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Three-component elastic wave band-gap material
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Using multiple-scattering theory, we consider the elastic wave band-gap properties of three-component
composites consisting of a periodic arrangement of coated spheres inside an embedding medium. We found
that the elastic wave band-gap properties can be tuned continuously from a resonance gap to a Bragg gap just
by varying the elastic properties of one component. If the coating material is soft compared to the core and the
matrix, the elastic wave band gap is essentially a resonance gap. If the coating material is stiff, the elastic wave
gap is derived from Bragg scattering. These systems are ideal for realizing elastic wave gap and wave local-
ization as well as understanding the underlying mechanism.
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[. INTRODUCTION In order to realize a complete elastic wave band gap and
tune its property from a Bragg gap to a resonance @ap
In the past decade, there have been intense activities omell as somewhere in betweerwe employ a three-
photonic band-gdpsystems because of their novel physical component configuration. All that is required is to vary the
properties and many potential applications in the photonicelastic property of one of the component relative to the other
age. Elastic wave can also have forbidden gaps, but it hasvo. Our calculation for these three-component systems not
received less attention partly because it is a more complesnly elucidates the gap formation mechanisms, but also pro-
mathematical problem. Another reason is that elastic wavgides a recipe that guarantees the existence of elastic wave
band-gap material is usually conceived to have a length scalgand gaps and a good chance to realize localization. The
at least a few times that of the wavelength, implying giganticconfiguration consists of a spherical core, a concentric coat-
structures for lower frequencies and making the applicatior,nng| of another material, and an embedding matrix of a third
rather difficult. Previous considerations are mainly focusednaterial. The core does not need to be spherical, but it makes
on two-component §ysteﬁ18nd absolute elastic wave band {he calculations more tractable. All the calculations are per-
gaps are rather difficult to realize for two-component solidg, 6 with a multiple-scattering method, which gives ex-
materials in three dimensions. cellent agreement with experimental resdlhe details of
the multiple-scattering theory can be found elsewlieaad

gap in classical waves. One is Bragg scattering in perIOdI(\:/vill be outlined in the following section so that various sym-

systems and the opening of a Bragg gap at the Brillouin zon . X
(BZ) boundary: The existence of an absolute gap requirengISh agd ”notatlons arei clearly defllner(li. VI\/e note that the
the overlap of the Bragg gaps in all directions. SymmetryN€thod allows us to solve accurately the elastic wave equa-

periodicity, and orderness of the periodic system are all imj[ions when the Lame constants and the densities of the con-

portant. The frequency of the spectral gap is of the order optituent components are §pecified. We fix the core material as
c/a, wherec is wave speed andis the lattice constant. The AU and the matrix as Si, and only vary the coating layer
photonic band gap, as it was originally perceived, is a Bragdhaterial. In the results presented, the radius of the Au core
gap that overlaps in all # radians. The other mechanism is and the total radius of coated sphefel + coating are fixed
derived from localized resonances. Examples are polaritoat @ ratio of 13 to 18. We note that this particular ratio has no
gaps when light couples with optical phonons in ionic crys-special significance except that we have to choose some
tals. The frequency of a resonance gap is dictated by theumbers to do our numerical calculations. Other ratios can
frequency of the resonance, and is independent of ordernedsve the same qualitative effect. Unless otherwise indicated,
periodicity and, symmetry unless there is a high concentraall frequencies are normalized @W2wc;, whered is the

tion of resonating units so that they couple strongly withdiameter of the coated sphere ards the transverse sound
each other. Electromagnetic resonances derived from ekpeed. We will see that when the coating is soft compared
ementary excitations such as polariton or plasmon are usyyith the elastic constants of the core and the matrix material,

a.”y associated with Strong absorption, and are thus not VerM']e gap iS a resonance gap. If the Coating is Stiﬁ, the gap
useful for creating photonic gaps. The situation is differenthecomes a Bragg gap.

