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Phonon-assisted relaxation kinetics of statistically degenerate excitons
in high-quality quantum wells
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Acoustic-phonon-assisted thermalization kinetics of excitons in quantum wells~QW’s! is developed for
small concentrations of particles,r2D&109 cm21, when particle-particle interaction can be neglected, while
Bose-Einstein statistics already strongly influences the relaxation processes at low temperatures. In this case
thermalization of QW excitons occurs through nonequilibrium states and is given by the following scenario.
During the first transient stage, which lasts a few characteristic scattering times, the correlations with an initial
distribution of QW excitons disappear. The next, adiabatic stage of thermalization usually takes many charac-
teristic scattering times, depends only upon two control parameters, the lattice temperatureTb and the degen-
eracy temperatureT0}r2D , and is characterized by a quasiequilibrated distribution of high-energy QW exci-
tons with effective temperatureT(t). We show that the thermalization law of high-energy particles is given by
dT(t)5T(t)2Tb}e2l0t/t, wherel0 is a marginal value of the continuous eigenvalue spectrum of the linear-
ized kinetics. By analyzing the linearized phonon-assisted kinetics of statistically degenerate QW excitons, we
study the dependencel05l0(Tb ,T0). Our numerical estimates refer to high-quality GaAs and ZnSe QW’s.
Finally, we propose a special design of GaAs-based microcavities, which considerably weakens the bottleneck
effect in relaxation of excitons~polaritons! and allows us to optimize the acoustic-phonon-assisted thermali-
zation processes.

DOI: 10.1103/PhysRevB.65.165310 PACS number~s!: 78.66.2w, 72.10.Di, 63.20.Kr
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I. INTRODUCTION

The formation, resonant or phonon assisted, of quant
well ~QW! excitons and their following relaxation towards
final ~quasi-! equilibrium thermodynamic state at low lattic
temperatureTb are the subject of numerous experiment1

and theoretical2–9 studies. Recently, relaxation thermod
namics has been formulated and developed in order to
lyze how Bose-Einstein statistics of high-density QW ex
tons influences the phonon-assisted thermaliza
processes.10 The above thermodynamics assumes a stro
dominant exciton-exciton scattering and, therefore, rel
ation through quasiequilibrium thermodynamic states. T
relaxation thermodynamics has successfully been applie
model ther2D-dependent thermalization and photolumine
cence kinetics observed in early experiments11,12 with high-
density excitons (53109 cm22<r2D<1011 cm22) in
GaAs QW’s.10

The long-lived indirect excitons in high-qualit
GaAs/AlxGa12xAs-coupled QW’s provide a unique opportu
nity for studying quantum degeneracy in a system of tw
dimensional bosons. In this case, the long radiative lifetim
of indirect excitons allow the system to cool down to te
peratures where the dilute exciton gas becomes statistic
degenerate.13–20 The quality of present-day
GaAs/AlxGa12xAs-coupled QW’s has been considerably im
proved in comparison with those used in the pioneer
experiments13,21–25decade ago.26 Furthermore, the very re
cent magneto-optical experiments27 clearly indicate that the
in-plane momentum\ki of indirect excitons is a well-
defined quantum number in high-quality GaAs/AlxGa12xAs-
coupled QW’s.

Thermalization of hot photoexcited excitons down to t
0163-1829/2002/65~16!/165310~12!/$20.00 65 1653
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temperature of the cold lattice occurs mainly via scatter
by thermal bulk longitudinal acoustic~LA ! phonons and is
much more efficient for quasi-two-dimensional~quasi-2D!
systems as compared to bulk semiconductors. This follo
from the relaxation of momentum conservation in thez di-
rection~the QW growth direction! for quasi-2D systems: the
ground-state modeki50, i.e., the energy stateE50, couples
to the continuum energy statesE>E0, rather than to the
single energy stateE5E052Mxvs

2 (vs is the longitudinal
sound velocity andMx is the in-plane translational mass o
excitons! as occurs in bulk materials. As a result, the LA
phonon-assisted kinetics of QW excitons becomes domin
at r2D&(123)3109 cm22: in this case exciton-exciton
scattering can be neglected while Bose-Einstein~BE! statis-
tics already strongly influences the relaxation process at
temperatures.10 Crossover from classical to quantum stat
tics occurs near the degeneracy temperaturekBT0
5(2p\2r2D)/(gMx), whereg is the spin-degeneracy facto
For r2D533109 cm22 the degeneracy temperature of ind
rect excitons in GaAs/AlxGa12xAs-coupled QW’s isT0
50.79 K. This estimate refers tog51, which can be
achieved in theb-type GaAs/AlxGa12xAs-coupled QW’s by
applying a static magnetic fieldHiz.15 Note that the very
recent experiments18 deal with GaAs/AlxGa12xAs-coupled
QW’s at extremely low cryostat temperatureTb50.05 K.
Because the binding energy of indirect excitons
GaAs/AlxGa12xAs-coupled QW’s is about 3–5 meV,27 for
concentrationsr2D&109 cm22, the Mott parameter is much
less than unity,r2Dax

2;0.001 (ax is the in-plane radius of an
indirect exciton!. In this case the ensemble of indirect exc
tons can be interpreted in terms of a rather dilute, nea
ideal quasi-2D gas of Bose particles.

In this paper we study analytically and model numerica
©2002 The American Physical Society10-1
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the acoustic-phonon-assisted relaxation kinetics of stat
cally degenerate QW excitons at low densities. The rec
experiments28,29 allow us to visualize, by means of LO
phonon-assisted emission, the LA-phonon-assisted kine
of quasi-2D excitons in ZnSe QW’s and, in particular,
prove that forr2D&109 cm22 the above kinetics indeed oc
curs through nonequilibrium distributions of QW excitons.
experiments14–16,18the concentration of BE-degenerate ind
rect excitons in GaAs/AlxGa12xAs-coupled QW’s usually
varies fromr2D*1010 cm22 at the very end of an optica
excitation pulse tor2D&108 cm22 at large delay timest
*50 ns after the optical excitation. Thus, thermalization
the indirect excitons at large delay times cannot be descr
within the relaxation thermodynamics10 and does need a
separate theoretical analysis.

The classical Boltzmann kinetic equation has been ge
alized in order to include quantum statistics by Uehling a
Uhlenbeck.30 The relevant quantum kinetic equation for
spatially homogeneous dilute system of statistically dege
ate quasi-2D excitons coupled to bulk LA phonons is

]

]t
Nki

52
2p

\ (
q

uM ~q,qz!u2$@Nki
~11nq

ph!~11Nki2qi
!

2~11Nki
!nq

phNki2qi
#d~Eki

2Eki2qi
2\qvs!

1@Nki
nq

ph~11Nki1qi
!2~11Nki

!

