization of
the indirect excitons at large delay times cannot be describer
within the relaxation thermodynami®and does need a
separate theoretical analysis.

The classical Boltzmann kinetic equation has been gener /

_—N W A L

alized in order to include quantum statistics by Uehling and t
Uhlenbeck®® The relevant quantum kinetic equation for a
spatially homogeneous dilute system of statistically degener-
ate quasi-2D excitons coupled to bulk LA phonons is

d
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where Nku and ngh are the occupation numbers of exciton N,S 1

in-plane modek| and phonon bulk mode=1{qy,q,}, respec-
tively, andq; is the in-plane projection af. The terms in the 0
first and second square brackets on the right-hand (sl
of Eq. (1.1) describe the Stokes and anti-Stokes LA-phonon-
assisted scattering processes, respectively. The acoustic 2
phonons are assumed to be in thermal equilibrium at the batl 1
temperatureT,,.1° The matrix element is given by (q,q,)
=[(D)z(hq)/(2vaV)]1/2FZ(qZLZ/2), wherep is the crystal FIG_. 1. (a) Transient relgxati(_)n_ _towards t_he adial:_)atig stage of
mass densityD, is the deformation potential of the exciton— evolution calculated foLvarlous initial Gaussian distributidhgt
LA-phonon interactionl., is the thickness of a QW, andis = 0)*exd{—15.625¢ —&)], wheree =#2kf/(2M,Eq), and param-
the volume. The form factoer(X)=[Sin(X)/X][eiX/(1 etere =3 (dash-dotted lings 4 (solid lineg, and 5(dashed lines
—x47)] refers to an infinite rectangular confinement The gross qlependence of evol_ution upon initial conditions_is ab-
potential®* The latter function describes the relaxation of theSorbed by timet;=t.. (b) The first stage of LA-phonon-assisted
momentum conservation law in tredirection and charac- relaxitlon (=<7, for a particular distribution of indirect excitons
terizes a spectral band of bulk LA phonons, which effectivelyWith é=4. In both plotsT,=0.25 andT o= 1.14. The dimensionless
interact with QW excitons. Note that E€L.1) is valid only ~ values, time in7. and energy/temperature if, can easily be
for the kinetic stage of thermalization, i.e., before a low-rescaled to dimensional units by usifig=33 eV andrs=41ns
temperature collective state of excitéfis® builds up. for GaAs/ALGa_As-coupled QW's, ands,=162 peV and g,

The main aim of our work is to study the fundamental =27 NS relevant to ZnSe QW's.
features of the acoustic phonon-assisted thermalization kinegharacterized by a quasiequilibrium distribution of high-
ics of QW excitons from initial strongly nonequilibrium energy QW excitons with effective temperatufét) =T,
Ny (t=0) towards the final equilibrium distribution with 1 s5T(t) and is independent of the initial distribution it
well-developed Bose-Einstein statistics, wheﬁkuzozl. =0. The adiabatic stage lasts many characteristic scattering
Our numerical simulations of the LA-phonon-assisted kinettimes and arises due to the need to populate the low-energy
ics clearly demonstrate that after the first transient, whictin-plane modes wittN, _o=1 in the presence of effective
lasts a few characteristic scattering times, a smiabatic  suppression of the stimulated scattering proce¢sas, an
stageof thermalization builds ugsee Fig. 1 This stage is intense incoming Stokes flux of excitons into the ground-
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state modek;=0 is nearly compensated by the outgoing relaxation of momentum conservation in scattering of QW
anti-Stokes scattering out of the state=0). In order to de- ~ €xcitons by bulk LA phonons. _ .
scribe the adiabatic stage of relaxation, we fingemeric In Sec. lll, we find the generic solution of the acoustic-

; - ; g honon-assisted kinetics from a strongly nonequilibrium ini-
| f th k E 1. While the ~ Phonon-assi : .
S0 uthn of t © guantum mefuc . quatioft. 1) re e - tial distribution of QW excitonsN,(t=0) towards a final
generic solution we calculate is different from that derived in

Ref. 45 for the phonon-assisted kinetics of bulk excitons apose Einstein distributiohl, with large occupation numbers

. " ) : of the low-energy states\._,=1, wheree is the dimen-
Tp<T,. (T is the critical temperature for Bose-Einstein con- sionless energygéefinedwb;_:oﬁ2k2/(2M ESO) The generic
densat'%n of e;(cnonls in bulk semlco?ducbolssmllar t(f) IE'S solution is independent of a particular shape of the initial
case It depends only on two control parameters of the SySgigirihution and describes the adiabatic stage of thermaliza-

tem, To and Ty, . Furthermore, the only gross information tion, which starts at=t, with in a few characteristic scat-
from a particular shape of the initial distribution &0 is  tering times aftet=0. We show that at>t, thermalization
absorbed by the start tintg of the adiabatic stage of ther- of high-energy QW excitons is given byT(t)<e Mo'/t,
malization. This is shown in Fig.(&), where we vary the where)\, is the lowest positive eigenvalue of the relevant
parameters of the initial Gaussian distribution. In turn, thelinearized kinetics.
first transient depends upon initial distribution and lasts only In Sec. 1V, the linearized phonon-assisted kinetics of sta-
for a few scattering times,., as illustrated in Fig. (b). tistically degenerate QW excitons is formulated and ana-
Because at any nonzero bath temperatlige>0 the lyzed. We show that the eigenvalups} of the linear colli-

occupation number of the ground-state modidq? o sion integral form a continuous sp(_actrum,>)\>)\0>0,
1=~ separated from the nondegenerate eigenvake®, and that

