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Application of the density matrix renormalization group in momentum space
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We investigate the application of the density matrix renormalization group~DMRG! to the Hubbard model
in momentum space. We treat the one-dimensional models with dispersion relations corresponding to nearest-
neighbor hopping and 1/r hopping and the two-dimensional model with isotropic nearest-neighbor hopping. By
comparing with the exact solutions for both one-dimensional models and with exact diagonalization in two
dimensions, we first investigate the convergence of the ground-state energy. We find variational convergence of
the energy with the number of states kept for all models and parameter sets. In contrast to the real-space
algorithm, the accuracy becomes rapidly worse with increasing interaction and is not significantly better at half
filling. We compare the results for different dispersion relations at fixed interaction strength over bandwidth
and find that extending the range of the hopping in one dimension has little effect, but that changing the
dimensionality from one to two leads to lower accuracy at weak-to-moderate interaction strength. In the
one-dimensional models at half filling, we also investigate the behavior of the single-particle gap, the disper-
sion of spinon excitations, and the momentum distribution function. For the single-particle gap, we find that
proper extrapolation in the number of states kept is important. For the spinon dispersion, we find that good
agreement with the exact forms can be achieved at weak coupling if the large momentum-dependent finite-size
effects are taken into account for nearest-neighbor hopping. For the momentum distribution, we compare with
various weak-coupling and strong-coupling approximations and discuss the importance of finite-size effects as
well as the accuracy of the DMRG.
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I. INTRODUCTION

Many renormalization schemes are carried out in mom
tum space and involve integrating out degrees of freed
using a momentum cutoff. For example, Wilson’s1 numerical
renormalization group~RG! implements this program using
mapping of momentum shells to an effective lattice mod
The renormalization process is carried out by successive
merical diagonalization of a finite system and energetic tr
cation of the Hilbert space. While this lattice model corr
sponds to successive momenta or, equivalently, ene
scales, its form is similar to that of a strongly correlat
lattice model.

Attempts at applying a real-space version of the Wils
procedure to short-range quantum lattice models such as
Heisenberg or the Hubbard model were not successful, h
ever, because successive lattice points do not correspon
different energy scales. The density matrix renormalizat
group ~DMRG! ~Refs. 2 and 3! overcomes these limitation
by carrying out the renormalization on a subsystem. T
truncated basis is formed by projecting the state of the en
system onto the subsystem using the reduced density m
rather than selecting states energetically. This method
been very successful at treating low-dimensional quan
lattice models with open boundary conditions and sho
range couplings. However, for longer-range off-diagonal
teractions, higher dimensional systems or lattices with p
odic boundary conditions, this real-space formulation of
DMRG is much less successful. In addition, it loses sight
an energy- or momentum-based classification of the rele
degrees of freedom.
0163-1829/2002/65~16!/165114~12!/$20.00 65 1651
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A potential way of overcoming this limitation for itineran
electron systems is to apply the DMRG ideas to t
momentum-space formulation of the Hamiltonian. This a
proach has a number of potential advantages over the
space approach. First, since the single-particle basis in
mentum space is explicitly translationally invarian
momentum is a conserved quantum number. Use of this
mentum quantum number reduces the size of the Hilb
space in the diagonalization. Second, momentum-depen
quantities such as the momentum distribution or the disp
sion of excitations can be directly calculated. Third, the
netic energy term is diagonal so that varying the dispers
by, for example, changing the range of the hopping, is e
to do.

Attempts to formulate a numerical renormalization gro
procedure for quantum lattice systems in momentum spa4

predating the DMRG were not particularly successful—t
was one of White’s motivations for turning to real space a
formulating the DMRG. Shortly after the development of t
DMRG in real space, White attempted to use DMRG me
ods on the momentum-space formulation of the Hubb
model. He calculated the ground-state energy in one and
dimensions at intermediate couplings, but found that the
ergies obtained were not significantly better than those
tained by other variational methods.5

Independently, Xiang developed a similar technique a
applied it to the Hubbard model in one and two dimension6

In this work, Xiang outlined an efficient implementation o
the DMRG in momentum space. He developed a factori
tion of the Hubbard interaction that reduces the number
©2002 The American Physical Society14-1
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terms from N3, where N is the number of single-particle
Bloch wave functions in the lattice, to 6N. He also pointed
out some features of the algorithm that need to be caref
considered in momentum space: Since the interaction
highly nonlocal, there is no natural ordering of the sing
particle states; the choice of the ordering can, however, h
an effect on the performance of the DMRG algorithm.
addition, there is no well-defined infinite-system algorith
so that care must be taken in how the lattice is built
initially. Care must also be taken in this initialization proc
dure so that states with a sufficient spread in momen
quantum numbers are kept. One possible outcome of an
adequate initialization procedure is convergence to a s
other than the true ground state.

Xiang investigated the performance of the algorithm
various interaction strengths for the one-dimensional H
bard model with 16 sites at half filling, and for the two
dimensional model on system sizes ranging from 434 to
12312 for various band fillings. He found that the conve
gence of the method depends strongly on the interac
strength,U. The method is exact forU50 since the Hamil-
tonian is diagonal and the convergence becomes rap
worse with increasingU. In one dimension, he compare
with real-space DMRG calculations and found that the er
in the ground-state energy was higher than the real-sp
calculation for both weak and intermediate interacti
strengths (U/t51 and 4, witht the hopping matrix element!,
with 5% error forU/t54. In two dimensions, he compare
with exact diagonalization for a 434 system, cluster diago
nalization on a 636 system, and quantum Monte Carlo a
stochastic diagonalization calculations on 434, 636, and
838 systems. The relative errors increased rapidly withU
for the 434 system. The variational energies were com
rable to those of the stochastic diagonalization and quan
Monte Carlo methods~for which the energy is nonvaria
tional! for larger system sizes. The variational bounds for
energy were slightly higher than stochastic diagonalizat
for the 636 lattice and slightly lower for the 838 lattice. In
comparing the performance in one and two dimensio
Xiang pointed out that the accuracy for givenU/t, band
filling, and number of states, kept for 16 site systems w
better in two dimensions than in one, leading him to spe
late that the momentum-space method becomes more a
rate as the dimensionality is increased.

Our purpose in this work is to explore more fully both th
convergence properties and the application of
momentum-space formulation of the DMRG to the Hubba
model. In one dimension, we take advantage of the existe
of exact solutions for two choices of the dispersion, cor
sponding to nearest-neighbor hopping and 1/r hopping, to
systematically investigate the dependence of the converg
of the ground-state energy on interaction strength, band
ing, and the number of density-matrix eigenstates keptm. We
investigate the regularity of the convergence withm and dis-
cuss schemes to extrapolate inm in order to obtain more
accurate energies. We reexamine the relative convergenc
the one- and two-dimensional models with a view to und
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standing the utility of the momentum-space DMRG f
higher-dimensional systems.

