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Friedel oscillations and charge density waves in chains and ladders
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The density matrix renormalization~DMRG! group method for ladders works much more efficiently with
open boundary conditions. One consequence of these boundary conditions is ground-state charge density
oscillations that often appear to be nearly constant in magnitude or to decay only slightly away from the
boundaries. We analyze these using bosonization techniques, relating their detailed form to the correlation
exponent and distinguishing boundary induced generalized Friedel oscillations from true charge density waves.
We also discuss a different approach to extracting the correlation exponent from the finite size spectrum which
uses exclusively open boundary conditions and can therefore take advantage of data for much larger system
sizes. A general discussion of the Friedel oscillation wave vectors is given, and a convenient Fourier transform
technique is used to determine it. DMRG results are analyzed on Hubbard andt-J chains and 2 legt-J ladders.
We present evidence for the existence of a long-ranged charge density wave state in thet-J ladder at a filling
of n50.75 and nearJ/t'0.25.
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I. INTRODUCTION

Bosonization analyses1–4 together with finite size numeri
cal work using the density matrix renormalization gro
method~DMRG! ~Refs. 5,6! and other methods7 have given
a clear understanding of the behavior of the two-leg Hubb
and t-J ladder models. The Hubbard Hamiltonian is writte

H52t (
i ,l,a

~ci 11la
† cila1H.c.!2t(

i ,a
~ci2a

† ci1a1H.c.!

1U(
i ,l

ni ,l,↑ni ,l,↓ . ~1.1!

Herecila destroys an electron on rungi and legl51,2 with
spin a5↑,↓. ni ,l,s is the electron number operator. Thet-J
Hamiltonian is

H52t (
i ,l,a

~ci 11la
† cila1H.c.!2t(

i ,a
~ci2a

† ci1a1H.c.!

1J(
i ,l

S SW il•SW i 11l2
nilni 11l

4 D
1J(

i
S SW i1•SW i22

ni1ni2

4 D , ~1.2!

whereSW il5cil
† sW /2cil and the Hilbert space now excludes a

states with doubly occupied sites. We will generally set
51 in what follows. Both models are expected to be in
‘‘C1S0’’ phase, over a wide range of parameters, in wh
the low energy degrees of freedom consist of a single
massless charge boson, whose excitations carry even
0163-1829/2002/65~16!/165122~13!/$20.00 65 1651
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tiples of the electron charge. This is often characterized a
‘‘ d-wave superconductor’’ based on the nature of the po
law decay of pair correlations which have a positive sign
singlet rung-rung or leg-leg correlations and a negative s
for rung-leg correlations. Both bosonization and DMRG r
sults exist on multileg ladders with analytical and numeri
uncertainty which increase with the number of legs.

Most of the DMRG data is obtained with open bounda
conditions along the legs of the ladder. Unlike with period
boundary conditions, this generally leads to charge den
oscillations in the groundstate. If these oscillations persis
the center of the chain for arbitrarily long chain length th
they correspond to a charge density wave~CDW!. More
commonly, they decay away from the boundaries with
power law, in the limit of an infinite chain. In this case, w
may think of them as generalized Friedel oscillations wh
the chain ends themselves act as impurities which ind
gradually decaying density oscillations. Unlike in a Fer
liquid, these generalized Friedel oscillations in a Lutting
liquid decay with an exponent which depends on the int
action strength, and which is simply related to the dens
correlation exponent.8–10 Furthermore, the wave vector o
the oscillations itself can be changed by the interactio
These density oscillations, for the largest systems studied
to eight legs, have been identified with ‘‘stripes.’’11 An un-
derstanding of the occurance of stripes in these mod
whether or not they require long range Coulomb interactio
to exist and their connection with superconducitivity are i
portant open problems. Since any ladder system is ultima
one-dimensional if the number of legs is held fixed and
length taken tò , the Friedel oscillations/CDW analysis ma
provide the appropriate description of stripe behavior, at le
in this limit and in cases where the stripe wave vector
parallel to the chains.
©2002 The American Physical Society22-1
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In Sec. II we briefly review the bosonization picture of th
two-leg t-J ladder. We also present a technique for extract
the correlation exponent purely from data with open bou
ary conditions which has not, to our knowledge, been u
previously on ladders, although it has been used on cha
This method is used to obtain values for the charge velo
and exponent. In Sec. III we review the bosonization tre
ment of commensurate charge density waves and the re
behavior of the correlation exponent, and analyze data on
two leg t-J model at electron densityn53/4, showing that a
CDW may occur for weak enoughJ. In Sec. IV we review
Friedel oscillations in Luttinger liquids and apply this ana
sis to data on the single chain Hubbard andt-J model and the
two-leg t-J model.

II. THE 2-LEG LADDER

A convenient starting point for bosonization is the we
coupling Hubbard model version of the two-leg ladder, E
~1.1! with U/t small. It is then far from obvious that thi
analysis will apply to the infinite coupling limit, correspond
ing to the t-J model of Eq.~1.2! so that comparisons with
numerical results is important. In the weak coupling limit w
may start by diagonalizing the noninteracting problem, g
ing symmetric and antisymmetric electron operatorscla
wherel5e, o labels even and odd channels. We pass to
continuum limit by introducing left and right moving fields

cla~x!5e2 ikFlxcLla~x!1eikFlxcRla~x! ~2.1!

with kFe andkFo the fermi wave vectors for the two band
In the usual way, we represent the left and right mov
fermion fields by left and right moving boson fields

cL/Rla}eiA4pfL/Rla ~2.2!

and then, introducing the dual canonical Bose fields

fla5fRla1fLla , ula5fRla2fLla . ~2.3!

It is then convenient to introduce spin and charge bosons
each channel:

flr5~fl↑1fl↓!/A2,

fls5~fl↑2fl↓!/A2 ~2.4!

and then, finally, switch to the two linear combinations of t
even and odd bosons

f6r5~fer6for!/A2 ~2.5!

with similar relations forf6s , u6r , andu6s . Actually, this
last transformation is not canonical when the even and
bosons have different velocities. However, we will follow th
standard practice1,3 of assuming that this velocity differenc
is irrelevant.

A renormalization group analysis, based on the weak c
pling Hubbard model, suggests that the cosine interact
‘‘pin’’ the bosons u6s and f2r , introducing excitation en-
ergy gaps for these bosons and leavingf1r as the only
massless boson which thus describes the low energy ex
16512
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tions. All interactions involvingf1r , u1r are irrelelvant in
this phase. The low energy effective Hamiltonian can
written

H2mN5
v1r

2 E dxFK1rP1r
2 1

1

K1r
S du1r

dx D 2G ,
~2.6!

where P1r is the momentum density variable canonica
conjugate tou1r , v1r is the velocity of the correspondin
gapless low energy excitations and the parameterK1r con-
trols the correlation exponents.~Our definition ofK1r cor-
responds to that of Schulz2 and Hayward and Poilblanc7 but
is the inverse of the parameter with the same name in Bal
and Fisher.3! The Hamiltonian may be equally well written i
terms of the other boson fieldf1r and its conjugate momen
tum using

Pu5df/dx, Pf52du/dx. ~2.7!

