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Three-component elastic wave band-gap material
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Using multiple-scattering theory, we consider the elastic wave band-gap properties of three-component
composites consisting of a periodic arrangement of coated spheres inside an embedding medium. We found
that the elastic wave band-gap properties can be tuned continuously from a resonance gap to a Bragg gap just
by varying the elastic properties of one component. If the coating material is soft compared to the core and the
matrix, the elastic wave band gap is essentially a resonance gap. If the coating material is stiff, the elastic wave
gap is derived from Bragg scattering. These systems are ideal for realizing elastic wave gap and wave local-
ization as well as understanding the underlying mechanism.
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I. INTRODUCTION

In the past decade, there have been intense activitie
photonic band-gap1 systems because of their novel physic
properties and many potential applications in the photon
age. Elastic wave can also have forbidden gaps, but it
received less attention partly because it is a more com
mathematical problem. Another reason is that elastic w
band-gap material is usually conceived to have a length s
at least a few times that of the wavelength, implying gigan
structures for lower frequencies and making the applica
rather difficult. Previous considerations are mainly focus
on two-component systems2 and absolute elastic wave ban
gaps are rather difficult to realize for two-component so
materials in three dimensions.

There are two mechanisms that can lead to a forbid
gap in classical waves. One is Bragg scattering in perio
systems and the opening of a Bragg gap at the Brillouin z
~BZ! boundary.1 The existence of an absolute gap requi
the overlap of the Bragg gaps in all directions. Symme
periodicity, and orderness of the periodic system are all
portant. The frequency of the spectral gap is of the orde
c/a, wherec is wave speed anda is the lattice constant. The
photonic band gap, as it was originally perceived, is a Bra
gap that overlaps in all 4p radians. The other mechanism
derived from localized resonances. Examples are polar
gaps when light couples with optical phonons in ionic cry
tals. The frequency of a resonance gap is dictated by
frequency of the resonance, and is independent of ordern
periodicity and, symmetry unless there is a high concen
tion of resonating units so that they couple strongly w
each other. Electromagnetic resonances derived from
ementary excitations such as polariton or plasmon are
ally associated with strong absorption, and are thus not v
useful for creating photonic gaps. The situation is differe
for elastic waves in at least two respects. First, the diss
tion can be very small in certain mechanical excitatio
making resonance a possible mechanism for the creatio
elastic wave band gap. Second, we shall show in this pa
that it is possible to tune the spectral gap ‘‘continuous
between a Bragg gap and a resonance gap in th
component elastic systems, while such manipulations wo
be very difficult for electromagnetic waves.
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In order to realize a complete elastic wave band gap
tune its property from a Bragg gap to a resonance gap~as
well as somewhere in between! we employ a three-
component configuration. All that is required is to vary t
elastic property of one of the component relative to the ot
two. Our calculation for these three-component systems
only elucidates the gap formation mechanisms, but also p
vides a recipe that guarantees the existence of elastic w
band gaps and a good chance to realize localization.
configuration consists of a spherical core, a concentric c
ing of another material, and an embedding matrix of a th
material. The core does not need to be spherical, but it ma
the calculations more tractable. All the calculations are p
formed with a multiple-scattering method, which gives e
cellent agreement with experimental results.3 The details of
the multiple-scattering theory can be found elsewhere,3 and
will be outlined in the following section so that various sym
bols and notations are clearly defined. We note that
method allows us to solve accurately the elastic wave eq
tions when the Lame constants and the densities of the
stituent components are specified. We fix the core materia
Au and the matrix as Si, and only vary the coating lay
material. In the results presented, the radius of the Au c
and the total radius of coated sphere~Au 1 coating! are fixed
at a ratio of 13 to 18. We note that this particular ratio has
special significance except that we have to choose s
numbers to do our numerical calculations. Other ratios
have the same qualitative effect. Unless otherwise indica
all frequencies are normalized tod/2pct , where d is the
diameter of the coated sphere andct is the transverse soun
speed. We will see that when the coating is soft compa
with the elastic constants of the core and the matrix mate
the gap is a resonance gap. If the coating is stiff, the
becomes a Bragg gap.