While the ground-state energy is useful for determini
variational convergence, it does not directly provide mu
useful information about the physical behavior of the syste
We therefore investigate some physically useful quantit
the quasiparticle gap, the momentum distribution, and
dispersion of spinon excitations, for the one-dimensio
models and compare to exactly known results and pertu
tive approximations, where appropriate. Our calculations
the momentum distribution and the spinon dispersion for
1/r -hopping model are, to our knowledge, the first indepe
dent numerical calculations of these quantities.

The layout of the remainder of this paper is as follows.
Sec. II we discuss the model systems and their basic pro
ties. Our DMRG method is described in Sec. III. The co
vergence and accuracy of the momentum-space DMRG
discussed in Sec. IV. We study the dispersion of spinon
citations and the momentum density distribution of on
dimensional Hubbard models in Secs. V and VI, respectiv
We discuss the prospects for momentum-space DMRG in
final section.

II. MODEL

The Hubbard model7 is defined in a general form by th
Hamiltonian

H5 (
i , j ,s

t i j cis
† cj s1U(

i
ni↑ni↓ , ~1!

wherecis
† (cis) creates~annihilates! an electron with spins

in the Wannier state on lattice sitei with position r i , nis

5cis
† cis denotes the particle number operator on sitei, t i j

5t(r i2r j ) is the transfer integral between sitei andj, andU
is the energy cost due to the Coulomb repulsion of two el
trons on the same site. In this paper, all energies are m
sured in units oft51.

Using the relation~Fourier transformation! between Wan-
nier states at sitei and Bloch states with momentumk,

cks
† 5

1

AN
(

j
eik•r jcj s

† , ~2!

whereN is the number of lattice sites, the Hubbard Ham
tonian with translationally invariant transfer integrals is wr
ten in momentum space as

H5(
k,s

«~k!nks1
U

N (
p,k,q

cp2q↑
† ck1q↓

† ck↓cp↑ , ~3!

wherenks5cks
† cks and

«~k!5(
j

e2 ik•r j t~r j ! ~4!

is the energy dispersion of the electrons.
The kinetic energy of Eq.~3! consists only of diagona

terms with dispersion«(k), so that the momentum-spac
DMRG method is trivially exact forU50. Moreover, it can
4-2
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APPLICATION OF THE DENSITY MATRIX . . . PHYSICAL REVIEW B65 165114
be easily applied to different noninteracting dispersions«(k)
corresponding to different lattice geometries and hopp
ranges. In this paper, we apply the momentum-space DM
to the following three different models~here and in what
follows, we take the lattice constant to be unity andN to be
even!.

~i! The one-dimensional Hubbard chain with neare
neighbor hopping amplitudet j 11,j52teif. The dispersion
relation is given by

«~k!522t cos~k2f! ~5!

with k52pn/N andn52N/211, . . . ,N/2. The bandwidth
is W54t. Here a fluxNf, measured in units of the flux
quantumf05hc/e and equivalent to a twisted bounda
condition, is threaded through the system.8,9 It enables us to
calculate the ground-state energy as a function of fluxf. We
will use nonzero values off later to interpolate momentum
dependent quantities~e.g., the momentum distribution func
tion! to arbitrary values of the momentum on a finite syste

~ii ! The one-dimensional Hubbard chain with long-ran
hopping amplitude

t lm5~2 it !
~21! l 2m

d~ l 2m!
~6!

with

d~ l 2m!5
N

p
sinFp~ l 2m!

N G . ~7!

Sinced( l 2m) is antisymmetric under the permutation ofl
and m, the hopping matrix element has to be purely ima
nary to guarantee thatt lm5tml* . In the thermodynamic limit
(N→`), the hopping decays proportionally to the inverse
the distancer 5u l 2mu ~‘‘1/ r Hubbard model’’!. The disper-
sion relation islinear and is given by

«~k!5tk ~8!

with k5(2n21)p/N andn52N/211, . . . ,N/2, where an-
tiperiodic boundary conditions are chosen. The bandwidt
W52pt.

~iii ! The two-dimensional Hubbard square lattice w
nearest-neighbor hopping amplitude2t. The dispersion re-
lation is given by

«~k!522t~coskx1cosky! ~9!

with k 5 ( 2pnx /L,2pny /L), where nx ,ny 5 2L/2
11, . . . ,L/2 andN5L2. The bandwidth isW58t.

The one-dimensional Hubbard model~i! is exactly solv-
able via the Bethe ansatz10 and can easily be studied usin
the real-space DMRG.11 Comparison with the exact solution
and the real-space method will provide an opportunity to
the performance of the momentum-space DMRG. Ther
Hubbard model~ii ! is also exactly solvable,12 but it is diffi-
cult to investigate with the real-space DMRG because
hopping is long range and imaginary. For this model,
advantage of the momentum-space approach is clear:
need only change the real, diagonal dispersion«(k). We will,
therefore, use this model to investigate how a substan
16511
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change in the range of hopping affects the momentum-sp
algorithm. The Hubbard model on a two-dimensional squ
lattice ~iii ! will be used to investigate and compare the
fects of dimensionality on the momentum-space method
on the real-space method.

III. DMRG IN MOMENTUM SPACE

In principle, the usual DMRG~Refs. 2 and 3! can be
applied directly to the momentum-space representation of
Hubbard model~3!. In the momentum-space approach ea
Bloch function with momentumk and spins corresponds to
a lattice site. To perform the calculations presented in t
paper, we have adapted a program originally written
White.5 This program predates~and thus does not use! some
recent developments that can greatly improve the per
mance of the DMRG such as the wave-functi
transformation,13,3 the use of composite operators,6 and the
use of non-Abelian symmetries.14 Nevertheless, this program
is highly optimized and allows us to carry out DMRG calc
lations keeping up tom54000 density-matrix eigenstates o
a workstation with 1 GB of memory. Below and in the ne
section we discuss features of the momentum-space DM
which differ from the usual real-space DMRG.

The summation in the second term of Eq.~3! runs overN3

products of operators. A straightforward implementation
the DMRG algorithm requires calculating and keeping tra
of O(N3) matrices representing the different products of o
erators. This represents a significant increase compare
the real-space approach that requires only a constant num
of operators for the one-dimensional andO(L5AN) matri-
ces for the two-dimensional Hubbard model~1!, respectively.
Xiang6 has shown that is it possible to define so-called co
posite operators and thus reduce the number of operators
need to be kept to 6N. In White’s program, internal sum
over blocks are carried out to reduce the number of opera
to O(N2) rather thanO(N), and an efficient representatio
of operators with small sparse matrices is used.

We explicitly use the conservation of the particle numb
Ne5(k,snks , of the z component of the total spinSz
5(1/2)(k,ssnks , and of the total momentum

K5(
k,s

knks mod2p. ~10!

Momentum symmetry reduces the size of the effective H
bert space by about a factorN and allows us to decompos
the matrix representations of operators into several sma
matrices. Therefore, the dimension of the effective Hilb
space for a given numberm of density matrix eigenstates i
smaller in the momentum-space approach than in the r
space approach. This should be kept in mind when com
ing results obtained with both approaches: In general,m can
be made larger for a given amount of computational effor
momentum space.

