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Effective-medium approximation with asymmetric transition rates
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2Centro Atómico Bariloche, Instituto Balseiro, CNEA and Universidad Nacional de Cuyo, Caixa Postal 8400, Bariloche, Argent

3Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Argentina
~Received 8 August 2001; published 4 April 2002!

An effective-medium approximation considering asymmetric transition rates is presented for a
D-dimensional anisotropic random walk. Our approach allows to obtain a set of 2D frequency-dependent
effective transition rates in a self-consistent way. Even when these coupled equations could look unwielding,
we have been able to work out some particular cases, i.e., using a separablelike ansatz the asymmetric
effective-medium approximation is shown to be reduced, under a transformation of variables, to the study of
the symmetric case. Within this basic formalism, a biased diffusion problem in an anisotropic two-dimensional
percolation model is analyzed. The asymmetric effective-medium approximation is finally compared against
Monte Carlo simulations, and a good agreement is found for small bias values.
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I. INTRODUCTION

Transport properties of disordered systems is a field
continuous research. It has many applications in the are
natural science, e.g., physics, chemistry, and biology. S
applications include transport in porous and fractured me
diffusion in catalytic processes and hopping conduction
amorphous solids, among others. Most of the natural syst
in which diffusion occurs are, in fact, disordered system
and it is necessary to develop new ways to describe trans
phenomena. In such systems, usual techniques inc
Monte Carlo or molecular-dynamic simulations, renorm
ization group, continuous-time random walks, and effecti
medium approximation~EMA!. Moreover, each techniqu
has several generalizations.

The effective-medium theory was first considered, in d
fusion problems, by Kirkpatrick,1 who applied it to the study
of random-resistor networks, but it was only in the early 8
that the formulation got a generalization to the frequen
dependent behavior.2–5

The extension of EMA to anisotropic systems was fi
studied, in the context of Kirkpatrick’s formalism, in th
long-time regime on square lattices.6 Next, the theory was
generalized to other lattices,7 and recently the frequency
dependent behavior was developed.8

The earlier extension of EMA to asymmetric transitio
rates, between pairs of sites, includes the one-dimensi
formalism,9,10 and asymmetric transitions induced by switc
ing on a uniform electric field in an originally three
dimensional symmetric system.11 More recently, long-time12

and frequency behavior13 were studied, in the context of dif
fusion in random-energy landscapes. In these systems
asymmetric bond conductance was introduced by mean
site disorder. There, the fundamental idea is the use of
detailed balance condition to transform the algebra of as
metric transition rates into symmetric ones.

It is possible to understand EMA considering two ba
steps. First, replacing the disordered medium by a sys
with unknowneffectivetransition ratesWe, with the excep-
tion of just one impurity between sitesa andb, for which the
0163-1829/2002/65~16!/165205~8!/$20.00 65 1652
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transition rate takes the valuev with the probability distri-
bution function~PDF! P(v). Second, EMA imposes that th
impurity Green function,Gi5@u12H i #21, averaged over
the PDFP(v), must be equal to the ordered Green functi
corresponding to the effective medium,G05@u12H0(We)#,
whereH i5H01V . HereH0 is the transition-rate matrix o
the ordered medium with effective transition ratesWe, H i is
the transition rate matrix of a system composed of one
purity embedded in an ordered medium, andV is an auxil-
iary transition-rate matrix that contains the information
the introduced impurity. This condition establishes that
average fluctuations of the probability flux, passing throu
the bond connecting sitesa50 and b5ê, must vanish with
respect to the effective medium that contains it.1 Then, work-
ing out the self-consistent condition, a simple express
may be derived,

K ~We2v!

112~We2v!~G1
02G0

0!
L

P(v)

50, ~1!

where ^•••&P(v) denotes average over the PDFP(v).
Here,G1

0[G(0,ê)
0 andG0

0[G(0,0)
0 are related to the probabili

ties of moving from the origin to one of its nearest neighbo
and the return probability, respectively. From this conditi
the effective transition rateWe is obtained as a function o
the Laplace variableu for a given disordered model, chara
terized by the PDFP(v). This is the general frequency
dependent EMA for isotropic symmetric disordered syste
~Laplace variable and frequency are used in an equiva
form due to their proportionality relationu52p f .)