for elastic waves in at least two respects. First, the dissipa-

tion can be very small in certain mechanical excitations,

makmg resonance a possible mechanism for the cr_eatlon )| MULTIPLE-SCATTERING METHOD FOR ELASTIC

eIast!c wave band gap. Second, we shall show in this paper WAVE BAND STRUCTURE

that it is possible to tune the spectral gap “continuously”

between a Bragg gap and a resonance gap in three- We shall consider a composite medium that contains a
component elastic systems, while such manipulations woultiost matrix and embedded scatterers. The incident wave for
be very difficult for electromagnetic waves. scattereii may be expressed as
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W)= 2 Amgdima(ri), (1)
and the scattered wave by scattarenay be expressed as
U(r) = 25 Bl Hima(Ti), @

where, r; is measured from the center of scattererand
Jima(r), Hime(r) are defined as

1 R
Ima(1)=—VLii(ar)Yim(r)],

Jima(r) = VX1 (B0)Yim(ND], (3)

[(1+1)

Jima(r) = VXVX[rj(Br)Ym(D)],

_
(+1)8

and

1 R
Him (1) = — VIhi(ar)Yim(r)],

1 n
Hlmz(r):ﬁvx[rm(ﬁr)\(lm(r)], (4)
H __r VXVX[rh YT
im3(r)= 05 [rhi(Br)Yim(r)],

r ch:nlfm/(R)l

C_;lma'l’m’a’(R):< e
21"+1\ "

I"+1

\ M

where, “c” are Clebsch-Gordan coefficients, aXd, . .., (R)
is defined as

XIKmI’m’(R):47T§ iI,+|//_|C:rlnmr|umfmrh|n
X (KR)Yrm—m(R), 9)

andC," ., is defined as

C:r/”mwrmFJLYW(Q)YT,m,(Q)Yl*,,m,,(Q)dQ. (10)

> clim—pm)Xi (RS M = pp),

E c(lllm—puu)X

Im—pul’—1m’—
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where a=w+\/p/(N+2u), B=w\p/u (Wherep, \, and u

are respectively, the mass density and two Lame constants of
the host medium j;(x) is the spherical Bessel function, and
h,(x) is the spherical Hankel function of the first kind. Ac-
cording to the multiple-scattering theory, the wave incident
on a given scatterer consists of two parts, one is the exter-
nally incident wavep"(©)(r,), which may be expanded as

uin(O)(ri)zlz CHORN{S) ®

The second part is the sum of all the scattered waves except
that from scatterer, given by

j
b|"m”(r”H|”m"(T"(rj)’ (6)

"

un(r)—u"Or) =2

J# 1" &

wherer; andr; refer to the position of the same spatial point
measured from scatterersand j, respectively. WithR;(;,
denoting the position of scatterefj), we haver;=r;+R;
—R;. It can be shown that

Hirmr (1) = 25 Gl g dima 1), @)

where G:J
by

worime= Clmrenme(Ri—R;), the latter is given

o=0'=2,3,

IL,(R)C(|'—1]J 'm—-—uw), oF o'io,0' #1,
(8

For a given scatterer, the scattered displacement field is
completely determined from the incident field through the
scattering matrix. There is a deterministic relation between

the expansion coefficiens={al, } andB={bl }:

j — j j
b|//m//0.//_|/21 , t|/lmllo.ll|/m/0./a|/mla.l 1 (11)
m o

whereT={t| ., . .} is the scattering matrix of scatterer
which can be obtained from the elastic Mie scattering solu-
tion of a scatterer, outlined below for the case of coated
spheres. Substituting Eq4), (5), (7), and(11) into Eq. (6),

we arrive at
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The strain tensor in thegh medium (=1,2,3) is expressed
> | 88 S B as
i'm' o’
1(V +u;V) (19
j ij j _ 4i(0 €==(Vui+u; V),
_I”Zﬂ " tl/!mHoJ!l!m!o.!GlﬂmHo.Hlmo. al!m!o.!_ailgng)— ! 2 ! !
mio
12 and the stress and the strain tensors are related by
This is the final equation for a multiple-scattering system. n=hi(€ D)1+ 2u€. (20