The two parametersv1r and K1r are generally difficult to
calculate analytically and are extracted from numerical da
The long-range behaviors of various correlation functions
calculated straightforwardly by expressing the correspond
fermionic operators in terms of the bosonsf6s , f6r and
their duals. Exponentials of the pinned bosons can be
placed by their ground-state expectation values but expon
tials of the duals of pinned bosons lead to exponentially
caying factors in correlation functions. Exponentials of t
gapless boson,u1r and its dual give power law decayin
factors. For instance, to calculate the uniform part of the p
correlation function we bosonize the pair operator

De[cLe↑cRe↓}eiA4p(fLe↑1fRe↓)}eiAp(f1r1f2r2u1s2u2s).
~2.8!

We may replace the exponentials off2r andu6s by a con-
stant factor leaving simply the operatoreiApf1r. The corre-
lation function for this operator decays as 1/uxu1/(2K1r). The
same result is obtained for the correlation function of a p
of electrons in the odd channelD0. On the other hand, the
correlation function̂ De

†(x)Do(y)& is the same except for a
factor of^eiA4pf2r&. This is expected to be,0, based on the
sign of the cosine interaction which pins thef2r boson to
Ap/4, so this pair correlation function has the opposite si
corresponding to ‘‘d-wave pairing.’’ The 2kF part of the
~even, spin-up! density operator is

e22ikFexcRe↑
† cLe↑}e22ikFexe2 iAp(u1r1u2r1u1s1u2s).

~2.9!

The correlation function of this operator has exponential
cay due to thee2 iApu2r factor. Exponential decay is als
obtained for all other terms in the 2kF part of the density
operator. On the other hand, if we consider the correlat
function for the square of the density operator, we get pow
law decay for the 4kF part. This arises from terms of th
form

e22i (kFe1kFo)xcRe↑
† cLe↑cRo↑

† cLo↑

}e22i (kFe1kFo)xe22iAp(u1r1u1s). ~2.10!
2-2



up
e

s
’’

o
ra

la

e
G
it
re

l-
ul
h

nl
io

s
e

n

n
to
to
el
ica
n-
of

te
fo
on

on-

re
er

ay

, is

se.
’’
dif-

nd

g

-
one

FRIEDEL OSCILLATIONS AND CHARGE DENSITY . . . PHYSICAL REVIEW B65 165122
We may replace exp(22iApu1s) by its expectation value
leaving only the gaplessu1r field which gives power law
decay

^n~x!2n~0!2&}
cos@2~kFe1kFo!x1a#

uxu2K1r
. ~2.11!

In fact we expect that the density operator itself will pick
a 4kF term proportional to this and also exhibit the sam
type of 4kF power law decay. This phase with one gaple
charge mode and no gapless spin modes, labeled ‘‘C1S0
expected to be the generic phase in the two-legt-J or Hub-
bard ladder. Whether this phase is better thought of as alm
a d-wave superconductor, or almost an incommensu
CDW depends on the magnitude ofK1r . The pairing corre-
lation function decays less rapidly than the density corre
tion function in the caseK1r.1/2. Schulz has shown12 that
K1r→1 as the densityn approaches 1. Atn51, the ladder
is a spin gapped Mott insulator.

Thus it is of interest to calculateK1r . This can be done
from the finite size spectrum using either periodic or op
boundary conditions. The latter are often used with DMR
so we discuss both cases. While, as we discuss below,
enough to measure the excitation energies of only th
states to extractK1r ~and the velocityv1r) we give formu-
las for an infinite number of low lying excitations. This a
lows for a more extensive check of the bosonization res
with DMRG. Due to the somewhat conjectural nature of t
extrapolation of weak coupling Hubbard results to thet-J
model this would be a worthwhile check. We discuss o
the ground state and low-lying excitations, whose excitat
energies all scale to 0 as 1/L, whereL is the length of the
system. These can be simply calculated from the free bo
Hamiltonian of Eq.~2.6! when proper account is taken of th
boundary conditions on the boson fieldu1r . We will gener-
ally set v1r51, restoring it by dimensional analysis whe
needed.

We first consider the case of periodic boundary conditio
~BC’s!. Clearly periodic BC’s on the fermions translate in
periodic BC’s on the boson fields but we must take in
account the fact that the boson fields are actually phase fi
~only their exponentials and derivatives occur as phys
local operators!. Since all physical operators in the low e
ergy effective theory involve integer powers
exp@iApf1r# and exp@i2Apu1r#, as in Eqs. ~2.8! and
~2.10!, we see that

f1r~L !5f~0!12Apm,

u1r~L !5u~0!1App, ~2.12!

wherem andp are arbitrary integers. To obtain the comple
low energy spectrum we simply write a mode expansion
the boson fields, consistent with these BC’s and the can
cal commutation relations. This gives
16512
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f1r~x!5f01
2Apmx

L
1 (

k51

` A 1

K1r
4pk~aRke

i2pkx/L

1aLke
2 i2pkx/L1H.c.!,

u1r~x!5u01
Appx

L
1 (

k51

` AK1r

4pk
~aRke

i2pkx/L

2aLke
2 i2pkx/L1H.c.!. ~2.13!

Here the quantum numbersm andp are integer valued. Using
Eq. ~2.7! we see that the zero wave-vector mode of the c
jugate momentumPu has eigenvalues 2Apm. Thus the
wave-functions for the zero-momentum modes a
exp@i2Apmu0#. These wave functions are invariant und
u0→u01Ap, as required by the angular nature ofu. ~The
same result holds for the dual zero wave vector field,f0 and
its conjugate momentum.! The aLK andaRk operators anni-
hilate left and right moving harmonic boson modes. We m
give a physical interpretation to the quantum numberm using
the bosonization formula for the total charge density

J[(
l,a

~cL,l,a
† cL,l,a1cR,l,a

† cR,l,a!

→~21/Ap!(
l,a

dul,a /dx5~22/Ap!du1r /dx.

~2.14!

Thus the total charge, relative to that of the ground state

Q5~22/Ap!E
0

L

dxdu1r /dx522Du1r /Ap522p.

~2.15!

Only excitations of even charge occur in the C1S0 pha
The other quantum numberm measures the ‘‘chiral charge
which has a less obvious physical interpretation as the
ference of charges of left and right movers.

Inserting Eq.~2.13! into the Hamiltonian of Eq.~2.6! and
using the identity, Eq.~2.7! we can immediately read off the
spectrum

E2E0522pm1
2pv1r

L FK1rm21
p2

4K1r

1 (
k51

`

k~nLk1nRk!G . ~2.16!

HerenLk andnRk are the occupation numbers for the left a
right moving states of momentum62pk/L. E0 is the
ground-state energy for a given densityn and is nonuniver-
sal. This formula gives the excitation energy for low-lyin
excitations with all quantum numbers!L. The parametersm
~chemical potential! v1r andK1r all depend on density.

The parametersK1r andv1r can be determined by mea
suring the excitation energies of three states. Generally
calculates the excitation energies of the states with2DQ/2
2-3
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WHITE, AFFLECK, AND SCALAPINO PHYSICAL REVIEW B65 165122
5p561 ~and all other quantum numbers set to zero! to
determine the ratiov1r /K1r , using

E~p51!1E~p521!22E05pv1r /~K1rL !.
~2.17!