3~11nq
ph!Nki1qi

#d~Eki
2Eki1qi

1\qvs!%, ~1.1!

where Nki
and nq

ph are the occupation numbers of excito

in-plane modeki and phonon bulk modeq5$qi ,qz%, respec-
tively, andqi is the in-plane projection ofq. The terms in the
first and second square brackets on the right-hand side~rhs!
of Eq. ~1.1! describe the Stokes and anti-Stokes LA-phon
assisted scattering processes, respectively. The acou
phonons are assumed to be in thermal equilibrium at the
temperatureTb .10 The matrix element is given byM (q,qz)
5@(Dx

2\q)/(2rvsV)#1/2Fz(qzLz/2), wherer is the crystal
mass density,Dx is the deformation potential of the exciton
LA-phonon interaction,Lz is the thickness of a QW, andV is
the volume. The form factorFz(x)5@sin(x)/x#@eix/(1
2x2/p2)# refers to an infinite rectangular confineme
potential.31 The latter function describes the relaxation of t
momentum conservation law in thez direction and charac
terizes a spectral band of bulk LA phonons, which effectiv
interact with QW excitons. Note that Eq.~1.1! is valid only
for the kinetic stage of thermalization, i.e., before a lo
temperature collective state of excitons32–35 builds up.

The main aim of our work is to study the fundamen
features of the acoustic phonon-assisted thermalization k
ics of QW excitons from initial strongly nonequilibrium
Nki

(t50) towards the final equilibrium distribution with

well-developed Bose-Einstein statistics, whenN0
ki50*1.

Our numerical simulations of the LA-phonon-assisted kin
ics clearly demonstrate that after the first transient, wh
lasts a few characteristic scattering times, a slowadiabatic
stageof thermalization builds up~see Fig. 1!. This stage is
16531
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characterized by a quasiequilibrium distribution of hig
energy QW excitons with effective temperatureT(t)5Tb
1dT(t) and is independent of the initial distribution att
50. The adiabatic stage lasts many characteristic scatte
times and arises due to the need to populate the low-en
in-plane modes withNki.0*1 in the presence of effective
suppression of the stimulated scattering processes~e.g., an
intense incoming Stokes flux of excitons into the groun

FIG. 1. ~a! Transient relaxation towards the adiabatic stage
evolution calculated for various initial Gaussian distributionsN«(t

50)}exp@215.625(«2 «̄)#, where«5\2ki
2/(2MxE0), and param-

eter «̄53 ~dash-dotted lines!, 4 ~solid lines!, and 5 ~dashed lines!.
The gross dependence of evolution upon initial conditions is
sorbed by timet1.tc . ~b! The first stage of LA-phonon-assiste
relaxation (t&tsc) for a particular distribution of indirect exciton

with «̄54. In both plotsTb50.25 andT051.14. The dimensionless
values, time intsc and energy/temperature inE0, can easily be
rescaled to dimensional units by usingE0533 meV andtsc541 ns
for GaAs/AlxGa12xAs-coupled QW’s, andE05162 meV and tsc

52.7 ns relevant to ZnSe QW’s.
0-2
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PHONON-ASSISTED RELAXATION KINETICS OF . . . PHYSICAL REVIEW B 65 165310
state modeki50 is nearly compensated by the outgoi
anti-Stokes scattering out of the stateki50!. In order to de-
scribe the adiabatic stage of relaxation, we find ageneric
solution of the quantum kinetic Equation~1.1!. While the
generic solution we calculate is different from that derived
Ref. 45 for the phonon-assisted kinetics of bulk excitons
Tb<Tc (Tc is the critical temperature for Bose-Einstein co
densation of excitons in bulk semiconductors!, similar to this
case it depends only on two control parameters of the
tem, T0 and Tb . Furthermore, the only gross informatio
from a particular shape of the initial distribution att50 is
absorbed by the start timetc of the adiabatic stage of ther
malization. This is shown in Fig. 1~a!, where we vary the
parameters of the initial Gaussian distribution. In turn,
first transient depends upon initial distribution and lasts o
for a few scattering timestsc, as illustrated in Fig. 1~b!.

Because at any nonzero bath temperatureTb.0 the
occupation number of the ground-state modeNki50

0

5exp(T0 /Tb)21 is finite, the adiabatic stage ends up w
linearized kinetics. The latter kinetics refers to the la
exponential stage of thermalization att→` and is character-
ized byNki50(t)2N0

ki50}T(t)2Tb}e2l0t. For statistically

degenerate QW excitons, the thermalization timet th

51/l0(Tb ,T0) reaches its smallest values at bath tempe
turesE0 /kB!Tb&T0. While the above inequality does no
usually hold in the experiments with statistically degener
indirect excitons in GaAs/AlxGa12xAs-coupled
QW’s,14–16,18–20we describe a special design of GaAs-bas
microcavities ~MC’s! for optimization of the LA-phonon-
assisted thermalization kinetics of low-density MC pola
tons. In the proposed microcavities with a large positive
tuning between the cavity and QW exciton modes, the M
polaritons have radiative lifetimes on a 100 ps–1 ns ti
scale, so that the phonon-assisted relaxation towards w
developed Bose-Einstein statistics with large occupa
numbers can optically be visualized. Thus, the MC des
we discuss is an interesting alternative to the semicondu
microcavities with zero detuning between the cavity mo
and QW excitons~see, e.g., Ref. 36!, where huge nonclassi
cal occupation numbers of the low-energy MC polarit
states have recently been observed.37–42

In numerical evaluations we useMx50.21m0 , vs
53.73105 cm/s, and Dx515.5 eV, relevant to
GaAs/AlxGa12xAs-coupled QW’s, and Mx50.86m0 , vs
54.13105 cm/s, andDx56.9 eV, relevant to single ZnS
QW’s, respectively (m0 is the free electron mass!. Note that
the disorder-induced scattering and localization proces
not included in our model, are relatively strong in up-to-da
ZnSe-based QW’s and require a separate analysis.2,43 How-
ever, in a very recent work44 the first fabrication of high-
quality MgS/ZnSe/MgS QW’s with less than 1 ML fluctua
tions of the well width and, therefore, with extremely lo
inhomogeneous broadening has been reported.

In Sec. II, the Boltzmann equation is adapted in order
formulate the acoustic-phonon-assisted kinetics of stat
cally degenerate QW excitons. We also discuss some
proximations for the form factorFz(x), which describe the
16531
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relaxation of momentum conservation in scattering of Q
excitons by bulk LA phonons.

In Sec. III, we find the generic solution of the acoust
phonon-assisted kinetics from a strongly nonequilibrium i
tial distribution of QW excitonsN«(t50) towards a final
Bose-Einstein distributionN«

0 with large occupation number
of the low-energy states,N«.0

0 *1, where« is the dimen-
sionless energy defined by«5\2ki

2/(2MxE0). The generic
solution is independent of a particular shape of the ini
distribution and describes the adiabatic stage of thermal
tion, which starts att5tc with in a few characteristic scat
tering times aftert50. We show that att@tc thermalization
of high-energy QW excitons is given bydT(t)}e2l0t/t,
where l0 is the lowest positive eigenvalue of the releva
linearized kinetics.

