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Friedel oscillations and charge density waves in chains and ladders
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The density matrix renormalizatiofbMRG) group method for ladders works much more efficiently with
open boundary conditions. One consequence of these boundary conditions is ground-state charge density
oscillations that often appear to be nearly constant in magnitude or to decay only slightly away from the
boundaries. We analyze these using bosonization techniques, relating their detailed form to the correlation
exponent and distinguishing boundary induced generalized Friedel oscillations from true charge density waves.
We also discuss a different approach to extracting the correlation exponent from the finite size spectrum which
uses exclusively open boundary conditions and can therefore take advantage of data for much larger system
sizes. A general discussion of the Friedel oscillation wave vectors is given, and a convenient Fourier transform
technique is used to determine it. DMRG results are analyzed on Hubbatelagtthins and 2 le¢-J ladders.
We present evidence for the existence of a long-ranged charge density wave stateJdriadder at a filling
of n=0.75 and nead/t~0.25.
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I. INTRODUCTION tiples of the electron charge. This is often characterized as a

“d-wave superconductor” based on the nature of the power

Bosonization analysé&s’ together with finite size numeri- law decay of pair correlations which have a positive sign for
cal work using the density matrix renormalization groupsinglet rung-rung or leg-leg correlations and a negative sign

method(DMRG) (Refs. 5,6 and other methodshave given

for rung-leg correlations. Both bosonization and DMRG re-

a clear understanding of the behavior of the two-leg Hubbar@ults exist on multileg ladders with analytical and numerical
andt-J ladder models. The Hubbard Hamiltonian is written Uncertainty which increase with the number of legs.
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Herec;, , destroys an electron on rungnd legh = 1,2 with
spina=T,|. n;, , is the electron number operator. Thd
Hamiltonian is
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Most of the DMRG data is obtained with open boundary
conditions along the legs of the ladder. Unlike with periodic
boundary conditions, this generally leads to charge density
oscillations in the groundstate. If these oscillations persist at
the center of the chain for arbitrarily long chain length then
they correspond to a charge density wa@&DW). More
commonly, they decay away from the boundaries with a
power law, in the limit of an infinite chain. In this case, we
may think of them as generalized Friedel oscillations where
the chain ends themselves act as impurities which induce
gradually decaying density oscillations. Unlike in a Fermi
liquid, these generalized Friedel oscillations in a Luttinger
liquid decay with an exponent which depends on the inter-
action strength, and which is simply related to the density
correlation exponerft:'® Furthermore, the wave vector of
the oscillations itself can be changed by the interactions.
These density oscillations, for the largest systems studied, up
to eight legs, have been identified with “stripe¥.’An un-
derstanding of the occurance of stripes in these models,
whether or not they require long range Coulomb interactions
to exist and their connection with superconducitivity are im-

whereS;, = ¢/, o/2¢;, and the Hilbert space now excludes all portant open problems. Since any ladder system is ultimately
states with doubly occupied sites. We will generally set one-dimensional if the number of legs is held fixed and the
=1 in what follows. Both models are expected to be in alength taken tee, the Friedel oscillations/CDW analysis may
“C1S0” phase, over a wide range of parameters, in whichprovide the appropriate description of stripe behavior, at least
the low energy degrees of freedom consist of a single freén this limit and in cases where the stripe wave vector is
massless charge boson, whose excitations carry even muyarallel to the chains.

0163-1829/2002/68.6)/16512213)/$20.00

65 165122-1 ©2002 The American Physical Society



WHITE, AFFLECK, AND SCALAPINO PHYSICAL REVIEW B65 165122

In Sec. Il we briefly review the bosonization picture of the tions. All interactions involvings, ,, 6, , are irrelelvant in
two-legt-J ladder. We also present a technique for extractinghis phase. The low energy effective Hamiltonian can be
the correlation exponent purely from data with open boundwritten
ary conditions which has not, to our knowledge, been used )
previously on ladders, although it has been used on chains. K. T2 + i(daw
This method is used to obtain values for the charge velocity i Ki,\ dx '
and exponent. In Sec. Il we review the bosonization treat- (2.6

ment (.)f commensurate charge density waves and the relat%inereH+ is the momentum density variable canonically
behavior of the correlation exponent, and analyze data on th p

(,eonjugate tod v, , is the velocity of the corresponding
two legt-J model at electron density= 3/4, showing that a | I tpr TAp S h )
CDW may occur for weak enough In Sec. IV we review gapless low energy excitations and the paramktey con

Friedel oscillations in Luttinger liquids and apply this analy- trols the correlation exponenttOur definition ofK .., cor-
sis to data on the single chain Hubbard &admodel and the responds to that of Schiiand Hayward and Poilblandut

wo-leat-J model is the inverse of the parameter with the same name in Balents
wo-leg t-J model. and Fishef) The Hamiltonian may be equally well written in

terms of the other boson fieldl, , and its conjugate momen-
Il. THE 2-LEG LADDER tum using

_N= 2t
H—uN= > dx

A convenient starting point for bosonization is the weak _ __
coupling Hubbard model version of the two-leg ladder, Eq. My=dgfdx, I1,=—do/dx @7
(1.2) with U/t small. It is then far from obvious that this The two parameters,, andK, , are generally difficult to
analysis will apply to the infinite coupling limit, correspond- calculate analytically and are extracted from numerical data.
ing to thet-J model of Eq.(1.2) so that comparisons with The long-range behaviors of various correlation functions are
numerical results is important. In the weak coupling limit we calculated straightforwardly by expressing the corresponding
may start by diagonalizing the noninteracting problem, giv-fermionic operators in terms of the bosows.,, ¢., and
ing symmetric and antisymmetric electron operatgrs, their duals. Exponentials of the pinned bosons can be re-
where\ =e, o labels even and odd channels. We pass to th@laced by their ground-state expectation values but exponen-
continuum limit by introducing left and right moving fields tials of the duals of pinned bosons lead to exponentially de-

‘ _ caying factors in correlation functions. Exponentials of the
Irna(X) =€, () T Y W(x) (2D gapless bosond. , and its dual give power law decaying

factors. For instance, to calculate the uniform part of the pair

with ke andkg, the fermi wave vectors for the two bands. . . : )
correlation function we bosonize the pair operator

In the usual way, we represent the left and right moving
fermion fields by left and right moving boson fields A= (//Relocei VBr(bLett dre)) oc @ VD1 pt by 01 6= 0 g)

(2.9

We may replace the exponentials ¢f , and 6., by a con-
stant factor leaving simply the Operatdlﬁ"s*ﬂ};/('zl'Khe)corre-
lation function for this operator decays a +0), The
Pra= Prrat dnar Oha= e bLra- (23 same result is obtained ?or the correI};tiorf)?l-mction of a pair
It is then convenient to introduce spin and charge bosons, faof electrons in the odd channdl,. On the other hand, the
each channel: correlation function(A’(x)A,(y)) is the same except for a
factor of(€ *7%-»). This is expected to be 0, based on the
brp=(dr1+ by IV, sign of the cosine interaction which pins tife, boson to
Jml4, so this pair correlation function has the opposite sign,
bro=(dri = by )12 (2.4 corresponding to d-wave pairing.” The X part of the
(even, spin-updensity operator is

Pirra € TR (2.2

and then, introducing the dual canonical Bose fields

and then, finally, switch to the two linear combinations of the
even and odd bosons efzik,;exl/l;;a wLeTocefzik,:exefi\f?(mPJr 0 0,0,
2.9
by = (o= o) 2 259 o 9
The correlation function of this operator has exponential de-
ay due to thee "™%-» factor. Exponential decay is also
btained for all other terms in thek2 part of the density
operator. On the other hand, if we consider the correlation
function for the square of the density operator, we get power-
law decay for the kg part. This arises from terms of the

with similar relations for..,, 6. ,, andé. .. Actually, this
last transformation is not canonical when the even and od
bosons have different velocities. However, we will follow the
standard practice of assuming that this velocity difference
is irrelevant.