=exp(To/Tp)—1 is finite, the adiabatic stage ends up With e o6 responding eigenfunctioig, (1)} have three well-
linearized kinetics. The latter kinetics refers to the lastefineq isolated critical points. The dependence of the mar-
_exponentlal stage of thermalizationtat > and is ch_ar_acter- ginal eigenvalue\, on the bath T,) and degeneracyTe)
ized byNy —o(t) Nok”:OocT(t)—Tbme"‘Ot. For statistically  temperatures is studied.
degenerate QW excitons, the thermalization timeg, In Sec. V, straightforward numerical simulations of the
=1/ (Ty,To) reaches its smallest values at bath temperaphonon-assisted relaxation kineticsTat<=T, are compared
turesEq/kg<T,=T,. While the above inequality does not With the generic solution of the quantum Boltzmann equa-
usually hold in the experiments with statistically degeneratdion. We also show that at the beginning of the adiabatic
indirect excitons in GaAs/AGa,_,As-coupled  stage of thermalization, a,<t=<\, ', the population dy-
QW's 14-1618-2Qye describe a special design of GaAs-basedlamics of the ground-state mode is given by _o(t)
microcavities (MC’s) for optimization of the LA-phonon- *(1+xt)”, where the parameterg and » are calculated
assisted thermalization kinetics of low-density MC polari- 2nalytically. Furthermore, we propose a particular design of
tons. In the proposed microcavities with a large positive de GaAs-based MC'’s, which compromises the efficiency of LA-
tuning between the cavity and QW exciton modes, the M@*honon-assisted scatteririthe densm_/lof_ states is-M)
polaritons have radiative lifetimes on a 100 ps—1 ns timeVith the degeneracy temperaturg=M, -, i.e., allows us to
scale, so that the phonon-assisted relaxation towards welfivoid the bottleneck effect in relaxation and, therefore, to
developed Bose-Einstein statistics with large occupatiorPPtimize the thermalization kinetics of low-density QW ex-
numbers can optically be visualized. Thus, the MC desigrf!tons. _ _ _
we discuss is an interesting alternative to the semiconductor !N the Appendix, some relationships relevant to the ther-
microcavities with zero detuning between the cavity modeMalization dynamics of quasiequilibrated high-energy QW
and QW excitongsee, e.g., Ref. 36where huge nonclassi- €XCItons are given.
cal occupation numbers of the low-energy MC polariton
states have recently been observed? Il. BOLTZMANN KINETIC EQUATION
In numerical evaluations we useM,=0.2Img, vg FOR DEGENERATE QW EXCITONS

=3.7x10° cm/s, and D,=155 eV, relevant to For hot QW excitons, which are in-plane isotropically dis-
GaAs/ALGa, _,As-coupled QW's, andM,=0.86my, vs  tributed att=0, the thermalization kinetics due to bulk LA
=4.1X10° cm/s, andD,=6.9 eV, relevant to single ZnSe phonons can be treated in one-dimensional energy §saee
QW's, respectively Ifn, is the free electron magsNote that  Eq.(2) of Ref. 10. In the following we express enerdyand
the disorder-induced scattering and localization processesemperaturd (as well asT, andT,) in terms ofEy, i.e., we
not included in our model, are relatively strong in up-to-dateyse the dimensionless values &—e=E/E, and T
ZnSe-based QW's and require a separate andlysislow- . (kgT)/E,. In order to derive and analyze the generic so-

ever, in a very recent wotk the first fabrication of high-  |ution for relaxation aff,< Ty, it is convenient to rewrite the
quality MgS/ZnSe/MgS QW's with less than 1 ML fluctua- ghove equation in terms of the variable

tions of the well width and, therefore, with extremely low

inhomogeneous broadening has been reported. N, (t)— NS
In Sec. Il, the Boltzmann equation is adapted in order to fo(t)= W

formulate the acoustic-phonon-assisted kinetics of statisti- bt Ve

cally degenerate QW excitons. We also discuss some apvhereN,(t) and N2=1/e(*~#/To—1] are the current and

proximations for the form factoF,(x), which describe the (final) equilibrium distribution functions of QW excitons, re-

: (2.)
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spectively, and the chemical potentigl is given by u

PHYSICAL REVIEW B 65 165310

For ¢,>1, the spectral widthAe (full width at half maxi-

=T,In(1—e To/™). In this case the kinetic equation reducesMUm) of Fas(0.e4) is given, byAe=2.26a and determined

to

4

J
feo(t)

Sthe Fs(e,e1)Lo(e,e1,t)e10e,

fﬂs(s)
Tsc| JO

|
Oas(e)
(2.2

where the Stoke$S and anti-StokegAS) collision inte-
grands are

Fas(e,e1)Las(€,81,t)e10e1 |,

Lo(e,e1,)=[f()~F, . (DI(L+n2+NO_, )

+Tp(N2_, ) Fo(OF, (1), (2.39

Las(e,e1,)=[f, ()=, (DINE=NZ,, )

~Th(NYL, ) Fo(Df e (. (23D

The distribution of thermal bulk phonons is given by the

Planck formula, i.e.n?"=1/(e®’To—1). The scattering time
is defined by re=(m?%%p)/(D2M3vg). The functions
0sas(€), which determine the integration limits on the right-
hand side of Eq(2.2), are

0, e<=1/4

oo(e) = 2\Je—1, 1ll4<e<1 (2.49
e, 1<e,
1-2\e, e<1/4

fas(e)=1 0, e>1/4. (2.4b

The functionsFgaq &,e1) In EQ. (2.2) are given by

SIAS
_ | Y, 2 SIAS| 2
FS/A5(8181)—fdss,,f;“:z(a%a” {[(us,sl) -

£,8

a?]

x[az—(dffﬁls)z]}’l’zda, (2.5
where uf{jf:[l—(ﬁ —Je¥e,)%e2]"? and dffﬁfz[l
— (Ve + Ve Fe1)%£2]Y2 The dimensionless parametein
the argument of the form factor functidp, is given bya
=(L,M,v )lh.