In Sec. IV, the linearized phonon-assisted kinetics of s
tistically degenerate QW excitons is formulated and a
lyzed. We show that the eigenvalues$l% of the linear colli-
sion integral form a continuous spectrum,`.l>l0.0,
separated from the nondegenerate eigenvaluel50, and that
the corresponding eigenfunctions$c«(l)% have three well-
defined isolated critical points. The dependence of the m
ginal eigenvaluel0 on the bath (Tb) and degeneracy (T0)
temperatures is studied.

In Sec. V, straightforward numerical simulations of th
phonon-assisted relaxation kinetics atTb&T0 are compared
with the generic solution of the quantum Boltzmann equ
tion. We also show that at the beginning of the adiaba
stage of thermalization, attc<t&l0

21, the population dy-
namics of the ground-state mode is given byN«50(t)
}(11xt)n, where the parametersx and n are calculated
analytically. Furthermore, we propose a particular design
GaAs-based MC’s, which compromises the efficiency of L
phonon-assisted scattering~the density of states is}Mx)
with the degeneracy temperatureT0}Mx

21 , i.e., allows us to
avoid the bottleneck effect in relaxation and, therefore,
optimize the thermalization kinetics of low-density QW e
citons.

In the Appendix, some relationships relevant to the th
malization dynamics of quasiequilibrated high-energy Q
excitons are given.

II. BOLTZMANN KINETIC EQUATION
FOR DEGENERATE QW EXCITONS

For hot QW excitons, which are in-plane isotropically di
tributed att50, the thermalization kinetics due to bulk LA
phonons can be treated in one-dimensional energy space@see
Eq. ~2! of Ref. 10#. In the following we express energyE and
temperatureT ~as well asTb andT0) in terms ofE0, i.e., we
use the dimensionless values ofE→«5E/E0 and T
→(kBT)/E0. In order to derive and analyze the generic s
lution for relaxation atTb,T0, it is convenient to rewrite the
above equation in terms of the variable

f «~ t !5
N«~ t !2N«

0

Tb~N«
0!8

, ~2.1!

whereN«(t) and N«
051/@e(«2m)/Tb21# are the current and

~final! equilibrium distribution functions of QW excitons, re
0-3
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spectively, and the chemical potentialm is given by m
5Tbln(12e2T0 /Tb). In this case the kinetic equation reduc
to

]

]t
f «~ t !52

4

tsc
F E

0

uS(«)

FS~«,«1!LS~«,«1 ,t !«1d«1

1E
uAS(«)

`

FAS~«,«1!LAS~«,«1 ,t !«1d«1G ,
~2.2!

where the Stokes~S! and anti-Stokes~AS! collision inte-
grands are

LS~«,«1 ,t !5@ f «~ t !2 f «2«1
~ t !#~11n«1

ph1N«2«1

0 !

1Tb~N«2«1

0 !8 f «~ t ! f «2«1
~ t !, ~2.3a!

LAS~«,«1 ,t !5@ f «~ t !2 f «1«1
~ t !#~n«1

ph2N«1«1

0 !

2Tb~N«1«1

0 !8 f «~ t ! f «1«1
~ t !. ~2.3b!

The distribution of thermal bulk phonons is given by t
Planck formula, i.e.,n«

ph51/(e«/Tb21). The scattering time
is defined by tsc5(p2\4r)/(Dx

2Mx
3vs). The functions

uS/AS(«), which determine the integration limits on the righ
hand side of Eq.~2.2!, are

uS~«!5H 0, «<1/4

2A«21, 1/4,«<1

«, 1,«,
~2.4a!

uAS~«!5H 122A«, «<1/4

0, «.1/4. ~2.4b!

The functionsFS/AS(«,«1) in Eq. ~2.2! are given by

FS/AS~«,«1!5E
d«,«1

S/AS

u«,«1

S/AS

uFz~a«1a!u2$@~u«,«1

S/AS!22a2#

3@a22~d«,«1

S/AS!2#%21/2da, ~2.5!

where u«,«1

S/AS5@12(A«2A«7«1)2/«1
2#1/2 and d«,«1

S/AS5@1

2(A«1A«7«1)2/«1
2#1/2. The dimensionless parametera in

the argument of the form factor functionFz is given bya
5(LzMxvs)/\.

In order to estimate the contribution of the form fact
Fz(x) to the spectral functionsFS/AS(«,«1) one can analyze
Eq. ~2.5! for «→0. In this case only the spectral functio
FAS(«,«1) is relevant to the kinetic Eq.~2.2!, and Equation
~2.5! yields

FAS~0,«1!5
p

2
A «1

«121
uFz@aA«1~«121!#u2. ~2.6!
16531
For «1@1, the spectral widthD« ~full width at half maxi-
mum! of FAS(0,«1) is given, byD«.2.26/a and determined
solely byFz(a«1). For thicknessLz58 nm of GaAs QW’s
~see Ref. 18! one getsa.0.054 and, therefore,D«.42. The
latter estimate can be rewritten in the dimensional ene
units as DE5E0D«54.52\vs /Lz.1.44 meV. Thus the
spectral band of LA phonons, which scatter a low-ene
QW exciton, can be evaluated asDE;vsDpz , whereDpz
;\/Lz is the uncertainty of the momentum in thez direction
due to the QW spatial confinement. The above estima
show that for relatively cold QW excitons with energies«
<D« ~the effective temperatureTeff5DE/kB.16.5 K for
Lz58 nm) the form factor can be approximated b
Fz(a«1a)5Fz(0)51. In this case the integral on the rhs
Eq. ~2.5! can be calculated explicitly,

FS/AS~«,«1!5
1

d«,«1

S/AS
FF S d«,«1

S/AS

u«,«1

S/ASD 2G , ~2.7!

where

F~j!5H 2 i H FFarcsin~Aj!,
1

j G2KS 1

j D J , 0<j,1

KS 1

j D , j,0.

~2.8!

Here, F(f,m)5*0
f@12msin2(u)#21/2du and K(m)

5F(p/2,m) are the elliptic and the complete elliptic inte
grals of the first kind, respectively. Because in the analy
case the relaxation kinetics depends only onFz(0), thefunc-
tions FS/AS(«,«1) can easily be rescaled for any particul
shape of the QW confinement potential.