A renormalization group analysis, based on the weak co
pling Hubbard model, suggests that the cosine interactions

“pin” the bosons 4., and¢_,, mtroduqng excitation en- e_2i(kFe+kFo)Xw;eT Pler ‘/’;eow Yot
ergy gaps for these bosons and leaviag, as the only A o
massless boson which thus describes the low energy excita- sce 2 kpeTKro)Xg = 2Nm(0 o101 ), (2.10
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We may replace exp(2i\mé,,) by its expectation value 2Jmmx < 1 .
leaving only the gapless. , field which gives power law b4 p(X)= o+ L + E K dak(age'“™
decay k=1 +p
+ae 2™+ H.e),
0§ 2(Kget+Kpo) X+ ]
(n(x)?n(0)?)e o . (21 _ Vmpx Kip i2mkx/L
|X| +p 0+p(X)— 60+ L +k21 47Tk(aRke

In fact we expect that the density operator itself will pick up —aye ™+ H.c). (213

a 4kg term proportional to this and also exhibit the same
type of 4kg power law decay. This phase with one gaples
charge mode and no gapless spin modes, labeled “C1S0” i .
expected to be the generic phase in the twotldgor Hub- ﬁjgate momentumil, has eigenvalues @rm. Thus the

bard ladder. Whether this phase is better thought of as almog\{avg-functlons for the Zero'mome”t“".‘ mpdes are
a d-wave superconductor, or almost an incommensurat Xi{i2:mma]. Thesg wave functions are invariant under
CDW depends on the magnitude¥f. ,. The pairing corre- Oo— 0o Ith,hals(,j refqu;rrfddby Ithe angular natturef_@)f(ThZ
lation function decays less rapidly than the density correlaS8Me result holds for the dual zero wave vector igiiglan

tion function in the cas&, ,>1/2. Schulz has showhthat its conjugate momentuinThe &, and ag, Operators anni-
K., —1 as the density ap?aroaches 1. Ab=1. the ladder hilate left and right moving harmonic boson modes. We may
ist'f spin gapped Mott insulator ' ’ give a physical interpretation to the quantum nunmbersing

Thus it is of interest to calculatié . ,. This can be done the bosonization formula for the total charge density

from the finite size spectrum using either periodic or open

boundary conditions. The latter are often used with DMRG JEE (¢I ralrat ng ralRora)
so we discuss both cases. While, as we discuss below, it is N R R
enough to measure the excitation energies of only three

Here the quantum numbemsandp are integer valued. Using
S_Eq. (2.7) we see that the zero wave-vector mode of the con-

states to extradt , , (and the velocity . ,) we give formu- —(=1NmY, dby Jdx=(— 2/\/;)d0+p/dx.
las for an infinite number of low lying excitations. This al- Na ’
lows for a more extensive check of the bosonization results (2.14

with DMRG. Due to the somewhat conjectural nature of the

extrapolation of weak coupling Hubbard results to ta@  Thus the total charge, relative to that of the ground state, is

model this would be a worthwhile check. We discuss only

the ground state and low-lying excitations, whose excitation . - B _

energies all scale to 0 asLl/wherelL is the length of the Q=(~2Nm) fo dxdo..,Jdx= =240, ,/\m=~2p.

system. These can be simply calculated from the free boson (2.15

Hamiltonian of Eq(2.6) when proper account is taken of the o _

boundary conditions on the boson fiedd ,. We will gener- Only excitations of even charge occur in the' C1S0 phase.

ally setv, ,=1, restoring it by dimensional analysis when The other quantum numben measures the “chiral charge”

needed. which has a less obvious physical interpretation as the dif-
We first consider the case of periodic boundary conditionderence of charges of left and right movers.

(BC's). Clearly periodic BC's on the fermions translate into  Inserting Eq.(2.13) into the Hamiltonian of Eq(2.6) and

periodic BC's on the boson fields but we must take intoUsing the identity, Eq(2.7) we can immediately read off the

account the fact that the boson fields are actually phase field@Pectrum

(only their exponentials and derivatives occur as physical

local operators Since all physical operators in the low en- 2 4, ) p?
ergy effective theory involve integer powers of E-Eo=—2put —/—|Ks,m™+ 4K,
exdivmé,,] and expi2\76,,], as in Egs.(2.8) and g
(2.10, we see that -
+k§_)l k(N + NRy) |- (2.16
b (L) =$(0)+27m, Heren,, andng, are the occupation numbers for the left and

right moving states of momentunt2wk/L. E, is the
ground-state energy for a given densityand is nonuniver-
0. p(L)=6(0)+ \/;p, (212 sal. This formula gives the excitation energy for low-lying
excitations with all guantum numbetsL. The parameterg
wherem andp are arbitrary integers. To obtain the complete (chemical potentialv , , andK . , all depend on density.
low energy spectrum we simply write a mode expansion for The parameterk , , andv , , can be determined by mea-
the boson fields, consistent with these BC’s and the canonsuring the excitation energies of three states. Generally one
cal commutation relations. This gives calculates the excitation energies of the states withQ/2
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=p==x1 (and all other quantum numbers set to zet®@ The same BC is obtained at=L+1~L except that the

determine the ratio , ,/K ,, using constant will generally be different. Taking into account the
periodic nature off, Eq. (2.12, and the fact thatll,
E(p=1)+E(p=—1)—2Ey=mv, /(K L). g Bl gt dpl Ix must also vanish at the boundaries, we see
(217 that the mode expansions become
The compressibility for a two-leg ladder is generally defined % 1 7k
as = bt T
D1 p(X)= o+ kgl K+p7TkCOS( L (axtay),
1 1 dE (2.18 =
T2 T o AR . m(p— al2m)X
N~k 2L dn 0+p(x):‘90+ —L

wheren is the density. From Eq$2.15 and(2.16), this has

©

the valuewv, ,/(2K,,). The velocity may be measured Kip. . [7KX t
separately from the excitation energy of the lowest state of T N s (a—ay). (2.24
momentum 2r/L:
Here « is proportional to the difference of constants appear-
2w ¢, ing in the BC's atx=L and x=0. Substituting into the
E(Nri=1)—Eo= L (2.19 Hamiltonian, we now obtain the finite size spectrum
Thus measuring three excitation energies, for fixed, large m 4, (p— al2)? -
allows a determination of the correlation exponents. Using a E-Eo=—2pu+ L 2K, +k§=:1 kn|.
large L is important because corrections to E8.16 are g (2.25

only down by additional powers of [L/ These corrections ) ,
become especially large at commensurate filling near a tranl/e see that Eq(2.17) for v, /K, remains true with free
sition to a CDW. The corresponding exponent will be givenBC’S as we might expect due to the relation with the com-
in Sec. IIl. While these three measurements are enough #€ssibility. We may now determine the velocity indepen-
determined the critical exponents, measurements of energié€ntly (and hence determiné, ;) by measuring the gap to
of additional states and a study of thelependence provide the first excited state with the same charge as the ground
additional confirmation of the predictions of the RG andState
bosonization. o