The compressibility for a two-leg ladder is generally defin
as

1

n2k
[

1

2L

d2E

dn2 , ~2.18!

wheren is the density. From Eqs.~2.15! and~2.16!, this has
the valuepv1r /(2K1r). The velocity may be measure
separately from the excitation energy of the lowest state
momentum 2p/L:

E~nR151!2E05
2pv1r

L
. ~2.19!

Thus measuring three excitation energies, for fixed, largeL,
allows a determination of the correlation exponents. Usin
large L is important because corrections to Eq.~2.16! are
only down by additional powers of 1/L. These corrections
become especially large at commensurate filling near a t
sition to a CDW. The corresponding exponent will be giv
in Sec. III. While these three measurements are enoug
determined the critical exponents, measurements of ene
of additional states and a study of theL dependence provide
additional confirmation of the predictions of the RG a
bosonization.

As mentioned above, DMRG works much more ef
ciently with open boundary conditions. We now discuss
finite size spectrum in that case. If we number the sites fr
1 to L then we have a free boundary condition atj 51 and
j 5L. A free boundary condition on the fermion field atj
51 is equivalent to a vanishing boundary condition aj
50. @This follows from adding an extra ‘‘phantom site’’ a
j 50 with associated hopping and exchange terms but t
making these terms vanish by imposingcla(0)50.# In
terms of left and right movers this free boundary conditi
becomes

cLla~0!52cRla~0!. ~2.20!

Upon bosonizing we obtain

eifLla52eifRla ~2.21!

or

ula~0!5const. ~2.22!

~A determination of this constant involves consideration
some subtle commutators. We will not bother to keep tra
of it in what follows.! Clearly this boundary condition re
mains the same when expressed in the eventual basisr/s,
1/2. The only important boundary condition for the lo
energy excitations is

u1r~0!5const. ~2.23!
16512
f

a

n-

to
ies

e
m

n

f
k

The same BC is obtained atx5L11'L except that the
constant will generally be different. Taking into account t
periodic nature ofu, Eq. ~2.12!, and the fact thatPu
}]u/]t}]f/]x must also vanish at the boundaries, we s
that the mode expansions become

f1r~x!5f01 (
k51

` A 1

K1r
pkcosS pkx

L D ~ak1ak
†!,

u1r~x!5u01
Ap~p2a/2p!x

L

1 (
k51

` AK1r

pk
isinS pkx

L D ~ak2ak
†!. ~2.24!

Herea is proportional to the difference of constants appe
ing in the BC’s atx5L and x50. Substituting into the
Hamiltonian, we now obtain the finite size spectrum

E2E0522pm1
pv1r

L F ~p2a/2p!2

2K1r
1 (

k51

`

knkG .

~2.25!

We see that Eq.~2.17! for v1r /K1r remains true with free
BC’s as we might expect due to the relation with the co
pressibility. We may now determine the velocity indepe
dently ~and hence determineK1r) by measuring the gap to
the first excited state with the same charge as the gro
state

E~n151!2E05
pv1r

L
. ~2.26!

Note that this gap has half the value of the gap to the low
energy state of momentum 2p/L in the case of periodic
BC’s, Eq. ~2.19!. This is just a consequence of the famili
result that the spacing of wave vectors for open BC’s isp/L,
half the spacing for periodic BC’s.

Previous measurements of the parameterK1r , and its
analogue in other chain and ladder systems, have used
odic boundary conditions. Exact diagonalization, or ‘‘mod
fied Lanczos’’ methods work efficiently to determined th
lowest energy state of given quantum numbers. Thus the
ergy differences of Eqs.~2.17! and ~2.19! can be measured
from finding the lowest energy states with various charg
and with momenta 0 and 2p/L. An alternative approach is to
meaure the dependence of the ground-state energy~for a
fixed charge! on an applied flux, i.e., a twist in the bounda
conditions on the fermion fields

cL/Rla~L !5eiFcL/Rla~0!. ~2.27!

This corresponds to putting a twist into the boundary con
tion on f1r in Eq. ~2.12!, as can be seen from the fact th
all the fermion fields (L or R) contain a phase factor o
exp@iApf1r/2#.

f1r~L !5f1r~0!12Ap~m12F!. ~2.28!

From Eq.~2.16! we see that the ground-state energy is
creased by
2-4
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E0→E018pv1rK1rF2/L. ~2.29!

Hence measuring the flux dependence of the ground-s
energy determinesv1rK1r , while measuring the compress
ibility determinesv1r /K1r . Hayward and Poilblanc7 mea-
suredK1r in this way for the two-leg ladder using a max
mum system size of 2310. Another approach was taken b
Siller et al.6 They modeled the two-legt-J model as a single
chain model of bosonic hole pairs. The parameters in
effective Hamiltonian for hole pairs were determined fro
DMRG calculations with open boundary conditions on s
tem sizes up to 4032 for systems containing two holes o
four holes only. The resulting bosonic model was then st
ied using exact diagonalization~Lanczos! methods and peri-
odic boundary conditions. Since the number of effect
bosons~of density x/2 wherex[12n) is small near 1/2
filling, it was possible to diagonalize large systems~up to
220 sites in the case of only two bosons!.

The approach advocated here, working exclusively w
open boundary conditions, has been used previously
chains17 but not, as far we we know, fort-J ladders. It allows
us, using DMRG, to study much larger system sizes, up
19232, than are accessible with Lanczos in the us
formulation.7 It furthermore avoids making any assumptio
which are necessary in treating the hole pairs as bosons,
as the particular form of the boson-boson interaction and
absence of three-boson terms, which could induce some
sity dependence in the interaction. However, the DMRG c
culations with the accuracy and system length required
determineK1r for these ladder systems were surprising
difficult. In order to minimize the effect of correction term
to the asymptotic formulas, long systems were needed
these systems, one is probing competing pairing and ch
fluctuations at very low energies and large distances, wh
is difficult in DMRG. Typically more than 2000 states we
kept in the calculations and more than a dozen sweeps w
performed. Some of the calculations were more accurate
reliable than others, however. In Fig. 1 we show a plot of
left-hand side of Eq.~2.17! versus 1/L for three values of
(J,n), showing linear behavior and allowing us to extra
v1r /K1r . These calculations require only the ground-st
energy, for which an extrapolation in the energy versus

FIG. 1. These results were obtained by targetting three diffe
ground states with varying numbers of particles. The straight li
are linear fits to the data. The slopes of the fits~which asymptoti-
cally yield pv/K) are 2.70 forJ50.5, n50.875, 6.75 forJ50.5,
n50.75, and 7.68 forJ50.35, n50.75.
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truncation error is very reliable. Thus this determination
v1r /K1r is the most reliable and accurate ingredient in t
determination ofK1r , and, in fact, the results shown cou
be improved with modest additonal effort.