In a one-dimensional system in real space, there is a n
ral ordering of the lattice sites. In two dimensions, there
some choice in the ordering,11,15but reasonable choices yiel
similar results.16 In momentum space it is nota priori clear
4-3
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NISHIMOTO, JECKELMANN, GEBHARD, AND NOACK PHYSICAL REVIEW B65 165114
how one should arrange the sites in the lattice.6 Thus, we
have tested several possibilities including random order
We have found that the order of sites should be caref
chosen in the momentum-space approach—the rate of
vergence and the accuracy strongly depends on the site o
Fundamentally, it seems that Bloch states that are stro
scattered by the Hubbard term in Eq.~3! should be arranged
to be as close together as possible. For the one-dimens
and two-dimensional Hubbard models with nearest-neigh
hopping, we use an energetic ordering in which the sites
arranged according tou«(k)2«Fu, where «F denotes the
Fermi energy in the noninteracting case (U50). For the 1/r
Hubbard model, the Fermi energy has no particular releva
for low-energy scattering processes and we have found
ordering the sites according to«(k) works best.

We use the finite-system DMRG algorithm and perfo
several sweeps through the lattice until the ground-state
ergy converges as in the real-space approach. Wilson’s
merical RG method is used instead of the infinite syst
algorithm to build up the lattice during the initial iteration
For the next iterations we apply the usual blocking sche
with a superblock made of two sites and two blocks with
mostm states each. In Ref. 6 the superblock was built us
two blocks and a single site. According to Xiang, this sing
site approach is faster than the usual blocking scheme
discussed in Ref. 2, however, the single-site blocking sche
is not a robust method unless several states are targete
we always target a single state in our calculations@the
ground state for some quantum numbers (Ne ,Sz ,K)#, we use
the two-site blocking scheme.

We have observed that the DMRG has difficulty findi
the ground state when the interactionU is not weak or for
some particular choices of the quantum number (Ne ,Sz ,K).
The DMRG sometimes seems to converge first to a s
other than the ground state and only converges to the
ground state after many sweeps or after the numberm of
density-matrix eigenstates is increased. This behavio
marked by a rapid drop in the energy after a relatively la
number of sweeps or at a high value ofm. A similar problem
has been reported with the real-space DMRG applied to t
dimensional fermion systems.17,18 Therefore, one should no
rely on DMRG results obtained for a fixed numberm of
density-matrix eigenstates kept or a fixed number of swe
but one should investigate the behavior of the DMRG a
function of m and of the number of sweeps.

IV. CONVERGENCE AND ACCURACY
OF MOMENTUM-SPACE DMRG

In this section we discuss the convergence and accu
of the momentum-space DMRG method applied to the H
bard model~3!. We have also applied the real-space DMR
method to the real-space representation~1! of the Hubbard
Hamiltonian with periodic boundary conditions. This allow
us to make comparisons of both DMRG methods in orde
illustrate both their differences and their common featur
Our real-space DMRG program uses more advanced t
niques and is better optimized than our momentum-sp
DMRG program. Therefore, we have chosen to present
16511
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comparison of computer CPU time and memory usage in
paper as they would be meaningless.

As a measure of the DMRG precision we use the erro
the ground-state energy per site

DE~m!5
EDMRG~m!2Eexact

Nt
, ~11!

whereEexact is the exact ground-state energy@for particular
quantum numbers (Ne ,Sz ,K)# and EDMRG(m) is the corre-
sponding DMRG energy obtained withm density-matrix
eigenstates kept. The exact resultsEexactare calculated using
the Bethe ansatz for the one-dimensional Hubbard mod10

and are numerically computed using exact diagonaliza
techniques for the two-dimensional Hubbard model.19 For
the 1/r Hubbard model they are derived from a conjectur
effective Hamiltonian.12 Consistency of the DMRG energie
with the spectrum obtained from the effective Hamiltonian
turn confirms the conjecture.

Figures 1~a! and 1~b! show the ground-state energy err
DE of the one-dimensional Hubbard model as a function
the number of density-matrix eigenstatesm for several values
of U/t. These results have been obtained on 16-site latt
with periodic boundary conditions at half filling using th
real-space@see Fig. 1~a!# and the momentum-space@Fig.
1~b!# approaches. The errorDE of the momentum-space
DMRG method clearly increases withU/t. The error in the
real-space DMRG increases withdecreasing U/t for this
half-filled system. In the momentum-space DMRG, the p
cedure becomes exact when the off-diagonal interac
terms vanish~i.e., at U50) and should be more accura
when they are small—it is a weak-coupling method. In co
trast, the real-space representation becomes exact~i.e., local!
when t→0. It is important to note that this is not equivale
to the largeU/t limit, in which the real-space DMRG doe
not become exact. The increase in accuracy withU/t shown
here is specific to the half-filled insulator, in which th
charge degrees of freedom become increasingly local
with increasingU/t. In fact, in the one-dimensional syste
away from half band filling, there isvery little dependence of
the convergence onU/t ~for open boundary conditions!.20 In
both approaches,DE(m) does not decrease exponentially

FIG. 1. DMRG error in the ground-state energy of the half-fill
one-dimensional Hubbard model with 16 sites and periodic bou
ary conditions as a function of the numberm of density-matrix
eigenstates kept in~a! the real-space approach forU/t51 ~circles!,
4 ~reverse triangles!, 8 ~diamonds!, and ~b! the momentum-space
approach forU/t51 ~circles!, 2 ~triangles!, 3 ~squares!, 4 ~reverse
triangles!.
4-4
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APPLICATION OF THE DENSITY MATRIX . . . PHYSICAL REVIEW B65 165114
m increases, contrary to the behavior often reported for r
space DMRG calculations on one-dimensional systems w
open boundary conditions. In Figs. 1~a! and 1~b! we also see
that the errors of the real-space approach are smaller
decrease more rapidly withm than the errors of the
momentum-space approach.

In Xiang’s work,6 the systematic convergence of th
momentum-space method seems to break down when
interaction strengthU approaches the band widthW. In par-
ticular, for the half-filled Hubbard model on a one
dimensional 16-site lattice withU/t54, the ground-state en
ergy obtained from the DMRG, shown in Fig. 2, does n
seem to converge smoothly toward the exact ground-s
energy as the numberm of retained density-matrix eigen
states is increased—the results are oscillatory and har
extrapolate. While the origin of this irregular convergence
Xiang’s data is unclear, one factor that is essential to c
sider is that the momentum of the ground state for a h
filled ring with 16 sites and periodic boundary conditions
K5p because it is an open-shell configuration. Our res
for K5p do converge smoothly to the exact solution as
function of 1/m, as seen in Fig. 2. The lowest-energy sta
with K50, also shown in the figure, lies closer to Xiang
results for the larger values ofm, but converges smoothly to
an energy that is clearly higher than the ground state.
deviation of Xiang’s result could either be due to his grou
state having a different momentum or due to convergenc
the the DMRG to a state other than the ground state
discussed in the previous section.

