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An effective-medium approximation considering asymmetric transition rates is presented for a
D-dimensional anisotropic random walk. Our approach allows to obtain a sebdfrejuency-dependent
effective transition rates in a self-consistent way. Even when these coupled equations could look unwielding,
we have been able to work out some particular cases, i.e., using a separablelike ansatz the asymmetric
effective-medium approximation is shown to be reduced, under a transformation of variables, to the study of
the symmetric case. Within this basic formalism, a biased diffusion problem in an anisotropic two-dimensional
percolation model is analyzed. The asymmetric effective-medium approximation is finally compared against
Monte Carlo simulations, and a good agreement is found for small bias values.
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I. INTRODUCTION transition rate takes the value with the probability distri-
bution function(PDP P(w). Second, EMA imposes that the
Transport properties of disordered systems is a field ofmpurity Green function,G'=[ul—H']"!, averaged over
continuous research. It has many applications in the area d¢ife PDFP(w), must be equal to the ordered Green function
natural science, e.g., physics, chemistry, and biology. Suchorresponding to the effective mediu@%=[ul—H(W*®)],
applications include transport in porous and fractured mediayhereH'=H°+V . HereH? is the transition-rate matrix of
diffusion in catalytic processes and hopping conduction irthe ordered medium with effective transition raw$, H' is
amorphous solids, among others. Most of the natural systenibe transition rate matrix of a system composed of one im-
in which diffusion occurs are, in fact, disordered systemspurity embedded in an ordered medium, ahds an auxil-
and it is necessary to develop new ways to describe transpaorry transition-rate matrix that contains the information of
phenomena. In such systems, usual techniques includge introduced impurity. This condition establishes that the
Monte Carlo or molecular-dynamic simulations, renormal-average fluctuations of the probability flux, passing through
ization group, continuous-time random walks, and effectivethe bond connecting sites=0 and b=e, must vanish with
medium approximationEMA). Moreover, each technique respect to the effective medium that containsThen, work-
has several generalizations. ing out the self-consistent condition, a simple expression
The effective-medium theory was first considered, in dif-may be derived,
fusion problems, by Kirkpatrickwho applied it to the study
of random-resistor networks, but it was only in the early 80’s (We— )
that the formulation got a generalization to the frequency- o o =0, @
dependent behaviér® 1+2(We=)(G1=Go) [ 1,
The extension of EMA to anisotropic systems was first
studied, in the context of Kirkpatrick's formalism, in the Where (- ’>g)’(w) denotes average over the PDF(w).
long-time regime on square latticdlext, the theory was Here,G{=G, 5 andGo= G, are related to the probabili-
generalized to other latticésand recently the frequency- ties of moving from the origin to one of its nearest neighbors
dependent behavior was developed. and the return probability, respectively. From this condition
The earlier extension of EMA to asymmetric transitionsthe effective transition rat®/° is obtained as a function of
rates, between pairs of sites, includes the one-dimensionéte Laplace variable for a given disordered model, charac-
formalism?*°and asymmetric transitions induced by switch- terized by the PDFP(w). This is the general frequency-
ing on a uniform electric field in an originally three- dependent EMA for isotropic symmetric disordered systems
dimensional symmetric systethMore recently, long-tim&¥  (Laplace variable and frequency are used in an equivalent
and frequency behavibtwere studied, in the context of dif- form due to their proportionality relation=2f.)
fusion in random-energy landscapes. In these systems the The aim of the present paper is to present a generalization
asymmetric bond conductance was introduced by means aff EMA to the case of asymmetric transition rates in an an-
site disorder. There, the fundamental idea is the use of thisotropic D-dimensional system. Our approach allows to ob-
detailed balance condition to transform the algebra of asyntain a set of ® frequency-dependent effective transition
metric transition rates into symmetric ones. rates in a self-consistent way. We remark that this scheme is
It is possible to understand EMA considering two basica general approach; the crucial point is to be able to solve
steps. First, replacing the disordered medium by a systenhis set of D coupled equations. In this paper we show that
with unknowneffectivetransition rates\V®, with the excep- after making a simplifying assumption about the nature of
tion of just one impurity between sitesandb, for which the  the disorder, the mathematical problem is reduced consid-
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erably. Particularly this assumption is what we call Hepa-
rablelike ansatz to be able to solve the set @ 2quations.
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An anisotropic asymmetric ordered system may be de-
fined with the nearest-neighbor transition rates given by

In this context, in the present paper, two examples are ex-

plicitly worked out. The more complex situation when the

separablelike ansatz cannot be used, as indtifédno-drift
transition*
munications.