As mentioned above, DMRG works much more effi- E(n;=1)—Eg=——2. (2.26
ciently with open boundary conditions. We now discuss the L

finite size spectrum in that case. If we numpgr t.he sites fronM\ote that this gap has half the value of the gap to the lowest
1toL then we have a free boundary conditionjatl and  energy state of momentumZL in the case of periodic
j=L. A free boundary condition on the fermion field gt BC's Eq.(2.19. This is just a consequence of the familiar
=1 is equivalent to a vanishing boundary conditionjat yesylt that the spacing of wave vectors for open BC's/ik,
=0. [This follows from adding an extra “phantom site” at na|f the spacing for periodic BC's.
j=0 with associated hopping and exchange terms but then previous measurements of the parameer,, and its
making these terms vanish by imposing,(0)=0.] In  analogue in other chain and ladder systems, have used peri-
terms of left and right movers this free boundary conditiongdic boundary conditions. Exact diagonalization, or “modi-
becomes fied Lanczos” methods work efficiently to determined the
lowest energy state of given quantum numbers. Thus the en-
hina(0) =~ Yrra(0). (220 ergy differences of Eq92.17) and (2.19 can be measured
from finding the lowest energy states with various charges

Upon bosonizing we obtain . . .
P g and with momenta 0 and-2 L. An alternative approach is to

el Plra= — g bRra (2.21) meaure the dependence of the ground-state endagya
fixed charge on an applied flux, i.e., a twist in the boundary
or conditions on the fermion fields
0, ,(0)=const. (2.22 PR a(L) =€ P rral0). (2.27

(A determination of this constant involves consideration ofThIS corresponds fo putting a twist into the boundary condi-

some subtle commutators. We will not bother to keep traclyﬁnﬂ?n ?*P In E?_' %'12)’ aslsan bet seen frcr)]m th? fatct th?t
of it in what follows) Clearly this boundary condition re- all the fermion Tields C or R) contain a phase factor o
mains the same when expressed in the eventual pasis &< V. /2.

+/—. The only important boundary condition for the low ¢+p(L)=¢+p(0)+2\/;(m+2<b). (2.29

energy excitations is
From Eg.(2.16 we see that the ground-state energy is in-
6, ,(0)=const. (2.23 creased by

165122-4



FRIEDEL OSCILLATIONS AND CHARGE DENSITY . .. PHYSICAL REVIEW B55 165122

0.25 : : % 012
0J=0.5, n=0.875
Zz 0J=0.5, n=0.75 0.10
i 020 % J=0.35, n=0.75
[V
By = 0.08
§ 0.15 T
z T 0.06
¥ 010 =
q & 004 0J=0.5, n=0.875
Z 0.05 0J=0.5, n=0.75
| 0.02 % J=0.35, n=0.75
0.00 s s : 0.00 - . .
0.00 0.01 0.02 0.03 0.04 000 0.02 004 006 0.08
1L 1L

FIG. 1. These results were obtained by targetting three different FIG. 2. Excitation energy for lowest state wi#i=0 and same
ground states with varying numbers of particles. The straight lineglectron density. The spin gap is about 0.14 Jer0.5, n=0.875,
are linear fits to the data. The slopes of the fithich asymptoti- about 0.10 forJ=0.5, n=0.75 and about 0.07 fod=0.35, n

cally yield wv/K) are 2.70 forJ=0.5, n=0.875, 6.75 forJ=0.5, =0.75. The breakdown of the asymptotic linear behavior is clearly
n=0.75, and 7.68 fod=0.35,n=0.75. visible in the third case, at energies of order the spin gap. The
straight lines are linear fits to the data. The slopes of theéviitsch
Eo—>E0+87-rv+pK+pCI>2/L. (2.29 asymptotically yieldmv) are 1.631 fom=0.875,J=0.5; 3.03 for

n=0.75,J=0.5; and 1.6368 fon=0.75, J=0.35.

Hence measuring the flux dependence of the ground-stat@ncation error is very reliable. Thus this determination of
energy determines, K, ,, while measuring the compress- /K  is the most reliable and accurate ingredient in the
ibility determinesv, ,/K.,. Hayward and Poilblarfcmea-  determination oK., ,, and, in fact, the results shown could
suredK , , in this way for the two-leg ladder using a maxi- be improved with modest additonal effort.
mum system size of 2 10. Another approach was taken by  In Fig. 2 we plot the left-hand side of EqR.26) versus
Siller et al® They modeled the two-letJ model as a single 1/L, again obtaining linear behavior. These calculations were
chain model of bosonic hole pairs. The parameters in thdlifficult. It is necessary to target two states simultaneously,
effective Hamiltonian for hole pairs were determined fromand extrapolation is not very useful. Note thatLifis not
DMRG calculations with open boundary conditions on sys-large enough and thénfinite L) spin gap is smallAg
tem sizes up to 482 for systems containing two holes or <27v.,/L, then the first excited state with the same quan-
four holes only. The resulting bosonic model was then studtum numbers might actually hav®=1, $°’=0 and corre-
ied using exact diagonalizatidhanczo3 methods and peri- spo_nd_to a spin excitation, r_ather than the desired n_eutral
odic boundary conditions. Since the number of effective€Xcitation of the+p field. (It might also be a neutral excita-
bosons(of density x/2 wherex=1—n) is small near 1/2 tion of one of the other gapped boson fieJds order to
filling, it was possible to diagonalize large systefo® to _check the fqrm_er possibility, we have calculated the spin gap,
220 sites in the case of only two bosans i.e., the excitation energy for the Iov_vest state vt=1. We

The approach advocated here, working exclusively withfind that the very nonlinear behavior fdr=0.35, n=0.75
open boundary conditions, has been used previously fofhown in Fig. 2 is due to a small spin gap in this system, of
chaind but not, as far we we know, farJ ladders. It allows order 0.04. Thus it was necessary to study & 96system,
us, using DMRG, to study much larger system sizes, up t(gor which we kept 4000 states, and performeq a do;en itera-
192x2, than are accessible with Lanczos in the usuapo_ns, to clearly see the required gap._We believe th|§ data is
formulation? It furthermore avoids making any assumptions 'éliable, but due to the large numerical work required we
which are necessary in treating the hole pairs as bosons, suBgve only studied three different values dfrf). Combining
as the particular form of the boson-boson interaction and th&e results of Figs. 1 and 2 allows a determination of and
absence of three-boson terms, which could induce some deReénceK . ,. The resulting values are given in Table I.
sity dependence in the interaction. However, the DMRG cal-
culations with the accuracy and system length required to

determineK, , for these ladder systems were surprisingly  While a C1S0 phase is expected over most of the param-

difficult. In order to minimize the effect of correction terms eter range in the two-letrJ model, a completely gapped,
to the asymptotic formulas, long systems were needed. In

these systems, one is probing competing pairing and charge TABLE I. Results for the charg_e velocity and Luttinger qugid
fluctuations at very low energies and large distances, whicRar@meteK. Keneg,comes from using Eq¢2.17) and(2.26, while

is difficult in DMRG. Typically more than 2000 states were Kampis determined using the de_cay of the Friedel oscilations in the
kept in the calculations and more than a dozen sweeps wefgMe" Of the system as a function of the system length.
performed. Some of the calculations were more accurate and