For weaker interaction,U/t51, Xiang’s results converge
to the ground-state energy forK5p, but lie significantly
above our own results for the same number of density-ma
eigenstates kept. For instance, the DMRG error in
ground-state energyDE(m) for m51200 is one order of
magnitude smaller in our calculations than the value repo
by Xiang. This also suggests an incomplete convergenc
DMRG in Xiang’s calculations even for weak couplin
However, it should also be kept in mind that in his wo
Xiang used a different superblock structure with a single
between two blocks. As a consequence, the dimension o
effective Hilbert space for a given number of statesm is
smaller in Xiang’s calculations than in our calculations. Th

FIG. 2. DMRG error in the ground-state energy as a function
the numberm of density-matrix eigenstates kept for the 16-s
one-dimensional Hubbard model at half filling withU/t54, includ-
ing our results for momentumK5p ~open circles! andK50 ~filled
circles! and Xiang’s results~Ref. 6! for unspecified momentum~tri-
angles!. The dashed lines are guides to the eye.
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difference could be responsible for the better accuracy of
results in the weak-coupling limit (U/t51) but cannot ex-
plain the discrepancy observed for intermediate coupl
(U/t54).

In our calculations, we have often observed that
DMRG energy initially seems to converge towards a va
larger than the exact ground-state energy. Upon further
creasing the number of statesm or the number of sweeps, i
then converges to the exact result. In all the cases we pre
here, the momentum-space DMRG yields energies thatdo
ultimately converge to the exact result, even for very la
interaction strengthU, although the rate of this convergenc
and the accuracy deteriorate rapidly asU increases.

A. Dependence on model parameters

In this section, we discuss the dependence of the accu
of the energy of momentum-space DMRG on the model
rameters: the single-electron dispersion«(k), the interaction
strengthU/W, the lattice dimensionality, and the band filling
Figures 3~a! and 3~b! show the ground-state energy errorDE
as a function of the interaction strengthU/W for a fixed
numberm52000 of density-matrix eigenstates. We again s
that errors decrease in the real-space approach@Fig. 3~a!# but
increase in the momentum-space approach@Fig. 3~b!# for
increasingU/W. In both cases errors increase with the sy
tem size and are larger in two dimensions than in one dim
sion for the same number of lattice sites. However, the
pendence on system size and dimensionality of
momentum-space approach is clearly weaker than in the r
space approach. The lower precision of the DMRG in hig
dimension is easily understood as a consequence of incr
ing off-diagonal coupling in the real-space approach. A p
sible explanation for the slight decrease in accuracy w
dimension in the momentum-space representation is tha
though the single-electron dispersion«(k) remains diagonal
for any dimension, a larger proportion of single-electr
states are close to the Fermi surface and are thus stro

f FIG. 3. DMRG errors in the ground-state energy at half filling
a function of the interaction strengthU/W calculated with m
52000 density-matrix eigenstates. The dashed lines are guide
the eye.~a! Real-space DMRG results for the Hubbard model on
one-dimensional lattice with 16 sites~circles! and 32 sites~squares!,
and on a two-dimensional 434 lattice ~crosses!. ~b! Momentum-
space DMRG results for the one-dimensional Hubbard model w
16 sites~open circles! and 32 sites~open squares!, the 1/r Hubbard
model with 16 sites~filled circles! and 32 sites~filled squares!, and
the two-dimensional Hubbard model on a 434 lattice ~crosses!.
4-5
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scattered. In Figs. 3~a! and 3~b! one also sees that the prec
sion of the real-space approach is generally better than
of the momentum-space approach in the one-dimensi
Hubbard model. The latter becomes more accurate than
former for U/t&1 only. In two dimensions, however, th
real-space approach performs very poorly for perio
boundary conditions. The momentum-space approach yi
better results forU&W58t. We finally note that DMRG
errors seem to be affected only a small amount by the fo
of the dispersion«(k) in the momentum-space approach.
the real-space approach, however, changing the sin
electron dispersion by introducing longer-range hopp
lowers the DMRG performance very rapidly. In summa
we find that the momentum-space approach is superior to
real-space approach for applications to translationally inv
ant systems with weak-to-intermediate Coulomb interacti
in two dimensions or on one-dimensional lattices with lon
range hopping.

Let us now consider the effects of the band filling. In F
4 we show the errorDE in the ground-state energy as
function of band fillingn5Ne /N for the one-dimensiona
Hubbard model atU54t. In the momentum-space approac
the accuracy is worst at or near half filling and improves
the density decreases fromn51. One cause of this effect i
that the size of the Hilbert space is maximal at half fillin
and decreases rapidly at large doping. This effect is ma
fied in the 16-site system relative to the 32-site system
seen in Fig. 4, because a substantial proportion of the Hil
space is retained in the diagonalization step at large dop
Another possible cause is the reduction in the effect
strength of the electron-electron scattering as the syste
doped away from half filling. The effective interactio
strength depends on the ratio ofU and the density of states a
the Fermi energy, which becomes smaller with doping,
weak coupling. As the effective interaction becomes sma
the electrons become more localized in momentum sp
which should be favorable for the convergence of
momentum-space DMRG. In the real-space approach, F
shows that the error in the ground-state energy first incre
as the system is doped slightly away from half filling, th

FIG. 4. DMRG error in the ground-state energy as function
band fillingn in the one-dimensional Hubbard model forU/t54 on
lattices with 16 sites~squares! and 32 sites~circles!. Open symbols
represent the momentum-space DMRG results and filled sym
for the real-space DMRG results. Real-space DMRG errors for
sites are smaller than 1027 and not shown. The number of densit
matrix states ism51200 andm52000 for the 16-site and 32-sit
system, respectively.
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decreases upon further doping. As discussed previously,
charge degrees of freedom are localized in the half-fil
insulator, leading to improved convergence for the real-sp
algorithm. For any finite doping, the system immediately b
comes metallic, i.e., some charge degrees of freedom bec
delocalized, leading to a reduction in accuracy. As the sys
is doped further from half filling, the reduction in the size
the Hilbert space leads to an improvement in accuracy, a
the momentum-space approach.

Extrapolation to m\`

DMRG calculations have a truncation error that is r
duced by increasing the numberm of density-matrix eigen-
states kept.2,3 It is important to analyze the scaling of DMRG
results as a function ofm to estimate DMRG errors quanti
tatively. In real-space DMRG calculations, one generally o
serves that energy errorsDE(m) are proportional to the dis
carded weight Pm ,18,21 provided that the DMRG has
converged to the right target state. Here the discarded we
Pm is defined as the total weight~sum of the density-matrix
eigenvalues! of the discarded density-matrix eigenstates, a
eraged over a sweep through all lattice sites in the fin
system DMRG algorithm. Thus, it is possible to extrapola
DMRG eigenenergies to the limitPm→0. This procedure
produces extrapolated energies that are closer to the e
eigenenergies than the DMRG energies calculated fo
given value ofm. Moreover, the extrapolation yields reliab
quantitative error margins for the eigenenergies.