In Fig. 2 we plot the left-hand side of Eq.~2.26! versus
1/L, again obtaining linear behavior. These calculations w
difficult. It is necessary to target two states simultaneou
and extrapolation is not very useful. Note that, ifL is not
large enough and the~infinite L) spin gap is small,Ds
,2pv1r /L, then the first excited state with the same qua
tum numbers might actually haveS51, Sz50 and corre-
spond to a spin excitation, rather than the desired neu
excitation of the1r field. ~It might also be a neutral excita
tion of one of the other gapped boson fields.! In order to
check the former possibility, we have calculated the spin g
i.e., the excitation energy for the lowest state withSz51. We
find that the very nonlinear behavior forJ50.35, n50.75
shown in Fig. 2 is due to a small spin gap in this system,
order 0.04. Thus it was necessary to study a 9632 system,
for which we kept 4000 states, and performed a dozen ite
tions, to clearly see the required gap. We believe this dat
reliable, but due to the large numerical work required
have only studied three different values of (J,n). Combining
the results of Figs. 1 and 2 allows a determination ofv1r and
henceK1r . The resulting values are given in Table I.

III. CHARGE DENSITY WAVES

While a C1S0 phase is expected over most of the par
eter range in the two-legt-J model, a completely gapped

nt
s

FIG. 2. Excitation energy for lowest state withSz50 and same
electron density. The spin gap is about 0.14 forJ50.5, n50.875,
about 0.10 forJ50.5, n50.75 and about 0.07 forJ50.35, n
50.75. The breakdown of the asymptotic linear behavior is clea
visible in the third case, at energies of order the spin gap.
straight lines are linear fits to the data. The slopes of the fits~which
asymptotically yieldpv) are 1.631 forn50.875, J50.5; 3.03 for
n50.75, J50.5; and 1.6368 forn50.75, J50.35.

TABLE I. Results for the charge velocityv and Luttinger liquid
parameterK. Kenergycomes from using Eqs.~2.17! and~2.26!, while
Kamp is determined using the decay of the Friedel oscilations in
center of the system as a function of the system length.

(n,J) v Kenergy Kamp

(0.875,0.5) 0.519 0.604 0.633
(0.75,0.5) 0.964 0.449 0.359
(0.75,0.35) 0.796 0.33 0.284
2-5
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WHITE, AFFLECK, AND SCALAPINO PHYSICAL REVIEW B65 165122
charge density wave~CDW! phase may occur at speci
commensurate filling factors, depending on the value ofJ/t
~and other possible interaction parameters!.13,14 Possible
CDW’s have been studied in the extended two-leg Hubb
model15 at n50.5 and in a two-legt-J ladder16 with unequal
interrung and intrarung hopping atn50.5 andn50.75. In
this section we review the conditions on the critical expon
parameterK1r for a CDW to occur and discuss numeric
work on the t-J model at electron densitiesn53/4 andn
51/2, corresponding to fillings of 3/8 and 1/4, respective

The low energy effective Hamiltonian only contains Fo
rier modes of the electron fields within a small momentu
range6L of 6kF . Umklapp type interaction terms, whic
do not conserve separately the number of left and right m
ers, are generally accompanied by rapidly oscillating ph
factors. They therefore do not appear in the low energy
fective Hamiltonian since the electron fields vary slowly a
hence these rapidly oscillating factors cause these inte
tions to average to zero. However, at special filling facto
corresponding to special values of the Fermi wave vector,
oscillating factors become constants and these operators
appear in the effective Hamiltonian. Whether or not th
produce a gap and a CDW depends on whether or not
are relevant operators in the RG sense. In a one-dimens
relativistic quantum field theory an operator is relevant if
has a scaling dimensionx,2. This scaling dimension dete
mines the exponenth with which the correlation function o
this operator decays, with

h52x. ~3.1!

Using the free boson Hamiltonian of Eq.~2.6!, the scaling
dimension of any operator is easily obtained. For exam
the Hubbard ort-J interaction leads to an interaction term
the form given in Eq.~2.10!. We see that this oscillates a
wave vector 2(kFe1kFo). Only when this wave vector is a
mutiple of 2p will this operator appear in the low energ
effective Hamiltonian. Furthermore, any operators who
correlation functions decay exponentially are irrelevant.

The number of electronsNl in each band is

Nl /L52kFl /p. ~3.2!

~The factor of 2 arises from spin.! Thus,

2~kFe1kFo!52pn, ~3.3!

where

n[~Ne1No!/2L ~3.4!

is the electron density. While the value ofkFe andkFo may
be renormalized by interactions~and may, in fact, not really
be well defined in the interacting model! their sum is ‘‘pro-
tected’’ by the one-dimensional version of Luttinger
theorem18 so that Eq.~3.3! is expected to be exact.

Thus we see that the Umklapp operator of Eq.~2.10! can
only occur inHeff for n51 ~half filling!. This operator has
scaling dimension

x5K1r . ~3.5!
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At 1/4 filling, corresponding ton51/2, the product of this
operator times itself with spin up replaced by spin down, c
occur, giving rise to an operator containing eight electr
operators. Under bosonization this is proportional to e
@24iApu1r# and has dimensionx54K1r . At a filling of
3/8 ~or 1/8! corresponding ton53/4 ~or 1/4! the fourth
power of the basic Umklapp operator in Eq.~2.10! contain-
ing 16 electron operators can occur. It has dimensionx
516K1r .

The condition on the RG scaling dimensionx for an op-
erator to induce a CDW is somewhat subtle, and depend
whether the density orJ/t is varied. If we varyJ/t, holding
the density fixed at the commensurate value, then the sys
will remain in the gapless C1S0 phase as long asx.2, so
that the operator is irrelevant. A transition to a gapped CD
phase occurs at the value ofJ/t wherex becomes,2. In the
CDW phase the value ofK1r becomes undefined since a
correlation functions decay exponentially~or go to con-
stants!. We may also consider what happens as we vary
density in the vicinity of the commensurate value. If th
system is not in the CDW phase at a commensurate filli
then we expectx to vary smoothly and, of course, to satis
x.2 at the commensurate point. On the other hand, if
system is in the CDW phase at a commensurate filling, t
we expectx→1 as the commensurate filling is approache
This follows from a general and clever argument by Schul13

based on ‘‘refermionizing’’ the single boson Hamiltonia
The relevant operator always behaves like a fermion m
term, of scaling dimensionx51 very close to the commen
surate filling, whenever a CDW occurs at that point. It fo
lows thatx must vary rapidly in the vicinity of the critica
value of J/t where the CDW transition occurs near a com
mensurate filling. On the CDW side of the transitionx will
be close to 2 away from the commensurate filling but th
drop abruptly to 1 as that filling is approached. We emp
size that Schulz’s argument, which was formulated in ter
of the single boson sine-Gordon theory, is very general
doesn’t depend on the underlying microscopic model. Si
lar behavior can occur for at-J or Hubbard ladder with any
number of legs. Such rapid variation ofK in the vicinity of
commensurate filling for a system with a CDW was observ
by Schulz for the single leg Hubbard model near half fillin
by obtainingK from the Bethe ansatz and similar behavi
was also observed near 1/2 filling (n51) for the two-legt-J
model by Silleret al.

Now consider a densityn51/2 corresponding to 1/4 fill-
ing. If we sit at this density and varyJ/t then a CDW tran-
sition occurs whenK1r51/2, with the gapless phase havin
K1r.1/2. On the other hand, ifJ/t is such that the system i
in a CDW phase atn51/2, thenK1r→1/4 asn→1/2.