II. MULTIPLE-SCATTERING METHOD FOR ELASTIC
WAVE BAND STRUCTURE

We shall consider a composite medium that contain
host matrix and embedded scatterers. The incident wave
scattereri may be expressed as
©2002 The American Physical Society16-1
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uin~r i !5(
lms

alms
i Jlms~r i !, ~1!

and the scattered wave by scattereri may be expressed as

usc~r i !5(
lms

blms
i H lms~r i !, ~2!

where, r i is measured from the center of scattereri, and
Jlms(r ), H lms(r ) are defined as

Jlm1~r !5
1

a
¹@ j l~ar !Ylm~ r̂ !#,

Jlm2~r !5
1

Al ~ l 11!
¹3@r j l~br !Ylm~ r̂ !#, ~3!

Jlm3~r !5
1

Al ~ l 11!b
¹3¹3@r j l~br !Ylm~ r̂ !#,

and

H lm1~r !5
1

a
¹@hl~ar !Ylm~ r̂ !#,

H lm2~r !5
1

Al ~ l 11!
¹3@rhl~br !Ylm~ r̂ !#, ~4!

H lm3~r !5
1

Al ~ l 11!b
¹3¹3@rhl~br !Ylm~ r̂ !#,
16511
wherea5vAr/(l12m), b5vAr/m ~wherer, l, andm
are respectively, the mass density and two Lame constan
the host medium!, j l(x) is the spherical Bessel function, an
hl(x) is the spherical Hankel function of the first kind. Ac
cording to the multiple-scattering theory, the wave incide
on a given scatterer consists of two parts, one is the ex
nally incident wave,uin(0)(r i), which may be expanded as

uin(0)~r i !5(
lms

alms
i (0)Jlms~r i !. ~5!

The second part is the sum of all the scattered waves ex
that from scattereri, given by

uin~r i !2uin(0)~r i !5(
j Þ i

(
l 9m9s9

bl 9m9s9
j H l 9m9s9~r j !, ~6!

wherer i andr j refer to the position of the same spatial poi
measured from scatterersi and j, respectively. WithRi ( j )
denoting the position of scattereri ( j ), we haver j5r i1Ri
2Rj . It can be shown that

H l 9m9s9~r j !5(
lms

Gl 9m9s9 lms
i j Jlms~r i !, ~7!

where Gl 9m9s9 lms
i j

5Gl 9m9s9 lms(Ri2Rj ), the latter is given
by
Glms l 8m8s8~R!55
Xlml8m8

a
~R!, s5s851,

(
m

c~ l1lm2mm!Xlm2m l 8m82m8
b

~R!c~ l 81l 8m82mm!, s5s852,3,

2 i S 2l 811

l 811
D 1/2

(
m

c~ l1lm2mm!Xlm2m l 821m82m8
b

~R!c~ l 8211l 8m82mm!, sÞs8;s,s8Þ1,

~8!
d is
he
en

lu-
ted
where, ‘‘c’’ are Clebsch-Gordan coefficients, andXlml8m8
k (R)

is defined as

Xlml8m8
k

~R!54p(
l 9

i l 81 l 92 lCl 8m8 l 9m2m8
lm hl 9

3~kR!Yl 9m2m8~R̂!, ~9!

andCl 8m8 l 9m9
lm is defined as

Cl 8m8 l 9m9
lm

5E E
s
Ylm~V!Yl 8m8

* ~V!Yl 9m9
* ~V!dV. ~10!
For a given scatterer, the scattered displacement fiel
completely determined from the incident field through t
scattering matrix. There is a deterministic relation betwe
the expansion coefficientsA5$alms

j % andB5$blms
j %:

bl 9m9s9
j

5 (
l 8m8s8

t l 9m9s9 l 8m8s8
j al 8m8s8

j , ~11!

whereT5$t lms l 8m8s8
j % is the scattering matrix of scattererj,

which can be obtained from the elastic Mie scattering so
tion of a scatterer, outlined below for the case of coa
spheres. Substituting Eqs.~1!, ~5!, ~7!, and~11! into Eq. ~6!,
we arrive at
6-2
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(
j l 8m8s8

Fd i j d l l 8dmm8dss8

2 (
l 9m9s9

t l 9m9s9 l 8m8s8
j Gl 9m9s9 lms

i j Gal 8m8s8
j

5alms
i (0) .