In order to estimate the contribution of the form factor
F,(x) to the spectral functionBg x4 €,£1) One can analyze
Eqg. (2.5 for e—0. In this case only the spectral function
Fas(e,e4) is relevant to the kinetic Eq2.2), and Equation
(2.5 yields

Fas(Oen =5\ ;g Fdavei(e DI (26

solely by F,(ae;). For thicknesd ,=8 nm of GaAs QW'’s
(see Ref. 1Bone getsa=0.054 and, thereforéy\e=42. The
latter estimate can be rewritten in the dimensional energy
units as AE=EgAe=4.52v4/L,~=1.44 meV. Thus the
spectral band of LA phonons, which scatter a low-energy
QW exciton, can be evaluated A€~v Ap,, whereAp,
~nh/L, is the uncertainty of the momentum in théirection

due to the QW spatial confinement. The above estimates
show that for relatively cold QW excitons with energies
<Ae (the effective temperatur@d®’=AE/kg=16.5 K for
L,=8 nm) the form factor can be approximated by
F,(aeg,a)=F,(0)=1. In this case the integral on the rhs of
Eqg. (2.5 can be calculated explicitly,

1 gS/As 2

stAs<s,81>=ds—msd>[<us—’mg) ] 2.7)
where

—i[F arcsir(\/g),a—K(é)], 0=¢<1

P(&)= 1
K(E)' 4<0.
(2.9

Here, F(¢,m)=/¢[1-msirX(0)] ¥de and K(m)

=F(m/2m) are the elliptic and the complete elliptic inte-
grals of the first kind, respectively. Because in the analyzed
case the relaxation kinetics depends only=g(0), thefunc-
tions Fgaqe,e4) can easily be rescaled for any particular
shape of the QW confinement potential.

IIl. GENERIC SOLUTION

In this section the thermalization kinetics &t<T, is
described in terms of a generic solution, which weakly cor-
relates with the initial distributiorN.(t=0). In particular,
we derive a thermalization law for high-energy excitons and
examine nonequilibrium distribution of low-energy QW ex-
citons. We also specify a reference point for the generic so-
lution, i.e., a set of parameters, which unambiguously deter-
mines the calculated evolution. Schematic picture of the
relaxation kinetics in phase space is shown in Fig. 2. The
generic solution is relevant to the timest., wheret, is the
start time of the adiabatic stage of evolution.

As was emphasized in Sec. |, the generic solution as-
sumes a quasiequilibrium distribution bfgh-energyexci-
tons E>1/4): N, - q4(t)= 1 exp(e—u®)VT(t)—1]. This
quasiequilibrium distribution is characterized by the effective
time-dependent temperatuigt) =T,+ 6T(t) and chemical

potential z(t) whose time variations are supposed to be
small, so thafu(t) can be taken the same as the chemical
potential of final equilibrium distribution.(t)= . Indeed,
for T(t)<T, the chemical potential is given by(t)=
—T(t)e ToTO<T(t) and, therefore, |Su|=|n(t)— ul
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mor=- [ Faste )N,
Tscth) 1-203 AS\€:¢1 eq eteq

Xeq(et+eq)deq, (3.5

{t=0,N(t =0)} andF ps(e+€4) is given by Eq.(2.7). Equation(3.2), which
describes the population dynamics of the low-energy states
during the adiabatic stage of thermalizatige=¢.), is a lin-
ear inhomogeneous differential equation for 4/4. Its com-
plete solution can be written as a sum of the homogeneous

and inhomogeneous contributions,

{0, 070, Ny}

FIG. 2. Schematic picture of the relaxation kineticsTgts T,. _ chom t e
The referencéstar} point{t,,5To,Ng} unambiguously determines Fosudt)=Tos1(t) + 7(e) toexq (t=7)éo(2)
the calculatedsolid line) evolution from the initial nonequilibrium
distribution N, (t=0). The dashed line corresponds to the generic —p(t,7)€é1(e)]8T(7)dT, (3.6

solution.t is the start point of adiabatic stage of evolution. For the
timest—t,=> 7., both evolution spirals almost coincide showing a Where
unique path towards the final equilibrium distributiaT=0,N,

=N2}. FEA(t) =exd — (t—to)o() — p(t,to) é1(e)]
<46T(t). Since at the final stage of relaxation kinetics the XTe<udt=to), @7
effective temperature of high-energy excitons approaches the .

bath temperaturgsT(t) — 0], starting from some moment in p(t tl):J' ST(r)dr (3.8
time one meets the conditiofiT(t)<T, (provided thatT, ’ ty '

>0). Therefore we can linearize the quasiequilibrium distri- ) ) )
bution function with respect téT(t). In this case one ob- andtg is an arbitrary referencestar time for the calculated

tains evolution, i.e.ty=t; (see Fig. 2
Thus the adiabatic stage of the relaxation kinetics into the
foouat)=—[8T()/Tie. (3.1) lower-energy states is completely determinediyt) =N?

+Tb(NS)’f8(t), provided that one knows the reference

On the other hand, as we show belovioa-energykernel (star) distribqtion foc1a(t=tg) aqd thermalization' lawsT
(0<e<1/4) of the distribution function characterizes the = 91(t) for high-energy QW excitons. Note that in a sharp
nonequilibrium QW excitons. With increasing tintest contrast with the acoustic-phonon-assisted relaxation kinetics
the low-energy kernel shrinks in energy space and the ratigt Tb=Tc in three-dimensional systerfiSthe thermalization
IN, -1 NS<1/4|/NS<1/4 decreases approaching the limit dynamics of Iow-e.ner.gy ngW e_xcnons depends upon the ho-
when the linearized kinetics becomes valid. mogeneous contnbut_mfﬂgm given by Eq:(3.7). .