The outline of the paper is as follows. In Sec. Il the gen-
eral formalism of the asymmetric EMA is presented. In Secwheree is a unit vector on thex axis (¢=1,2,.

is in progress and will be reported in future com-

. if s=¢,
W g=1 B if s=—¢, (6)
0, if stxe,,
.. D).

[l the case of biased diffusion on both anisotropic percola-This means that, in each axis, the transition rates in the
tive systems and a 2-dimensional binary-mixture model argositive and negative directions akg andB,,, respectively
treated; next our results are compared to Monte Carlo simu- |t is possible to write the Green funcUoﬁZ@ ,(u) corre-
lations. Concluding remarks are presented in Sec. IV. Thgponding to the asymmetric ordered case in terms of the

Appendixes are devoted to some mathematical features.

Il. ASYMMETRIC EMA

A. General formalism

In this section, we present the most general anisotropic
asymmetric EMA formalism for diffusion on disordered lat-
tices. This formalism is very general in the sense that it in-
corporates new features on the problem and contains prevY‘—’

ous EMA's with asymmetric transition rates.
Consider the master equati@dE) representing a random
walk (RW) on aD-dimensional hypercubic lattice

P=HP. (2)

Here,P is the probability matrix whose elements are

Pe o (D=(r[P()[r")=P(r,t[r",0), )

with P(r,t|r’,0) being the conditional probability of finding

the particle at site at timet, given that it initially was at site
r'. The elements of the transition rate matkixare

Hr,r’E<r|H|r,>:Wr,r’_5r,r’2 Wr”,ri (4)
r”

whereW, ., is the hopping transition rate from site to site

r. In the following we only consider nearest-neighbor transi-

tion rates. For the symmetric ordered ca&¥g,, =W andH
=H(W). The formal solution of the ME2) in the Laplace
representatioti.e., t—u) is

P(u)=[ul—-H] '=G(u). (5)

Here,G(u) denotes the Green function of the RW operator

H, and1 is an identity matrix with the same dimensiontds

Green functlonQr'r,(u) of the symmetric ordered cagsee

Appendix A),

0 D A, (r,—r )/2
Gr,r'(u):al;[l (Ba) rr’

heres,=A,+B,—2VA,B,.

An anisotropic asymmetric disordered lattice is built up
by associating each bond of the lattice with a pair of identi-
cally distributed random transition rates ( ,w_). Now, let
us consider an impurity on the axis, embedded in an ef-
fective medium with D effective transition rategWe }
(two for each axis, one for each directjorThe impurity
transition rates aredf, ,,w_,), characterized by a joint
PDF F (w1 4,»_,). The impurity transition matrix is now
H'=HO+V, with

u+ 2 sa), (7)

HO= ) [I)ALr—&,|+[r)B(r+8&,] —[r)(A,+B)rl,
’ ()

and

V=1a) y1a(a + @) y24(b| + D) y3a(a| + D) y4a(b].
Without loss of generality, we s@t=0 andb=e,. The co-
efficients y,,, are defined by
o= (A

Yia= V3 a_w+a)l

«=(Bamw_g). (10

As in the ordered case, there are two impurity Green’s
functions for thea axis, one for each direction. In terms of

Yaa= — VY2

We shall refer to the ordered case by using the “0” super_the ordered Green functions, we obtain for the transifion

script, i.e.,H® and G°(u).

Gl (u)=

—€,
GY (A~ 0, )[G?,G2,—(G))?] an
1+ (B~ 0_ ) (G~ 0>+<Aa—w+a><e9a—eg>’

and for the transitiore,—0
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G(la_l—(Ba_wfa)[G(laG(la_(Gg)z]
1+ (A= 01 (G ,—GY) +(By—w_ ) (G} ,,—GY)

Gl (u)= (12
G° L(u) and G° ,(u) refer to transitions from the origin to its nearest neighbors on either the positive or negative direction in
the a axis, anng(u) is related to the return probability.