III. GENERIC SOLUTION

In this section the thermalization kinetics atTb<T0 is
described in terms of a generic solution, which weakly c
relates with the initial distributionN«(t50). In particular,
we derive a thermalization law for high-energy excitons a
examine nonequilibrium distribution of low-energy QW e
citons. We also specify a reference point for the generic
lution, i.e., a set of parameters, which unambiguously de
mines the calculated evolution. Schematic picture of
relaxation kinetics in phase space is shown in Fig. 2. T
generic solution is relevant to the timest.tc , wheretc is the
start time of the adiabatic stage of evolution.

As was emphasized in Sec. I, the generic solution
sumes a quasiequilibrium distribution ofhigh-energyexci-
tons («.1/4): N«.1/4(t)51/@exp(@«2m̃(t)#/T(t))21#. This
quasiequilibrium distribution is characterized by the effect
time-dependent temperatureT(t)5Tb1dT(t) and chemical
potential m̃(t) whose time variations are supposed to
small, so thatm̃(t) can be taken the same as the chemi
potential of final equilibrium distributionm̃(t).m. Indeed,
for T(t),T0 the chemical potential is given bym̃(t).
2T(t)e2T0 /T(t)!T(t) and, therefore, udmu5um̃(t)2mu
0-4
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!dT(t). Since at the final stage of relaxation kinetics t
effective temperature of high-energy excitons approaches
bath temperature@dT(t)→0#, starting from some moment in
time one meets the conditiondT(t)!Tb ~provided thatTb
.0). Therefore we can linearize the quasiequilibrium dis
bution function with respect todT(t). In this case one ob
tains

f «.1/4~ t !52@dT~ t !/Tb
2#«. ~3.1!

On the other hand, as we show below, alow-energykernel
(0,«<1/4) of the distribution function characterizes th
nonequilibrium QW excitons. With increasing timet>tc ,
the low-energy kernel shrinks in energy space and the r
uN«<1/42N«<1/4

0 u/N«<1/4
0 decreases approaching the lim

when the linearized kinetics becomes valid.

A. Nonequilibrium distribution of low-energy QW excitons

In order to analyze the evolution of low-energy QW e
citons within the scenario described in the preceding sect
we substitute Eq.~3.1! into Eq. ~2.2! and get the reduced
kinetic equation for«<1/4,

]

]t
f «~ t !52@j0~«!1j1~«!dT~ t !# f «~ t !1h~«!dT~ t !,

~3.2!

where

j0~«!5
4

tsc
E

122A«

`

FAS~«,«1!~n«1

ph2N«1«1

0 !«1d«1 ,

~3.3!

j1~«!5
4

tscTb
E

122A«

`

FAS~«,«1!~N«1«1

0 !8«1~«1«1!d«1 ,

~3.4!

FIG. 2. Schematic picture of the relaxation kinetics atTb&T0.
The reference~start! point $t0 ,dT0 ,N0

in% unambiguously determine
the calculated~solid line! evolution from the initial nonequilibrium
distribution N«(t50). The dashed line corresponds to the gene
solution.tc is the start point of adiabatic stage of evolution. For t
times t2tc>tsc both evolution spirals almost coincide showing
unique path towards the final equilibrium distribution$dT50,N«

5N«
0%.
16531
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h~«!52
4

tscTb
2E122A«

`

FAS~«,«1!~n«1

ph2N«1«1

0 !

3«1~«1«1!d«1 , ~3.5!

andFAS(«1«1) is given by Eq.~2.7!. Equation~3.2!, which
describes the population dynamics of the low-energy sta
during the adiabatic stage of thermalization (t>tc), is a lin-
ear inhomogeneous differential equation forf «<1/4. Its com-
plete solution can be written as a sum of the homogene
and inhomogeneous contributions,

f «<1/4~ t !5 f «<1/4
hom ~ t !1h~«!E

t0

t

exp@2~ t2t!j0~«!

2r~ t,t!j1~«!#dT~t!dt, ~3.6!

where

f «<1/4
hom ~ t !5exp@2~ t2t0!j0~«!2r~ t,t0!j1~«!#

3 f «<1/4~ t5t0!, ~3.7!

r~ t,t1!5E
t1

t

dT~t!dt, ~3.8!

andt0 is an arbitrary reference~start! time for the calculated
evolution, i.e.,t0>tc ~see Fig. 2!.

Thus the adiabatic stage of the relaxation kinetics into
lower-energy states is completely determined byN«(t)5N«

0

1Tb(N«
0)8 f «(t), provided that one knows the referenc

~start! distribution f «<1/4(t5t0) and thermalization lawdT
5dT(t) for high-energy QW excitons. Note that in a sha
contrast with the acoustic-phonon-assisted relaxation kine
at Tb<Tc in three-dimensional systems,45 the thermalization
dynamics of low-energy QW excitons depends upon the
mogeneous contributionf «<1/4

hom given by Eq.~3.7!.
As will be shown in the following section, the thermal

zation law for quasiequilibrium high-energy QW exciton
(«.1/4) is given by

dT~ t !5S dT0

l12l0
De2l0(t2t0)2e2l1(t2t0)

t2t0
, ~3.9!

where l05j0(0) characterizes the inverse thermalizati
time att→`,l15j0(1/4) is another characteristic paramet
relevant to the beginning of the adiabatic stage (l1@l0),
and dT05dT(t5t0) determines reference~start! effective
temperatureT(t5t0)5Tb1dT0 for the calculated evolution
Equation ~3.9! is valid for t>t0. Using the thermalization
law ~3.9! we find the integral on the rhs of Eq.~3.8!,

r~ t,t1!5
dT0

l12l0
$Ei@2l0~ t2t0!#2Ei@2l0~ t12t0!#

2Ei@2l1~ t2t0!#1Ei@2l1~ t12t0!#%, ~3.10!

where Ei(z)52*2z
` (e2t/t)dt is the exponential integra

function.

c
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The reference distributionf «<1/4(t5t0), which deter-
mines the homogeneous solution~3.7!, is independent of the
initial distribution of hot QW excitons,N«(t50). There is,
however, an integral relationship betweendT0 and f «<1/4(t
5t0), which we will discuss in Sec. III C along with possib
approximations forf «<1/4(t5t0).

B. Thermalization of high-energy QW excitons

The temperature changedT5dT(t) characterizes the
time evolution of high-energy quasiequilibrated partic
through Eqs.~2.1! and~3.1!. In order to derive the tempera
ture law ~3.9! we substitutef «<1/4 and f «.1/4 given by Eqs.
~3.6! and ~3.1!, respectively, into the kinetic equation~2.2!,

]

]t
dT~ t !52@a01a1~ t !#dT~ t !1bdT2~ t !1g~ t !,

~3.11!

where

g~ t !52
4Tb

2

tsc«c
E

0

1/4

FS~«c ,«c2«!~11n«c2«
ph N«

0!

3 f «~ t !~«c2«!d«, ~3.12!

and the parameters a0 ,b, and functional a1(t)
5a1@ f «<1/4(t)# are defined in the Appendix. Equation
~3.11! and~3.12! refer to some energy«c*1 from the high-
energy domain«.1/4.