As will be shown in the following section, the thermali-
o o ) zation law for quasiequilibrium high-energy QW excitons
A. Nonequilibrium distribution of low-energy QW excitons (e>1/4) is given by

In order to analyze the evolution of low-energy QW ex-
citons within the scenario described in the preceding section, [ 8T e MoltTto —g M)
we substitute Eq(3.1 into Eq. (2.2) and get the reduced oT(t) = IV t—t, '
kinetic equation fore<1/4,

(3.9

where A= ¢,(0) characterizes the inverse thermalization
J time att— o, \ ;= &,(1/4) is another characteristic parameter
5t fe()=—[&o(e) + () ST(D (1) + 7(e) 5T(V), relevant to the beginning of the adiabatic stage>f\,),
(3.2) and 8Ty=6T(t=ty) determines referencéstar effective
temperaturd (t=t,) =T, + 6T, for the calculated evolution.

where Equation(3.9) is valid for t=ty. Using the thermalization
law (3.9 we find the integral on the rhs of E(B.8),
4 0
§0(8):T_f rFAS(Svsl)(ngT_N2+gl)81d81: 6Ty ) )
se/1-2ve p(t,t)) = ———{Ei[ = No(t—to) |- Ei[ —N\o(t1—tg)]
(3.3 AN

—Ei[ =Ny (t=to) [+ E[ —Ay(t;—to) ]}, (3.10

where Eig)=—/" (e Yt)dt is the exponential integral
(3.9 function.

&i(e)= Jm ) _FAS(8181)(N8+31)’81(8+81)d811

TsclbJ 1-21%
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The reference distributiorf .- 14(t=ty), which deter-
mines the homogeneous soluti7), is independent of the
initial distribution of hot QW excitonsN,(t=0). There is,
however, an integral relationship betweéh, and f_—4(t
=1,), which we will discuss in Sec. Il C along with possible
approximations foif .- 14(t=tg).

B. Thermalization of high-energy QW excitons

The temperature changéT=6T(t) characterizes the

time evolution of high-energy quasiequilibrated particles

through Egs(2.1) and(3.1). In order to derive the tempera-
ture law (3.9) we substitutef 1,4 and f 1,4 given by Egs.
(3.6) and(3.1), respectively, into the kinetic equatidg.?2),

d
51 0T = —[agtay(]8T(1) +BSTX() + (1),
(3.1

where
ATZ (4
Y= — 2 [ TFdec.m o)1 N
Tsc€cJO ¢
X (t)(e.—¢e)de, (3.12
and the parametersag,B, and functional «,(t)

=ay[f.<1a(t)] are defined in the Appendix. Equations
(3.1D) and(3.12 refer to some energy.=1 from the high-
energy domaire>1/4.

In the adiabatic stage of relaxation, whent., one has
ST(t)/T,<1 so thata; and 36T? can be neglected on the
rhs of Eq. (3.11), because|a;(t)|<a, and |BST?(1)]
<|y(t)|. At the end of the adiabatic stage{t;>\, ") the
distribution functionN,(t) is already very close tNS even

PHYSICAL REVIEW B 65 165310
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FIG. 3. Time dependence & andN,_, (inse) calculated by
using the thermalization laWB.9) (dashed linesand by direct nu-
merical modeling of the initial kinetic equatiai2.2) (solid lines.
The control parameter§, and T, are the same as in Fig. 1.

where the constank is defined in the Appendix. We can
further simplify Eq.(3.15 taking into account thagy(¢) is a
monotonically increasing function of energy and that at large
t only the small vicinity ofe=0 contributes to the integral.
Finally, we end up with the asymptotic law

2
@
(3.16

where the constany, is given in the Appendix. Equation
(3.16 is identical to Eq.(3.9) provided that the reference
(star) temperature T+ 6T(t=ty) of the high-energy
quasiequilibrated QW excitons is determined by

exd —&o(0)(t—to) | —exd — &n(1/4) (t—1g) ]
t—t, ’

8T(t)=(

STo=0T(t=to)=(yo/@)(X\1—\o). (3.17

While the above derivation of Eq&3.13—(3.17) assumes

for small energies <1/4 and, therefore, the phonon-assistedthat t—t,>t—t,>\, ', we have checked numerically that

relaxation kinetics becomes exponential, i&T(t) e Mo,
For statistically degenerate QW excitomg(;0> 1) one es-
timates from Eqgs(3.3) and (Al) that positiveA o= &(0) is
much less than positive. In this case Eq(3.11) can be

the temperature law3.9) holds through the whole adiabatic
stage i.e., for the time interval &t—ty<<oo. Furthermore,
the numerical evaluations also clearly indicate that the start
temperatureST(t=ty) is practically independent of the local

solved iteratively. The first iteration, which can formally be energys =1 used in the derivation of Eq&3.11)—(3.17). In
obtained by neglecting the time derivative on the rhs of EqFig. 3 we plotsT= 6T(t) andN,_;=N,_,(t) calculated by

(3.11), yields

ST()=vy(t)/ay. (3.13
For the same time domaih—tc>)\5l Eqg. (3.6) yields the
following approximation:

7(e)

fe<yat) =exd — (t—to)&o(e) If(t=to) + E0e)

OT(t).
(3.19

By substituting Eq.(3.14) into the rhs of Eq.(3.12 one
derives from Eq(3.13

1 rua
5T<t>=:f Fe(ee 00— 8)(1+ 1P NO)f,(to)
alto ¢

Xexd —(t—tg)éo(e)](ec—2)de, (3.19

using the thermalization la\B8.9) (dashed lingsand by di-
rect numerical modeling of the initial kinetic equati¢®.2)
(solid lineg, respectively.