The situation considered above corresponds to just one impurity om éxés. To take anisotropy into account, all possible
axes where the impurity can be placed must be considered. Following the procedure in Ref. 8, the impurity Green functions
for each axis must be averaged over the disorder, and equaled it to the ordered ones. Then, ésstlét@nsistent
conditions, i.e., two for each axis, are obtained, which have the form

< (W2, —w, )G — (W ,—w_,)GY, > -0 (13
W, — 0 (62, (W (6L, -G/,
< (We ,—w_ )Gy — (W ,—w, )G, > -0 (14)
1+ (WS =01 ) (G ,—GH+(W° ,—w_,)(G?,—GY) Folw, g ) |

with a=1,2,...D.

The model of disorder has to be specified by giving f—a(w—a):f Foloig,0_p)do,, (16)
Folw,,,0_,), and then this set of 2 self-consistent con-
ditions must be solved in order to obtain the frequency-the existence oP.(w,) is ensured if the condition
dependent effective transition rata/s }. 12

If the transition rates of the m%géel }are symmetric in all foal@ad, )= a0t o) (17
directions, themw, ,=w_,, W8 =W _, andG} ,=G° ,.  holds. Then, we have
It is thus clear that the two conditions for each direction are
equivalent and the anisotropic symmetric case is recovered. Polwa)=a,f 4 o(@a84). (18

Obwously,_ there are cases where the. transition rates are Considering Eq(15) it may be assumed that the effective
asymmetric on some axis, but symmetric in others. In such

) : . transition rates also undergo a similar transformation, i.e.,
cases, the equations corresponding to the symmetric transi-

tion rates collapse and the number of total equations, as well W —Wea’l, (19)
as the effective transition rates to be determined, are reduced. o . _
It seems naturak priori, to take this transformation as cor-
B. Separablelike model rect. Hovyever smceNi.aa&\N‘ia, it would imply that the
asymptotic mean velocity has a nonzero value for asymmet-

As a special case a system may be considered in whichc models, this, in general, is not always the césme Sec.
the set of random variables, corresponding to asymmetrigy).

bonds, can be written as With these considerations and from E¢3) and(14), we
. arrive at a set oD self-consistent equations for tH&VS}
W= WA, (19 unknown rates, representing the anisotropic asymmetric sys-
Here, theajl factor is not necessarily an exponential func- em
tion (Arrhenius’s factoy of the external field, as when con- < (We—w,) >
sidering a Boltzmann factor due to the action of some elec- S =0, (20
tric field. Moreover, bothw, anda, ! may be functions of 1+ (Wo=0a)Ma(u) Polw,)
the parameters related to the asymmetry of the system. With.
these transformations, the asymmetric character of the sy¥\1'th
tem is preserved, but the self-consistent problem is substan- Ma(u)=aglGﬁa+aaG(la—(aavLa;l)Gg. 21)

tially simplified.

Then, it is necessary to transform the set of joint PDF's  Example Let us now consider the isotropic 2-dimensional
Folwiq,0-,) into a new set of PDF'SP,(w,) that de-  case in the limiu=0, where we get the property,=a, i.e.,
scribe the same asymmetric model via the transformation ofdependent of the axis direction. This property may physi-
variables(15). By considering the marginal distributions  cally be induced by an external field oriented along the main

diagonal of a square lattice. In this case, the set of equations
f (o ):f Flw,, o )do (20) reduce to only one self-consistent condition, i.e., one
talTta ATt ar ool HE effective transition rat&V® . From Egs.(7) and (A8), it can
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be seen that in the limit=0,M ,(u=0)=(—2W?®) ’. From take the valueX, with probability p,, and zero otherwise

this fact, the self-consistent condition reads (analogously for axis 2 This situation may be represented
by a pair of distribution functions,
We—w
< > =0. (22 Pi(I')=p16(I'1—21)+(1—py)&(I'y), (25
We+ w
Pw) and

This coincides with the earlier result for the symmetric
random-resistor network Thus, under conditior(19), the Po(I'2) =p8(I'—25) +(1—po) 8(I',). (26)

effective transition rate®/% , in the long-time limit, can eas-  ha conductivity properties of such a system, in the case
ily be obtained by solving the well-known symmetric condi- p,=1, were studied with the anisotropic EMA in Ref. 8.

tion (22) and multiplying the result by the factar-*, which "\, 4 bias fieldB is switched on, with &B<1. The
of course will depend on the specific asymmetric iSotropiCyirection of the bias is selected along the main-diagonal di-
model. rection, exploring the symmetry properties of the madel.

