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We investigate the application of the density matrix renormalization g(BRG) to the Hubbard model
in momentum space. We treat the one-dimensional models with dispersion relations corresponding to nearest-
neighbor hopping and dhopping and the two-dimensional model with isotropic nearest-neighbor hopping. By
comparing with the exact solutions for both one-dimensional models and with exact diagonalization in two
dimensions, we first investigate the convergence of the ground-state energy. We find variational convergence of
the energy with the number of states kept for all models and parameter sets. In contrast to the real-space
algorithm, the accuracy becomes rapidly worse with increasing interaction and is not significantly better at half
filling. We compare the results for different dispersion relations at fixed interaction strength over bandwidth
and find that extending the range of the hopping in one dimension has little effect, but that changing the
dimensionality from one to two leads to lower accuracy at weak-to-moderate interaction strength. In the
one-dimensional models at half filling, we also investigate the behavior of the single-particle gap, the disper-
sion of spinon excitations, and the momentum distribution function. For the single-particle gap, we find that
proper extrapolation in the number of states kept is important. For the spinon dispersion, we find that good
agreement with the exact forms can be achieved at weak coupling if the large momentum-dependent finite-size
effects are taken into account for nearest-neighbor hopping. For the momentum distribution, we compare with
various weak-coupling and strong-coupling approximations and discuss the importance of finite-size effects as
well as the accuracy of the DMRG.
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I. INTRODUCTION A potential way of overcoming this limitation for itinerant
electron systems is to apply the DMRG ideas to the
Many renormalization schemes are carried out in momenmomentum-space formulation of the Hamiltonian. This ap-
tum space and involve integrating out degrees of freedomproach has a number of potential advantages over the real-
using a momentum cutoff. For example, Wilsdmsimerical  space approach. First, since the single-particle basis in mo-
renormalization groupRG) implements this program using @ entum space is explicitly translationally invariant,
mapping of momentum shells to an effective lattice model.momentum is a conserved quantum number. Use of this mo-

The renormalization process is carried out by successive nu- ; .
merical diagonalization of a finite system and energetic trunlfnentum quantum number reduces the size of the Hilbert

cation of the Hilbert space. While this lattice model corre-Sp"’W,[e.t.In the dr:ago?gllzatlon. Stecorgjq,tr%or;rjentumt—r(]:ie%gndent
sponds to successive momenta or, equivalently, energ dantiies such as the momentum distribution or the disper-

scales, its form is similar to that of a strongly correlated>on Of excitations can be directly calculated. Third, the ki-
lattice model. netic energy term is diagonal so that varying the dispersion
Attempts at applying a real-space version of the WilsondY for example, changing the range of the hopping, is easy
procedure to short-range quantum lattice models such as th@ do.
Heisenberg or the Hubbard model were not successful, how- Attempts to formulate a numerical renormalization group
ever, because successive lattice points do not correspond fsocedure for quantum lattice systems in momentum $pace
different energy scales. The density matrix renormalizatiorpredating the DMRG were not particularly successful—this
group (DMRG) (Refs. 2 and Bovercomes these limitations was one of White’s motivations for turning to real space and
by carrying out the renormalization on a subsystem. Thdormulating the DMRG. Shortly after the development of the
truncated basis is formed by projecting the state of the entir® MRG in real space, White attempted to use DMRG meth-
system onto the subsystem using the reduced density matrods on the momentum-space formulation of the Hubbard
rather than selecting states energetically. This method hasodel. He calculated the ground-state energy in one and two
been very successful at treating low-dimensional quantundimensions at intermediate couplings, but found that the en-
lattice models with open boundary conditions and shortergies obtained were not significantly better than those ob-
range couplings. However, for longer-range off-diagonal in-tained by other variational methods.
teractions, higher dimensional systems or lattices with peri- Independently, Xiang developed a similar technique and
odic boundary conditions, this real-space formulation of theapplied it to the Hubbard model in one and two dimensfons.
DMRG is much less successful. In addition, it loses sight ofin this work, Xiang outlined an efficient implementation of
an energy- or momentum-based classification of the relevarthe DMRG in momentum space. He developed a factoriza-
degrees of freedom. tion of the Hubbard interaction that reduces the number of
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terms fromN3, whereN is the number of single-particle standing the utility of the momentum-space DMRG for