In momentum space, however, we have found that
linear relationship between the energy errorsDE(m) andPm
often does not hold, even for smallPm . In fact, we find that
the dependence ofPm on m can even be nonmonotonic. A
extrapolation to vanishing discarded weightPm→0 is there-
fore, generally not possible. That such a nonmonotonic
havior is found at all is surprising at first glance because
discarded weightPm of the exactdensity matrix for the sys-
tem decreases monotonically with increasingm per defini-
tion. An exact density matrix for the ground state of t
Hubbard model can be calculated numerically in small s
tems using exact diagonalization. Using the results of suc
calculation on aN512 lattice, we have found that th
density-matrix eigenvalueswi ,i 51,2, . . . appear to de-
crease exponentially as a function ofi in the asymptotic re-
gime i @1. As a consequence, the exact discarded we
Pm5( i 51

m wi and the corresponding energy errorDE(m)
must also decrease exponentially with increasingm. This is
observed for density matrices calculated in the momentu
space approach as well as those obtained in the real-s
approach~both for open and periodic boundary conditions!.
Such an exponential falloff of the density-matrix eigenvalu
has been found for exactly solvable models.16 In an actual
DMRG calculation, however, the density matrix is calculat
self-consistently. Thus different density matrices can be
tained for differentm, andPm can, in principle, be an arbi
trary function ofm, except for the condition limm→`Pm50.
We expect such effects to be largest wherePm is large and
the self-consistently determined density matrix is a poor
proximation to the exact one.

In the momentum-space approach, the error in the DM
energyDE(m) does not decrease exponentially with increa

f
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6

4-6



ac
a

(

o
in
io
t

th

in

fo
rth

ly
e
e

es
a

alf

ith

b

om
e

-
the
r

r

r

e

be
ac-
ies
i-
of

rrors
are
est

that
d. In
ex-
-
ing
n

st
l
d
ex-
are
st-
on

o
ce

APPLICATION OF THE DENSITY MATRIX . . . PHYSICAL REVIEW B65 165114
ing m, but rather shows a power-law behavior in 1/m in the
limit m@1. We, therefore, extrapolate the momentum-sp
DMRG results to vanishing truncation error by performing
least-squares fit of the DMRG energiesEDMRG(m) for sev-
eral m to a nth order polynomial in 1/m,

EfitS 1

mD5E`1
a1

m
1

a2

m2
1•••1

an

mn
. ~12!

An extrapolated energy for vanishing truncation errorsm
→`) is given directly by the fit parameterE` . The energy
EDMRG(m) must be a monotonically decreasing function
m since the DMRG is a variational method and increas
m means increasing the variational subspace dimens
Therefore, EDMRG(1/m) must satisfy the constrain
dEDMRG(x)/dx.0 for x in the range 0,x<1/m8<1, where
m8 is smaller than or equal to the smallest value ofm used in
the fit. An obvious consequence of this constraint is that
first-order term in the polynomialEfit(1/m) must satisfya1
>0. We have found that the best fit under this constra
systematically givesa150.

Figure 5 shows the DMRG errorsDE in the ground-state
energies of the one-dimensional 32-site Hubbard model
U/t51 and 2 and the results of least-square fits to a fou
order polynomial,n54 in Eq. ~12!. The DMRG errors
DE(m) for the largest value ofm used are 4.531024 (m
52000) and 5.331023 (m52800) forU/t51 andU/t52,
respectively. The accuracy is greatly improved by the po
nomial fit and them→` extrapolation. The errors in th
corresponding extrapolated ground-state energies per sit
2.931025 for U/t51 and 4.531025 for U/t52.

To illustrate the benefit of extrapolating DMRG energi
to vanishing truncation errors we now consider the quasip
ticle gapDqp of the one-dimensional Hubbard model at h
filling. The quasiparticle gap is defined by

Dqp5E0~N11;N!1E0~N21;N!22E0~N;N!, ~13!

whereE0(Ne ;N) is the ground-state energy of a system w
N sites andNe electrons with minimalSz , i.e., N↑5N↓ or
N↑5N↓11. The charge conjugation symmetry of the Hu
bard model implies thatE0(N11;N)5E0(N21;N)1U, so
only one of these two energies need be computed. S
results forDqp are shown in Table I. If one calculates th
quasiparticle gap with the DMRG results forE0(Ne ;N) ob-

FIG. 5. DMRG error in the ground-state energy as a function
1/m for the one-dimensional Hubbard model on a 32-site latti
The lines are least-square fits to a fourth-order polynomial,n54 in
Eq. ~12!.
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tained for fixed values ofm, the magnitude of errors inDqp
fluctuates widely. The origin of this behavior has two com
peting sources. On the one hand, DMRG errors in
eigenenergiesE0(Ne ;N) tend to be systematic for simila
values ofN and Ne and cancel when calculating Eq.~13!.
Thus, the absolute error inDqp can be smaller than the erro
in E0(Ne ;N) as seen in Table I for the caseU52t. On the
other hand, the eigenenergies are extensive quantities@i.e.,
E0(Ne ;N) scales withN for constant densityNe /N#, while
Dqp is an intensive quantity~i.e., Dqp tends to a constant fo
increasingN and constant densityNe /N). Thus, even small
but nonsystematic errors inE0(Ne ;N) immediately result in
much larger relative errors inDqp. As a consequence, th
values ofDqp ~or similar physical quantities! obtained for a
given number of density-matrix eigenstates kept might
accurate but there is considerable uncertainty about their
curacy. The extrapolation of the ground-state energ
E0(Ne ;N) to vanishing truncation errors allows us to elim
nate this uncertainty and even to improve the precision
our results. For instance, in Table I one can see that the e
in Dqp calculated with extrapolated ground-state energies
up to one order of magnitude smaller than for the larg
value ofm used (m52000).

V. DISPERSION OF SPINON EXCITATIONS

An advantage of the momentum-space method is
momentum-dependent quantities can be easily calculate
this section, we investigate the dispersion of the spinon
citation Es(k) at half band filling for both the one
dimensional Hubbard model with nearest-neighbor hopp
and the 1/r Hubbard model; the spinon spectrum is know
exactly in both cases.

The lowest spin-triplet excitation with momentumk in a
system of sizeN with a singlet ground state is given by

« t~k;N!5E0~Ne/211,Ne/221,k1k0 ;N!

2E0~Ne/2,Ne/2,k0 ;N!, ~14!

where E0(N↑ ,N↓ ,k;N) denotes the energy of the lowe
state withN↑ (N↓) up-spin ~down-spin! electrons and tota
momentumk, andk0 is the momentum of the singlet groun
state. In one-dimensional spin-1/2 systems, a spin-triplet
citation is composed of two or more spin-1/2 spinons that
gapless in the thermodynamic limit. Therefore, the lowe
energy spin-one excitation allows us to map out the spin
dispersion as a function of momentum,

f
.

TABLE I. Ground-state energies and quasiparticle gap, Eq.~13!,
for the one-dimensional Hubbard model withN532 sites.