~12!

This is the final equation for a multiple-scattering syste
For a finite and/or disordered system, we must solve
equation in order to investigate the system response to e
nal perturbations. The normal modes of the system may
obtained by solving the following secular equation, which
the absence of external incident wave becomes:

detUd i j d l l 8dmm8dss82 (
l 9m9s9

t l 9m9s9 l 8m8s8
j Gl 9m9s9 lms

i j U50.

~13!

For a periodic system, Eq.~13! may be transformed to

detUdss8d l l 8dmm8dss82 (
l 9m9s9

t l 9m9s9 l 8m8s8
s8 Gl 9m9s9 lms

ss8 ~k!U
50, ~14!

wheres ands8 label the scatterers in the unit cell with pos

tion vectorsos andos8 , andGl 9m9s9 lms
ss8 (k) is defined as

Gl 9m9s9 lms
ss8 ~k!5(

R
Gl 9m9s9 lms~os2os82R!exp~ ik•R!.

~15!

where the sum(R is over all lattice sites. The solution of Eq
~15! gives the band structure of an elastic periodic syste

We now outline the procedure to obtain the Mie scatter
matrix of a spherical scatterer with coating. Let the inn
radius of the coating~i.e., the bare core sphere radius! be a,
and the outer radius beb. The material constants for the ho
medium are the mass densityr1 and the Lame constantsl1
andm1. The corresponding material constants for the coat
material are denoted asr2 , l2, and m2 and those for the
sphere are denoted asr3 , l3, andm3. The displacement field
in the host medium may be expressed as

u1~r !5(
lms

@almsJlms
(1) ~r !1blmsH lms

(1) ~r !#, ~16!

where the superscripts (1) on the right-hand side, which
all omitted for convenience in the previous subsection, ind
the host medium. Similarly, the displacement in the coat
layer may be expressed as

u2~r !5(
lms

@clmsJlms
(2) ~r !1dlmsH lms

(2) ~r !#, ~17!

while that in the core sphere may be expressed as

u3~r !5(
lms

elmsJlms
(3) ~r !. ~18!
16511
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The strain tensor in thei th medium (i 51,2,3) is expressed
as

ei5
1

2
~¹ui1ui¹!, ~19!

and the stress and the strain tensors are related by

ti5l i~ei :I !I12m iei . ~20!

Displacement and normal stress continuity at the interf
requires that

u3~r !ur 5a5u2~r !ur 5a ,

t3~r !•r ur 5a5t2~r !•r ur 5a ,

u2~r !ur 5b5u1~r !ur 5b ,

t2~r !•r ur 5b5t1~r !•r ur 5b ~21!

The boundary conditions lead to 12 linear equations invo
ing coefficients $alms%,$blms%,$clms%,$dlms%, and $elms%,
from which we obtain the relation between coefficientsA
5$alms% andB5$blms% formally as

B5TA, ~22!

whereT5$t lms l 8m8s8% is the scattering matrix as defined.
can be shown that, for spherical scatterer~with or without
coating!, the scattering matrix is independent ofm, and di-
agonal inl:

t lms l 8m8s85tss8d l l 8 , ~23!

moreover, only five elements oftss8 are nonzero, the 333
matrix $tss8% looks like

F LL 0 LN

0 MM 0

LN 0 NN
G , ~24!

where symbolL denotes the longitudinal modes (s51), M
denotes the first transverse modes (s52), andN denotes the
second transverse modes (s53). The meanings of the five
nonzero elements are straightforward, for example,LL
stands for the conversion fromL mode toL mode during the
scattering procedure. It shows that theL modes and theN
modes are coupled to each other, while theM modes are
decoupled.