Bloch wave functions in the lattice, to\é He also pointed Nigher-dimensional systems.

out some features of the algorithm that need to be carefully Vhile the ground-state energy is useful for determining
-\ganatlonal convergence, it does not directly provide much

considered in momentum space: Since the interaction i . : . :
useful information about the physical behavior of the system.

highly nonlocal, there is no natural ordering of the single-We therefore investigate some physically useful quantities
particle states; the choice of the ordering can, however, hav, 9 phy Y q '

an effect on the performance of the DMRG algorithm. Int‘laﬁe quasiparticle gap, the momentum distribution, and the

ddition. th ) lI-defined infinit : laorith dispersion of spinon excitations, for the one-dimensional
addrtion, there 1S no well-deined infinite-system algoritnm, 4, 4|5 ang compare to exactly known results and perturba-

so that care must be taken in how the lattice is built upje approximations, where appropriate. Our calculations of
initially. Care must also be taken in this initialization proce- the momentum distribution and the spinon dispersion for the
dure so that states with a sufficient spread in momemu”i/r—hopping model are, to our knowledge, the first indepen-
quantum numbers are kept. One possible outcome of an intent numerical calculations of these quantities.
adequate initialization procedure is convergence to a state The layout of the remainder of this paper is as follows. In
other than the true ground state. Sec. Il we discuss the model systems and their basic proper-
Xiang investigated the performance of the algorithm forties. Our DMRG method is described in Sec. Ill. The con-
various interaction strengths for the one-dimensional Hubvergence and accuracy of the momentum-space DMRG are
bard model with 16 sites at half filling, and for the two- discussed in Sec. IV. We study the dispersion of spinon ex-
dimensional model on system sizes ranging from#4to  citations and the momentum density distribution of one-
12x 12 for various band fillings. He found that the conver- dimensional Hubbard models in Secs. V and VI, respectively.
gence of the method depends strongly on the interactiodVe discuss the prospects for momentum-space DMRG in the
strength,U. The method is exact fdd =0 since the Hamil-  final section.
tonian is diagonal and the convergence becomes rapidly
worse with increasingJ. In one dimension, he compared Il. MODEL
with real-space DMRG calculations and found that the error
in the ground-state energy was higher than the real—:spaq_eI
calculation for both weak and intermediate interaction
strengths J/t=1 and 4, witht the hopping matrix element .
with 5% error forU/t=4. In two dimensions, he compared H=i20 tiiCijrr“LUZ ity @)
with exact diagonalization for ax4 system, cluster diago- )
nalization on a &6 system, and quantum Monte Carlo andwherec{, (c;,) creategannihilate$ an electron with spirr
stochastic diagonalization calculations oix 4, 6x6, and in the Wannier state on lattice sitewith positionr;, n;,
8x 8 systems. The relative errors increased rapidly with =c¢/,Ci,, denotes the particle number operator on &itg;
for the 4x 4 system. The variational energies were compa-=t(ri—r;) is the transfer integral between sitandj, andU
rable to those of the stochastic diagonalization and quantur§ the energy cost due to the Coulomb repulsion of two elec-
Monte Car'o methodifor Wh|Ch the energy iS nonvaria_ trons on the same Site. In th|S paper, a” energies are mea-
tional) for larger system sizes. The variational bounds for thesured in units ot=1. .
energy were slightly higher than stochastic diagonalization Using the relatior(Fourier transformationbetween Wan-
for the 6x 6 lattice and slightly lower for the 88 lattice. In ~ Ni€r states at siteand Bloch states with momentuky
comparing the performance in one and two dimensions,
Xiang pointed out that the accuracy for givéiWt, band Cla:i E e‘k'ric-TU, )
filling, and number of states, kept for 16 site systems was VN T .
lk;etget:];: m’g ﬁ'gﬁgﬁlﬂﬁi;gggénmoerlﬁb(ljez?ggmh;? ;?Ofepeaccuflvpt_areN _is the number of_Iattic_e sites, the I_—|ubbard _Ham_il-
) . I “Snian with translationally invariant transfer integrals is writ-
rate as the d|mgn3|0_nallty is increased. ten in momentum space as
Our purpose in this work is to explore more fully both the
convergence properties and the application of the u
momentum-space formulation of the DMRG to the Hubbard H=2> e(k)ng,+ N > CgquCquClem, ()
model. In one dimension, we take advantage of the existence ko pka
of exact solutions for two choices of the dispersion, Corfewherenk(,:clgcka and
sponding to nearest-neighbor hopping and Aépping, to
systematically investigate the dependence of the convergence Cker
of the ground-state energy on interaction strength, band fill- 8(k)22 e "hit(r)) 4)
ing, and the number of density-matrix eigenstates kept/e .
investigate the regularity of the convergence witland dis-  is the energy dispersion of the electrons.
cuss schemes to extrapolateimin order to obtain more The kinetic energy of Eq(3) consists only of diagonal
accurate energies. We reexamine the relative convergence ftarms with dispersiore(k), so that the momentum-space
the one- and two-dimensional models with a view to underDMRG method is trivially exact folJ=0. Moreover, it can