U/t m52000 Extrapolated Exact

1 E0(N;N)/t 233.20078 233.21423 233.21515
E0(N11;N)/t 232.64191 232.65757 232.65687

Dqp/t 0.12186 0.11472 0.11515
2 E0(N;N)/t 226.80161 227.01970 227.01826

E0(N11;N)/t 225.61577 225.83275 225.83170
Dqp/t 0.37737 0.37390 0.37311
4-7
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Es~k!5« t~k;N→`!, 0<k<p. ~15!

In Fig. 6~a!, we show the lowest triplet excitation« t(k;N)
of the half-filled Hubbard model with nearest-neighbor ho
ping atU/t50.4 for several momentak and system sizesN
up to 70 sites. The excitation energies scale approxima
linearly with 1/N for all momenta but the slope varies co
siderably for the differentk. This finite-size scaling is readily
understood from the exact result atU50 for a closed-shell
system,

« t~k;N!52t sin~k!18t sinS k

2D sinS p

2ND sinS k

2
2

p

2ND ,

~16!

where k52pn/N and n51, . . . ,N/2. We, therefore, ex-
trapolate the energies« t(k;N) to the thermodynamic limit
using a linear fit in 1/N to obtain the spinon dispersionEs(k)
though Eq.~15!. The results forEs(k) are shown in Fig. 6~b!
and compared with the exact spinon dispersion22 for U/t
50.4. One sees that our numerical results forEs(k) agree
very well with the analytical curve. In particular,« t(k
50,p;N→`)50 within the accuracy of the extrapolation
Note that because of the weak interactionU50.4t consid-
ered in this example, DMRG is very accurate and extrapo
tion of eigenenergies as a function of the numberm of
density-matrix states is not necessary. Thus, we have
fixed numbers of statesm5400, 800, 1200, 2000 forN
510, 30, 50, 70, respectively. Actually, errors due to t
infinite-system extrapolation are at least an order of mag
tude larger than the DMRG error in the ground-state ene
~per site!, which is 2.731024 in the worst case,N570.

In the 1/r Hubbard model, the spinon spectrum at h
band filling is given by12

FIG. 6. Spin excitations in the one-dimensional Hubbard mo
at half filling for U/t50.4. ~a! Energy« t(k;N) of the lowest triplet
excitation calculated with DMRG as a function of the inverse s
tem size 1/N for momenta k50 ~filled circles!, 0.2p ~filled
squares!, 0.4p ~filled triangles!, 0.6p ~open triangles!, 0.8p ~open
squares!, andp ~open circles!. Dashed lines are linear fits in 1/N.
~b! Spinon dispersionEs(k) in the thermodynamic limitN→`. The
circles show the results obtained by extrapolation of the DM
data in~a! @see Eq.~15!#. The solid line is the exact result obtaine
in Ref. 22.
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Es~k!5
1

4 SAW21U22
4WU

p S k2
p

2 D
1

2W

p S k2
p

2 Dp 2U D , 0<k<p ~17!

in the thermodynamic limit. In order to form the lowest spi
triplet excitations, two spinon excitations are necessary
they have momentak15k andk250, the spin-triplet excita-
tion will have total momentumk and excitation energy
« t(k)5Es(k) with respect to the ground state, asEs(k2
50)50. In Fig. 7, this analytical result for an infinite syste
is compared to our momentum-space DMRG results in fin
systems of sizeN524 andN532 forU/t51. We observe an
almost perfect agreement, implying the absence of sign
cant finite-size effects. This is a consequence of the lin
dispersion and weak coupling considered here. It can be
ferred from the results of Ref. 12 that the dispersion of sp
triplet excitations has no explicit dependence on the sys
size to first order inU/W

« t~k;N!5tkS 12
U

WD . ~18!

Therefore, the finite-size corrections are of the order (1/N)
3(U/W)2!1 and are negligible in the results forU/t51
and N>24 presented in Fig. 7. As in the nearest-neighb
hopping case, DMRG errors in the energy are negligi
small compared to the spinon bandwidth because of the w
interaction used here. Thus in Fig. 7 we show DMRG resu
for a fixed numberm of density-matrix states (m5800 for
N524 andm51600 for N532) instead of results extrapo
lated to them→` limit. These results, along with the resul
for the one-dimensional Hubbard model discussed pre
ously, show that the low-lying spin-excitation spectrum c
be accurately calculated using the momentum-space DM
at least in the weak-coupling limit.

VI. MOMENTUM DISTRIBUTION

Another quantity that is easily accessible to t
momentum-space DMRG is the single-particle moment
distribution

l

-

FIG. 7. Spinon spectrumEs(k) of the 1/r Hubbard model for
U/t51. DMRG results for finite systems withN524 sites
~squares! and N532 sites~circles!. The solid curve is the exac
result for an infinite system@Eq. ~17!#.
4-8
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n~k!5
1

2 (
s

^nks&. ~19!

We have calculatedn(k) in the ground state of the one
dimensional Hubbard model with nearest-neighbor hopp
and of the 1/r Hubbard model at half band filling usin
DMRG. Since DMRG truncation errors are typically larg
for quantities such asn(k) than for eigenenergies, it is cru
cial to examine the effect of varyingm. The relative size of
the finite-size effects is also important because one is in
ested in the behavior ofn(k) in the thermodynamic limit. In
the following, we compare our DMRG results to analy
results forn(k) on infinite lattices in the limit of both large
and small interaction strength.

A. Nearest-neighbor hopping

In the ground state of the one-dimensional Hubb
model with nearest-neighbor hopping, the distributionn(k)
is symmetric,n(2k)5n(k). Therefore, we show results fo
0<k<p only.

We compare our DMRG results with an approximate e
pression for n(k) proposed recently by Koch an
Goedecker.23 They make the ansatz that the real-space o
particle density matrix̂cis

† cj s& of the interacting system ca
be written as a product of the density matrix for the non
teracting system and an exponential decay factor that
function of the particle-hole distance. The corresponding m
mentum distribution is

nKG~k!5
1

2
1

1

p
arctanS cos~k!

sinh~g! D . ~20!

Here 1/g denotes the decay length and is given by

e2g

p
5^ci 11s

† cis&5E
0

`

dx
J0

2~x!2J1
2~x!

11exp~Ux/2t !
, ~21!

whereJ0(x) andJ1(x) are Bessel functions of the first kind
In Ref. 23 it is found that exact diagonalization calculatio
on systems of up to 16 sites agree well with this form
U/t*6. For smallerU/t, deviations are seen for wave ve
tors k'kF .

Expansion of Eq.~21! in the strong-coupling limit yields

g52 lnS 2tp ln 2

U D ~22!

and one recovers the perturbative result24

n~k!5
1

2
2

2ln~2!«~k!

U
; U@t. ~23!