The aim of the present paper is to present a generaliza
of EMA to the case of asymmetric transition rates in an a
isotropicD-dimensional system. Our approach allows to o
tain a set of 2D frequency-dependent effective transitio
rates in a self-consistent way. We remark that this schem
a general approach; the crucial point is to be able to so
this set of 2D coupled equations. In this paper we show th
after making a simplifying assumption about the nature
the disorder, the mathematical problem is reduced con
©2002 The American Physical Society05-1
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erably. Particularly this assumption is what we call thesepa-
rablelike ansatz to be able to solve the set of 2D equations.
In this context, in the present paper, two examples are
plicitly worked out. The more complex situation when th
separablelike ansatz cannot be used, as in thedrift/no-drift
transition,14 is in progress and will be reported in future com
munications.

The outline of the paper is as follows. In Sec. II the ge
eral formalism of the asymmetric EMA is presented. In S
III the case of biased diffusion on both anisotropic perco
tive systems and a 2-dimensional binary-mixture model
treated; next our results are compared to Monte Carlo si
lations. Concluding remarks are presented in Sec. IV. T
Appendixes are devoted to some mathematical features.

II. ASYMMETRIC EMA

A. General formalism

In this section, we present the most general anisotro
asymmetric EMA formalism for diffusion on disordered la
tices. This formalism is very general in the sense that it
corporates new features on the problem and contains p
ous EMA’s with asymmetric transition rates.

Consider the master equation~ME! representing a random
walk ~RW! on aD-dimensional hypercubic lattice

Ṗ5HP. ~2!

Here,P is the probability matrix whose elements are

Pr ,r8~ t ![^r uP~ t !ur 8&5P~r ,tur 8,0!, ~3!

with P(r ,tur 8,0) being the conditional probability of finding
the particle at siter at timet, given that it initially was at site
r 8. The elements of the transition rate matrixH are

Hr ,r8[^r uHur 8&5Wr ,r82d r ,r8(
r9

Wr9,r , ~4!

whereWr ,r8 is the hopping transition rate from siter 8 to site
r . In the following we only consider nearest-neighbor tran
tion rates. For the symmetric ordered caseWr ,r85W andH
5H(W). The formal solution of the ME~2! in the Laplace
representation~i.e., t→u) is

P̃~u!5@u12H#21[G~u!. ~5!

Here,G(u) denotes the Green function of the RW opera
H, and1 is an identity matrix with the same dimension asH.
We shall refer to the ordered case by using the ‘‘0’’ sup
script, i.e.,H0 andG0(u).
16520
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An anisotropic asymmetric ordered system may be
fined with the nearest-neighbor transition rates given by

Wr1s,r5H Aa if s5êa

Ba if s52êa

0, if sÞ6êa ,

~6!

where êa is a unit vector on thea axis (a51,2, . . . ,D).
This means that, in eacha axis, the transition rates in th
positive and negative directions areAa andBa , respectively.

It is possible to write the Green functionsGr ,r8
0 (u) corre-

sponding to the asymmetric ordered case in terms of
Green functionQ̃r ,r8

0 (u) of the symmetric ordered case~see
Appendix A!,

Gr ,r8
0

~u!5 )
a51

D S Aa

Ba
D (ra82ra)/2

Q̃r ,r8
0 S u1 (

a51

D

saD , ~7!

wheresa5Aa1Ba22AAaBa.
An anisotropic asymmetric disordered lattice is built

by associating each bond of the lattice with a pair of iden
cally distributed random transition rates (v1 ,v2). Now, let
us consider an impurity on thea axis, embedded in an ef
fective medium with 2D effective transition rates$W6a

e %
~two for each axis, one for each direction!. The impurity
transition rates are (v1a ,v2a), characterized by a join
PDF Fa(v1a ,v2a). The impurity transition matrix is now
H i5H01V, with

H05(
r ,a

ur &Aa^r2êau1ur &Ba^r1êau2ur &~Aa1Ba!^r u,

~8!

and

V5ua&g1a^au1ua&g2a^bu1ub&g3a^au1ub&g4a^bu. ~9!