In the adiabatic stage of relaxation, whent.tc , one has
dT(t)/Tb!1 so thata1 and bdT2 can be neglected on th
rhs of Eq. ~3.11!, becauseua1(t)u!a0 and ubdT2(t)u
!ug(t)u. At the end of the adiabatic stage (t2tc@l0

21) the
distribution functionN«(t) is already very close toN«

0 even
for small energies«<1/4 and, therefore, the phonon-assist
relaxation kinetics becomes exponential, i.e.,dT(t)}e2l0t.
For statistically degenerate QW excitons (N«50

0 @1) one es-
timates from Eqs.~3.3! and ~A1! that positivel05j(0) is
much less than positivea0. In this case Eq.~3.11! can be
solved iteratively. The first iteration, which can formally b
obtained by neglecting the time derivative on the rhs of E
~3.11!, yields

dT~ t !5g~ t !/a0 . ~3.13!

For the same time domaint2tc@l0
21 Eq. ~3.6! yields the

following approximation:

f «<1/4~ t !5exp@2~ t2t0!j0~«!# f «~ t5t0!1
h~«!

j0~«!
dT~ t !.

~3.14!

By substituting Eq.~3.14! into the rhs of Eq.~3.12! one
derives from Eq.~3.13!

dT~ t !5
1

ã
E

0

1/4

FS~«c ,«c2«!~11n«c2«
ph N«

0! f «~ t0!

3exp@2~ t2t0!j0~«!#~«c2«!d«, ~3.15!
16531
.

where the constantã is defined in the Appendix. We ca
further simplify Eq.~3.15! taking into account thatj0(«) is a
monotonically increasing function of energy and that at la
t only the small vicinity of«50 contributes to the integral
Finally, we end up with the asymptotic law

dT~ t !5S g̃0

ã
D exp@2j0~0!~ t2t0!#2exp@2j0~1/4!~ t2t0!#

t2t0
,

~3.16!

where the constantg̃0 is given in the Appendix. Equation
~3.16! is identical to Eq.~3.9! provided that the referenc
~start! temperature Tb1dT(t5t0) of the high-energy
quasiequilibrated QW excitons is determined by

dT0[dT~ t5t0!5~ g̃0 /ã !~l12l0!. ~3.17!

While the above derivation of Eqs.~3.13!–~3.17! assumes
that t2tc>t2t0@l0

21, we have checked numerically tha
the temperature law~3.9! holds through the whole adiabati
stage, i.e., for the time interval 0<t2t0,`. Furthermore,
the numerical evaluations also clearly indicate that the s
temperaturedT(t5t0) is practically independent of the loca
energy«c*1 used in the derivation of Eqs.~3.11!–~3.17!. In
Fig. 3 we plotdT5dT(t) andN«515N«51(t) calculated by
using the thermalization law~3.9! ~dashed lines! and by di-
rect numerical modeling of the initial kinetic equation~2.2!
~solid lines!, respectively.

For the time domainl1
21<t2t0&l0

21 the thermalization
law ~3.9! can be approximated by dT(t)5(l1
2l0)21dT0 /(t2t0). The latter dependencedT(t)}1/(t
2t0) is consistent with that found for the adiabatic stage
the phonon-assisted relaxation kinetics of 3D bosons~exci-
tons! at Tb<Tc , when the Bose-Einstein condensate bui
up.45 For 2D systems at nonzeroTb the occupation numbe
of the ground-state modeN«50

0 is always final. Therefore the
exponential kineticsdT(t)}e2l0(t2t0), which results from
Eq. ~3.9! for t2t0*l0

21, develops at the final stage of relax
ation, whenuN«50(t)2N«50

0 u/N«50
0 !1. Note that because

for statistically degenerate QW excitons, whenTb&T0 and
N«50

0 @1, one hasl0
21@tsc ~see Sec. IV!, the two modes of

behavior,dT}1/t anddT}e2l0t, are well-separated in time

FIG. 3. Time dependence ofdT andN«51 ~inset! calculated by
using the thermalization law~3.9! ~dashed lines! and by direct nu-
merical modeling of the initial kinetic equation~2.2! ~solid lines!.
The control parametersTb andT0 are the same as in Fig. 1.
0-6
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C. Reference point for the generic solution

In order to determine the relaxation kinetics of low
energy particles, i.e.,N«<1/45N«<1/4(t>tc), one needs to
specify the reference distributionf «<1/4(t5t0) and dT0
5dT(t5t0)5T(t5t0)2Tb . According to Eq.~3.7!, with
increasing timet2t0 only the small vicinity of«50 gives
contributes to the homogeneous part of the generic solut
Therefore we approximateN«<1/4(t5t0).N0

in[N«50(t
5t0). The above approximation assumes that the refere
time t0>tc is close enough to the start timetc of the adia-
batic stage of relaxation so thatN«(t0)!N«

0 at «!1/4. Thus,
using Eq.~2.1! we determine the reference distribution at
5t0 by

f «<1/4~ t5t0!5
N0

in2N«
0

Tb~N«
0!8

. ~3.18!

The latter expression is completely defined by the only o
unknown parameterN0

in , the population of the ground-stat
mode at the reference timet0.

Equation~3.18! allows us to finddT05dT(t5t0) through
the integral relationship~3.15! taken att5t0. Furthermore,
within the approximations used in the derivation of t
asymptotic law~3.16! a simplified ~algebraic! form of this
relationship, given by Eqs.~3.17! and~A5!, is valid as well.
After the value ofdT0 is determined, using the thermaliza
tion law ~3.9! one can easily find the time dependence of
distribution function~3.1! of high-energy excitons. There
fore, the three parameterst0 , N0

in , and dT0, completely
specify the reference point for the generic solution, as ill
trated in Fig. 2.

IV. LINEARIZED KINETICS FOR STATISTICALLY
DEGENERATE QW EXCITONS

If for any energy « the distribution functionN« of
quantum-degenerate quasi-2D excitons is close enoug
final N«

0 so thatuN«2N«
0u/N«

0!1 and f «(t) becomes small,
the phonon-assisted kinetics can be linearized. In particu
the adiabatic stage of thermalization at timest2t0>l0

21 re-
fers to the linearized kinetics. The linearized kinetics can
described in terms of the real eigenvalues$l%(l>0) and the
corresponding eigenfunctions$c«(l)% so that f «(t)
5(lclc«(l)exp(2lt). The initial kinetic equation~2.2! re-
duces to the linear Fredholm equation of the second k
with respect toc«(l),

lc«~l!5
4

tsc
F E

0

uS(«)

FS~«,«1!L̃S~«,«1!«1d«1

1E
uAS(«)

`

FAS~«,«1!L̃AS~«,«1!«1d«1G ,
~4.1!

where

L̃S~«,«1!5@c«~l!2c«2«1
~l!#~11n«1

ph1N«2«1

0 !,

~4.2a!
16531
n.

ce

e

e

-

to

r,

e

d

L̃AS~«,«1!5@c«~l!2c«1«1
~l!#~n«1

ph2N«1«1

0 !,

~4.2b!

and functionsuS anduAS are given by Eqs.~2.4a! and~2.4b!,
respectively.