The Hubbard modélis defined in a general form by the
amiltonian
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be easily applied to different noninteracting dispersiol§  change in the range of hopping affects the momentum-space
corresponding to different lattice geometries and hoppinglgorithm. The Hubbard model on a two-dimensional square
ranges. In this paper, we apply the momentum-space DMRd&ttice (iii) will be used to investigate and compare the ef-
to the following three different modeléhere and in what fects of dimensionality on the momentum-space method and
follows, we take the lattice constant to be unity éido be  on the real-space method.

even.
(i) The one-dimensional Hubbard chain with nearest- Il. DMRG IN MOMENTUM SPACE
neighbor hopping amplitudejﬂ,j:—te"”. The dispersion o
relation is given by In principle, the usual DMRGRefs. 2 and B can be
applied directly to the momentum-space representation of the
e(k)=—2tcogk— o) (5  Hubbard model3). In the momentum-space approach each

with k=27n/N andn=—N/2+1, ... N/2. The bandwidth 5/0¢h function with momenturk and spino corresponds to
a lattice site. To perform the calculations presented in this
paper, we have adapted a program originally written by
White > This program predategnd thus does not ussome
recent developments that can greatly improve the perfor-
mance of the DMRG such as the wave-function
transformatior> the use of composite operat§rand the
use of non-Abelian symmetriéé Nevertheless, this program
is highly optimized and allows us to carry out DMRG calcu-
lations keeping up ton=4000 density-matrix eigenstates on
a workstation with 1 GB of memory. Below and in the next
(—1)!-m section we discuss features of the momentum-space DMRG
t,m=(—it)m (6) which differ from the usual real-space DMRG.
The summation in the second term of E8). runs ovelN?®
with products of operators. A straightforward implementation of
the DMRG algorithm requires calculating and keeping track
m(l—m) @ of O(N®) matrices representing the different products of op-
N ' erators. This represents a significant increase compared to
the real-space approach that requires only a constant number
of operators for the one-dimensional aBgL = \/N) matri-
ces for the two-dimensional Hubbard mod#), respectively.
Xiang® has shown that is it possible to define so-called com-
posite operators and thus reduce the number of operators that
need to be kept to 8. In White’s program, internal sums
over blocks are carried out to reduce the number of operators

is W=4t. Here a fluxN¢, measured in units of the flux
guantum ¢po=hc/e and equivalent to a twisted boundary
condition, is threaded through the systgfit enables us to
calculate the ground-state energy as a function of #luxve
will use nonzero values ab later to interpolate momentum-
dependent quantitie®.g., the momentum distribution func-
tion) to arbitrary values of the momentum on a finite system.
(ii) The one-dimensional Hubbard chain with long-range
hopping amplitude

N
d(l—m)=;sm

Sinced(l —m) is antisymmetric under the permutation lof
and m, the hopping matrix element has to be purely imagi-
nary to guarantee thaf,=ty,. In the thermodynamic limit
(N—0), the hopping decays proportionally to the inverse of
the distance =|l—m| (“1/r Hubbard model}. The disper-
sion relation idinear and is given by

e(k) =tk (8) to O(N?) rather thanO(N), and an efficient representation
of operators with small sparse matrices is used.
with k=(2n—1)#/N andn=—N/2+1, ... N/2, where an- We explicitly use the conservation of the particle number
tiperiodic boundary conditions are chosen. The bandwidth i\N,=S, .n,,, of the z component of the total spirg,
W=2mt. =(1/2)2y ,ony,, and of the total momentum