Conjecture At zero frequency and for the anisotropic rhis pias acts on the system in such way that the transition
2-dimensional case we can still use the same ideas involved ios increase by a factor {1B) in the direction of the bias
in getting Eq.(22); i.e., we solve_sthéN‘j(z) as in the sym-  4nq decrease by a factor £B) in the opposite direction.
metric anisotropic EMA problerfi. then the solution of the  Then each bond is characterized by two random conduc-
asymmetric anisotropic problem is obtained as tances, represented by a set of joint PDF’s

e _ +1
W2, =Wia; ™, 23 Firloip,w_1)=p1d(wi1—01) (w1~ 0_1)

$.=Wsay +(1=py) Swy1) dw_y), (27)

where W5, are given by the solution of the set of self- and
consistent conditions given in Ref. 8. By performing a series

expansion foru=0 in the Green function§A7) the set of Fo(@42,0 2)=P28(w12=012)8(0 2= 0 )
equations is +(1-p) 0,280 ), (29
< M—wl > 0 with O'iﬂ_](z)zzl(z()j(li B) ol g Oh?) .
_ = =0, For this biased anisotropic model, conditi is ful-
J— — l l L
1-2(Wi= wy) (W) ~"arctanyWi(Wp) Py (wy) filled by considering for alkx

(24)

[1+B
< Wg—wz > o a,=a= ﬁ (29
Po(ws)

1—2(W5— w,) (7W§) ~tarctanyW5(W5) ~* Thus, we can use transformati¢ib) to reduce the problem.

Then, the new set of PDF’s, according to E§8), is

Since in deriving the conditiof22) the explicit function-
ality of the Green functions was used, it is not simple to Pi(wy)=p1o(w;—01) +(1-p1)8(wy), (30)
derive this condition for more dimensions or in anisotropic nd
conditions. That is why we made the previous conjecture in ra
;jér;tgg'smn. In the following sections, this conjecture is Pol @) = Pad(@y— )+ (1= P3) S @), (31)

Note that from the present formalism the 1-dimensionalwith 01(2)=21(2)\/1—Bz.
case worked out in Ref. 9 may be recovered. Also, the model We shall also assume the related transformation for effec-
for conductivity of a charged particle on a percolation sys-tive transition rate€19) with the use of Eq(29). Based on
tem, under the action of an external uniform electric field,the conjecture of the preceding section we can use these
treated by Yu and Orbach in Ref. 11, may be recovered as adeas to work out the present asymmetric anisotropic perco-
special case of the present asymmetric EMA. For details selation model. The first step is to solve the symmetric aniso-

Appendix B. tropic case, i.e., to find\Vj,,. Then, the solution for the
asymmetric problem is obtained by multiplying it by the fac-
I1l. BIASED DIFFUSION ON DILUTED NETWORKS tor ali(lz), as in Eq.(23).

By using the PDF'S(30) and (31) in the self-consistent
conditions, Eq.(24), we get the following set of equations
Let us consider the model introduced in Ref. 14 to de-for the effective transition ratewi(z);

scribe biased diffusion on anisotropic percolation systems.

The anisotropy is introduced by considering bond percola- 2 '<
tion on the square lattice with different occupation probabili- pio;—Wi=—(o,—Wj)arcta
ties on each axis. Thus, in axis 1 the bond conductahges m

A. Anisotropic percolation network

) . (32

33
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T T T T T T As can be seen in Fig. 1, the asymmetric EMA, restricted

. (15v,=15v) p,=08.p, =09 ] to separablelike models, is in good agreement with Monte
vA "D S (@2v) p,=095,p,=085 - Carlo simulations for small bias, where the effects of dead
Lo v,) D‘=0.95,p2=0.8’5’/,<;" N ] ends are negligible.

We remark that due to the assumption of transformation
(19 we expect that this approximation does not describe the
. drift/no-drift transition, because a zero mean velocity is not
] allowed except in the unbiased lim@=0. However, we
expect that by using the fundamental E() and(14), i.e.,
without using a separablelike ansatz, we could describe the
1 drift/no-drift transition around the criticaB. point, in the
i EMA context.