Thus we replace the solution of Eq.~2.2! by the eigen-
function analysis of the Fredholm integral equation~4.1!.
The numerical solution of Eq.~4.1! clearly shows that for a
givenTb.0 all eigenvalues$l% except one are nondegene
ate, positive, and belong to the continuous spectrum. Th
illustrated in the bottom inset of Fig. 4, where the set
eigenvalues shown by the stars covers the same interv`
.l>l05l0(Tb ,T0) and will be more dense if more dis
crete points in energy space are used. The isolated nonde
erate eigenvaluel50 is due to conservation of the tota
number of QW excitons in our model~the only integral of
motion of the system46!.

Since all$l% are nondegenerate, the corresponding eig
functions$c«(l)% form a basis in Hilbert energy space. F
the energy band 0<«,1/4 one derives from Eq.~4.1!,

c«,1/4~l!5
s~«!

l2j0~«!
, ~4.3!

wheres(«) is a smooth regular function of« given by

s~«!52
4

tsc
E

0

uS(«)

FS~«,«1!c«1«1
~l!~n«1

ph2N«1«1

0 !«1d«1 ,

~4.4!

and j0(«) is defined by Eq.~3.3!. Thus the eigenfunction
c«(l) has an isolated singularity~first-order pole! at «l

5j0
21(l). The singularity is integrable in terms of principa

value integration. A typical shape of the eigenfunctions a«
,1/4 is shown in Fig. 4. In the energy band«>1/4 the
eigenfunction has another singularity at the point
2A«l)2. This singularity is logarithmic, i.e., integrable.
arises when the singularity ofc«2«1

(l) at «2«15«l @see
Eq. ~4.2!# coincides with the upper boundary of integratio
uS(«), in the Stokes collision term on the rhs of Eq.~4.1!.
The steplike jump at the critical point (11A«l)2 is not ac-

FIG. 4. A typical shape of the eigenfunctionc«(l). The main
part of the figure shows the first-order pole, which arises at
energy region«,1/4(l50.0043/tsc in this particular example!.
The top inset illustrates eigenfunction behavior at critical points
the high-energy band«>1. The eigenvalue spectrum (l in units
1/tsc) is shown in the bottom inset. The control parametersTb and
T0 are the same as in Fig. 1.
0-7
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A.V. SOROKO AND A.L. IVANOV PHYSICAL REVIEW B 65 165310
companied by discontinuity of the eigenfunction. The lat
critical point originates from a singular behavior of the form
factor functionFS(«,«1) at «152A«21. The features of the
eigenfunctionc«(l) at points«5(16A«l)2 are shown in
the top inset of Fig. 4.

The marginal pointl05l0(Tb ,T0) of the continuous
spectrum of$l% is indeed given byl05j0(0): for l→l0
the singularity point«l→0, i.e., it approaches its lowes
limit. Becausel0

21 is the longest relaxation time generat
by the continuuml0<l,`, the eigenavaluel0 determines
the phonon-assisted kinetics att→` and, in particular, yields
the characteristic thermalization time in the relaxation th
modynamics developed in Ref. 10. The dependence ofl0
upon the control parameters of the system,Tb and T0, is
plotted in the Fig. 5.

The eigenvaluel0 can reach both limits, i.e.,l0@tsc
21

andl0!tsc
21 ~see Fig. 5!. The first limit, which corresponds

to the considerable acceleration of the thermalization kine
in comparison with that in the 3D case, is due to the rel
ation of momentum conservation in QW exciton–bu
acoustic-phonon scattering. The slowing down of therm
zation,l0!tsc

21 , occurs~i! at low bath temperaturesTb<1,
due to the exponentially decreasing number of therm
acoustic phonons with energy«>1, and/or ~ii ! for well-
developed quantum statistics (T0@Tb), due to an effective
suppression of the stimulated kinetic processes. There i
direct phonon-mediated interaction of low-energy QW ex
tons «<1/4, and at low temperaturesTb<1 the relaxation
kinetics occurs by the two-step process: ‘‘low-energy Q
exciton («!1/4) 1 phonon («1.1)→ QW exciton («2
5«1«1.1) → low-energy QW exciton («45«1«12«3
!1/4)1 phonon («3.1).’’ The first, anti-Stokes transition
quenches with decreasing temperatureTb<1 and yields a
temperature-dependent bottleneck effect in thermalization
turn, the critical slowing down of the relaxation kinetics
T0@Tb arises due to mutual compensation of two stimula
fluxes, into and out the low-energy QW states«!1. For
example, for the ground-state mode«50 the collision inte-
grand responsible for the stimulated kinetics is given
N«50(N«1>12n«1>1

ph ). At T0@Tb the latter combination be

comes small in spite of a large occupation numberN«50

@1, becauseuN«1>12n«1>1
ph u.uN«1>1

0 2n«1>1
ph u→0 as a re-

sult of a very small value of the chemical potential,umu!1.

FIG. 5. The inverse thermalization timel0 ~in units 1/tsc) as a
function of the control parametersTb andT0.
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Now we can give an alternative proof of the temperatu
law ~3.9!, which refers to high-energy QW excitons with«
.1/4. Namely, the functionf «(t5t0) can be expanded ove
the basis$c«(l)%. Then the solution of Eq.~2.2! is given by

f «~ t !5E
l0

`

clc«~l!e2l(t2t0)dl, ~4.5!

where cl are the expansion coefficients. At large timest
2t0@t th only a small vicinity ofl nearl0 contributes to the
integral, due to the time exponent in the integrand. If n
one assumes a regular distribution of quasi-2D excitonst
5t0, the coefficientscl smoothly depend uponl. As a re-
sult, the approximationcl.cl0

can be used in the integran
on the rhs of Eq.~4.5!. Furthermore, the eigenfunction
c«(l) have nearly the same smooth shape at high energie
illustrated by Fig. 5. Thus we can also putc«(l).c«(l0)
on the rhs of Eq.~4.5!. As a result, bothcl andc«(l) can be
extracted out of the integral. Using Eq.~3.1! we immediately
get dT(t)}e2l0(t2t0)/(t2t0), which coincides with Eq.
~3.9! at t2t0@l1

21. Note that the above derivation is base
on the particular spectrum (l501 continuuml0<l,`)
of the linearized collision integral and has no analogy in
relaxation kinetics due to particle-particle interaction. In t
latter case the fivefold degenerate eigenvaluel50 is sepa-
rated from the continuous spectrum by a set of discrete
lated eigenvalues.46

V. DISCUSSION

In order to test the generic solutions~3.3!–~3.10! we
model the phonon-assisted relaxation of excitons within
initial kinetic equation~1.1! reduced to energy space@Eqs.
~2.1! and~2.2!#. An adaptive inhomogeneous grid with 100
200 points for« is used to cover the close vicinity of th
ground-state mode«50 ~the maximum value of the dimen
sionless energy is«max520). Equation~2.2! is evaluated by a
fourth-order Runge-Kutta integration routine with a time st
of (0.00120.01)tsc. In order to calculate integrals on the rh
of Eq. ~2.2! we perform a spline approximation forf «(t) at
every iterative step.