III. RESULTS

We first consider the case in which the coating layer
chosen to be lead, a material that is softer than both Au~the
core! and Si ~the embedding matrix!. The material param-
eters used in the calculation arer519.5 g/cm3, cl
53.36 km/s, cl /ct52.71 for Au; r52.33 g/cm3, cl
58.95 km/s, cl /ct51.67 for Si; andr511.4 g/cm3, cl
52.16 km/s,cl /ct52.51 for Pb; wherer, cl , and ct are,
respectively, the density, the longitudinal and transve
sound velocity. We show the elastic wave band structure w
6-3
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lead as the coating layer in the middle panel of Fig. 1. T
spheres are arranged in an fcc structure and occupies 10
the volume. A sizable absolute gap is seen with frequenc
about 0.2, in units ofd/2pct . The left panel shows the ab
solute values of theT-matrix elements as a function of fre
quency, defined by Eq.~22! in the previous section. Since th
T matrix is independent ofm and is diagonal inl, we can
consider theT-matrix elements for eachl separately, and the
polarization indexs is the only index that varies. For th
frequencies of interest, we found that onlyl 51 and 2 have
significant amplitudes. We see from the middle panel t
there is a flat band near 0.2. Comparison with the left pa
shows that the flat band is derived froml 51 MM reso-
nances (M polarized incident wave scattered into aM polar-
ized outgoing wave!. We further note that the strongLL, NL,
and NN resonances~with l 51) that peak at about 0.17
units give rise to the set of relatively flat bands in the ba
structure. With these comparisons, the mechanism of the
formation emerges. The coated spheres have strong r
nances, as show by the peaks of theT-matrix elements on the
left panel. Away from these resonances, the three-compo
system behaves like an effective medium for lon
wavelength elastic waves. Forv,0.15, the dispersions ar
essentially straight lines, with the slopes corresponding to
speeds of the elastic wave for each polarization. When
frequency reaches those of thel 51 resonances, the couplin
between the linear dispersion and the flat resonances o
individual spheres opens a gap, which accounts for the
that is observed above 0.2. TheMM resonances, poorly
coupled to other modes, give rise to a set of nearly disp
sionless bands that split off from the top of the lower edge
gap. It is clear that the gap is derived from localized re
nances of the coated spheres.

By examining the amplitude of the displacement fields
the zone center of the modes markedA andB, we found that
the displacement field of modeB is mainly localized in the
Au core. It is basically the vibration mode of the Au core
a whole with some noticeable elastic deformation. We a

FIG. 1. Middle panel: The elastic wave band structures of le
coated spheres arranged in the fcc structure~filling fraction is 10%!.
The gap is marked by the shaded area. Right panel: Inverse pa
pation ratio for normal modes~see text for definition!. Left panel:
T-matrix elements forl 51 ~solid lines! andl 52 ~dotted lines!. The
symbolsL, M, N represent different polarizations. See text for de
nition.
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observe nonzero displacement fields in the Si matrix, in
cating the coupling of the host elastic wave with the Au co
The displacement fields of modes labeledA are essentially a
libration type deformation of the Pb coating, with nearly n
coupling to the Si matrix. Consider the ratioP defined as

P~v!5@D~v!#21(
n,k

d~v2vn,k!VE un,k
4 drWS E un,k

2 drW D 22

,

~25!

where u is the amplitude of the displacement fields of t
eigenmodes,n,k are band andk-point indices, and the inte
gration is performed over the unit cell volume (V), and
D(v) is the density of modes. In the right panel of Fig. 1, w
plot the ratioP as a function of frequency. The value o
P(v) should vary from a small number for extended wav
to a large value if the normal mode amplitude is strong
concentrated within some positions within the unit cell. It
clear from this plot that the A modes are very localize
which accounts for the flatness of the band at 0.2. The v
flat dispersion inside a spectral gap, together with the str
concentration of displacement amplitude in real spa
makes the modes in bandA an excellent candidate for ob
serving classical wave Anderson localization if a sm
amount of disorder is introduced. The fairly flat modes ju
below the absolute gap should also be easily localized
disorder. The classical wave localization can be observe
very low frequencies (l@d) if the cladding is very soft. It is
particularly interesting since one would normally expect h
mogenization to be valid in that regime~if one ignores the
existence of resonances!.