10v,

108 B. Binary mixture

FIG. 1. Velocit inst th ternal field for th isotropi Let us now consider an isotropic binary-mixture model on
- 4. veloclty against the external field for the anisotropiC 4 ¢4 are |attice. In this model there exist two kinds of bonds

bond percolation model in a two-dimensional lattice. The isotropic A .
e : . - _ A and B. The conductivities ar&, 4, and Xz, respectively,
casep;=p,=0.9 and the anisotropic cagg=0.95p,=0.85 are gnd they are distributed according to

shown. The velocity is measured in units of the lattice constant pe

unit of time (diffusion attempts B is a dimensionless bias param- _ _ _ _
eter. Each curve has been rescaled in order to highlight the differ- AI)=pa(I =2+ (1=p) o' ~2p), (34
ence between them. and we sek ;=3 ;.
A bias fieldB is switched on, as in the anisotropic perco-
2 We lation model discussed in the preceding section, withB)
Poo,—Ws5=—(o,—W5)arcta — <1.Again the bias is selected in the main-diagonal direction
77 1 of the square lattice. Then, each bond is characterized by the

Now, by settings; =3.,= £, and using effective velocities as "t PDF

fche unknown varlablgs, mstea@ of eeffecnve transition rates, £y, w0 )=pd(w, -0 4 ) 8w — 04 )

in the set of equation$32), i.e., 01(2)(t_>oo):vv§(2)(a

—a1), the self-consistent anisotropic conditions result in +(1-p)S(w,—0p.)0w_—0opz),

(35
2 vy ,
plB—Zv‘fzg(B—Zvﬁ)arctar( \/:i) (33 with o g5+ =2 4 (1=B).

U2 Once again we use transformati@tb), condition(17) is
fulfilled by considering relatior(29), and the new random
2 v variable w is distributed according to
sz—2v§=;(B—2v§)arcta -

V1 Plw)=pdlo—04)+(1-p)élo—op), (36)

Note that for the isotropic case, the self-consistent conditiongiith o 5 =3 451~ BZ.
(24) take the form(22), therefore, the solution for the asym-  Therefore, for the long-time limit, the solution of the sym-

metric problem is reduced to metric EMA (Ref. 1) with the PDF(36) may be used to
obtain the effective transition rat&®. Then, the asymptotic
WS =(2p—1)(1+B)3. mean velocity is obtained by multiplying thi/® by the

factor @—a1). The result is
In order to test our resu(B3) we performed Monte Carlo

simulations. The details of these simulations were discussed

1
in Ref. 14. Random walks were performed on a square lattice v®=2B (EA—EB)( p— E)
for several disorder parametgrg andp,. The mean velocity
was averaged over 10 walks on 1000 lattices, each one of 1\2
300% 300 sites. Figure 1 shows the asymptotic mean velocity + \/(EA—EB)Z( P—3 +3 35 (37

against the applied biaB, for both the isotropic and aniso-
tropic cases. The curves of mean velocity against bias fiel®nce again, the dependence on the Iids linear, but the
show nonmonotonic behavior. For small bias, the mean vedependence on the disorder parameter not; except in the
locity shows a linear increase with increasing bias, as exeaseX ;=0 where the isotropic biased percolative model is
pected. The curves then reach a maximum value before deecovered, i.e.y®=2B(2p—1)3 4.

creasing to zero for a critical bias valeg<1 (drift/no-drift In order to test our asymmetric EMA results, Monte Carlo
transition. This behavior can be interpreted as the result osimulations were performed. The details of these simulations
competing effects between bias and dead ends generated &ge the same as in the percolative cide. Fig. 2 the depen-
the disorder(see Refs. 14,15 dence of the asymptotic mean velocity is plotted as a func-
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sf p=02:34-025 o
MC EMA
o —— 38=0.125
I S s =0.025 1
> T J— ¥s = 0.0025
2
1 -
_____ o0
A
ok BT - G 4 1
—
5t p=08;£a=025 1
MC EMA
sl o —— ss-0125 ]
e — £5=0.025
.- s = 0.0025 2
>of 0 —— meowm A
— 2 e ]
- o O
1 o
1 |
. ) L 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 10