In numerical simulations we use the dimensionless te
peraturesTb andT0 and measure time intsc. This makes our
results suitable for various QW’s and sets of the control
rameters, provided thatE0 and tsc are specified. In Fig. 6
time evolution of the distribution N«(t)5N«

0

1Tb(N«
0)8 f «(t) as a numerical solution of Eq.~2.2! is com-

pared with the corresponding generic solution~3.3!–~3.10!
relevant toTb,T0. All plots demonstrate an excellent agre
ment between analytical and numerical solutions. Note t
at high Tb , e.g., Tb510 ~see the top plot in Fig. 6!, the
thermalization timet th5l0

21 achieves the limitt th!tsc, and
the relative duration of the adiabatic stage estimated in te
of tc ~duration of the first transient! becomes smaller than
that atTb&1. In this case the influence of the initial distr
bution N«(t50) slightly affects the calculated evolution a
the beginning of the adiabatic stage, and the analytical s
tion fits to numerically simulated data become a little wor
as can be seen for the distribution functions att50.015tsc.
0-8
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PHONON-ASSISTED RELAXATION KINETICS OF . . . PHYSICAL REVIEW B 65 165310
In contrast, at lowTb the relaxation kinetics at the adiabat
stage is slow. For example, atTb<0.25 it lasts for more than
1000 scattering times, where typical values oftsc in
GaAs/AlxGa12xAs- coupled QW’s are on a scale of tens
nanoseconds.

In Fig. 7 we also compare time dependences for
ground-state mode populationN«505N«50(t) obtained nu-
merically ~solid lines! and analytically~dashed lines!. Again,
this figure shows that at«50 the generic solution~3.3!–
~3.10! reproduces the adiabatic stage of the phonon-ass
relaxation kinetics very well. Within the time interval 0<t
2t0&t th the generic solution yields the following simp
approximation for the adiabatic kinetics into the ground-st
mode:

N«50~ t !5N0
in@11x~ t2t0!#n. ~5.1!

FIG. 6. Evolution of the distribution functionN« at the adiabatic
stage calculated for various sets of the control parametersTb and
T0. Solid lines correspond to numerical evaluation of Eq.~2.2!;
dashed lines are obtained using the generic solution g
by Eq. ~3.6!.
16531
e

ed
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Parametersx and n can be found by comparing series e
pansions of Eqs.~5.1! and~3.6! about the pointt5t0. In such
a way we get x5(c1

22c2N0
in)/(c1N0

in) and n5c1
2/(c1

2

2c2N0
in), where time-independent constantsc1 and c2 are

given by

c15~N«50
0 2N0

in!@l01dT0j1~0!#1TbdT0h~0!~N«50
0 !8,

c25
1

2
„~N0

in2N«50
0 !$2l0

21dT0j1~0!

3@5l01l112dT0j1~0!#%2TbdT0h~0!~N«50
0 !8

3@3l01l112dT0j1~0!#…. ~5.2!

Time dependences of the ground-state-mode popula
N«50(t) calculated atTb51 andTb52 using Eq.~5.1! are
shown in Fig. 7~a! with dash-dotted lines. Att2t0.t th the
approximation~5.1! is violated because the phonon-assis
relaxation kinetics starts to become exponential.

As we have shown in Sec. IV, for a given concentration
QW excitons r2D&109 cm22, the thermalization kinetics
slows down with decreasingTb /T0, i.e., with the develop-
ment of quantum statistics. By increasing both temperatu
T0 andTb , and keeping unchanged the ratioT0 /Tb@1 one
can simultaneously avoid the above bottleneck effect in
laxation and achieve high population of the ground-st
mode,N«50@1. However, in this case the concentration
excitons,r2D}T0, increases as well, so that exciton-excit

n

FIG. 7. Population dynamics of the ground-state modeN«50

5N«50(t) calculated for different bath temperatures atT054,10
~a! and T051.14 ~b!. Similarly to Fig. 6, the solid and dashe
curves are calculated by using Eqs.~2.2! and ~3.6!, respectively.
Dash-dotted lines correspond to time dependencesN«50(t) calcu-
lated using approximate equation~5.1!.
0-9
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A.V. SOROKO AND A.L. IVANOV PHYSICAL REVIEW B 65 165310
interaction eventually becomes the main mechanism of
laxation in GaAs/AlxGa12xAs-coupled or ZnSe single QW’s

In contrast, in high-quality GaAs-based microcaviti
with a relatively large positive detuningd5\(v02v t) be-
tween the cavity mode (\v0) and QW exciton line (\v t)
the LA-phonon-assisted kinetics remains dominant even
relatively high degeneracy temperaturesT0@Tb.1. In these
systems, by changing the detuningd within the band,d
550–100 meV, one can design an effective in-plane m
Mx so that the bottleneck effect in phonon-assisted sca
ing, due to the low density of states}Mx , is already relaxed
whereas the degeneracy temperatureT0}r2D /(E0Mx) is still
relatively high. Indeed, in such MCs the lower polarito
branch gives rise to the in-plane translational mass m
smaller than the mass of optically-undressed QW excito
In the meantime the excitonic componentwX of the micro-
cavity polaritons is already very high,wX*0.999, resulting
in the long optical-decay~in the z direction! lifetimes on a
time scale of few nanoseconds. This is illustrated in F
8~a!, where the detuningd is equal to 50, 75, and 100 meV
The corresponding polariton~exciton! masses are given b
Mx50.023 m0 , 0.050 m0, and 0.081m0, respectively. The
relevant lower-branch polariton dispersions are plotted
Fig. 8~b!. Because the energyE0 is only on a 0.01 meV
energy scale, the parabolic approximation of the low
branch dispersion curves is valid for low-temperature rel
ation kinetics. Thus the LA-phonon-assisted thermalizat
of the excitonlike MC polaritons can indeed be modeled
the kinetic equations~2.1! and ~2.2!. Time evolutions of the
exciton distributionN«(t), which are typical for the propose
design of GaAs-based MC’s, are shown in Fig. 6~see the

FIG. 8. Possible design of GaAs-based microcavities:~a! exci-
tonic componentwX5wX(ki) of the MC polariton eigenstate an
~b! the lower-branch polariton dispersion\(v2v t). Detuning d
550 meV ~dashed lines!, 75 meV ~solid lines!, and 100 meV
~dash-dotted lines!. The energy of ground-state QW excitons
given byEki505\v t51.522 eV.
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plots with Tb51 and 10!. Figure 7~a! illustrates the corre-
sponding population dynamics of the ground-state mo
N«505N«50(t).