Without loss of generality, we seta50 andb5êa . The co-
efficientsg ia are defined by

g1a52g3a5~Aa2v1a!,

g4a52g2a5~Ba2v2a!. ~10!

As in the ordered case, there are two impurity Gree
functions for thea axis, one for each direction. In terms o
the ordered Green functions, we obtain for the transition0
→êa
G1a
i ~u!5

G1a
0 1~Aa2v1a!@G1a

0 GÀa
0 2~G0

0!2#

11~Ba2v2a!~G1a
0 2G0

0!1~Aa2v1a!~G2a
0 2G0

0!
, ~11!

and for the transitionêa→0
5-2
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G2a
i ~u!5

G2a
0 1~Ba2v2a!@G2a

0 G1a
0 2~G0

0!2#

11~Aa2v1a!~G2a
0 2G0

0!1~Ba2v2a!~G1a
0 2G0

0!
. ~12!

G1a
0 (u) andG2a

0 (u) refer to transitions from the origin to its nearest neighbors on either the positive or negative direc
the a axis, andG0

0(u) is related to the return probability.
The situation considered above corresponds to just one impurity on thea axis. To take anisotropy into account, all possib

axes where the impurity can be placed must be considered. Following the procedure in Ref. 8, the impurity Green f
for each axis must be averaged over the disorder, and equaled it to the ordered ones. Then, a set of 2D self-consistent
conditions, i.e., two for each axis, are obtained, which have the form

K ~W1a
e 2v1a!G0

02~W2a
e 2v2a!G1a

0

11~W1a
e 2v1a!~G2a

0 2G0
0!1~W2a

e 2v2a!~G1a
0 2G0

0!
L

Fa(v1a ,v2a)

50, ~13!

K ~W2a
e 2v2a!G0

02~W1a
e 2v1a!G2a

0

11~W1a
e 2v1a!~G2a

0 2G0
0!1~W2a

e 2v2a!~G1a
0 2G0

0!
L

Fa(v1a ,v2a)

50. ~14!
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with a51,2, . . . ,D.
The model of disorder has to be specified by givi

Fa(v1a ,v2a), and then this set of 2D self-consistent con-
ditions must be solved in order to obtain the frequen
dependent effective transition rates$W6a

e %.
If the transition rates of the model are symmetric in

directions, thenv1a5v2a , W1a
e 5W2a

e , andG1a
0 5G2a

0 .
It is thus clear that the two conditions for each direction
equivalent and the anisotropic symmetric case is recover8

Obviously, there are cases where the transition rates
asymmetric on some axis, but symmetric in others. In s
cases, the equations corresponding to the symmetric tra
tion rates collapse and the number of total equations, as
as the effective transition rates to be determined, are redu

B. Separablelike model

As a special case a system may be considered in w
the set of random variables, corresponding to asymme
bonds, can be written as

v6a5vaaa
61 . ~15!

Here, theaa
61 factor is not necessarily an exponential fun

tion ~Arrhenius’s factor! of the external field, as when con
sidering a Boltzmann factor due to the action of some e
tric field. Moreover, bothva and aa

61 may be functions of
the parameters related to the asymmetry of the system. W
these transformations, the asymmetric character of the
tem is preserved, but the self-consistent problem is subs
tially simplified.

Then, it is necessary to transform the set of joint PD
Fa(v1a ,v2a) into a new set of PDF’sPa(va) that de-
scribe the same asymmetric model via the transformatio
variables~15!. By considering the marginal distributions

f 1a~v1a!5E Fa~v1a ,v2a!dv2a ,
16520
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f 2a~v2a!5E Fa~v1a ,v2a!dv1a , ~16!

the existence ofPa(va) is ensured if the condition

f 2a~vaaa
21!5aa

2 f 1a~vaaa! ~17!

holds. Then, we have

Pa~va!5aa f 1a~vaaa!. ~18!