For the time domain; '<t—ty,<\,* the thermalization
law (3.9 can be approximated by ST(t)=(\;
—N\g) 16To/(t—1ty). The latter dependenceT(t)o1/(t
—1p) is consistent with that found for the adiabatic stage of
the phonon-assisted relaxation kinetics of 3D bos@xi-
tong at T,<T., when the Bose-Einstein condensate builds
up* For 2D systems at nonzefM, the occupation number
of the ground-state modé?_ is always final. Therefore the
exponential kineticssT(t)oce ot which results from
Eq. (3.9 for t—toz)\gl, develops at the final stage of relax-
ation, when|N,_o(t)—N°_,|/N%_,<1. Note that because
for statistically degenerate QW excitons, whep<T, and
N2_,>1, one has\, !> 7, (see Sec. IV, the two modes of
behavior,6T« 1/t and 5T=e o, are well-separated in time.
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C. Reference point for the generic solution

= _ 0 1_61/2 2
In order to determine the relaxation kinetics of low- 0.2 e ’i":ﬁf( )
energy particles, |.e.N8<y4=‘ N£§1,4(t>tc), one needs to ol 2; oo (1+£2Y
specify the reference distributiofi,-4(t=1ty) and 6T, =
=6T(t=ty)=T(t=ty)—T,. According to Eq.(3.7), with s 0 07 05 09 1 11 12 &
increasing timet—ty only the small vicinity ofe=0 gives
: - , -0.1 A A
contributes to the homogeneous part of the generic solution. (/Ok P o oron
Therefore we approximateN, - 1,(t=t)=Ng=N,_q(t ' ' '
=t,). The above approximation assumes that the reference 0 oor 002 003 004 005
time to=t. is close enough to the start tintg of the adia- €
batic stage of relaxation so thilt,(to) <N? ate<1/4. Thus, FIG. 4. A typical shape of the eigenfunctiaf.(\). The main
using Eq.(2.1) we determine the reference distributiontat part of the figure shows the first-order pole, which arises at the
=ty by energy regione <1/4(A=0.0043f. in this particular examp)e
The top inset illustrates eigenfunction behavior at critical points in
Ng‘— Ng the high-energy band=1. The eigenvalue spectrun (in units

(3.18 1/7¢9 is shown in the bottom inset. The control parameigysind
T, are the same as in Fig. 1.

The latter expression is completely defined by the only one

unknown parameteNy', the population of the ground-state Las(e,e1)=[t,(\)— lpml()\)](ng*l‘— N2+£1).

mode at the reference tintg. (4.2b
Equation(3.18 allows us to findsTy= 6T(t=t) through

the integral relationshig3.15 taken att=t,. Furthermore,

within the approximations used in the derivation of the . .
Pp Thus we replace the solution of E(R.2) by the eigen-

asymptotic law(3.16 a simplified (algebrai¢ form of this . X . )
. L : : function analysis of the Fredholm integral equati@hl).
lationsh Eqg3.1 A | Il.
relationship, given by Eqs3.17 and (AS), is valid as we The numerical solution of Eq4.1) clearly shows that for a

After the value oféT, is determined, using the thermaliza- .

tion law (3.9) one can easily find the time dependence of thedVeN To>0 all eigenvalueg)} except one are nondegener-
distribution function(3.1) of high-energy excitons. There- ate, positive, and belong to the continuous spectrum. This is
fore, the three parametets, NI, and 6T,, completely illustrated in the bottom inset of Fig. 4, where the set of
’ ’ 0 0 . .

specify the reference point for the generic solution, as i"us_elgenvalues shown by the .stars covers the same mte&ryal
trated in Fig. 2 >A=N=Ao(Tp,To) and will be more dense if more dis-

T crete points in energy space are used. The isolated nondegen-
erate eigenvalue.=0 is due to conservation of the total

V. L'NEAF;EEESI'E'\F‘;TT'EC%\'/:VO;XETTASEQCALLY number of QW excitons in our modéihe only integral of
motion of the systeff).

If for any energye the distribution functionN, of Since all{\} are nondegenerate, the corresponding eigen-
quantum-degenerate quasi-2D excitons is close enough fgnctions{#,(\)} form a basis in Hilbert energy space. For
final N? so that|N,—N°|/N°<1 andf,(t) becomes small, the energy band€&<1/4 one derives from Eq4.1),
the phonon-assisted kinetics can be linearized. In particular,
the adiabatic stage of thermalization at tinlesty= )\51 re- Yoo s N) = ————,
fers to the linearized kinetics. The linearized kinetics can be ° A—¢&o(e)
described ilj terms of the regl eigenvaly®$(\=0) and the wherea(e) is a smooth regular function of given by
corresponding eigenfunctions{#,(\)} so that f(t)
=3, ¢\ (N)exp(—=At). The initial kinetic equatiori2.2) re- 4 [ oge) .
duces to the linear Fredholm equation of the second kind[T(S)Z—T—SJO Fs(e,en) oo, (M(NZ =Ny, Jerdey,

foc1u(t=tg)= .
To(ND)'

and functionsds and 6,5 are given by Eqsi2.4a and(2.4b),
respectively.

ole) 4.3

with respect toy,(\), (4.4
4| [odle ~ and &y(e) is defined by Eq.(3.3. Thus the eigenfunction
)"/’8()‘):7_5(:[ fo Fs(e.e1)Ls(e,1)e10ey #.(\) has an isolated singularityfirst-order pole at &,
=& L(\). The singularity is integrable in terms of principal-
* ~ value integration. A typical shape of the eigenfunctions at
+LA5(£ Fas(e,21)Las(#,21)e1de ), <1/4 is shown in Fig. 4. In the energy band=1/4 the
eigenfunction has another singularity at the point (1
(4.1 —\/a)z. This singularity is logarithmic, i.e., integrable. It
where arises when the singularity q&s,sl()\) ate—e,=¢, [see
~ Eq. (4.2)] coincides with the upper boundary of integration,
Lo(e,e)=[(N) = - (M)](1+ n§2+ Ng—sl)y 0s(e), in the Stokes collision term on the rhs of Eg.1).