108

FIG. 2. Velocity against the external field for the binary-
mixture model. The bond concentration is fixed(& p=0.2, and
(b) p=0.8. As indicated in each graphic, different valuesgfare
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cept in the region of high disordgr and high biasB. This
discrepancy increases as the strength of the conductances
decreases. In this case the Monte Carlo data of the mean
velocity against the bias field curve shows nonmonotonic
behavior, as in the percolation model, see Fih)2Even
when Figs. 2 and 3 show good agreement with the numerical
experiments; the unfortunate fact, shown in Fig. 3, is the
discrepancy between Monte Carlo data and the asymmetric
EMA for high biasB. Note that in the limitp— 1 (the or-
dered casethe agreement is restored.

IV. CONCLUDING REMARKS

In this paper we have presented a general approach for
tackling the problem of transport on asymmetric anisotropic
disordered media. Particular emphasis has been done on
separablelike solutiongincluding the Arrhenius models
therefore, by using a suitable transformation of random vari-
ables the asymmetric problem is reduced to the symmetric
one. We have remarked that such models are not the most
general possible, but still many interesting systems can be of
this type. On the other hand we have shown that by assuming
the ansatz of a separable effective rates solutif,,
=W§a§1, we can obtain a very good fit against Monte
Carlo simulations, in the small bias limit. This fact restricts

presented for the same vallig;=0.25. The units are the same as in the utility of EMA to the small bias region of the drift

Fig. 1.

phase*1®
We remark that our scheme of asymmetric anisotropic

tion of the biasB. In Fig. 3 we show the curves of the g\a js a general approach; the main difficulty is to solving

asymptotic mean velocity as a function of

It can be seen that the asymmetric EMA, with ansag},
is in good agreement with the Monte Carlo simulations ex

12 B=0.2;24=0.25 (@) 1
MC EMA
Or o —— s-0125 T
sl O ------ s = 0.025
s = 0.0025 -
> -G
2 6k ",/6 -
= e
4 008
- e
.o- Y
2tF o el 1
Onnnee o--- Fe} __,.—6"’
5| B=0.8;z4=025 (b)
MC EMA
4+ 0O — I5=0.125
o ------ Is=0.025
3f s = 0.0025 . E
- .
< . "/o'/
— ol e
L oY o i
Q----- o----Q I __,,.--“"/4 <
Y DD S " S i
1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

10p

FIG. 3. Velocity against the bond concentratipifor the binary
mixture model. The external bias field is fixed(at B=0.2 and(b)
B=0.8. As indicated in each graphic, different values3gf are
presented for the same valBig;=0.25. The units are the same as in

Fig. 1.

the set of D self-consistent equations for the effective rates
WS (u). By introducing the separablelike ansatz the math-
“‘ematical problem is reduced considerably. In the present pa-
per we have worked out two separable models of disorder
(see Sec. I). From our general point of view, Eg613) and
(14), we hope that using a singular perturbation theory
around the criticaB, point, our approach opens the possi-
bility to study the more complex situation, as tdsft/no-

drift transition* work on this direction is currently under
investigation.
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APPENDIX A: THE GREEN FUNCTIONS

Consider the ME?2) and the ordered transition rates de-
fined by Eq.(6). The ME explicitly reads

D
WP (0= 2 [APrs i1 (D+BaPris (D]

D
“Pro(0) 2 (AatBo). (A1)
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Now use the following transformatiol, ,(t) —Q; ,/(t):

D
Pr,r’(t) = Qr,r’(t)exr{ - 21 (A,+B,

D Aa ra/2
I1 (B—a : (A2)

—2JA,B )t

wherer , is the « coordinate of the position. The Laplace
transforms of the probabilities functiois . (t) andQ, ,/(t)
are related by

u+z S,

o 5 D A r)/2
G (=P (w=]I (B—)

(A3)
with s,=A,+B,—2VA,B,.

By introducing expressiofA2) and its time derivative in
Eq. (A1) we obtain a ME for the probability function

Qr,r’(t)v

D
Qe (0= 2 {VABLQ 5 r(D+Qr iz, (D]}

(Ad)

D
~2Q11() 2, VAB,.

In this way the asymmetric ME is transformed into a sym-

metric one.
The Green function for
1-dimensional case is given by

(2JAB)"(u2+4AB u)~ Yu+2AB
+(u2+4AB u)¥2 - Inl.