If the gap is derived from localized resonances, we exp
that the property of the gap should be independent of
arrangement of the spheres. We have calculated the gap
and midgap frequencies with the spheres arranged in the
structure as a function of the filling ratio of the coate
spheres. The bars in Fig. 2 mark the size of the gap and
line in the middle marks the midgap frequencies for the
structure. In the same figure, we plot the calculated gap
and midgap frequencies for a variety of structures, includ
hexagonal close packed~hcp!, simple cubic~sc!, diamond

-

ici-

FIG. 2. The gap and the midgap frequencies of lead-coa
spheres in the fcc structure plotted as a function of the filling ra
compared with other structures. The midgap frequencies of a v
ety of other structures~sc5simple cubic, dia5diamond! are marked
by crosses. See text for details.
6-4
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~dia!, body centered cubic~bcc!, with the midgap frequencie
of these structures marked by crosses. We do see a r
universal behavior, consistent with the notion that localiz
resonance of the individual sphere is the main mechanism
gap formation. We note that the gap starts to disappea
higher filling fractions. This is not surprising since the d
scription based on the resonance of an individual spher
less accurate when the packing ratio is high and the in
vidual resonances start to couple with each other. For
Bragg scattering mechanism, the gap typically peaks at s
intermediate filling fractions. The diminishing of the gap
high filling fraction is a signature that Bragg mechanism
also playing a role in determining the gap properties
higher filling fractions, where the resonances of the in
vidual spheres are coupled.

Can we tune the system so that the localized resona
behavior is even more dominant in governing the gap pr
erties? To this end, we make the coating even softer and
plastic as the prototype of very soft material. The mate
parameters for plastic are taken to ber51.19 g/cm3, cl
52.75 km/s,cl /ct52.29.

In Fig. 3, we plot the elastic wave band structure for su
a configuration with the spheres arranged in a periodic
structure. The filling ratio of the coated spheres is 10%. T
qualitative features are rather similar to the band struc
with Pb as the coating layer~Fig. 1!, except that the disper
sion near the gap is even more typical of that of dispersi
less localized resonance, and the softer coating moves
resonance gap to a lower frequency~slightly above 0.1
units!. This is confirmed by analyzing the displacement p
terns of the modes near theG point. We found that the dis
placement field for modes marked asB in Fig. 3 is localized
in the core, corresponding to the vibration of the Au core
a whole with very small elastic deformation. The displac
ment fields of modes marked asA are completely localized
in the soft plastic cladding layer.

In Fig. 4, we plot the size of the gap and the midg
frequencies for a variety of structures as a function of
filling ratio, with the midgap frequencies marked by so
squares and the size of the gap marked by the bar. The
and midgap frequencies for the fcc structure for a range
filling ratio from 5% to 60% are plotted in the same figu
for comparison, with the upper~lower! line marking the up-
per ~lower! edge of the fcc gaps, while the middle line mar

FIG. 3. The elastic wave band structure of plastic coated sph
in the fcc structure with a filling fraction of 10%. The absolute g
is marked by the shaded area.
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the fcc midgap frequencies. We note that property of the
~its midgap frequency and the size of the gap! is independent
of the geometrical arrangement and is only governed by
filling ratio. In addition, the size of the gap increases mon
tonically as the filling ratio increases. These two are stro
evidences that the gap is the result of localized resonan
and because of this, the results become ‘‘universal’’ when
normalize the frequency to the diameter of the sphere.
localized resonances, the scattering cross section is d
mined by the property of the scatterer and hence the diam
of the sphere is the most important length scale. For Br
scattering, it would have been the lattice constant that is
relevant length scale. Also, for Bragg scattering, the symm
try and the shape of the BZ is important, and the gap pr
erty is strongly dependent on the geometric arrangem
The fact that the size of the gap increases monotonically w
the filling ratio is another characteristic of localized res
nance. If Bragg scattering is the dominant mechanism,
size of the gap always peaks at some intermediate fil
ratio.