(4.2a8  The steplike jump at the critical point (1, )? is not ac-
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Now we can give an alternative proof of the temperature
law (3.9), which refers to high-energy QW excitons with

103 >1/4. Namely, the functiori_(t=ty) can be expanded over
s 1 the basig#,.(\)}. Then the solution of Eq2.2) is given by
10°?
1o°e fo(t)= f Cy g (N)e 70, (4.5
8 S Mo
6 where c, are the expansion coefficients. At large times
T, —1o> 71y, only a small vicinity ofA near\ contributes to the
05 T,/T, integral, due to the time exponent in the integrand. If now
one assumes a regular distribution of quasi-2D excitorts at
FIG. 5. The inverse thermalization timg (in units 1) asa =t the coefficients, smoothly depend upoR. As a re-
function of the control parametefs, and T. sult, the approximatio, =c,  can be used in the integrand

on the rhs of Eq.(4.5. Furthermore, the eigenfunctions

companied by discontinuity of the eigenfunction. The latteri,(\) have nearly the same smooth shape at high energies as
critical point originates from a singular behavior of the form- illustrated by Fig. 5. Thus we can also puif(\)=.(\)
factor functionF<(e,&,) ate;=2e— 1. The features of the on the rhs of Eq(4.5). As a result, botle, and,(\) can be
eigenfunctiony, (\) at pointse =(1*\/e,)? are shown in extracted out of the integral. Using E@®.1) we immediately
the top inset of Fig. 4. get 8T(t)ce Mo(t=t)/(t—ty), which coincides with Eq.

The marginal pointhg=Xo(Ty.To) of the continuous (3.9 att—to>\;*. Note that the above derivation is based
spectrum of{\} is indeed given byrg=£,(0): for A—\y  on the particular spectrum\EO0+ continuum =<\ <)
the singularity points,—0, i.e., it approaches its lowest of the linearized collision integral and has no analogy in the
limit. Because)\gl is the longest relaxation time generated relaxation kinetics due to particle-particle interaction. In the
by the continuum\ ,<\ <oc, the eigenavalug, determines latter case the fivefold degenerate eigenvalue0 is sepa-
the phonon-assisted kineticstat o and, in particular, yields rated from the continuous spectrum by a set of discrete iso-
the characteristic thermalization time in the relaxation therated eigenvalue¥’
modynamics developed in Ref. 10. The dependence jof
upon the control parameters of the systerg,and Ty, is V. DISCUSSION
plotted in the Fig. 5.

The eigenvalue\, can reach both limits, i-e)&o>75_cl In order to test the generic solution8.3—(3.10 we

1 . o . model the phonon-assisted relaxation of excitons within the
and\o<ry; (see Fig. 3. The first limit, which corresponds initial kinetic equation(1.1) reduced to energy spa¢&gs.

to the considerable acceleration of the thermalization kinetic S S
in comparison with that in the 3D case, is due to the relaxfz'l) and(2.2)]. An adaptive inhomogeneous grid with 100

ation of momentum conservation in QW exciton—bulk- 200 points fore is used to cover the close vicinity of the
acoustic-phonon scattering. The slowing down of therma”_ground-state mode=0 (the maximum value of the dimen-

. P 1 ng. 9 sionless energy isy,.,=20). Equation2.2) is evaluated by a
zation,\g<<7., occurs(i) at low bath temperatureg, <1,

due to th dally d . b t th ourth-order Runge-Kutta integration routine with a time step
ue 1o the exponentially decreasing number ot herma f (0.001-0.01)rs.. In order to calculate integrals on the rhs
acoustic phonons with energy=1, and/or (ii) for well-

- . of Eq. (2.2 we perform a spline approximation fég(t) at
developed quantum statistic3 & Ty,), due to an effective every iterative step.

sgppression of the_stimu_lated ki_netic processes. There is 0 |n numerical simulations we use the dimensionless tem-
:ﬂrect ghﬁzon—n;edﬁted ![nteractmt)n of Igvi/-?rr]\ergyl QV\t/_ exCI'peratures'l’ p and Ty and measure time ;.. This makes our
kqns§\ » an ba k?w emperaturels, = -l € relaxation Wresults suitable for various QW's and sets of the control pa-
me_ttlcs O(:Li;i Xt i two-stepjirocessw ow-gtnergy Q rameters, provided th&, and 75, are specified. In Fig. 6
exciton (e ) + phonon €,=1)— QW exciton €2  yne  eyolution of the distribution N (t)=N?°
=etey=1) — low-energy QW exciton 4,=e+21-e3 (N%)'f,(t) as a numerical solution of E(2 2; is com-
<1/4)+ phonon g3=1).” The first, anti-Stokes transition pargd \7vith8the corresponding generic squti@B) (3.10
h ith ing t t 1 iel YA

quenches with decreasing temperatlijg=1 and yields a Ir]elevant toT,<T,. All plots demonstrate an excellent agree-

temperature-dependent bottleneck effect in thermalization. Irn nt between analvtical and numerical solutions. Note that
turn, the critical slowing down of the relaxation kinetics at € etween analytical a umerical solutions. Note tha

To>T, arises due to mutual compensation of two stimulated® high Ty, €.g., T,=10 (see the top plot in Fig.)6 the

fluxes, into and out the low-energy QW statek1. For tEerm;’;ﬂgaﬂgn t'me'th_f)‘k? aé:.hlsve.s the I'm'b'th< TSC’da_md
example, for the ground-state mode=0 the collision inte- the relative duration of the adiabatic stage estimated in terms

grand responsible for the stimulated kinetics is given b f tc (duration of t,he first tran.sie)‘nbecomes sr_nz.alller t_han
Ns:o(Ngl>1—n§h>1)- At To>T, the latter combination be- thaF atT,=<1.In th_|s case the influence of the initial _d|str|-