Similarly, a CDW at 3/8 filling,n53/4, is signaled by
K1r→1/8, as we varyJ/t at fixed n or K1r→1/16 as we
vary the density at fixedJ/t in the CDW phase. See Fig. 3

The connection between the relevance of the multi
Umklapp interaction and the presence of a CDW is ea
established. When the multiple Umklapp term~for n51/2 or
3/4) is relevant it pins theu1r boson. From Eqs.~2.10! and
2-6
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~3.3! we see that the 4kF term in the density operator the
has a nonzero ground-state expectation value, so that

^nj&}cos~2pn j1a!1const, ~3.6!

wherea is a constant. Thus the density oscillations sho
have wavelength 2 forn51/2 and wavelength 4 forn53/4.
In general, it is sometimes convenient to introduce

d[12n, ~3.7!

the density of holes measured from half filling, sometim
called the density of ‘‘holons’’ and proportional to the dopin
parameter in the cuprates. We see thatn can be replaced byd
in Eq. ~3.6! so that the wavelength of the CDW oscillation
is 1/d. For a two-leg ladder, this is the average horizon
separation ofhole pairs. ~‘‘Horizontal’’ refers to the direction
along the legs of the ladder.!

The CDW corresponds to a broken translational symm
try, so that there are two different ground states forn51/2
and four different ground states forn53/4 ~differing only by
translation by 1 site!. For a finite ladder with periodic BC’s
we expect quantum tunnelling between these ground stat
occur so that no density oscillations exist in the finite syst
ground state. On the other hand, with open BC’s one or
other of the ground states gets picked out by the bound
conditions so that the CDW is directly observable.

We now return to the point raised in Sec. II, the high
order corrections in 1/L to the finite size energy gaps give
in Eqs. ~2.16! and ~2.25!. The leading correction is dete
mined by the leading irrelevant operator. At a commensu
filling, when the system is close to having a CDW, the m
tiple Umklapp operator discussed above has a dimensiox
only slightly greater than 2, corresponding to being bar
irrelevant. In this case the higher order terms in the ene
formula are ofO(1/Lx21). This will make it difficult to de-
terminedK1r reliably from finite size gaps in the vicinity o
a CDW, complicating the determination of the CDW pha
boundary.

Previously reported work6 based on the bosonic hole pai
approximation together with DMRG and Lanczos, on t
two-leg t-J model, withJ/t50.35, found a smooth behavio
of K1r in the vicinity of n53/4 with a value at a commen

FIG. 3. The qualitative behavior ofK1r as a function ofJ/t and
n. A CDW occurs along the dashed line atn50.75 soK1r is not
well defined there. As this line is approached by varyingn, K1r

→1/16. On the other hand, atn50.75 and largerJ/t there is no
CDW andK1r is well defined, with a value approaching 1/8 at th
CDW critical point.
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surate densityn53/4 of approximately .232. Using the direc
DRMG approach, we have foundK1r'0.33. Both results
are far above the critical values (1/8 and 1/16), indicat
that a CDW doesnot occur atn53/4 for J/t50.35. The
charge gap forn50.75 with J50.35 andJ50.25 is plotted
versus 1/L in Fig. 4. There is, indeed, no evidence for
charge gap at the larger value ofJ, consistent with the ab-
sence of a CDW. On the other hand, thereis evidence for a
charge gap atJ50.25. Note that these calculations involv
only ground state energies and thus are very reliable.
though the results are extrapolated to zero truncation e
the extrapolation is quite small in magnitude, of order t
symbol size in the figure, and the estimated error in the
trapolation is very small, as shown by the error bars. Th
results provide some evidence that there is a criticial value
J between 0.25 and 0.35 such that a charge gap and C
occur for smallerJ.

As reviewed in the next section, if there is no CDW, a
the system in is the C1S0 phase, we expect the density
cillations at the center of the chain to decay with chain len
as L2K1r with K1r.1/8. Comparing the oscillation ampli
tude forn50.75, J50.25 and the two longest lengths stu
ied, L596 andL5192, we find a ratio of oscillation ampli
tudes of 0.915 which would give an exponent ofK1r

50.128. This is slightly larger than the critical value of 1/
On the other hand, it is so close to the critical value that
might wonder if the density oscillation amplitude wou
eventually approach a constant with still longer chain leng
corresponding to a true CDW.

Another important question is the behavior of the spin g
in the putative CDW phase. Since the Umklapp term wh
drives the CDW does not contain the spin bosons, it is na
ral to assume that the gapping of the charge boson, co
sponding to the CDW, occurs without any major effects
the other bosons which could thus remain gapped. Howe
it is possible that one~or more! of the other bosons, such a
a spin boson, becomes gapless at the same transition. Ind
the occurence of the CDW may be related to the close pr
imity of a phase with no spin gap.

In Fig. 5, we show the spin gap on a 1632 system for a
wide range ofJ. The data suggests that in the thermodynam
limit, the spin gap vanishes nearJ50.25. To verify this re-
sult, one must perform a finite size study. However, the s
density pattern on the 1632 system forJ50.2 has the larg-

FIG. 4. Scaling of the charge gap with 1/L, showing the occur-
ance of a CDW atn50.75 forJ50.25 but notJ50.35.
2-7
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WHITE, AFFLECK, AND SCALAPINO PHYSICAL REVIEW B65 165122
est values of̂ Si
z& concentrated near the ends of the syste

indicating that an edge excitation has the lowest energy
order to ensure that we have a bulk spin excitation in
calculation, we next studied systems where we increased
rung exchange interaction toJ10.3 on the first and las
rungs of a ladder. This drives up the energy of the ed
excitation, and one finds that the resulting spin pattern
concentrated in the central region of the ladder. In Fig. 6,
show the spin gap as a function of 1/L for several systems
The results forJ50.2, n50.75 are consistent with a gaple
state, although one can never rule out a very small gap. S
larly, for J50.25, n50.75 no evidence was found for a sp
gap on the largest system, a 19232 ladder. ForJ50.2, n
50.875 we see a clear spin gap of order 0.013.

The proximity to a phase with vanishing spin gap may
related to the occurence of the CDW. As the spin gap g
smaller, and the corresponding length scale larger, we
expect the size of the two-hole pairs to get larger. This
naturally associated with a growing scattering length for
effective boson system, which enhances the formation o
CDW.

A CDW with vanishing spin gap atn53/4, can be easily
understood heuristically. One can imagine one hole locali
on every second rung, with the electrons on doubly occup
rungs forming spin singlets, as illustrated in Fig. 7, giving
effective S51/2 Heisenberg chain with lattice spacing
which has vanishing spin gap. On the other hand, in
spin-gapped phase we can think of pairs of holes locali
on every fourth rung, as in Fig. 8. Thus we expect t

FIG. 5. Spin gap on a 1632 system as a function ofJ/t.

FIG. 6. Spin gap as a function of 1/L for several systems. The
values of the exchange on the first and last rungs have been al
to avoid edge excitation.
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ground-state density oscillations to have wavelength 2 in
CDW with vanishing spin gap but wavelength 4 in th
gapped CDW.