In Fig. 8, we compare Eq.~20! for k.0 with the
momentum-space DMRG results forU/t510 andU/t520
on small finite lattices. We use periodic boundary conditio
(f50) for systems withN54n12 sites and antiperiodic
boundary conditions (f5p/N) for system withN54n sites
~wheren is an integer! to ensure closed-shell configuration
The momentum-space DMRG calculations agree reason
well with the analytical result, but we note that the agre
16511
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ment becomes less good with increasing system size
U/t520. An analysis of the behavior for differentm shows
that our DMRG results underestimaten(k) for uku,kF
5p/2 and overestimaten(k) for uku.kF . Therefore the de-
viations seen in Fig. 8 are a consequence of DMRG err
which become larger for the larger system sizes and
would expect all results to lie on the analytic curve as in R
23 in them→` limit.

In the limit of weak coupling,g is given by25

g'7z~3!S U

8pt D
2

, ~24!

wherez(z) is the Riemann zeta function@z(3)'1.2#. In Fig.
9 we compare Eq.~20! with our DMRG results forU/t51
andU/t52 on a 70-site lattice. We superimpose results w
different phases 0<f,2p/N to obtain better resolution in
the vicinity of the Fermi momentumkF5p/2. Note that we

FIG. 9. Single-particle momentum distribution of the on
dimensional half-filled Hubbard model on a 70-site lattice for d
ferent phasesf. The circles are forU/t51 ~with m5800 states
kept! and the triangles forU/t52 ~with m51200 states kept!. The
lines correspond to Eq.~20! for U/t51 ~solid! and U/t52
~dashed!. The inset shows a blowup of the region@p/2
20.0143p,p/210.0143p# around the Fermi momentum.

FIG. 8. Ground-state momentum distribution functionn(k) of
the one-dimensional half-filled Hubbard model atU/t520 for sys-
tem sizesN512 ~crosses!, N514 ~triangles! and N516 ~circles!
keepingm52000 states, and atU/t510 for N516 sites~squares!
keepingm51200 states. The lines correspond to the ansatz~20!.
4-9
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can do this only in the insulating phase where the dep
dence of the ground state on the phasef is negligible for
small f because the Drude weight8,9 ~which is proportional
to ]2E0 /]f2uf50) vanishes. Unlike the limit of strong cou
pling, the agreement between our DMRG data and Eq.~20!
is not good nearkF , as seen in the inset of Fig. 9. The fir
derivative ofn(k) at k5kF is n8(kF)'264 atU/t51 and
n8(kF)'210.3 at U/t52, whereas Eq. ~21! yields
nKG8 (kF)5223 at U/t51 and nKG8 (kF)525.0 at U/t52.
Although the ansatz~20! correctly describes the overa
shape ofn(k) deep in the insulating regime (U/t*6), we
find that it does not quantitatively recover theU/t→0 and
uk2kFu→0 scaling limit.

The behavior of the slope in the scaling limit can be u
derstood by examining the Green function for the sin
Gordon model.26 The Fourier transform of the equal-tim
Green function becomes27

nft~k>0!5
1

2
2

Z0

p
arctanS vh~k2p/2!

Dqp/2
D , ~25!

wherevh52t is the holon velocity andZ050.9219 has been
calculated in Ref. 28. The slope atk5kF5p/2 is then given
by

nft8~k5kF!52
4Z0

pDqp
, ~26!

which has the valuesnft8(k5kF)52233 at U/t51 and
nft8(k5kF)526.8 atU/t52 when the exact values forDqp

in the thermodynamic limit29 are used. In Fig. 10 we show
the scaling with inverse system size of the DMRG results
1/un8(k5kF)u. For U/t51, a 1/N→0 extrapolation~using a
linear form! yields n8(k5kF)52207, which agrees to
within the fit errors with the field-theoretic result, corrob
rating both the field-theoretic and DMRG results in this
gime. ForU/t52, we obtainn8(k5kF)5212, whose abso-
lute value is substantially larger~i.e., outside our estimate fo
the error! than that of the field-theoretic result. We belie
that this is becauseU/t52 is large enough so that the field
theoretic approximation to the momentum distribution of t
Hubbard model begins to show significant deviations fr

FIG. 10. Inverse of the slope at the Fermi wave vector 1/un8(k
5p/2)u as a function of inverse system size 1/N for U/t51 ~open
circles! andU/t52 ~open triangles!. The lines are linear fits to the
DMRG data. The filled symbols are the corresponding fie
theoretic results and the crosses are calculated from the K
Goedecker ansatz~20!.
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the lattice result. This is supported by the fact that the fie
theoretic formula ~26! correctly reproduces the strong
coupling form~23!, but with a prefactor 4Z0 /p'1.2 rather
than 4 ln 2'2.8, indicating that the field-theoretic formul
underestimates the slope at larger values ofU.

B. 1Õr hopping

In the ground state of the 1/r Hubbard model at half fill-
ing, n(2k)512n(k). The half-filled model describes
metal forU,W52pt and an insulator forU.W.

The momentum distribution in the 1/r Hubbard model can
be calculated in perturbation theory. For large couplingU
@t, we use Takahashi’s approach.24 To this end, we need the
spin-spin correlation function in the Gutzwiller-projecte
paramagnetic Fermi-sea at half band filling, which is t
ground state of the Haldane-Shastry spin chain.30 The spin-
spin correlation function for the Haldane-Shastry model
given by12,31

1

N (
l

^Sl•Sl 1r&5~21!r
3Si~pr !

4pr
~rÞ0!, ~27!

where Si(x) denotes the sine integral. The momentum dis
bution for largeU/t is then

n~k!5
1

2
2

1

U (
r 51

`

~21!r
sin~kr !

r S 3Si~pr !

pr
21D

5
1

2 F12
k

U S 123 lnU k

pU D G . ~28!

Note that although the momentum distribution is continuo
at kF50, we can expect to observe a large apparent jum
numerical simulations of finite systems even at largeU/t
because of the sizeable logarithmic term in Eq.~28!.

For small couplings, standard perturbation theory inU/t
is applicable because the model reduces to a pureg4 model
in the conformal limit.12 It turns out that the Gutzwiller wave
function becomes exact in the small-coupling limit so th
the momentum distribution forU!t becomes32

n~k!5H 12~U2/W2! f ~k! for 2p,k,0

~U2/W2! f ~k! for 0,k,p
~29!

with f (k)53/162@1/42uku/(2p)2#.
Figure 11~a! displays the momentum distribution functio

for the half-filled 1/r Hubbard model forU/t520 on anN
512 lattice compared with the strong-coupling result~28!,
and for U/t54 on anN516 lattice compared with the th
weak-coupling result~29!. The agreement is very good be
cause the DMRG errors are negligible for such small syste
and because the finite-size effects are small, at least on
scale of the figure.

The finite-size effects in weak coupling are more visib
in Fig. 11~b!. One can see that the perturbation theory, E
~29!, agrees well with the numerical results at all syste
sizes for U/t51. However, deviations that become larg
with system size can be seen forU/t52. The results for the
smaller systems incorrectly suggest that Eq.~29! applies per-
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fectly and that finite-size effects are absent. This effec
even more marked atU/t53 where the analytic weak-U
result agrees almost perfectly with the numerical data foN
516, but the data forN524 reveal that the agreement wou
be worse in the thermodynamic limit. Apparently, the finit
size effects are approximately of the same order and sig
the higher-order corrections inU/t here.