N i bution N_(t=0) slightly affects the calculated evolution at
comes small in spite %f a Iargg OCCUP;J‘“O” nuMBRLo  the heginning of the adiabatic stage, and the analytical solu-
>1, becausgN, -1 —n7=y|=|N; ~,—nl'_;|—0 as are- jon fits to numerically simulated data become a little worse
sult of a very small value of the chemical potential|]<1.  as can be seen for the distribution functiong-a0.015r..
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FIG. 7. Population dynamics of the ground-state mode o
=N,_o(t) calculated for different bath temperaturesTgt=4,10
(@ and Ty=1.14 (b). Similarly to Fig. 6, the solid and dashed

60 T, =02 curves are ca_llculated by using E_c(§.2) and (3.6), respectively.
Dash-dotted lines correspond to time dependemges)(t) calcu-
P S T, =1.14 lated using approximate equati¢®.1).
/17, = 400
Parametergy and v can be found by comparing series ex-
20 pansions of Eqg5.1) and(3.6) about the point=t,. In such
/1.=100 a way we gety=(ci—c,NI/(c;Np) and v=c?/(c?
0.00001 0.0001 0001 0.0l 01 —c,Ng), where time-independent constarmts and ¢, are

s given by

FIG. 6. Evolution of the distribution functioN, at the adiabatic ¢, =(N%_,— N[\ o+ 6To£1(0) ]+ T,8Tom(0)(N2_y)’,
stage calculated for various sets of the control paramétgand
To. Solid lines correspond to numerical evaluation of E22); .
dashed lines are obtained using the generic solution given 02=§((N'6‘* [\|g:0){2)\34r 8Tpé41(0)
by Eq.(3.6).

o . X[BNo+N1+28Toé1(0) ]} = TdTon(0)(N7—o)’

In contrast, at lowT,, the relaxation kinetics at the adiabatic
stage is slow. For example, B;=<0.25 it lasts for more than X[3No+N1+28Tpé1(0)]). (5.2
1000 scattering times, where typical values af. in

GaAs/ALGa _,As- coupled QW's are on a scale of tens o .
nanoseconds.x N,—o(t) calculated aff,=1 andT,=2 using Eq.(5.1) are

In Fig. 7 we also compare time dependences for th&hoWn in Fig. Ta) with dash-dotted lines. At—to> 7y, the
ground-state mode population, =N, _(t) obtained nu- approximation(5.1) is violated because the phonon-assisted

merically (solid lineg and analyticallydashed lines Again, relaxation kinetics starts to become ex_ponent|al. _
this figure shows that at=0 the generic solutior3.3— As we have shown in Sec. IV, for a given concentration of

(3.10 reproduces the adiabatic stage of the phonon-assist W e>(<jC|tons ”_Zﬁilog cm -, /the t_herma_lllhza;t]lond kat'CS
relaxation kinetics very well. Within the time intervakt slows down wit ecregsm@b .TO’ €., with the develop-
—to=ry, the generic solution yields the following simple ment of quantum statistics. By increasing both temperatures,
approximation for the adiabatic kinetics into the ground-stateT0 an_dTb, and keepmg_unchanged the ralig/T,> 1 one
mode: can simultaneously avoid the above bottleneck effect in re-
laxation and achieve high population of the ground-state
mode,N__,>1. However, in this case the concentration of

N, —o(t)=Ng[1+ x(t—to)]". (5.1 excitons,p,p* Ty, increases as well, so that exciton-exciton

fTime dependences of the ground-state-mode population
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FIG. 8. Possible design of GaAs-based microcavitiasexci-
tonic componenipx= ¢x(k)) of the MC polariton eigenstate and
(b) the lower-branch polariton dispersidin(w— ;). Detuning §
=50 meV (dashed linegs 75 meV (solid lineg, and 100 meV
(dash-dotted lings The energy of ground-state QW excitons is
given byEkH:[,:hwtzl.SZZ ev.

interaction eventually becomes the main mechanism of re-

laxation in GaAs/AlGa _As-coupled or ZnSe single QW's.

PHYSICAL REVIEW B 65 165310

plots with T,=1 and 10. Figure 7a) illustrates the corre-
sponding population dynamics of the ground-state mode,
N8:0: NSZO(t)'

For the above-considered GaAs microcavities with detun-
ing 6=50 meV, the LA-phonon-assisted relaxation of MC-
polaritons is more efficient than the MC-polariton—MC-
polariton scattering if

M, 2
— | EqTy, (5.3

:E(ﬂx

where 7, is the characteristic time of polariton-polariton
scattering angl, is the in-plane reduced mass of excitons in
a MC-embedded QWfor the details of the above estimate of
7p-p S€€ the Appendix of Ref. 10The rhs of inequality5.3)
shows that 14, , is proportional top,p, as it should be due
to particle-particle scattering, and kb, , due to the quasi 2D
density of energy states. Note that, is independent of the
exciton Bohr radiusa, (or energy, because the exciton-
exciton scattering amplitudg, is uniquely defined byJ,
=7h?luy. The latter result is a direct consequence of the
quasi-two-dimensionality of MC polaritortS.In the high-
temperature limit,T=T,>1, of the statistically degenerate
MC polaritons analyzed in the previous paragraph, inequality
(5.3 holds for concentrationg,p=<(0.5-1.0)x 10° cm™2.