For a finite and/or disordered system, we must solve thipisplacement and normal stress continuity at the interface
equation in order to investigate the system response to extefequires that

nal perturbations. The normal modes of the system may be
obtained by solving the following secular equation, which in Us(N)|r—a=Ua(r)];=a,
the absence of external incident wave becomes:

73(r)'r|r=a: Tz(r)'r|r=av

) i
de 5ij5ll’5mm’5mf’_ 2 tf”m”a-”l’m’a’GIJ”m”o”lmo' =0.
I”mﬂo_”

u2(r)|r=b: Ul(r)|r:b )
(13
For a periodic system, E¢13) may be transformed to

(1) rl—p=71(r) 1| =p (21)

The boundary conditions lead to 12 linear equations involv-

N ss’ Ing CoefﬁCientS{almo'}'{b|mo'}’{clm0'}'{d|ma'}! and {elma'}'
det Ssg 81 Oy Ot — ot m o Crm o ime (K) from which we obtain the relation between coefficiehts

"m"o" ={am,} andB={b,,} formally as

=0, (14) B=TA, 22)
wheres ands’ label the scatterers in the unit cell with posi- whereT=1{t,.1 } is the scattering matrix as defined. It

' mol’'m’ o’ .

tion vectorsos andog , andG;; . (k) is defined as can be shown that, for spherical scattefwith or without

coating, the scattering matrix is independent of and di-

! , agonal inl:
Glrmronimo(K) = ; Girmronimo(0s— 0 — R)exp(ik - R). g
(15) tlmal’m’o’:too’éll’ ’ (23)

where the sunXy, is over all lattice sites. The solution of Eq. moreover, only five elements ¢f, are nonzero, the 83
(15) gives the band structure of an elastic periodic system. matrix {t,} looks like

We now outline the procedure to obtain the Mie scattering
matrix of a spherical scatterer with coating. Let the inner LL 0 LN
radius of the coatingi.e., the bare core sphere radile a, 0 MM O (24)
and the outer radius bde The material constants for the host LN 0O NN
medium are the mass densjty and the Lame constanks,
andw1. The corresponding material constants for the coatingvhere symboL denotes the longitudinal modes€1), M
material are denoted gs,, \,, and u, and those for the denotes the first transverse modes=<(2), andN denotes the
sphere are denoted ag, A3, andus. The displacement field second transverse modes= 3). The meanings of the five

in the host medium may be expressed as nonzero elements are straightforward, for examplé,
stands for the conversion frommode toL mode during the
_ (1) (1) scattering procedure. It shows that thenodes and thé\
U (1) % [2imadimo(F) - BimaHim, (1)1, (16 modes are coupled to each other, while iemodes are
decoupled.

where the superscripts (1) on the right-hand side, which are
all omitted for convenience in the previous subsection, index
the host medium. Similarly, the displacement in the coating
layer may be expressed as We first consider the case in which the coating layer is
chosen to be lead, a material that is softer than botlitAa
core and Si(the embedding matrjx The material param-
eters used in the calculation arp=19.5 g/cni, ¢
=3.36 km/s, ¢,/c,=2.71 for Au; p=2.33 g/cni, ¢

IIl. RESULTS

u2<r>=|§r[c.m,,J.‘?(,(r)+d|m(,H.‘§3(,<r>], (17)

while that in the core sphere may be expressed as =8.95 km/s, ¢;/c,=1.67 for Si; andp=11.4 g/cm, c,
=2.16 km/s,c,/c,=2.51 for Pb; wherep, ¢, andc; are,

Ua(r) = e I3 (r). 18 respectively, the density, the longitudinal and transverse

(") % imoJimo (1) (18 sound velocity. We show the elastic wave band structure with
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) ) FIG. 2. The gap and the midgap frequencies of lead-coated