We note further that the lower edge of the gap is pinn
by the highly localized libration mode of the plastic coatin
It has virtually no dependence on filling ratio, consistent w
the high degree of localization of this libration mode. Sin
the gap is derived from localized resonances, its existenc
guaranteed and is independent of the details of the struc
and should persist even for a random arrangement
spheres.4 The ‘‘hard-soft-hard’’ three-component configura
tion thus offers us a recipe for absolute elastic wave b
gap, with the added advantage that the gap frequency ca
very low if we can find a very soft cladding.

To demonstrate that we can tune the system within
same three-component configuration so that Bragg scatte
becomes dominant, we change the coating to a material
is stiffer. We will use steel as the prototypical stiff coatin
with material parametersr57.67 g/cm3, cl56.01 km/s,
cl /ct51.86.

The fcc elastic wave band structures for 10% filling fra

es

FIG. 4. The gap and midgap frequencies of the fcc structure
a range of filling ratios with plastic as the coating layer. The up
~lower! line is the upper~lower! edge of the fcc gap, while the
middle line marks the fcc midgap frequency. The midgap frequ
cies for a variety of structures~dia5diamond, sc5simple cubic! are
marked by squares and the size of the gaps by the bars. Note
universal behavior.
6-5
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tion is plotted in Fig. 5. The frequency here is normalized
a/2pct , wherea is the fcc lattice constant. We note imme
diately that there is no absolute gap, but we observe a di
tional gap at theX point. Since steel is harder than the A
core, the resonance due to the vibration of the Au core
rounded by a soft coating no longer exists and the disper
is now governed by Bragg scattering, which opens spec
gaps at the Brillouin-zone boundaries. Since the directio
gaps are derived from Bragg scattering, we choose to
malize the frequency in Fig. 5 to the lattice constanta rather
than the diameters of the spheres. An absolute gap is
exception rather than the rule for the Bragg scatter
mechanism unless the directional gaps in all solid ang
overlap. For our system, we observe gaps along theX-W-K
directions at about 0.8 units, but there are propagating mo
along theG-L-U directions in the same frequency range. It
conceivable that an absolute gap can be found by adjus
the thickness of the coating and filling ratio, but the po
here is to show that the spectral gap formation mechanis
dominated by Bragg scattering if the coating is stiff. Wh
we examine the field patterns for modes labeledA and B,
they are very different from the cases with Pb or plas
coating. Both modes are typical extended Bloch waves w

FIG. 5. The band structure for steel coated spheres arrange
the fcc structure~10% filling fraction!.
h
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modeA being more localized in the core, while modeB is a
very extended mode with mode amplitudes peaking outs
the core. We have also calculatedP(v) @see Eq. 25# as a
function of frequency and the values are small, again c
firming that the modes are extended.

IV. SUMMARY

In conclusion, a three-component system with a coa
gold core embedded in a Si matrix exhibits elastic wave
such that the gap formation mechanism can be tuned
tinuously from a resonance gap to a Bragg gap by chang
the softness of the coating. These systems thus serve a
excellent prototype for understanding the mechanisms le
ing to classical wave gaps and their interplay. If the coat
layer is sufficiently soft, localized vibrational resonances
ways guarantees an absolute elastic wave band gap, w
good chance to observe classical wave localization if dis
der is introduced. We emphasize that it is the relative s
ness of the coating layer relative to the core and the ma
that is important. We could, for example, replace the core
copper and see qualitatively similar results. We also note
some of us have proposed to use coated spheres~glass
spheres coated with a layer of metal and an outer laye
dielectrics! to create photonic band gaps.5 The mechanism
for creating the photonic gap using metal coated sphere
fundamentally different from the concept introduced he
Here, the elastic wave gap is created by resonances w
the core plays an active role, while for the case of photo5

the glass core merely serves a passive support for the m
lic coating. The metallic coating squeezes all the field ene
into the voids between the spheres, creating a situatio
which a robust photonic band gap can be formed.
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