1
No=No(Tp, To)=—
Tp-p

VI. CONCLUSIONS

In this paper we have studied thermalization kinetics of

In contrast, in high-quality GaAs-based microcavitiesstatistically degenerate QW excitons coupled to thermal bulk

with a relatively large positive detuning=7(wqo— w;) be-
tween the cavity modefi{w,) and QW exciton line £ wy)

acoustic phonons. For concentrations of QW excitpps
=10° cm? the particle-particle interaction in GaAs or

the LA-phonon-assisted kinetics remains dominant even a#nSe QW's can be neglected in comparison with the QW

relatively high degeneracy temperatuiigs>T,>1. In these
systems, by changing the detunidywithin the band,é

exciton—bulk-acoustic-phonon scattering, and the thermali-
zation kinetics from an initial distribution of QW excitons at

—=50-100 meV, one can design an effective in-plane mask=0 occurs through the nonequilibrium states. The follow-

M, so that the bottleneck effect in phonon-assisted scatte

ing, due to the low density of statesM, , is already relaxed,
whereas the degeneracy temperafiye p,p/(EgM,) is still

relatively high. Indeed, in such MCs the lower polariton
branch gives rise to the in-plane translational mass muc
smaller than the mass of optically-undressed QW excitonsW

In the meantime the excitonic componest of the micro-
cavity polaritons is already very higlpy=0.999, resulting
in the long optical-decayin the z direction lifetimes on a

ing conclusions summarize our results.

(i) For the case of well-developed Bose-Einstein statistics,
whenT,<T, so thatN,_,>1, the relaxation kinetics of QW
excitons coupled to thermal bulk acoustic phonons is given

y the following scheme. Within a few characteristic scatter-
g times the correlation of the distribution functid,(t)
ith the initial N (t=0) disappears, and the subsequent
thermalization of QW excitons is described in terms of the
adiabatic stage of relaxation. The adiabatic stage is charac-
terized by the start timg;, which absorbs a gross informa-

time scale of few nanoseconds. This is illustrated in Figtion about the initial distributiorN,(t=0), and by the pa-

8(a), where the detuning is equal to 50, 75, and 100 meV.
The corresponding polaritofexciton) masses are given by
M,=0.023 mg, 0.050 m,, and 0.081m,, respectively. The

relevant lower-branch polariton dispersions are plotted imas|N, _,,,—N°

Fig. 8b). Because the energl, is only on a 0.01 meV

rameter Ay, which depends only upon the bath and
degeneracy temperaturdg, and T,. At the beginning of the
adiabatic stage, i.e., for the time domais0-t.<\,*, one
O_d=N°_,,,, and the thermalization kinet-
ics is strongly nonexponential, withTe« 1/t and N, _y>(1

energy scale, the parabolic approximation of the lower-+ yt)”. At large times, when the deviation of the system
branch dispersion curves is valid for low-temperature relaxfrom the final equilibrium state is already smalN,(t)
ation kinetics. Thus the LA-phonon-assisted thermalization— NS|/NS< 1], the adiabatic stage of the phonon-assisted

of the excitonlike MC polaritons can indeed be modeled bythermalization becomes exponentidll<e o', and can be

the kinetic equation$2.1) and(2.2). Time evolutions of the
exciton distributionN,(t), which are typical for the proposed
design of GaAs-based MC'’s, are shown in Fig(see the

described within the linearized kinetic equation.
(i) The linearized LA-phonon-assisted kinetics of QW
excitons is formulated in terms of the Fredholm integral
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equation(4.1). The eigenvalue$\} of the collision integral and

are given by the continuous spectrumg<<A << and the

isolated eigenvaluex=0. The marginal eigenvalue,

=No(Ty,To) determines the thermalization timetat-oc by 4 ec—1/4

rthz)\gl. In dependence on the two control paramet&s, B= Tsch[f

and Ty p,p, the thermalization time achieves two limits:

Tih< Tsc and 7> 7. The eigenfunctiongs (\) of the col- * 0 ,

lision integral (4.1) are smooth integrable functions with _fo Fas(ec.8)(N; 1) (ecte)ede|. (A2)

three isolated critical points in energy space. The critical

points of ¢.(\) give rise to a first-order pole, a logarithmic

singularity, and a continuous steplike jump. The function ay(t) stems from the terms proportional to
(i) Because the LA-phonon-assisted kinetics become§8>1/4(t)f€<ll4(t) and is given by

dominant only at small concentrations of QW excitopsy -

=10° cm ?, nonclassical statistics of quasi-2D excitons in

Fs(ec 18)(N0078),(8C_8)8d8

&
0

ZnSe or GaAs QW's develops at very low bath temperatures AT, (14
T,<1 K. The proposed design of GaAs-based microcavities «4(t)= bf Folee ,sc—s)(Ng)’fa(t)(sc—s)ds.
with a relatively large positive detuning between the cavity Tsc JO

mode and QW exciton line(wy— w)=50 meV, allows (A3)

us, however, to build upl,-,>1 by means of QW exciton—
bulk-LA-phonon scattering in much more favorable condi- _
tions, i.e.,Tp=1 K and 7< 7. The parametetr from Eq.(3.13) is obtained by collecting

all the terms proportional téT(t),
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APPENDIX: TEMPERATURE LAW —(agres o) (4T2). (Ad)
In this Appendix we give the expressions for the param-
eters and functions used in Eq8.11), (3.15, and (3.16).
The parameters, and 8 arise from those terms in the col- ~ When deriving Eq(3.16 from Eq. (3.15 we first pute
lision integral that contairf,—,,(t) and f2_,,,(t), respec- =0 everywhere in the integrar(8.15 except the exponent.
tively. Collecting such terms together one gets By changing the integration variabteto £é= &y(e) and put-
ting e=0 we derive the asymptotic E¢3.16), valid in the
ap= 4 8cf£° Fo(ee,e)(1+nP" N0 )ede limit t—co. In this equationy, is a time-independent prefac-
Ts€c ec—1/4 c tor given by
e.—1/4
+f Fe(ec,e)(1+nP+ Ngc,g)szds
0
- ~ fo—o(to)
h Ecle=0llo
_f FAS(SCaS)(ngh_ Ng +8)82d8 (Al) 70:F8(8c180)(1+ngc+ NS:O)—, . (AS)
0 ¢ fo(o)
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