FIG. 1. Middle panel: The elastic wave band structures of leadspheres in the fcc structure plotted as a function of the filling ratio,
coated spheres arranged in the fcc structfiling fraction is 109%.  compared with other structures. The midgap frequencies of a vari-
The gap is marked by the shaded area. Right panel: Inverse particky, of other structurec=simple cubic, dia-diamond are marked
pation ratio for normal mode&ee text for definition Left panel: by crosses. See text for details.
T-matrix elements fok=1 (solid lineg andl =2 (dotted line$. The
sy_mbolsL, M, N represent different polarizations. See text for defi- yhsarve nonzero displacement fields in the Si matrix, indi-
nition. cating the coupling of the host elastic wave with the Au core.
lead as the coating layer in the middle panel of Fig. 1. Thq-l.—h'a c_jlsplacement f|eld_s of modes Iabene_dre es_sentlally a
spheres are arranged in an fcc structure and occupies 10% g?ratl_on type def(_)rmatl_o n of th? Pb coating, W'.th nearly no
the volume. A sizable absolute gap is seen with frequency aciouplmg to the Si matrix. Consider the rafodefined as
about 0.2, in units ofl/27c,. The left panel shows the ab- -2
solute values of th@-matrix elements as a function of fre- P(w)=[D(w)] 1> 5(w—wn‘k)vf up dr f uﬁykdre) ,
quency, defined by Eq22) in the previous section. Since the n.k
T matrix is independent ofn and is diagonal i, we can (29
consider theT-matrix elements for eachseparately, and the whereu is the amplitude of the displacement fields of the
polarization indexo is the only index that varies. For the eigenmodesn,k are band and-point indices, and the inte-
frequencies of interest, we found that oly 1 and 2 have gration is performed over the unit cell volum&), and
significant amplitudes. We see from the middle panel thaD(w) is the density of modes. In the right panel of Fig. 1, we
there is a flat band near 0.2. Comparison with the left pangblot the ratioP as a function of frequency. The value of
shows that the flat band is derived fror¥1 MM reso- P(w) should vary from a small number for extended waves
nances i polarized incident wave scattered intd/epolar-  to a large value if the normal mode amplitude is strongly
ized outgoing wave We further note that the strord_, NL, concentrated within some positions within the unit cell. It is
and NN resonancegwith 1=1) that peak at about 0.175 clear from this plot that the A modes are very localized,
units give rise to the set of relatively flat bands in the bandwhich accounts for the flatness of the band at 0.2. The very
structure. With these comparisons, the mechanism of the gédfat dispersion inside a spectral gap, together with the strong
formation emerges. The coated spheres have strong rescencentration of displacement amplitude in real space,
nances, as show by the peaks of Tamatrix elements on the makes the modes in barkl an excellent candidate for ob-
left panel. Away from these resonances, the three-componeserving classical wave Anderson localization if a small
system behaves like an effective medium for long-amount of disorder is introduced. The fairly flat modes just
wavelength elastic waves. Far<0.15, the dispersions are below the absolute gap should also be easily localized by
essentially straight lines, with the slopes corresponding to thdisorder. The classical wave localization can be observed at
speeds of the elastic wave for each polarization. When theery low frequenciesX>d) if the cladding is very soft. It is
frequency reaches those of the1 resonances, the coupling particularly interesting since one would normally expect ho-
between the linear dispersion and the flat resonances of theogenization to be valid in that regimé one ignores the
individual spheres opens a gap, which accounts for the gagxistence of resonandes
that is observed above 0.2. THdM resonances, poorly If the gap is derived from localized resonances, we expect
coupled to other modes, give rise to a set of nearly disperthat the property of the gap should be independent of the
sionless bands that split off from the top of the lower edge ofarrangement of the spheres. We have calculated the gap size
gap. It is clear that the gap is derived from localized reso-and midgap frequencies with the spheres arranged in the fcc
nances of the coated spheres. structure as a function of the filling ratio of the coated