The connection between wavelength doubling and
spin gap is related to the Lieb-Schultz-Mattis theorem.18 If
the wavelength is not doubled to 4, then gapless excitati
are expected. More precisely, we can prove the existenc
gapless excitations atn53/4 if the ground state is invarian
under translations by 2 and under site parityj→2 j and is
not ferromagnetic.~Note thatlink parity, j→2 j 11 is spon-
taneously broken by the wavelength 2 ground state ill
trated in Fig. 7 but site parity is not.! This is proven by
considering a long ladder of even lengthL with periodic
BC’s. Let uc0& be a ground state. We then consider the var
tional state obtained by acting on theuc0& with the unitary
operator

U5expF i ~2p/L !(
j

jn j↑G , ~3.8!

wherenj↑ is the number operator for spin up electrons
rung j ~summing over both sites on the rung!. It is straight-
forward to calculatêc0uU†(H2E0)uc0& and show that it is
O(1/L) provided that the following term vanishes:

(
j

@^c0ucj l↑
† cj 11l↑uc0&2^c0ucj 11l↑

† cj l↑uc0&#. ~3.9!

We can show that this vanishes, for example, by using
assume site parity symmetry to show that

^c0ucj l↑
† cj 11l↑uc0&5^c0ucj l↑

† cj 21l↑uc0&. ~3.10!

To complete the proof of a low energy state we must pro
that Uuc0& does not becomeuc0& in the limit L→`&. We
prove this by considering the behavior ofU under transla-
tions by two sites, the assumed symmetry of the grou
state. We find that under this translation

red

FIG. 7. A charge arrangement with period 2 atn53/4, corre-
sponding to a gapless CDW. The black circles represent elect
and the white circles holes. The ovals indicate that the location
the hole is symmetrized between the two sites on a rung. The s
lines indicate the formation of dimer singlets. The arrows indic
the spins of the unpaired electrons, but wedo notexpect them to be
Néel ordered in this one-dimensional system.

FIG. 8. A charge arrangement with period 4 atn53/4, corre-
sponding to a gapped CDW.~The actual density oscillations seem
correspond to pairs of holes shared evenly by every second pa
rungs.!
2-8
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U→Uei8pn↑, ~3.11!

where n↑ is the density of spin up electrons,n↑5N↑/2L,
whereN↑ is the total number of spin up electrons and 2L is
the number sites on a two-leg ladder of lengthL. If we fur-
ther assume thatn↑5n↓ , i.e., that the ground state is no
ferromagnetic, then we may replace the exponential facto
Eq. ~3.11! by ei4pn. For a density,n53/4, this factor is
21. This proves orthogonality ofUuc0& with uc0& and
hence the existence of a low energy excitation. On the o
hand, if the ground state is only invariant under translatio
by four sites then, repeating the argument with a transla
by four sites changes the exponential factor toei8pn which is
1 for n53/4. Thus we cannot prove thatUuc0. is orthogo-
nal to the ground state in this case; it may approach it in
limit L→`, so the proof collapses. Unfortunately, this do
not prove that there is a gap when the ground state has w
length 4, only that the gap neccessarily vanishes when it
wavelength 2. However, it often appears to be the case
when the LSM theorem fails, a gap appears. for instance
S51/2 spin chains, a gap is expected whenever the gro
state has wavelenth 2, as in a dimerized state. Thus,
nature of the density oscillations provides additional e
dence for which phase the system is in.

To see what Fourier components are present in the den
oscillations, we Fourier transform the density as a funct
of rung position and plot the power spectrum. In order
avoid spurious edge effects, a windowing function is used
the original density isd(x), we Fourier transformD(x)
5W(x)d(x), whereW(x) is a smooth windowing function
W(x) is chosen to vanish atx51 andx5L, and to be unity
for the middle third of thex values, with a smooth continu
ation in between; the particular choice we use is given
Ref. 19. Before Fourier transforming, we calculate the suI
of D(x) from 1 to L, and the sumJ of W(x), and then
subtract fromD(x) the function (I /J)W(x). This removes a
large peak centered atk50 which is uninteresting. The lat
tice spacing is set to 1, so that the exponential in the FT
exp(2ikj), where j runs over integer lattice sites. With th
approach there is no restriction on the allowed values ok;
the finite value ofL instead leads to finite widths for th
peaks. The density oscillations forJ50.25 and alsoJ50.2,
with n50.75 have a very strong component at a wavelen
of 4, corresponding to a spin-gap, as shown in Fig. 9.

IV. A POSSIBLE PHASE DIAGRAM

In this section we briefly discuss a possible phase diag
and the qualitative behavior ofK1r as a function ofJ andn
for the two-leg t-J model. We are interested in the regio
n>0.5 where both the even and odd parity bands have
riers in the weak coupling Hubbard limit. At still lower dop
ing the system is expected to enter a C1S1 phase. In
regionn>0.5 our phase diagram is similar to that propos
by Hayward and Poilblanc,7 and is based on their exact d
agonalization results, earlier DMRG results, our new DMR
results and some general results which follow fro
bosonization and RG. This is sketched in Fig. 10. Here
two ordered CDW phases atn50.75 andn50.5 are indi-
16512
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cated by solid cuts for small values ofJ/t and a phase sepa
ration region occurs for largeJ/t values. We conjecture tha
the remaining region is in a C1S0 (d-wave-4kF CDW!
phase. As discussed in Sec. II, this phase has thef2r and
u6s bosons pinned and is characterized by power l
d-wave pairing and 4kF CDW correlations. WhenK1r

.0.5, the pairing correlations are dominant. Supporting t
conjecture, DMRG calculations forJ/t andn values near the
phase separation boundary show clear power lawd-wave-
like pairing correlations.

The phase diagram shown in Fig. 10 for thet-J ladder
differs in several ways from that expected for the two-l
repulsiveU Hubbard model. First, it is generally believe
that the Hubbard ladder does not exhibit phase separa
and the that ordered CDW phases are absent. Secondly,
coupling renormalization-group studies, bosonization,4 and
DMRG calculations suggest thatK1r<1 for the repulsive U
Hubbard model. For an extended Hubbard model with ad
tional interactions one can haveK1r.1; however, Orignac
and Giamarchi4 argue that whenK1r.1, the d-wave-4kF
phase gets replaced by a C1S0s-wave pairing or an orbital
antiferromagnetic phase. This raises questions regarding
phase diagram show in Fig. 10. We believe that while alt
nate C1S0 phases are certainly logical possibilities, they
not occur in thet-J ladder. The argument that they occ
wheneverK1r.1 appears to depend upon a weak coupl

FIG. 9. Smoothed Fourier transform of the density oscillatio
showing only a large peak at wave vectorp/2 corresponding to a
wavelength of 4.