Considering Eq.~15! it may be assumed that the effectiv
transition rates also undergo a similar transformation, i.e

W6a
e 5Wa

eaa
61 . ~19!

It seems natural,a priori, to take this transformation as co
rect. However sinceW1a

e ÞW2a
e , it would imply that the

asymptotic mean velocity has a nonzero value for asymm
ric models, this, in general, is not always the case~see Sec.
III !.

With these considerations and from Eqs.~13! and~14!, we
arrive at a set ofD self-consistent equations for the$Wa

e%
unknown rates, representing the anisotropic asymmetric
tem

K ~Wa
e2va!

11~Wa
e2va!Ma~u!

L
Pa(va)

50, ~20!

with

Ma~u!5aa
21G1a

0 1aaG2a
0 2~aa1aa

21!G0
0 . ~21!

Example. Let us now consider the isotropic 2-dimension
case in the limitu50, where we get the propertyaa5a, i.e.,
independent of the axis direction. This property may phy
cally be induced by an external field oriented along the m
diagonal of a square lattice. In this case, the set of equat
~20! reduce to only one self-consistent condition, i.e., o
effective transition rateWe . From Eqs.~7! and ~A8!, it can
5-3
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be seen that in the limitu50,Ma(u50)5(22We)21. From
this fact, the self-consistent condition reads

K We2v

We1v
L

P(v)

50. ~22!

This coincides with the earlier result for the symmet
random-resistor network.1 Thus, under condition~19!, the
effective transition ratesW6

e , in the long-time limit, can eas
ily be obtained by solving the well-known symmetric cond
tion ~22! and multiplying the result by the factora61, which
of course will depend on the specific asymmetric isotro
model.

Conjecture. At zero frequency and for the anisotrop
2-dimensional case we can still use the same ideas invo
in getting Eq.~22!; i.e., we solve theW1(2)

e as in the sym-
metric anisotropic EMA problem,6–8 then the solution of the
asymmetric anisotropic problem is obtained as

W61
e 5W1

ea1
61 , ~23!

W62
e 5W2

ea2
61 ,

where W1(2)
e are given by the solution of the set of se

consistent conditions given in Ref. 8. By performing a ser
expansion foru50 in the Green functions~A7! the set of
equations is

K W1
e2v1

122~W1
e2v1!~pW1

e!21arctanAW1
e~W2

e!21L
P1(v1)

50,

~24!

K W2
e2v2

122~W2
e2v2!~pW2

e!21arctanAW2
e~W1

e!21L
P2(v2)

50.

Since in deriving the condition~22! the explicit function-
ality of the Green functions was used, it is not simple
derive this condition for more dimensions or in anisotrop
conditions. That is why we made the previous conjecture
dimension. In the following sections, this conjecture
tested.

Note that from the present formalism the 1-dimensio
case worked out in Ref. 9 may be recovered. Also, the mo
for conductivity of a charged particle on a percolation s
tem, under the action of an external uniform electric fie
treated by Yu and Orbach in Ref. 11, may be recovered a
special case of the present asymmetric EMA. For details
Appendix B.

III. BIASED DIFFUSION ON DILUTED NETWORKS

A. Anisotropic percolation network

Let us consider the model introduced in Ref. 14 to d
scribe biased diffusion on anisotropic percolation syste
The anisotropy is introduced by considering bond perco
tion on the square lattice with different occupation probab
ties on each axis. Thus, in axis 1 the bond conductanceG1
16520
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take the valueS1 with probability p1, and zero otherwise
~analogously for axis 2!. This situation may be represente
by a pair of distribution functions,

P1~G1!5p1d~G12S1!1~12p1!d~G1!, ~25!

and

P2~G2!5p2d~G22S2!1~12p2!d~G2!. ~26!