For the above-considered GaAs microcavities with det
ing d*50 meV, the LA-phonon-assisted relaxation of MC
polaritons is more efficient than the MC-polariton–MC
polariton scattering if

l05l0~Tb ,T0!>
1

tp-p
5

p

4\ S Mx

mx
D 2

E0T0 , ~5.3!

where tp-p is the characteristic time of polariton-polarito
scattering andmx is the in-plane reduced mass of excitons
a MC-embedded QW~for the details of the above estimate
tp-p see the Appendix of Ref. 10!. The rhs of inequality~5.3!
shows that 1/tp-p is proportional tor2D , as it should be due
to particle-particle scattering, and toMx , due to the quasi 2D
density of energy states. Note thattp-p is independent of the
exciton Bohr radiusax ~or energy!, because the exciton
exciton scattering amplitudeU0 is uniquely defined byU0
.p\2/mx . The latter result is a direct consequence of t
quasi-two-dimensionality of MC polaritons.10 In the high-
temperature limit,T0>Tb@1, of the statistically degenerat
MC polaritons analyzed in the previous paragraph, inequa
~5.3! holds for concentrationsr2D<(0.5–1.0)3109 cm22.

VI. CONCLUSIONS

In this paper we have studied thermalization kinetics
statistically degenerate QW excitons coupled to thermal b
acoustic phonons. For concentrations of QW excitonsr2D
&109 cm22 the particle-particle interaction in GaAs o
ZnSe QW’s can be neglected in comparison with the Q
exciton–bulk-acoustic-phonon scattering, and the therm
zation kinetics from an initial distribution of QW excitons a
t50 occurs through the nonequilibrium states. The follo
ing conclusions summarize our results.

~i! For the case of well-developed Bose-Einstein statist
whenTb,T0 so thatN«50.1, the relaxation kinetics of QW
excitons coupled to thermal bulk acoustic phonons is giv
by the following scheme. Within a few characteristic scatt
ing times the correlation of the distribution functionN«(t)
with the initial N«(t50) disappears, and the subseque
thermalization of QW excitons is described in terms of t
adiabatic stage of relaxation. The adiabatic stage is cha
terized by the start timetc , which absorbs a gross informa
tion about the initial distributionN«(t50), and by the pa-
rameter l0, which depends only upon the bath an
degeneracy temperatures,Tb andT0. At the beginning of the
adiabatic stage, i.e., for the time domain 0<t2tc&l0

21, one
hasuN«<1/42N«<1/4

0 u.N«<1/4
0 , and the thermalization kinet

ics is strongly nonexponential, withdT}1/t and N«50}(1
1xt)n. At large times, when the deviation of the syste
from the final equilibrium state is already small@ uN«(t)
2N«

0u/N«
0!1#, the adiabatic stage of the phonon-assis

thermalization becomes exponential,dT}e2l0t, and can be
described within the linearized kinetic equation.

~ii ! The linearized LA-phonon-assisted kinetics of Q
excitons is formulated in terms of the Fredholm integ
0-10
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equation~4.1!. The eigenvalues$l% of the collision integral
are given by the continuous spectruml0<l,` and the
isolated eigenvaluel50. The marginal eigenvaluel0
5l0(Tb ,T0) determines the thermalization time att→` by
t th5l0

21. In dependence on the two control parameters,Tb

and T0}r2D , the thermalization time achieves two limits
t th!tsc and t th@tsc. The eigenfunctionsc«(l) of the col-
lision integral ~4.1! are smooth integrable functions wit
three isolated critical points in energy space. The critic
points ofc«(l) give rise to a first-order pole, a logarithmi
singularity, and a continuous steplike jump.

~iii ! Because the LA-phonon-assisted kinetics becom
dominant only at small concentrations of QW excitons,r2D
&109 cm22, nonclassical statistics of quasi-2D excitons
ZnSe or GaAs QW’s develops at very low bath temperatu
Tb,1 K. The proposed design of GaAs-based microcavit
with a relatively large positive detuning between the cav
mode and QW exciton line,\(v02v t)>50 meV, allows
us, however, to build upN«.0@1 by means of QW exciton–
bulk-LA-phonon scattering in much more favorable cond
tions, i.e.,Tb*1 K andt th!tsc.
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APPENDIX: TEMPERATURE LAW

In this Appendix we give the expressions for the para
eters and functions used in Eqs.~3.11!, ~3.15!, and ~3.16!.
The parametersa0 andb arise from those terms in the col
lision integral that containf «>1/4(t) and f «>1/4

2 (t), respec-
tively. Collecting such terms together one gets

a05
4

tsc«c
F«cE

«c21/4

«c
FS~«c ,«!~11n«

ph1N«c2«
0 !«d«

1E
0

«c21/4

FS~«c ,«!~11n«
ph1N«c2«

0 !«2d«

2E
0

`

FAS~«c ,«!~n«
ph2N«c1«

0 !«2d«G ~A1!
to

ct
15

.

li,

16531
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s
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s
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-

.

-
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b5
4

tscTb
F E

0

«c21/4

FS~«c ,«!~N«c2«
0 !8~«c2«!«d«

2E
0

`

FAS~«c ,«!~N«c1«
0 !8~«c1«!«d«G . ~A2!

The function a1(t) stems from the terms proportional t
f «>1/4(t) f «,1/4(t) and is given by

a1~ t !5
4Tb

tsc
E

0

1/4

FS~«c ,«c2«!~N«
0!8 f «~ t !~«c2«!d«.

~A3!

The parameterã from Eq.~3.13! is obtained by collecting
all the terms proportional todT(t),

ã52E
«c21/4

«c
FS~«c ,«!~11n«

ph1N«c2«
0 !

h~«c2«!

j0~«c2«!
«d«

2~a0tsc«c!/~4Tb
2!. ~A4!

When deriving Eq.~3.16! from Eq. ~3.15! we first put«
50 everywhere in the integrand~3.15! except the exponent
By changing the integration variable« to j5j0(«) and put-
ting «50 we derive the asymptotic Eq.~3.16!, valid in the
limit t→`. In this equationg̃0 is a time-independent prefac
tor given by

g̃05FS~«c ,«c!~11n«c

ph1N«50
0 !

«cf «50~ t0!

j08~0!
. ~A5!
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