Ill. CHARGE DENSITY WAVES

reliable than others, however. In Fig. 1 we show a plot of the (n.J) v Kenergy Kamp

left-hand side of Eq(2.17) versus 1L for three values of (0.875,0.5) 0.519 0.604 0.633
(J,n), showing linear behavior and allowing us to extract (0.75,0.5) 0.964 0.449 0.359
v4,/K,. These calculations require only the ground-state (0.75,0.35) 0.796 0.33 0.284

energy, for which an extrapolation in the energy versus the
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charge density wavéCDW) phase may occur at special At 1/4 filling, corresponding ton=1/2, the product of this
commensurate filling factors, depending on the valug/of  operator times itself with spin up replaced by spin down, can
(and other possible interaction parameréfs* Possible occur, giving rise to an operator containing eight electron
CDW’sShave been studied in the extendeoé two-leg Hubbar@perators. Under bosonization this is proportional to exp
_modeiL atn=0.5 and in a two-leg-J ladder® with unequal [~4i\76.,] and has dimension=4K , ,. At a filling of
interrung and intrarung hopping at=0.5 andn=0.75. In  3/8 (or 1/8 corresponding ton=3/4 (or 1/4) the fourth

this section we review the conditions on the critical exponenbov\/(_:‘r of the basic Umklapp operator in H§.10 contain-
parameterK., , for a CDW to occur and discuss numerical j,o 16 electron operators can occur. It has dimension

work on thet-J model at electron densitias=3/4 andn _
=1/2, corresponding to fillings of 3/8 and 1/4, respectively.

+p-
The low energy effective Hamiltonian only contains Fou- The condition on the RG scaling dimensiarfor an op-
. 9y . L y erator to induce a CDW is somewhat subtle, and depends on
rier modes of the electron fields within a small momentum

range+ A of ke . Umklapp type interaction terms, which whether the density ai/t is varied. If we varyJ/t, holding

do not conserve separately the number of left and right movthe density fixed at the commensurate value, then the system

ers, are generally accompanied by rapidly oscillating phas¥/ll rémain in the gapless C1S0 phase as longa<, so
factors. They therefore do not appear in the low energy efthat the operator is irrelevant. A transition to a gapped CDW
fective Hamiltonian since the electron fields vary slowly andPhase occurs at the value dft wherex becomes<2. In the
hence these rapidly oscillating factors cause these intera&DW phase the value df . , becomes undefined since all
tions to average to zero. However, at special filling factorscorrelation functions decay exponentiallpr go to con-
corresponding to special values of the Fermi wave vector, thétanty. We may also consider what happens as we vary the
oscillating factors become constants and these operators thdensity in the vicinity of the commensurate value. If the
appear in the effective Hamiltonian. Whether or not theysystem is not in the CDW phase at a commensurate filling,
produce a gap and a CDW depends on whether or not thethen we expeck to vary smoothly and, of course, to satisfy
are relevant operators in the RG sense. In a one-dimensionat>2 at the commensurate point. On the other hand, if the
relativistic quantum field theory an operator is relevant if it system is in the CDW phase at a commensurate filling, then
has a scaling dimension<2. This scaling dimension deter- we expectx— 1 as the commensurate filling is approached.
mines the exponeny with which the correlation function of ~ Thjs follows from a general and clever argument by Schulz
this operator decays, with based on “refermionizing” the single boson Hamiltonian.
The relevant operator always behaves like a fermion mass
7=2X. 3D term, of scaling dimensior=1 very close to the commen-
Using the free boson Hamiltonian of E€R.6), the scaling surate filling, whenever a CDW occurs at that point. It fol-
dimension of any operator is easily obtained. For examplelows thatx must vary rapidly in the vicinity of the critical
the Hubbard ot-J interaction leads to an interaction term of value ofJ/t where the CDW transition occurs near a com-
the form given in Eq(2.10. We see that this oscillates at mensurate filling. On the CDW side of the transitionvill
wave vector 2k-.+kgo). Only when this wave vector is a be close to 2 away from the commensurate filling but then
mutiple of 27 will this operator appear in the low energy drop abruptly to 1 as that filling is approached. We empha-
effective Hamiltonian. Furthermore, any operators whosesize that Schulz’s argument, which was formulated in terms
correlation functions decay exponentially are irrelevant.  of the single boson sine-Gordon theory, is very general and
The number of electrond, in each band is doesn’t depend on the underlying microscopic model. Simi-
lar behavior can occur for &J or Hubbard ladder with any

Ny /L =2kgy /. (3.2 number of legs. Such rapid variation Kfin the vicinity of
(The factor of 2 arises from spinThus, commensurate filling for a system with a CDW was observed
by Schulz for the single leg Hubbard model near half filling,
2(kgetkeg)=2mn, (3.3 by obtainingK from the Bethe ansatz and similar behavior
was also observed near 1/2 filling€ 1) for the two-legt-J
where model by Silleret al.
n=(Ng+ Ng)/2L (3.4 Now consider a densitp=1/2 corresponding to 1/4 fill-

ing. If we sit at this density and vary/t then a CDW tran-
is the electron density. While the value lof, andkg, may  sition occurs wherK., ,=1/2, with the gapless phase having
be renormalized by interactioriand may, in fact, not really K. ,>1/2. On the other hand, I/t is such that the system is
be well defined in the interacting mogigheir sum is “pro-  in & CDW phase an=1/2, thenK, ,—1/4 asn—1/2.
tected” by the one-dimensional version of Luttinger's Similarly, a CDW at 3/8 filling,n=23/4, is signaled by
theorent® so that Eq(3.3) is expected to be exact. K,,—1/8, as we varyd/t at fixedn or K, ,—1/16 as we
Thus we see that the Umklapp operator of Ej10 can  vary the density at fixed/t in the CDW phase. See Fig. 3.
only occur inHgy for n=1 (half filling). This operator has The connection between the relevance of the multiple
scaling dimension Umklapp interaction and the presence of a CDW is easily
established. When the multiple Umklapp tetfor n=1/2 or
x=K,,. (3.5 3/4) is relevant it pins thé, , boson. From Eqs2.10 and