The conductivity properties of such a system, in the c
p251, were studied with the anisotropic EMA in Ref. 8.

Now a bias fieldB is switched on, with 0<B,1. The
direction of the bias is selected along the main-diagonal
rection, exploring the symmetry properties of the mode14

This bias acts on the system in such way that the transi
rates increase by a factor (11B) in the direction of the bias,
and decrease by a factor (12B) in the opposite direction.
Then, each bond is characterized by two random cond
tances, represented by a set of joint PDF’s,

F1~v11 ,v21!5p1d~v112s11!d~v212s21!

1~12p1!d~v11!d~v21!, ~27!

and

F2~v12 ,v22!5p2d~v122s12!d~v222s22!

1~12p2!d~v12!d~v22!, ~28!

with s61(2)5S1(2)(16B).
For this biased anisotropic model, condition~17! is ful-

filled by considering for alla

aa5a5A11B

12B
. ~29!

Thus, we can use transformation~15! to reduce the problem
Then, the new set of PDF’s, according to Eq.~18!, is

P1~v1!5p1d~v12s1!1~12p1!d~v1!, ~30!

and

P2~v2!5p2d~v22s2!1~12p2!d~v2!, ~31!

with s1(2)5S1(2)A12B2.
We shall also assume the related transformation for ef

tive transition rates~19! with the use of Eq.~29!. Based on
the conjecture of the preceding section we can use th
ideas to work out the present asymmetric anisotropic pe
lation model. The first step is to solve the symmetric ani
tropic case, i.e., to findW1(2)

e . Then, the solution for the
asymmetric problem is obtained by multiplying it by the fa
tor a1(2)

61 , as in Eq.~23!.
By using the PDF’s~30! and ~31! in the self-consistent

conditions, Eq.~24!, we get the following set of equation
for the effective transition ratesW1(2)

e :

p1s12W1
e5

2

p
~s12W1

e!arctanSAW1
e

W2
eD , ~32!
5-4



s
te

on
-

s
tic

e
ci
-
e
v
e
d

o
d

ted
nte
ad

ion
the
ot

the

on
ds

o-

ion
the

-

is

rlo
ons

nc-

ic
pi

p
-

ffe

EFFECTIVE-MEDIUM APPROXIMATION WITH . . . PHYSICAL REVIEW B65 165205
p2s22W2
e5

2

p
~s22W2

e!arctanSAW2
e

W1
eD .

Now, by settingS15S25 1
4 , and using effective velocities a

the unknown variables, instead of effective transition ra
in the set of equations~32!, i.e., v1(2)

e (t→`)5W1(2)
e (a

2a21), the self-consistent anisotropic conditions result in

p1B22v1
e5

2

p
~B22v1

e!arctanSAv1
e

v2
eD , ~33!

p2B22v2
e5

2

p
~B22v2

e!arctanSAv2
e

v1
eD .

Note that for the isotropic case, the self-consistent conditi
~24! take the form~22!, therefore, the solution for the asym
metric problem is reduced to

W6
e 5~2p21!~16B!S.

In order to test our result~33! we performed Monte Carlo
simulations. The details of these simulations were discus
in Ref. 14. Random walks were performed on a square lat
for several disorder parametersp1 andp2. The mean velocity
was averaged over 10 walks on 1000 lattices, each on
3003300 sites. Figure 1 shows the asymptotic mean velo
against the applied biasB, for both the isotropic and aniso
tropic cases. The curves of mean velocity against bias fi
show nonmonotonic behavior. For small bias, the mean
locity shows a linear increase with increasing bias, as
pected. The curves then reach a maximum value before
creasing to zero for a critical bias valueBc,1 ~drift/no-drift
transition!. This behavior can be interpreted as the result
competing effects between bias and dead ends generate
the disorder~see Refs. 14,15!.