FIG. 10. Schematic phase diagram for thet-J ladder as
a function ofJ/t and the electron densityn in the regionn.0.5 and
J/t.0.1.
2-9
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WHITE, AFFLECK, AND SCALAPINO PHYSICAL REVIEW B65 165122
analysis which may not be applicable to thet-J ladder. In
this analysis, the phase boundaries between the various C
phases is determined by the equality of 2 small marg
coupling constants in the Hamiltonian. These coupling c
stants also determineK1r , in the weak coupling limit, in
such a way that when they are equal,K1r51. @See Eq.~35!
of ~Ref. 4!.# For stronger coupling, and, in particular, for th
t-J model, the possible phase boundary to a phase with
bital antiferromagnetism need not be related in any gen
way to the value ofK1r . We emphasize that the value ofKr

alone is not in general sufficient to determine whether
system is in a phase with orbital antiferromagnetism. To
termine whether there is OAF it is useful to directly calcula
the rung-rung current correlation function. The DMRG r
sults suggest that orbital antiferromagnetism does not o
in the ordinaryt-J model.20

The phase separation boundary was obtained in a prev
DMRG study.21 As this boundary is approached the com
pressibility diverges andK1r→`.

We have taken into account the behavior ofK1r near
commensurate fillings in drawing Fig. 10. In particular,
n→1, thet-J model reduces to the two-leg Heisenberg s
ladder and has an infinite gap for all charge excitations
presumably a gap ofO(J) for spin excitations. The genera
arguments of Schulz12,2 then imply thatK1r→1 along the
line n51. We have also assumed that a CDW occurs an
50.75 andn50.5 for small enoughJ. As discussed in the
previous section, we have found some evidence for suc
phase atJ50.25 andn50.75. The corresponding behavio
of K1r , reviewed in the previous section is incorporated
Fig. 10. Note that, at smallJ, K1r apparently varies rapidly
between 0.0625 forn50.75 and 1 forn51. As we also
discussed in the previous section, it is possible that the
gap vanishes at commensurate fillings for some range oJ.
We do not attempt to indicate this possibility in Fig. 10.

We also have deliberately not indicated the behavior
very smallJ/t,0.1 in Fig. 10 since we have no nummeric
results there. We might expect that this part of the ph
diagram should resemble that of the largeU Hubbard ladder.
However, as far as we know, there are no reliable results
that model at very largeU either. Whether or not CDW’s
exist atn50.5 and 0.75 in the very largeU Hubbard model
and/or the very smallJ/t t-J model remains an open que
tion. Another interesting question is the possibility of a pha
with Nagaoka ferromagnetism at smallJ/t close ton51.

For values ofJ/t around 0.35, which has been argued
be a reasonable value for modeling the cuprates,K1r,0.5
nearn50.75 but increases towards 1 asn51 is approached
Thus there is only a narrow window of doping near 1/2 fi
ing whered-wave pairing correlations dominate.

V. FRIEDEL OSCILLATIONS

At incommensurate filling, or in general when no CD
occurs, there will still be density oscillations produced by t
boundaries of an open ladder which only decay slowly~with
a power law! into the ladder. Detailed predictions can b
made about these using bosonization generalizing the
proach of Refs. 8–10 for the spin chain and Hubbard ch
16512
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to the case of the ladder. A related approach was taken to
1D Kondo lattice22 and the extended two-leg Hubbar
model.23 Recent work on spin chains has also appeared.24,25

These oscillations provide a further check on the theo
Thus consider again the 4kF term in the density operator, o
Eq. ~2.10!:

nj5Ae22ipn je22iApu1r1H.c., ~5.1!

where A is a constant into which we have adsorb
^e22iApu1s&. As we discussed in Sec. II, this 4kF term in the
continuum representation ofnj , determines the leading be
havior of the density-density correlation function at long d
tances since any 2kF terms decay exponentially. For an infi
nite system, the correlation function of the exponent
operator appearing in Eq.~5.1!, behaves as

^e2iApu1r~r !e22iApu1r~0!&5cur u22K1r, ~5.2!

wherec is a constant, with dimensions of (length)2K1r. De-
composingu5fR2fL , we may write this correlation func
tion as a square of two identical factors, the correlation fu
tions of exp@2iApfR/L#. It thus follows that the oscillating
term in the density correlation function is

^n~r !n~0!&→cos~2pnr1a!2cuAu2ur u22K1r. ~5.3!

Now consider the semi-infinite system (r .0) with one free
boundary condition. As remarked in Sec. II, this correspon
to a BC on the boson field given in Eq.~2.23!, or equiva-
lently,

fL~ t,0!5fR~ t,0!1const. ~5.4!

Now using the fact thatfR is a function ofvt2r only and
fL a function ofvt1r only, we see that this equation im
plies that we may regardfR as the analytic continuation o
fL to the negative axis

fR~r !5fL~2r !1const. ~5.5!

Thus the expectation value ofn(r ) reduces essentially to th
square root of the correlation function^n(r )n(0)&:

^nj&→2AcuAucos~2pn j1b!~2 j !2K1r. ~5.6!

The wave vector of the Friedel oscillations is the same as
wave vector governing the long-distance oscillations in
correlation function. No Friedel oscillations occur at wa
vector 2kFi as they would for the noninteracting system
more generally in phases where, for example, all four bos
are gapless. The exponent governing the decay of the Fri
oscillations isK1r , 1/2 the exponent governing the decay
density correlations. Furthermore, the amplitude is sim
the square root of the amplitude of the density correlat
function~multiplied by 21/22K!. Finally, we may readily gen-
eralize Eq.~5.6! to the case of a finite chain of lengthL, by
a standard conformal transformation

^nj&→
2AcuAucos~2pn j1b!

@~2L/p!sin~p j /L !#K1r
. ~5.7!
2-10
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The decay of Friedel oscillations allows a way of determ
ing the critical exponentK1r which is alternative to measur
ing directly the long distance behavior of the density cor
lations. Indeed this latter measurement becomes q
difficult with open BC’s due to the necessity of eliminatin
boundary effects.

We emphasize that the wave vector of these Friedel os
lations 2(kFe1kFo)52pn, or equivalently 2px where x
[12n is the hole density, is a characteristic feature of
particular C1S0 phase that we are assuming. More corre
this is the minimum Friedel oscillation wave vector sinc
higher harmonics are also expected to occur. This minim
oscillation wave vector would be different in a differe
phase. This wave vector corresponds to two holes per w
length and is the same wave vector that would occur fo
one-component spinless hard core bose gas, which is an
proximate description of the C1S0 phase in which hole p
are assumed to form tightly bound rung singlets.6

An immediate consequence of Eq.~5.7! is that the ampli-
tude of the density oscillations near the center of a fin
chain scales asL2K1r. We show a log-log plot of this am
plitude versus length in Fig. 11. Fitting to a straight lin
allows a determination ofK1r . The corresponding values o
K1r determined in this way are shown in Table I. We s
that they are roughly comparable to the values obtained f
the finite size spectrum.

FIG. 11. The amplitude,A, of the Friedel oscillations in the
center of the system, as a function of the length,L. The resulting
slopes are2K1r and are given in Table I. The triangles sho
results forL564 as a function of the number of block states kepm
for J50.35,n50.75. One can see the very slow convergence of
amplitude with the number of states kept.