Qo (u)=
(A5)

the ordered symmetric

PHYSICAL REVIEW B65 165205

Vp1p2
e

1
+ —2 II(p2,\p1p2) |,

whereK (k) andIl(p,k) are elliptic integrals of the first and
third kind. Here, the following definitions were usegd;
=4Y[(u+4X), p,=4X/(u+4Y), X=A;B;, and Y
=+A,B,. TakingA;=A, andB;=B,, the isotropic case is
recovered aX=Y; so the required elements of the Green
functions, for the isotropic case, are given by:

632(“): )K(\/plp2

o 2 [ 4X as

ol =T ax ¥l o ax ) (A8)
B ( 4% 1

QU =5 K| gax) ~ ax’

whereX must be taken as the ordered transition rate.

APPENDIX B: ASYMMETRIC TRANSITIONS RATES
REVISITED

1. One-dimensional case

In this case the disorder is characterized by means of the

joint PDF Aw, ,w_) for the pair of identically distributed

random variablesW, . 1,, W, n+1), n being the site index.
As expected, only two effective transition rates are found for
the effective medium, one for each direction. Then, when
considering one-dimensional systems, only one pair of equa-
tions is obtained.

In the zero frequency limiti=0 (long-time regimg, the
one-dimensional ordered Green functions depend on the
modulus|W$ —W?¢ | [see Egs(A6)]. As a consequence, the

wheren is the site index. Introducing this function into ex- solution of the self-consistent conditions strongly depends on
pression(A3), the ordered asymmetric 1-dimensional Greenthe relative values of the effective transition rates, i.e., if

functions is obtained. In the=0 case we get
Go(u=0)=

G% (u=0)=2A|A-B| Y A+B+|A-B|) %,

|A-B| ",
(AB)

G° (u=0)=2B|A-B| Y A+B+|A-B|).

The element®S(u) andQ? (u), that we need from the
2-dimensional ordered anisotropic symmetric Green func-

tions aré
QY(u )—2“”’2 K(Vpip2).
- \ 1 1
Q0 (u)= W’yxii 2t o Koo

(A7)

1
+_1 H(pli\/PlPZ)}v

WS >We or W§ <WE¢ . By using Eqs(A6) in Egs.(13) and
(14) with a=1, the solution may be expressed in terms of
the asymptotic mean velocity?(t—«)=W$ —W?¢ ; and the
final result is

v&(t—)

(B1)

This one-dimensional zero-frequency result was origi-
nally presented by Bernasconi and Schneldéfe remark
that the asymmetric one-dimensional EMA does not predict
any result for the case whefw_/w,)>1 and(w, /w_)
>1 (see Ref. 9

165205-7
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2. Uniform electric field In principle, the medium hasl2 effective transition rates,

Consider aD-dimensional isotropic symmetric system. It due to the introduced asymmetry. Under the condition that
has independent and identically distributed random transitiofhe effective transition rates ob&y< ,=Wga, , the number
ratesw, with a PDFP(w). Consider a charged particle moy- Of unknown rates is reduced f@. Then, from Eqs(13) and
ing in this system. Now assume that an external uniform(l_él), the following set ofD self-consistent conditions is ob-
electric fieldE, is switched on, such that the transition rates,@ined:
corresponding to one bond, become = wa_*', with a;* We
=exp(Fe, Vo). HereVo=eEq/kT ande=1,2, ... D. The < (W~ @) > =0, (B3)
term a_ ' takes into account all possible directions of the 1+(We— )M, (u) Plo)
electric fieldE,,. . . o

Under the condition(15), an equivalent system may be With M.(u) given by Eq.(21). This is the same result pre-
considered, characterized by the pairs of transition rateSENt€d by Yu and Orbach in Ref. 11. Note that if the effective
(w,,,0_,). These transiton rates obey a joint PDF transition rates had not been supposed to fulfill the property

Folw, .0 ), related toP(w) by Wia:v\/‘;a{fl, we woyld not have grrived at a set Qf
D self-consistent equations. Indeed, this condition would im-
Folwi g0 o)=(8(w, —wa,)d(w_—owa, 1)>7,(w) . ply the existence of a nonzero asymptotic mean velocity be-

(B2)  causews$ ,#We , for all a.
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