FIG. 1. Velocity against the external field for the anisotrop
bond percolation model in a two-dimensional lattice. The isotro
casep15p250.9 and the anisotropic casep150.95,p250.85 are
shown. The velocity is measured in units of the lattice constant
unit of time ~diffusion attempts!. B is a dimensionless bias param
eter. Each curve has been rescaled in order to highlight the di
ence between them.
16520
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As can be seen in Fig. 1, the asymmetric EMA, restric
to separablelike models, is in good agreement with Mo
Carlo simulations for small bias, where the effects of de
ends are negligible.

We remark that due to the assumption of transformat
~19! we expect that this approximation does not describe
drift/no-drift transition, because a zero mean velocity is n
allowed except in the unbiased limitB50. However, we
expect that by using the fundamental Eqs.~13! and~14!, i.e.,
without using a separablelike ansatz, we could describe
drift/no-drift transition around the criticalBc point, in the
EMA context.

B. Binary mixture

Let us now consider an isotropic binary-mixture model
a square lattice. In this model there exist two kinds of bon
A and B. The conductivities areSA and SB , respectively,
and they are distributed according to

P~G!5pd~G2SA!1~12p!d~G2SB!, ~34!

and we setSA>SB .
A bias fieldB is switched on, as in the anisotropic perc

lation model discussed in the preceding section, with 0<B
,1. Again the bias is selected in the main-diagonal direct
of the square lattice. Then, each bond is characterized by
joint PDF

F~v1 ,v2!5pd~v12sA1!d~v22sA2!

1~12p!d~v12sB1!d~v22sB2!,

~35!

with sA(B)65SA(B)(16B).
Once again we use transformation~15!, condition~17! is

fulfilled by considering relation~29!, and the new random
variablev is distributed according to

P~v!5pd~v2sA!1~12p!d~v2sB!, ~36!

with sA(B)5SA(B)A12B2.
Therefore, for the long-time limit, the solution of the sym

metric EMA ~Ref. 1! with the PDF ~36! may be used to
obtain the effective transition rateWe. Then, the asymptotic
mean velocity is obtained by multiplying thisWe by the
factor (a2a21). The result is

ve52BF ~SA2SB!S p2
1

2D
1A~SA2SB!2S p2

1

2D 2

1SASBG . ~37!

Once again, the dependence on the biasB is linear, but the
dependence on the disorder parameterp is not; except in the
caseSB50 where the isotropic biased percolative model
recovered, i.e.,ve52B(2p21)SA .

In order to test our asymmetric EMA results, Monte Ca
simulations were performed. The details of these simulati
are the same as in the percolative case.14 In Fig. 2 the depen-
dence of the asymptotic mean velocity is plotted as a fu

c

er

r-
5-5
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BUSTINGORRY, CÁCERES, AND REYES PHYSICAL REVIEW B65 165205
tion of the biasB. In Fig. 3 we show the curves of th
asymptotic mean velocity as a function ofp.

It can be seen that the asymmetric EMA, with ansatz~19!,
is in good agreement with the Monte Carlo simulations

FIG. 2. Velocity against the external fieldB for the binary-
mixture model. The bond concentration is fixed to~a! p50.2, and
~b! p50.8. As indicated in each graphic, different values ofSB are
presented for the same valueSA50.25. The units are the same as
Fig. 1.

FIG. 3. Velocity against the bond concentrationp for the binary
mixture model. The external bias field is fixed at~a! B50.2 and~b!
B50.8. As indicated in each graphic, different values ofSB are
presented for the same valueSA50.25. The units are the same as
Fig. 1.
16520
-

cept in the region of high disorderp and high biasB. This
discrepancy increases as the strength of the conductanceSB
decreases. In this case the Monte Carlo data of the m
velocity against the bias field curve shows nonmonoto
behavior, as in the percolation model, see Fig. 2~b!. Even
when Figs. 2 and 3 show good agreement with the numer
experiments; the unfortunate fact, shown in Fig. 3, is
discrepancy between Monte Carlo data and the asymm
EMA for high biasB. Note that in the limitp→1 ~the or-
dered case! the agreement is restored.