165122-6



FRIEDEL OSCILLATIONS AND CHARGE DENSITY . .. PHYSICAL REVIEW B55 165122

" 0.6
S 05 | |#4=025,n=075
K =1/16 v %J=0.35,n = 0.75
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FIG. 3. The qualitative behavior &, , as a function ofl/t and 1/L
n. A CDW occurs along the dashed linerat0.75 soK , , is not
well defined there. As this line is approached by varying< ,
—1/16. On the other hand, at=0.75 and larged/t there is no
CDW andK , , is well defined, with a value approaching 1/8 at the . ) ) ]
CDW critical point. surate densitp= 3/4 of approximately .232. Using the direct
DRMG approach, we have fourid, ,~0.33. Both results
(3.3 we see that the l¢ term in the density operator then are far above the critical values (1/8 and 1/16), indicating
has a nonzero ground-state expectation value, so that that a CDW doesiot occur atn=3/4 for J/t=0.35. The
charge gap fon=0.75 withJ=0.35 andJ=0.25 is plotted
(nj)*cog2mnj+ a)+const, (3.6  versus 1 in Fig. 4. There is, indeed, no evidence for a
dcharge gap at the larger value &f consistent with the ab-
sence of a CDW. On the other hand, thexevidence for a
charge gap af=0.25. Note that these calculations involve
only ground state energies and thus are very reliable. Al-
s=1-n, (3.7) though the results are extrapolated to zero truncation error,
the extrapolation is quite small in magnitude, of order the
the density of holes measured from half filling, sometimessymbol size in the figure, and the estimated error in the ex-
called the density of “holons” and proportional to the doping trapolation is very small, as shown by the error bars. These
parameter in the cuprates. We see thaan be replaced by  results provide some evidence that there is a criticial value of
in Eg. (3.6) so that the wavelength of the CDW oscillations J between 0.25 and 0.35 such that a charge gap and CDW
is 1/6. For a two-leg ladder, this is the average horizontaloccur for smallerd.
separation ohole pairs (“Horizontal” refers to the direction As reviewed in the next section, if there is no CDW, and
along the legs of the laddgr. the system in is the C1S0 phase, we expect the density os-
The CDW corresponds to a broken translational symmeeillations at the center of the chain to decay with chain length
try, so that there are two different ground statesrfer1/2  asL ™ X+» with K, ,>1/8. Comparing the oscillation ampli-
and four different ground states for=3/4 (differing only by tude forn=0.75,J=0.25 and the two longest lengths stud-
translation by 1 site For a finite ladder with periodic BC’s ied, L=96 andL =192, we find a ratio of oscillation ampli-
we expect quantum tunnelling between these ground states todes of 0.915 which would give an exponent Kf, ,
occur so that no density oscillations exist in the finite system=0.128. This is slightly larger than the critical value of 1/8.
ground state. On the other hand, with open BC’s one or th@©n the other hand, it is so close to the critical value that we
other of the ground states gets picked out by the boundargight wonder if the density oscillation amplitude would
conditions so that the CDW is directly observable. eventually approach a constant with still longer chain lengths
We now return to the point raised in Sec. Il, the highercorresponding to a true CDW.
order corrections in 1/ to the finite size energy gaps given  Another important question is the behavior of the spin gap
in Egs. (2.16 and (2.25. The leading correction is deter- in the putative CDW phase. Since the Umklapp term which
mined by the leading irrelevant operator. At a commensuratérives the CDW does not contain the spin bosons, it is natu-
filling, when the system is close to having a CDW, the mul-ral to assume that the gapping of the charge boson, corre-
tiple Umklapp operator discussed above has a dimension sponding to the CDW, occurs without any major effects on
only slightly greater than 2, corresponding to being barelythe other bosons which could thus remain gapped. However,
irrelevant. In this case the higher order terms in the energit is possible that onéor more of the other bosons, such as
formula are ofO(1/L*"1). This will make it difficult to de-  a spin boson, becomes gapless at the same transition. Indeed,
terminedK , , reliably from finite size gaps in the vicinity of the occurence of the CDW may be related to the close prox-
a CDW, complicating the determination of the CDW phaseimity of a phase with no spin gap.
boundary. In Fig. 5, we show the spin gap on aX@ system for a
Previously reported woPbased on the bosonic hole pairs wide range ofl. The data suggests that in the thermodynamic
approximation together with DMRG and Lanczos, on thelimit, the spin gap vanishes near=0.25. To verify this re-
two-legt-J model, withJ/t=0.35, found a smooth behavior sult, one must perform a finite size study. However, the spin
of K, in the vicinity of n=_3/4 with a value at a commen- density pattern on the 262 system forJ=0.2 has the larg-

FIG. 4. Scaling of the charge gap withL1/showing the occur-
ance of a CDW ah=0.75 forJ=0.25 but notJ=0.35.

where « is a constant. Thus the density oscillations shoul
have wavelength 2 fon=1/2 and wavelength 4 fan=3/4.
In general, it is sometimes convenient to introduce
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Tyl

FIG. 7. A charge arrangement with period 2ret 3/4, corre-
sponding to a gapless CDW. The black circles represent electrons
) ) ) and the white circles holes. The ovals indicate that the location of
00 02 04 06 08 L0 the hole is symmetrized between the two sites on a rung. The solid

Jit lines indicate the formation of dimer singlets. The arrows indicate

) ] the spins of the unpaired electrons, butdeenotexpect them to be
FIG. 5. Spin gap on a 262 system as a function alt. Neel ordered in this one-dimensional system.

0.1

0.0

indicating that an edge excitation has the lowest energy. IFPW With vanishing spin gap but wavelength 4 in the
order to ensure that we have a bulk spin excitation in th(gapped CDW.

calculation, we next studied systems where we increased the _The co_nnectlon between_ wavelength do_ublmg and the
. . . spin gap is related to the Lieb-Schultz-Mattis theor&nif.
rung exchange interaction td+0.3 on the first and last

runas of a ladder. This drives up the enerav of the ed the wavelength is not doubled to 4, then gapless excitations
gs | Co P nergy %re expected. More precisely, we can prove the existence of
excitation, and one finds that the resulting spin pattern i

. . ) apless excitations ai=3/4 if the ground state is invariant
concentrated in the central region of the ladder. In Fig. 6, w P -

: = nder translations by 2 and under site pajity —j and is
show the spin gap as a function ofL1for several systems. |, ferromagnetic(Note thatlink parity, j— —j + 1 is spon-

The results fod=0.2, n=0.75 are consistent with a gaplegs taneously broken by the wavelength 2 ground state illus-
state, although one can never rule out a very small gap. Simirated in Fig. 7 but site parity is notThis is proven by
larly, for J=0.25,n=0.75 no evidence was found for a spin considering a long ladder of even lengthwith periodic
gap on the largest system, a 292 ladder. ForJ=0.2, n  BC’s. Let| ) be a ground state. We then consider the varia-
=0.875 we see a clear spin gap of order 0.013. tional state obtained by acting on thg,) with the unitary
The proximity to a phase with vanishing spin gap may beoperator

related to the occurence of the CDW. As the spin gap gets

smaller, and the corresponding length scale larger, we may _ . .
expect the size of the two-hole pairs to get larger. This is U—eXF{I(Zw/L)Ej: it
naturally associated with a growing scattering length for the

effective boson system, which enhances the formation of wheren;; is the number operator for spin up electrons on
CDW. rungj (summing over both sites on the ryndgf is straight-