FIG. 12. Density at sitel from DMRG (*) compared to Eq.
~5.7! ~circles and lines! for (n,J)5(0.5,0.875) usingK1r50.63.
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In Figs. 12 and 13 we show the Friedel oscillations in t
density at sitel, for two different values of (n,J), fitted to
Eq. ~5.7! with K1r taken as a free parameter. The agreem
is fair although the presence of corrections due to irrelev
operator effects is evident. In both cases the value ofK1r so
determined is in rough agreement with the values in the th
column of Table I, determined from the finite size spectru

We emphasize that these formulas are true very gene
for Luttinger liquids with a single gapless charge boson.
particular, they apply to the spinless single chain model.
the noninteracting case we may readily find the exact f
mula for the Friedel oscillations. ForN electrons onL sites

^nj&5
2

L11 (
m51

N

sin2
pm j

L11

5
N11/2

L11
2

sin@2p j ~N11/2!/~L11!#

2~L11!sin@~p j /~L11!#
. ~5.8!

For largeN andL this can be approximated

^nj&'n2
sin2pn j

2Lsin~p j /L !
. ~5.9!

This has the expected form of Eq.~5.7! with K51 and
AcuAu51/2p. On the other hand, the 2kF part of the density
correlation function at long distances is

^njn0&→
cos 2pn j

2p2u j u2 ~5.10!

which has the form of Eq.~5.3! with the same value of
AcuAu51/2p.

We see that, not surprisingly, when the charge den
correlations drop off slowly, so do the Friedel oscillations.
particular, this makes it difficult to determine numerical
whether or not a CDW occurs atn53/4, for example, by
measuring density oscillations. IfJ/t is such that the system
almost has a CDW thenK1r will be only slightly greater
than 1/8. The extremely slow decay of the Friedel oscil

e

FIG. 13. Density at sitel from DMRG (*) for (n,J)
5(0.35,0.75) compared to Eq.~5.7! ~circles and lines! using
K1r50.33.
2-11
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tions will be difficult to distinguish from a true CDW, wher
the oscillation amplitude goes to a nonzero constant far fr
the boundaries.

We now consider the single chain Hubbard andt-J mod-
els. The Hubbard model is known to be in a C1S1 phase
all densities~exceptn51) and allU.0. Thus the low en-
ergy effective Hamiltonian contains both spin and cha
bosons.~We use the same notation as for the two-leg lad
except that the6 labels are no longer needed since there
only one type of charge boson and one type of spin bos!
The charge boson Hamiltonian is written exactly as in E
~2.6!, in terms of the parameterKr . The spin boson Hamil-
tonian also has exactly this form but withKs51, as follows
from SU(2) spin rotation invariance. The pairing, 2kF and
4kF density operators now take the form

cL↑cR↓}eiA2p(fr2us),

e22ikFxcR↑
† cL↑}e22ikFxe2 iA2p(ur1us),

e24ikFxcR↑
† cL↑cR↓

† cL↓}e24ikFxe22iA2pur. ~5.11!

Note that, in this case, we have formed a 4kF operator in
which the spin boson does not appear. It then follows that
pair correlations, 2kF density correlations and 4kF density
correlations decay with power law exponents

hpair5111/Kr ,

h2kF
511Kr ,

h4kF
54Kr . ~5.12!

Open BC’s imply

ur~0!5const,

us~0!5const. ~5.13!

It thus follows that the density will exhibit both 2kF and 4kF
Friedel oscillations with different exponents

^nj&→n1
Acos~pn j1a!

j (11Kr)/2
1

B cos~2pn j1b!

j 2Kr
,

~5.14!

where we have expressed the oscillation wave vector
terms of the electron density using the free electron result
electrons with spin on a single chain

2kF5pn. ~5.15!

The amplitudesA andB are proportional to the square roo
of the corresponding terms in the density correlation funct
and depend on density andU ~as doesKr).

It is interesting to consider the limitU@t where the no
double occupancy constraint is present. If we consider so
initial configuration of holons and spins, then the order of
spins along the chain can never change under nearest n
bor hopping processes consistent with no double occupa
It follows that the charge dynamics must be identical to th
16512
m

or

e
r

s
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e
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e
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cy.
e

of a system ofnoninteractingspinless fermions with the
same density. That is to say, the charge dynamics is ‘‘s
blind.’’ It follows that the density oscillations should no
have thepn term in this limit but only the 2pn term as for
spinless fermions@Eq. ~5.9!#; i.e., thatA→0 at U→`. This
argument also determinesKr51/2 andB51/2p in this limit.
We remark that this argument is special to the single ch
model with only nearest neighbor hopping. On a ladder,
even on a chain with next nearest neigbor hopping, spin
arrangement is possible without double occupancy by m
ing the electrons around or past each other.

In Fig. 14 we plot the Fourier transform of the density f
the Hubbard model, at 7/8 filling, for various values ofU.
The same smoothing procedure was used that we mentio
in Sec. III. In this case 2kF5pn57p/8 and 4kF57p/4 or

FIG. 15. Smoothed Fourier transform of the density,nj in the
single chaint-J model atn51/4 for ~a! J/t50.35 and~b! J51.0,
showing Friedel oscillations at 2kF5p/4 and 4kF5p/2.

FIG. 14. Smoothed Fourier transform of the density,nj in the
single chain Hubbard model atn57/8 for various values of the
repulsion strengthU.
2-12
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equivalentlyp/4. Both 2kF and 4kF components are clearly
visible and it is evident that the 2kF component vanishes a
largeU.

What does this imply about the~single chain! t-J model?
The J→0 limit of the t-J model is identical to theU→`
limit of the Hubbard model. Therefore, in that limit, the de
sity oscillations have vanishing 2kF component. It is not
completely obvious what happens at nonzeroJ. Insofar as
this is the same as large but finiteU, we would expect to
have a small 2kF component to the density oscillations. No
however, that the no double occupancy constraint is enfor
exactly in thet-J model, by construction, whereas it is not
the finite U Hubbard model. Thus we must understa
whether it is the no double occupancy which is respons
for the vanishing 2kF oscillations or whether the vanishin
of all spin rearrangement processes is neccessary. The
ment in the previous paragraph seems to rely on the van
ing of spin rearrangement processes so we suspect tha
Friedel oscillations should exhibit a 2kF component for any
finite J. Of course, for smallJ/t this is expected to be smal
In Fig. 15 we show the Fourier transformed density for t
single-legt-J model at densityn51/4 for two values ofJ/t.
Note that now 2kF5p/4 and 4kF5p/2. For smallerJ/t the
4kF oscillations clearly dominate although a small 2kF part
is observed. At largerJ/t, the oscillations at 2kF are larger
than those at 4kF .
n

,
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Thus we expectt-J models to exhibit generic Friedel os
cillations in all cases except for the special case of a sin
leg in the limit J/t→0 where the absence of spin rearrang
ment processes eliminates the lowest wave vector compo
of the oscillations.

The Friedel oscillation wave vector can be a useful di
nostic of which phase a particular multilegt-J model is in.
For instance, the minimum oscillation wave vector 2kFe
12kFo52pn, is a characteristic of the particular C1S
phase of the two-leg ladder reviewed in Sec. II~in which the
u6s andf2r fields are pinned!. Other phases exhibit othe
oscillation wave vectors. We expect such an analysis
DMRG results to be useful in determining the phase diagr
of multileg ladders.
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