IV. CONCLUDING REMARKS

In this paper we have presented a general approach
tackling the problem of transport on asymmetric anisotro
disordered media. Particular emphasis has been done
separablelike solutions~including the Arrhenius models!,
therefore, by using a suitable transformation of random v
ables the asymmetric problem is reduced to the symme
one. We have remarked that such models are not the m
general possible, but still many interesting systems can b
this type. On the other hand we have shown that by assum
the ansatz of a separable effective rates solution,W6a

e

5Wa
eaa

61 , we can obtain a very good fit against Mon
Carlo simulations, in the small bias limit. This fact restric
the utility of EMA to the small bias region of the drif
phase.14,15

We remark that our scheme of asymmetric anisotro
EMA is a general approach; the main difficulty is to solvin
the set of 2D self-consistent equations for the effective rat
W6a

e (u). By introducing the separablelike ansatz the ma
ematical problem is reduced considerably. In the present
per we have worked out two separable models of disor
~see Sec. III!. From our general point of view, Eqs.~ 13! and
~14!, we hope that using a singular perturbation theo
around the criticalBc point, our approach opens the poss
bility to study the more complex situation, as thedrift/no-
drift transition;14 work on this direction is currently unde
investigation.
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APPENDIX A: THE GREEN FUNCTIONS

Consider the ME~2! and the ordered transition rates d
fined by Eq.~6!. The ME explicitly reads

] tPr ,r8~ t !5 (
a51

D

@AaPr2êa ,r8~ t !1BaPr1êa ,r8~ t !#

2Pr ,r8~ t ! (
a51

D

~Aa1Ba!. ~A1!
5-6
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Now use the following transformationPr ,r8(t)→Qr ,r8(t):

Pr ,r8~ t !5Qr ,r8~ t !expF2 (
a51

D

~Aa1Ba

22AAaBa!tG )
a51

D S Aa

Ba
D ra/2

, ~A2!

wherera is thea coordinate of the positionr . The Laplace
transforms of the probabilities functionsPr ,r8(t) andQr ,r8(t)
are related by

Gr ,r8
0

~u![P̃r ,r8~u!5 )
a51

D S Aa

Ba
D (ra2ra8 )/2

Q̃r ,r8
0 S u1 (

a51

D

saD ,

~A3!

with sa5Aa1Ba22AAaBa.
By introducing expression~A2! and its time derivative in

Eq. ~A1! we obtain a ME for the probability function
Qr ,r8(t),

] tQr ,r8~ t !5 (
a51

D

$AAaBa@Qr2êa ,r8~ t !1Qr1êa ,r8~ t !#%

22Qr ,r8~ t ! (
a51

D

AAaBa. ~A4!

In this way the asymmetric ME is transformed into a sy
metric one.

The Green function for the ordered symmet
1-dimensional case is given by

Q̃n,0
0 ~u!5~2AAB! unu~u214AAB u!2 1/2@u12AAB

1~u214AAB u!1/2#2unu, ~A5!

wheren is the site index. Introducing this function into ex
pression~A3!, the ordered asymmetric 1-dimensional Gre
functions is obtained. In theu50 case we get

G0
0~u50!5uA2Bu21,

G1
0 ~u50!52AuA2Bu21~A1B1uA2Bu!21, ~A6!

G2
0 ~u50!52BuA2Bu21~A1B1uA2Bu!21.

The elementsQ̃0
0(u) andQ̃1a

0 (u), that we need from the
2-dimensional ordered anisotropic symmetric Green fu
tions are8

Q̃0
0~u!5

Ar1r2

2pAXY
K~Ar1r2!,

Q̃11
0 ~u!5

Ar1r2

pAXY
F S 1

2
1

1

r1
DK~Ar1r2!

2S 11
1

r1
DP~r1 ,Ar1r2!G , ~A7!
16520
-

n

-

Q̃12
0 ~u!5

Ar1r2

pAXY
F S 1

2
1

1

r2
DK~Ar1r2!