By examining the amplitude of the displacement fields atspheres. The bars in Fig. 2 mark the size of the gap and the
the zone center of the modes markedndB, we found that line in the middle marks the midgap frequencies for the fcc
the displacement field of mod@ is mainly localized in the structure. In the same figure, we plot the calculated gap size
Au core. It is basically the vibration mode of the Au core asand midgap frequencies for a variety of structures, including
a whole with some noticeable elastic deformation. We alsdiexagonal close packehcp, simple cubic(so), diamond
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FIG. 3. The elastic wave band structure of plastic coated spheres Filling ratio
in the fcc structure with a filling fraction of 10%. The absolute gap
is marked by the shaded area. FIG. 4. The gap and midgap frequencies of the fcc structure for

) ) ) ) ) a range of filling ratios with plastic as the coating layer. The upper
(dia), body centered cubitco), with the midgap frequencies (jower line is the upper(owen edge of the fcc gap, while the
of these structures marked by crosses. We do see a rath@iddle line marks the fcc midgap frequency. The midgap frequen-
universal behavior, consistent with the notion that localizectijes for a variety of structurgglia=diamond, sesimple cubig are
resonance of the individual sphere is the main mechanism faharked by squares and the size of the gaps by the bars. Note the
gap formation. We note that the gap starts to disappear ainiversal behavior.
higher filling fractions. This is not surprising since the de-
scription based on the resonance of an individual sphere ihe fcc midgap frequencies. We note that property of the gap
less accurate when the packing ratio is high and the indi¢its midgap frequency and the size of the pipindependent
vidual resonances start to couple with each other. For thef the geometrical arrangement and is only governed by the
Bragg scattering mechanism, the gap typically peaks at sonfdling ratio. In addition, the size of the gap increases mono-
intermediate filling fractions. The diminishing of the gap attonically as the filling ratio increases. These two are strong
high filling fraction is a signature that Bragg mechanism isevidences that the gap is the result of localized resonances
also playing a role in determining the gap properties atind because of this, the results become “universal” when we
higher filling fractions, where the resonances of the indi-normalize the frequency to the diameter of the sphere. For
vidual spheres are coupled. localized resonances, the scattering cross section is deter-
Can we tune the system so that the localized resonanagrined by the property of the scatterer and hence the diameter
behavior is even more dominant in governing the gap propef the sphere is the most important length scale. For Bragg
erties? To this end, we make the coating even softer and useattering, it would have been the lattice constant that is the
plastic as the prototype of very soft material. The materiakelevant length scale. Also, for Bragg scattering, the symme-
parameters for plastic are taken to pe=1.19 glcmi, ¢ try and the shape of the BZ is important, and the gap prop-
=2.75 km/s,c;/c,=2.29. erty is strongly dependent on the geometric arrangement.
In Fig. 3, we plot the elastic wave band structure for suchThe fact that the size of the gap increases monotonically with
a configuration with the spheres arranged in a periodic fc¢he filling ratio is another characteristic of localized reso-
structure. The filling ratio of the coated spheres is 10%. Thenance. If Bragg scattering is the dominant mechanism, the
qualitative features are rather similar to the band structursize of the gap always peaks at some intermediate filling
with Pb as the coating lay€Fig. 1), except that the disper- ratio.
sion near the gap is even more typical of that of dispersion- We note further that the lower edge of the gap is pinned
less localized resonance, and the softer coating moves thyy the highly localized libration mode of the plastic coating.
resonance gap to a lower frequenc¢slightly above 0.1 It has virtually no dependence on filling ratio, consistent with
units). This is confirmed by analyzing the displacement pat-the high degree of localization of this libration mode. Since
terns of the modes near the point. We found that the dis- the gap is derived from localized resonances, its existence is
placement field for modes marked Bsn Fig. 3 is localized guaranteed and is independent of the details of the structure
in the core, corresponding to the vibration of the Au core asind should persist even for a random arrangement of
a whole with very small elastic deformation. The displace-sphereé. The “hard-soft-hard” three-component configura-
ment fields of modes marked dsare completely localized tion thus offers us a recipe for absolute elastic wave band
in the soft plastic cladding layer. gap, with the added advantage that the gap frequency can be
In Fig. 4, we plot the size of the gap and the midgapvery low if we can find a very soft cladding.
frequencies for a variety of structures as a function of the To demonstrate that we can tune the system within the
filling ratio, with the midgap frequencies marked by solid same three-component configuration so that Bragg scattering
squares and the size of the gap marked by the bar. The gdygcomes dominant, we change the coating to a material that
and midgap frequencies for the fcc structure for a range ofs stiffer. We will use steel as the prototypical stiff coating,
filling ratio from 5% to 60% are plotted in the same figure with material parameterp=7.67 g/cm, ¢,=6.01 km/s,
for comparison, with the uppdtower) line marking the up- ¢,/c,=1.86.
per(lower) edge of the fcc gaps, while the middle line marks  The fcc elastic wave band structures for 10% filling frac-
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TS PRI ISR TSN IS modeA being more localized in the core, while moBas a
1.0 st ‘ :I"" ':.,..;:f- very extended mode with mode amplitudes peaking outside
ot IS R LT the core. We have also calculat®{w) [see Eq. 2bas a
0.8 S ‘B’ function of frequency and the values are small, again con-
o B SR ER A, 1 firming that the modes are extended.
Q‘: ul::; ) o";":::
g 06 ’ ) IV. SUMMARY
. In conclusion, a three-component system with a coated
04f gold core embedded in a Si matrix exhibits elastic wave gap
such that the gap formation mechanism can be tuned con-
XU L r X W K tinuously from a resonance gap to a Bragg gap by changing
FIG. 5. The band structure for steel coated spheres arranged i€ Softness of the coating. These systems thus serve as an
the fcc structurg10% filling fraction. excellent prototype for understanding the mechanisms lead-