A CDW with vanishing spin gap ai=23/4, can be easily forward to calculatg Yol U'(H ~Eo)[ o) and show that it is
understood heuristically. One can imagine one hole localize®(1/L) provided that the following term vanishes:
on every second rung, with the electrons on doubly occupied
rungs forming spin singlets, as illustrated in Fig. 7, giving an > [0l Sl 1€ inr [ 00) = (Wolc] s 1y Cin | 0} . (3.9)
effective S=1/2 Heisenberg chain with lattice spacing 2 ]
which has vanishing spin gap. On the other hand, in th e can show that this vanishes, for example, by using the
spin-gapped phase we can think of pairs of holes Iocalize(a\ésun,le site parity symmetry to s'how that '
on every fourth rung, as in Fig. 8. Thus we expect the

(o CijCj +1nl%0) = (ol CijCj “wlte). (310
0.04
©—8n=0.75, J=0.2 /Z/ To complete the proof of a low energy state we must prove

; (3.8

003 Lo o e that U|yo) does not becomysy) in the limit L—). We

prove this by considering the behavior df under transla-
tions by two sites, the assumed symmetry of the ground
state. We find that under this translation

< 0.02

0.01

G O A
0'000.00 001 002 003 004 O O

/L

FIG. 8. A charge arrangement with period 4ret 3/4, corre-
FIG. 6. Spin gap as a function ofl1for several systems. The sponding to a gapped CDWI'he actual density oscillations seem to
values of the exchange on the first and last rungs have been alteredrrespond to pairs of holes shared evenly by every second pair of
to avoid edge excitation. rungs)
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U—Uue'®™, (3.11) 12 |
192x2

where n; is the density of spin up electrons; =N,/2L, Lot 1/120%255
whereN; is the total number of spin up electrons anid i o 08 T
the number sites on a two-leg ladder of lengthif we fur- 206 |
ther assume that,=n , i.e., that the ground state is not =04
ferromagnetic, then we may replace the exponential factor in 02 |
Eq. (3.1 by €4™. For a densityn=3/4, this factor is ' ﬂ
—1. This proves orthogonality ofJ|g) with |#,) and 0.0 - . .
hence the existence of a low energy excitation. On the other 0.0 1.0 20 30
hand, if the ground state is only invariant under translations k,

by four sites then, repeating the argument with a translation
by four sites changes the exponential factoe'ff" which is
1 for n=23/4. Thus we cannot prove thel| 4s,> is orthogo-
nal to the ground state in this case; it may approach it in thé‘avelength of 4.
limit L—o0, so the proof collapses. Unfortunately, this does
not prove that there is a gap when the ground state has waveated by solid cuts for small values aft and a phase sepa-
length 4, only that the gap neccessarily vanishes when it ha@tion region occurs for largéd/t values. We conjecture that
wavelength 2. However, it often appears to be the case thdlie remaining region is in a C1SQd{vave-&r CDW)
when the LSM theorem fails, a gap appears. for instance, fophase. As discussed in Sec. Il, this phase has#thg and
S=1/2 spin chains, a gap is expected whenever the grounél-, bosons pinned and is characterized by power law
state has wavelenth 2, as in a dimerized state. Thus, théwave pairing and K= CDW correlations. WhenK . ,
nature of the density oscillations provides additional evi->0.5, the pairing correlations are dominant. Supporting this
dence for which phase the system is in. conjecture, DMRG calculations fdr't andn values near the

To see what Fourier components are present in the densifyhase separation boundary show clear power dawave-
oscillations, we Fourier transform the density as a functiorlike pairing correlations.
of rung position and plot the power spectrum. In order to The phase diagram shown in Fig. 10 for thd ladder
avoid spurious edge effects, a windowing function is used. Idiffers in several ways from that expected for the two-leg
the original density isd(x), we Fourier transformD(x) repulsiveU Hubbard model. First, it is generally believed
=W(x)d(x), whereW(x) is a smooth windowing function. that the Hubbard ladder does not exhibit phase separation
W(x) is chosen to vanish at=1 andx=L, and to be unity and the that ordered CDW phases are absent. Secondly, weak
for the middle third of thex values, with a smooth continu- coupling renormalization-group studies, bosonizafiamd
ation in between; the particular choice we use is given inDMRG calculations suggest thit, ;<1 for the repulsive U
Ref. 19. Before Fourier transforming, we calculate the $um Hubbard model. For an extended Hubbard model with addi-
of D(x) from 1 toL, and the sumJ of W(x), and then tional interactions one can ha¥e, ,>1; however, Orignac
subtract fromD(x) the function (/J)W(x). This removes a and GiamarcHi argue that wherK, ,>1, the d-wave-&g
large peak centered &t=0 which is uninteresting. The lat- phase gets replaced by a C1§®ave pairing or an orbital
tice spacing is set to 1, so that the exponential in the FT igntiferromagnetic phase. This raises questions regarding the
exp(—ikj), wherej runs over integer lattice sites. With this phase diagram show in Fig. 10. We believe that while alter-
approach there is no restriction on the allowed valuek; of nate C1S0 phases are certainly logical possibilities, they do
the finite value ofL instead leads to finite widths for the not occur in thet-J ladder. The argument that they occur
peaks. The density oscillations fdr=0.25 and alsdd=0.2, wheneverK, ,>1 appears to depend upon a weak coupling
with n=0.75 have a very strong component at a wavelength
of 4, corresponding to a spin-gap, as shown in Fig. 9.

FIG. 9. Smoothed Fourier transform of the density oscillations
showing only a large peak at wave vectof2 corresponding to a

[

phase
/' separation

IV. APOSSIBLE PHASE DIAGRAM

In this section we briefly discuss a possible phase diagram 75
and the qualitative behavior &t , as a function of) andn CDV |
for the two-legt-J model. We are interested in the region 05

n=0.5 where both the even and odd parity bands have car-
riers in the weak coupling Hubbard limit. At still lower dop-
ing the system is expected to enter a C1S1 phase. In the
regionn=0.5 our phase diagram is similar to that proposed
by Hayward and Poilblantand is based on their exact di- 0 .
agonalization results, earlier DMRG results, our new DMRG
results and some general results which follow from FIG. 10. Schematic phase diagram for thel ladder as
bosonization and RG. This is sketched in Fig. 10. Here the function ofJ/t and the electron densityin the regionn>0.5 and
two ordered CDW phases at=0.75 andn=0.5 are indi- J/t>0.1.