2S 11
1

r2
DP~r2 ,Ar1r2!G ,

whereK(k) and)(r,k) are elliptic integrals of the first and
third kind. Here, the following definitions were used:r1

54Y/(u14X), r254X/(u14Y), X5AA1B1, and Y
5AA2B2. Taking A15A2 andB15B2, the isotropic case is
recovered asX5Y; so the required elements of the Gre
functions, for the isotropic case, are given by:

Q̃0
0~u!5

2

p~u14X!
KS 4X

u14XD , ~A8!

Q̃1
0 ~u!5

1

2pX
KS 4X

u14XD2
1

4X
,

whereX must be taken as the ordered transition rate.

APPENDIX B: ASYMMETRIC TRANSITIONS RATES
REVISITED

1. One-dimensional case

In this case the disorder is characterized by means of
joint PDF F(v1 ,v2) for the pair of identically distributed
random variables (Wn11,n ,Wn,n11), n being the site index.
As expected, only two effective transition rates are found
the effective medium, one for each direction. Then, wh
considering one-dimensional systems, only one pair of eq
tions is obtained.

In the zero frequency limitu50 ~long-time regime!, the
one-dimensional ordered Green functions depend on
modulusuW1

e 2W2
e u @see Eqs.~A6!#. As a consequence, th

solution of the self-consistent conditions strongly depends
the relative values of the effective transition rates, i.e.,
W1

e .W2
e or W1

e ,W2
e . By using Eqs.~A6! in Eqs.~13! and

~14! with a51, the solution may be expressed in terms
the asymptotic mean velocityve(t→`)5W1

e 2W2
e ; and the

final result is

ve~ t→`!

55 S 12 K v2

v1
L D K 1

v1
L 21

if K v2

v1
L 5

W2
e

W1
e

,1

2S 12 K v1

v2
L D K 1

v2
L 21

if K v1

v2
L 5

W1
e

W2
e

,1.

~B1!

This one-dimensional zero-frequency result was ori
nally presented by Bernasconi and Schneider.9 We remark
that the asymmetric one-dimensional EMA does not pred
any result for the case when̂v2 /v1&.1 and ^v1 /v2&
.1 ~see Ref. 9!.
5-7
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BUSTINGORRY, CÁCERES, AND REYES PHYSICAL REVIEW B65 165205
2. Uniform electric field

Consider aD-dimensional isotropic symmetric system.
has independent and identically distributed random transi
ratesv, with a PDFP(v). Consider a charged particle mov
ing in this system. Now assume that an external unifo
electric fieldE0 is switched on, such that the transition rate
corresponding to one bond, becomev65vaa

61 , with aa
61

5exp(7êa•V0). HereV05eE0 /kT anda51,2, . . . ,D. The
term aa

61 takes into account all possible directions of t
electric fieldE0.

Under the condition~15!, an equivalent system may b
considered, characterized by the pairs of transition ra
(v1a ,v2a). These transition rates obey a joint PD
Fa(v1a ,v2a), related toP(v) by

Fa~v1a ,v2a!5^d~v12vaa!d~v22vaa
21!&P(v) .

~B2!
.

c

16520
n

,

s

In principle, the medium has 2D effective transition rates
due to the introduced asymmetry. Under the condition
the effective transition rates obeyW6a

e 5Wa
eaa

6 , the number
of unknown rates is reduced toD. Then, from Eqs.~13! and
~14!, the following set ofD self-consistent conditions is ob
tained:

K ~Wa
e2v!

11~Wa
e2v!Ma~u!

L
P(v)

50, ~B3!

with Ma(u) given by Eq.~21!. This is the same result pre
sented by Yu and Orbach in Ref. 11. Note that if the effec
transition rates had not been supposed to fulfill the prop
W6a

e 5Wa
eaa

61 , we would not have arrived at a set
D self-consistent equations. Indeed, this condition would
ply the existence of a nonzero asymptotic mean velocity
causeW1a

e ÞW2a
e for all a.
s.
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