VII. DISCUSSION AND OUTLOOK

In this work, we have examined in detail the applicati
of the density matrix renormalization group to th
momentum-space representation of the Hubbard model.
have treated three different dispersion relations correspo
ing to the one-dimensional chain with nearest-neighbor h
ping, the one-dimensional chain with hopping that decays
1/r , and the two-dimensional square lattice with isotrop
nearest-neighbor hopping. While the one- and tw
dimensional nearest-neighbor hopping cases were tre
previously by Xiang,6 here we have extended the scope
his results and have addressed some issues raised b
work. In particular, we have taken advantage of the Be
ansatz exact solution,10 which yields the exact ground-sta
energy to within machine precision for all system sizes,
make more extensive studies of the convergence for the
dimensional model with the number of density-matrix eige
statesm. We have examined the effect of system size, int
action strength and band filling at up tom54000.

For all parameters and models, we have found system
variational convergence withm to the true ground state; thi
does not seem to clearly occur in Xiang’s, at least in
U/t54 results for the one-dimensional system. However,
convergence seems to be slower than exponential for
range ofm accessible to us. The accuracy decreases regu
with system size when the other parameters are fixed, as
finds for the real-space DMRG. The accuracy also beco
rapidly worse with interactionU, as also found by Xiang
Our more extensive set of interaction strengths indicates
the behavior is quite regular as a function ofU; convergence
does not break down at a particularU value.

In the one-dimensional Hubbard model with period

FIG. 11. Momentum distribution function for the 1/r Hubbard
model at half filling withm52000 states kept.~a! DMRG results on
anN516 lattice forU/t54 and anN512 lattice forU/t520. The
solid and dashed lines are from the perturbative first-order resu
t/U, Eq. ~28!, and the second-order result inU/t, Eq. ~29!, respec-
tively. ~b! The weak-coupling regime forU/t51,2,3 ~from bottom
to top!. The crosses, open triangles, and filled circles denoteN
516,24,32. The solid line results from Eq.~29!.
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boundary conditions, a comparison with the real-spa
DMRG applied to the same system with the samem indi-
cates that the accuracy of the real-space method is bette
U/t*1. The dependence of the accuracy on band filling
weak in momentum space, except on small system sizes
which the proportion of the Hilbert space kept changes dr
tically with filling.

For the two-dimensional system, we have restricted o
selves to the half-filled 434 system, the largest for which
exact diagonalization data are available, and have comp
with the real-space DMRG. We find that the momentu
space method is more accurate than the real-space me
~for the samem) whenU&8t5W.

One crucial issue raised by Xiang is the dependence of
accuracy on dimensionality or, relatedly, the range of
hopping. He speculated that such effects would be sma
for the momentum-space DMRG than for the real-spa
DMRG, a speculation that we have confirmed here. We e
phasize, however, that the choice of values of interact
strength which are compared is important. It is our opini
that a reasonable choice is the interaction divided by
bandwidth,U/W ~at identical filling and number of lattice
sites!. The bandwidth sets the energy scale for many phys
phenomena and also is relevant to the strength of the c
pling in perturbation theory.~A possibly useful alternative
might be the ratio of the interaction strength and the den
of states at the Fermi energy, the coupling paramete
weak-coupling perturbation theory.! For givenU/W ~as op-
posed to givenU/t), the accuracy of the momentum-spa
DMRG is lower in two dimensions than in one, an effect th
becomes smaller as the interaction becomes larger. In
dimension, changing to the longer-range 1/r hopping has
little effect on the accuracy at weakU/t, although the accu-
racy does become somewhat worse asU/t is increased. We,
therefore, conclude that while the performance of t
momentum-space DMRG is less dependent on range of
hopping or dimensionality than the real-space DMRG, th
is still some effect.

While the ground-state energy is an important indicator
convergence, it is not a particularly useful quantity in det
mining the physical behavior of a system. We have, the
fore, examined a number of other quantities that are ea
accessible to the momentum-space DMRG, which also y
useful physical information. Gaps formed from differences
energies provide important information about the excitat
spectrum. We have examined the single-particle gap as
as the momentum-dependent triplet gap for both o
dimensional models at half filling. For the single-partic
gap, extrapolation in 1/m is crucial in obtaining consisten
accuracy because of cancellation of variational errors
because the gap is an intensive quantity obtained by subt
ing extensive energies. We have found that a direct extra
lation using a polynomial in 1/m is the best method becaus
the error in the ground-state energy is not well correla
with the weight of the discarded density-matrix eigenvalu
unlike in the real-space DMRG. For the spin excitation sp
trum, we have treated parameter values for which extrap
tion in m is unnecessary and found that the finite-size effe
are substantial for the nearest-neighbor-hopping chain.

in
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the 1/r -Hubbard model, finite-size effects were quite sma
In both cases, the size-extrapolated spectrum agrees
with exact results.

Finally, we have examined the momentum distributi
function. For the nearest-neighbor chain, we compare w
an analytical ansatz of Koch and Goedecker.23 At strong cou-
pling, we find very good agreement aside from deviatio
due inaccuracy of the DMRG results. At weak interactio
the DMRG results agree with field-theoretic results26

whereas there is significant deviation from the Koc
Goedecker ansatz. For the 1/r -Hubbard model, agreemen
with weak and strong coupling results is good, althou
finite-size corrections with the same sign as higher or
terms inU/t provide better agreement for small system siz
than is justified in the thermodynamic limit.

In summary, the momentum-space DMRG can be a us
tool for the Hubbard model at weak-to-intermediate co
pling. While it is competitive with the real-space DMR
only at quite weak coupling for the one-dimensional mo
~even with periodic boundary conditions!, it is competitive
up to significantly stronger coupling for longer-range ho
ping or in two dimensions. It should be noted that the ac
racy of the momentum-space DMRG is generally sign
cantly lower than that of the more favorable cases for
real-space DMRG, and can be considered a ‘‘numeric
exact’’ method only with reservations. It can, however, be
useful variational method where no more exact methods
available if its limitations are well understood. The ease
calculation of momentum-dependent quantities is v
,
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useful—such quantities are often not available on large s
tems even for well-understood models. For these quanti
care must be taken with respect to accuracy and finite-
effects, but we have found them to be well behaved wit
these limitations.

The momentum-space DMRG code used here is far fr
maximally optimized. With similar optimizations as used
the real-space program such as the use of wave func
transformations to improve the initial guess for the targ
state in the diagonalization,13 it should be possible to kee
significantly more density-matrix eigenstates for given n
merical effort in the momentum-space method than in
real-space method applied to the same system. Use of su
better optimized program might increase the range of ap
cability of the momentum-space DMRG somewhat. In ad
tion, since the Hubbard model has a local interaction in re
space, the interaction is quite nonlocal in momentum spa
The momentum-space DMRG could quite possibly be be
suited to models with longer-range interaction in real spa
corresponding to more local interactions in momentu
space. Such directions would certainly be worth exploring
future work.
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