J/t
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analysis which may not be applicable to thd ladder. In  to the case of the ladder. A related approach was taken to the
this analysis, the phase boundaries between the various C1$® Kondo latticé” and the extended two-leg Hubbard
phases is determined by the equality of 2 small marginamodel?® Recent work on spin chains has also appe3téd.
coupling constants in the Hamiltonian. These coupling conThese oscillations provide a further check on the theory.
stants also determink ., ,, in the weak coupling limit, in  Thus consider again thekd term in the density operator, of
such a way that when they are equél, ,=1.[See Eq(35  Eq.(2.10:

of (Ref. 4).] For stronger coupling, and, in particular, for the L

t-J model, the possible phase boundary to a phase with or- nj=Ae #™Me 2\l Hc, (5.9

bital antiferromagnetism need not be related in any generr%here A is a constant into which we have adsorbed
way to the value oK, ,. We emphasize that the value Kf ée*Z‘ \;;6+0>_ As we discussed in Sec. II, thid term in the

alone is not in general sufficient to determine whether th . ! . .
. . . . : continuum representation of., determines the leading be-
system is in a phase with orbital antiferromagnetism. To de; _ . . ! . ) i

i . . . havior of the density-density correlation function at long dis-
termine whether there is OAF it is useful to directly calculatetances since anykz. terms decay exponentially. For an infi
the rung-rung current correlation function. The DMRG re- y Y €Xp -

sults suggest that orbital antiferromagnetism does not occunrIte system, the correlation function of the exponential

in the ordinaryt-J model operator appearing in E@5.1), behaves as

The phase separation boundary was obtained in a previous 2170 —2iy7e —alp|-2K,
DMRG study?! As this boundary is approached the com- (eTre(r)e *(0))=clr] " (5.2
pressibility diverges an& ;. ,— . wherec is a constant, with dimensions of (lengthy». De-

We have taken into account the behaviorkKof , near  composingd= ¢g— ¢, , we may write this correlation func-
commensurate fillings in drawing Fig. 10. In particular, attion as a square of two identical factors, the correlation func-
n—1, thet-J model reduces to the two-leg Heisenberg spintions of exp2i\/7¢g, ]. It thus follows that the oscillating
ladder and has an infinite gap for all charge excitations angerm in the density correlation function is
presumably a gap aD(J) for spin excitations. The general
arguments of Schulz then imply thatk, ,—1 along the (n(r)n(0))—cog2mnr+a)2c|Al?|r| "2+, (5.3
line n=1. We have also assumed that a CDW occurg at
=0.75 andn=0.5 for small enoughl. As discussed in the
previous section, we have found some evidence for such
phase atl=0.25 andn=0.75. The corresponding behavior
of K, ,, reviewed in the previous section is incorporated in
Fig. 10. Note that, at small, K, , apparently varies rapidly -~
between 0.0625 fon=0.75 and 1 forn=1. As we also $L(1,0)= Pr(t,0) +const (5.4
discussed in the previous section, it is possible that the spiNow using the fact that)y is a function ofvt—r only and
gap vanishes at commensurate fillings for some rangé of ¢, a function ofvt+r only, we see that this equation im-
We do not attempt to indicate this possibility in Fig. 10.  plies that we may regarghs as the analytic continuation of

We also have deliberately not indicated the behavior af, to the negative axis
very smallJ/t<0.1 in Fig. 10 since we have no nummerical
results there. We might expect that this part of the phase ¢r(r)= ¢ (—r)+const. (5.5
diagram should resemble that of the latdédubbard ladder. . .
However, as far as we know, there are no reliable results ofnus the expectation value ofr) reduces essentially to the
that model at very largdJ either. Whether or not CDW's Square root of the correlation functign(r)n(0)):
exist atn=0.5 and 0.75 in the very largg Hubbard model ) L
and/or the very small/t t-J model remains an open ques- (n))—2\c|Alcog2mnj+ B)(2]) "F+o. (5.6
tion. Another interesting question is the possibility of a phaserne wave vector of the Friedel oscillations is the same as the
with Nagaoka ferromagnetism at smalk close ton=1. wave vector governing the long-distance oscillations in the

For values ofJ/t around 0.35, which has been argued t0¢orrelation function. No Friedel oscillations occur at wave
be a reasonable value for modeling the cuprakes,<0.5  yector X as they would for the noninteracting system or
nearn=0.75 but increases towards 1rs 1 is approached. more generally in phases where, for example, all four bosons
Thus there is only a narrow window of doping near 1/2 fill- are gapless. The exponent governing the decay of the Friedel

Now consider the semi-infinite system>0) with one free
goundary condition. As remarked in Sec. Il this corresponds
to a BC on the boson field given in E(R.23, or equiva-
lently,

ing whered-wave pairing correlations dominate. oscillations isK , ,, 1/2 the exponent governing the decay of
density correlations. Furthermore, the amplitude is simply
V. FRIEDEL OSCILLATIONS the square root of the amplitude of the density correlation

function (multiplied by 2¥27X). Finally, we may readily gen-

At incommensurate filling, or in general when no CDW . - :
A . A eralize Eq.(5.6) to the case of a finite chain of length b
occurs, there will still be density oscillations produced by the ize £q(5.6 m I oth by

boundaries of an open ladder which only decay sloflith a standard conformal transformation
a power law into the ladder. Detailed predictions can be .
made about these using bosonization generalizing the ap- (n)— 2JE|A|cos{27rn]+ﬂ) )
proach of Refs. 8—10 for the spin chain and Hubbard chain [(2L/ar)sin(aj/L)]K+»

(5.7
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FIG. 11. The amplitudeA, of the Friedel oscillations in the FIG. 13. Density at sitel from DMRG (*) for (n,J)

center of the system, as a function of the lendgthThe resulting =(0.35,0.75) compared to Eq5.7) (circles and lines using
slopes are—K,, and are given in Table I. The triangles show K =0’33
+,=0.33.

results forL = 64 as a function of the number of block states kapt

for J=0.35,n=0.75. One can see the very slow convergence of the . ) o )
amplitude with the number of states kept. In Figs. 12 and 13 we show the Friedel oscillations in the

density at sitd, for two different values of if,J), fitted to
Eq.(5.7) with K, , taken as a free parameter. The agreement
The decay of Friedel oscillations allows a way of determin-is fair although the presence of corrections due to irrelevant
ing the critical exponerk ;. , which is alternative to measur- operator effects is evident. In both cases the valug of so
ing directly the long distance behavior of the density corre-determined is in rough agreement with the values in the third
lations. Indeed this latter measurement becomes quiteolumn of Table I, determined from the finite size spectrum.
difficult with open BC’s due to the necessity of eliminating  We emphasize that these formulas are true very generally
boundary effects. for Luttinger liquids with a single gapless charge boson. In
We emphasize that the wave vector of these Friedel oscilparticular, they apply to the spinless single chain model. In
lations 2Kget+Kro)=27rn, or equivalently 2rx wherex  the noninteracting case we may readily find the exact for-
=1-—n is the hole density, is a characteristic feature of themula for the Friedel oscillations. Fdt electrons orL sites
particular C1S0 phase that we are assuming. More correctly,
this is the minimum Friedel oscillation wave vector since

N .
higher harmonics are also expected to occur. This minimum (n)= i E sinzw—mj
oscillation wave vector would be different in a different YL+l 2 L+1
phase. This wave vector corresponds to two holes per wave . _
length and is the same wave vector that would occur for a _N+12 sif27j(N+1/2)/(L+1)] 5.8
one-component spinless hard core bose gas, which is an ap- L+1 2(L+)sin(7j/(L+1)]°
proximate description of the C1S0 phase in which hole pairs
are assumed to form tightly bound rung singfets. For largeN andL this can be approximated
An immediate consequence of E§.7) is that the ampli-
tude of the density oscillations near the center of a finite ) )
chain scales ak ~K+r. We show a log-log plot of this am- sin2n|

plitude versus length in Fig. 11. Fitting to a straight line (nj)~n- 2Lsin(mj/L) " 5.9

allows a determination df ;. ,. The corresponding values of

K., determined in this way are shown in Table I. We seeThjs has the expected form of E¢5.7) with K=1 and
that they are roughly comparable to the values obtained from\/E|A| — 1/27r. On the other hand, thek@ part of the density
the finite size spectrum. correlation function at long distances is