ing to classical wave gaps and their interplay. If the coating

tion iS p|0tted in F|g 5. The frequency here iS norma“zed tolayer iS SUffiCiently Soft, |Oca|ized Vi-brational resonances al'
a/2mc,, wherea is the fcc lattice constant. We note imme- Ways guarantees an absolute elastic wave band gap, with a
diately that there is no absolute gap, but we observe a dire(gooq qhance to observe cIaSS|_caI wave I.ocallzat|0n_|f disor-
tional gap at theX point. Since steel is harder than the Au der is introduced. We emphasize that it is the relative soft-
core, the resonance due to the vibration of the Au core sufess of the coating layer relative to the core and the matrix
rounded by a soft coating no longer exists and the dispersiothat is important. We could, for example, replace the core by
is now governed by Bragg scattering, which opens spectrsioPper and see qualitatively similar results. We also note that
gaps at the Brillouin-zone boundaries. Since the directionafome of us have proposed to use coated sphegkss
gaps are derived from Bragg scattering, we choose to nogPheres coated with a layer of metal and an outer layer of
malize the frequency in Fig. 5 to the lattice constamather ~ dielectrics to create photonic band gapshe mechanism
than the diameters of the spheres. An absolute gap is df' creating the _photomc gap using metal (_:oated spheres is
exception rather than the rule for the Bragg scatteringi_l:”damenta||y (_Jllfferent from_ the concept introduced here.
mechanism unless the directional gaps in all solid angle§lere, the elastic wave gap is created by resonances where
overlap. For our system, we observe gaps alongha-K the core plays an active role, while f_or the case of photons,
directions at about 0.8 units, but there are propagating moddg€ glass core merely serves a passive support for the metal-
along thel’-L-U directions in the same frequency range. It is!'c coating. The metallic coating squeezes a!l the f|g|d energy
conceivable that an absolute gap can be found by adjustinjto the voids between the spheres, creating a situation in
the thickness of the coating and filling ratio, but the pointWhich a robust photonic band gap can be formed.

here is to show that the spectral gap formation mechanism is
dominated by Bragg scattering if the coating is stiff. When
we examine the field patterns for modes labefe@nd B,

they are very different from the cases with Pb or plastic This work was supported by RGC—-Hong Kong through
coating. Both modes are typical extended Bloch waves wittHKUST6145/99P and HKUST6143/00P.
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