128x2, J=0.5, n=0.875

COS 2N |
<njn0>_’T|j|2 (5.10

<n(l)>

which has the form of Eq(5.3) with the same value of
Jc|A|=1/27.
We see that, not surprisingly, when the charge density
correlations drop off slowly, so do the Friedel oscillations. In
0 20 40 60 particular, this makes it difficult to determine numerically
! whether or not a CDW occurs at=3/4, for example, by
: measuring density oscillations. Jit is such that the system
FIG. 12. Density at sitd from DMRG (*) compared to Eq. almost has a CDW theK , , will be only slightly greater
(5.7) (circles and linesfor (n,J)=(0.5,0.875) usin& , ,=0.63. than 1/8. The extremely slow decay of the Friedel oscilla-
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tions will be difficult to distinguish from a true CDW, where
the oscillation amplitude goes to a nonzero constant far from
the boundaries.

We now consider the single chain Hubbard antimod-
els. The Hubbard model is known to be in a C1S1 phase for
all densities(exceptn=1) and allU>0. Thus the low en-
ergy effective Hamiltonian contains both spin and charge
bosons(We use the same notation as for the two-leg ladder
except that thet labels are no longer needed since there is
only one type of charge boson and one type of spin bgson.
The charge boson Hamiltonian is written exactly as in Eq.
(2.6), in terms of the parameté¢,. The spin boson Hamil-
tonian also has exactly this form but wiky, =1, as follows
from SU(2) spin rotation invariance. The pairingk2 and
4kg density operators now take the form

~ 2ikwaTRT Y e 2kexg I\ ZR(0,+0,)
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FIG. 14. Smoothed Fourier transform of the density,in the
R single chain Hubbard model a=7/8 for various values of the
P g €200 00) repulsion strengthu.

of a system ofnoninteractingspinless fermions with the

. . = same density. That is to say, the charge dynamics is “spin

e Yy Y Y <o MR T2 (5.10) blind.” It foII)c/)ws that the dgnsity osciﬁatioﬁs should no?
Note that, in this case, we have formed k-4operator in  have themrn term in this limit but only the Zn term as for
which the spin boson does not appear. It then follows that thepinless fermion$Eq. (5.9)]; i.e., thatA—0 atU—w. This
pair correlations, R- density correlations andkg¢ density — argument also determinés, = 1/2 andB = 1/27 in this limit.

correlations decay with power law exponents

We remark that this argument is special to the single chain
model with only nearest neighbor hopping. On a ladder, or

Mpair= 1+ 1K 5, even on a chain with next nearest neigbor hopping, spin re-
14K arrangement is possible without double occupancy by mov-
M2ke = pr ing the electrons around or past each other.
_ In Fig. 14 we plot the Fourier transform of the density for
”4KF_4KP- (5.12 the Hubbard model, at 7/8 filling, for various values of
Open BC's imply The same smoqthmg procedure was used that we mentioned
in Sec. lll. In this case B-=mn="7mx/8 and &g=7m/4 or
6,(0) = const,
0.030
0,(0)=const. (5.13
N - 0.020
It thus follows that the density will exhibit bothk2 and &g
Friedel oscillations with different exponents = 0010
=
Acogmnj+a) Bcog2mnj+pB) 0.000
J(lJer)IZ ]2Kp 0010
-0.01 .
(5.14 00 10 20 30
where we have expressed the oscillation wave vectors in @) ks
terms of the electron density using the free electron result for 0.015
electrons with spin on a single chain 1268x1
0.010 Jit=1, 32 els.
2k|:=’7Tn. (515) N
< 0.005
The amplitudesA andB are proportional to the square roots = J\
of the corresponding terms in the density correlation function 0.000
and depend on density ahdl (as doex ).
It is interesting to consider the limly>t where the no —0.00500 0 20 20

double occupancy constraint is present. If we consider some
initial configuration of holons and spins, then the order of the

(b)

k

x

spins alo_ng the chain can never Cha_nge under nearest neigh- FIG. 15. Smoothed Fourier transform of the density,n the
bor hopping processes consistent with no double occupancyingle chaint-J model atn=1/4 for (a) J/t=0.35 and(b) J=1.0,
It follows that the charge dynamics must be identical to thosehowing Friedel oscillations atkg = /4 and &g= /2.
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equivalentlys/4. Both X and &g components are clearly Thus we expect-J models to exhibit generic Friedel os-
visible and it is evident that thek2 component vanishes at cillations in all cases except for the special case of a single
large U. leg in the limitJ/t—0 where the absence of spin rearrange-
What does this imply about thisingle chaint-J model?  ment processes eliminates the lowest wave vector component
The J—0 limit of the t-J model is identical to théJ —o of the oscillations.
limit of the Hubbard model. Therefore, in that limit, the den-  The Friedel oscillation wave vector can be a useful diag-
sity oscillations have vanishingkz component. It is not nostic of which phase a particular multilégl model is in.
completely obvious what happens at nonzdrdnsofar as  For instance, the minimum oscillation wave vectok:2
this is the same as large but finité we would expect to +2kg,=2mn, is a characteristic of the particular C1S0
have a small R component to the density oscillations. Note phase of the two-leg ladder reviewed in Sedirilwhich the
however, that the no double occupancy constraint is enforced.. , and ¢ _ , fields are pinned Other phases exhibit other
exactly in thet-J model, by construction, whereas it is not in oscillation wave vectors. We expect such an analysis of
the finite U Hubbard model. Thus we must understandDMRG results to be useful in determining the phase diagram
whether it is the no double occupancy which is responsiblef multileg ladders.
for the vanishing Rr oscillations or whether the vanishing
of all spin rearrangement processes is neccessary. The argu-
ment in the previous paragraph seems to rely on the vanish-
ing of spin rearrangement processes so we suspect that the D.J.S. would like to thank T. Giamarchi for helpful dis-
Friedel oscillations should exhibit &kg component for any cussions. D.J.S. and |.A. acknowlege the hospitality of the
finite J. Of course, for smalll/t this is expected to be small. ITP, University of California, Santa Barbara where this work
In Fig. 15 we show the Fourier transformed density for thewas initiated. S.R.W. acknowledges support from the NSF
single-legt-J model at densityn= 1/4 for two values ofl/t. under Grant No. DMR98-70930; I.A. acknowleges support
Note that now Rg=7/4 and &g = w/2. For smalled/t the  from the NSF Grant No. PHY99-07948TP) and NSERC of
4kg oscillations clearly dominate although a smallz2part  Canada; D.J.S. acknowledges support from the NSF under
is observed. At larged/t, the oscillations at R- are larger ~Grant No. PHY99-07949TP) and grant No. DRM98-17242
than those at K . (D.J.S).
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