(i) The two-dimensional Hubbard square lattice with
nearest-neighbor hopping amplitudet. The dispersion re-
lation is given by K:;, kny, mod2s. (10
a(k) 2t(cosky+ cosky) © Momentum symmetry reduces the size of the effective Hil-
with k= (2mn,/L,27n /L), where n,,n,=—L/2 bert space by about a factdbrand allows us to decompose
+1,...L/2 andN=L2. The bandwidth iaV=8t. the matrix representations of operators into several smaller
The one-dimensional Hubbard modeél is exactly solv- matrices. Therefore, the dimension of the effective Hilbert
able via the Bethe ansafzand can easily be studied using space for a given numben of density matrix eigenstates is
the real-space DMR&. Comparison with the exact solutions smaller in the momentum-space approach than in the real-
and the real-space method will provide an opportunity to tesspace approach. This should be kept in mind when compar-
the performance of the momentum-space DMRG. The 1/ing results obtained with both approaches: In genenatan
Hubbard modelii) is also exactly solvabl¥ but it is diffi- be made larger for a given amount of computational effort in
cult to investigate with the real-space DMRG because thenomentum space.
hopping is long range and imaginary. For this model, the In a one-dimensional system in real space, there is a natu-
advantage of the momentum-space approach is clear: omal ordering of the lattice sites. In two dimensions, there is
need only change the real, diagonal dispersigk). We will, some choice in the ordering:°but reasonable choices yield
therefore, use this model to investigate how a substantiaimilar resultst® In momentum space it is nat priori clear
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how one should arrange the sites in the latficghus, we 102 ' ' 10 Fe, T I
have tested several possibilities including random ordering.  10* la%, @ L ®
We have found that the order of sites should be carefully 107 %y N R I
chosen in the momentum-space approach—the rate of con- 318.7: Zvna 9107 _Q\‘ ‘“»A\A_u B
vergence and the accuracy strongly depends on the site order. o381 “b_:}"“ ~~~~~ 2 Jora. T e
Fundamentally, it seems that Bloch states that are strongly 10°}| N 107 n“n-n_‘ 7
scattered by the Hubbard term in E8) should be arranged 107 RS 10° | N =
to be as close together as possible. For the one-dimensional 0 To0 2000 01000 2000
m m

and two-dimensional Hubbard models with nearest-neighbor
hopping, we use an energetic ordering in which the sites are FiG. 1. DMRG error in the ground-state energy of the half-filled
arranged according t¢e(k) —eg|, where e denotes the  one-dimensional Hubbard model with 16 sites and periodic bound-
Fermi energy in the noninteracting cad¢<£0). Forthe I¥  ary conditions as a function of the number of density-matrix
Hubbard model, the Fermi energy has no particular relevanceigenstates kept ita) the real-space approach fdrt=1 (circles,
for low-energy scattering processes and we have found that (reverse trianglgs 8 (diamonds, and (b) the momentum-space
ordering the sites according &dk) works best. approach fold/t=1 (circles, 2 (triangles, 3 (squarey 4 (reverse
We use the finite-system DMRG algorithm and performtriangles.
several sweeps through the lattice until the ground-state en-
ergy converges as in the real-space approach. Wilson’s n@womparison of computer CPU time and memory usage in this
merical RG method is used instead of the infinite systenpaper as they would be meaningless.
algorithm to build up the lattice during the initial iteration. ~ As a measure of the DMRG precision we use the error in
For the next iterations we apply the usual blocking scheméhe ground-state energy per site
with a superblock made of two sites and two blocks with at
mostm states each. In Ref. 6 the superblock was built using Epvra(M) — Eexact
two blocks and a single site. According to Xiang, this single- AE(m)= Nt ' 1D
site approach is faster than the usual blocking scheme. As
discussed in Ref. 2, however, the single-site blocking schem@&hereE,,..is the exact ground-state enerfggr particular
is not a robust method unless several states are targeted. 4gaantum numbersN,,S,,K)] and Epyrs(m) is the corre-
we always target a single state in our calculatijiis'e  sponding DMRG energy obtained wittn density-matrix
ground state for some quantum numbeXg (S, ,K) ], we use  eigenstates kept. The exact reslts,are calculated using
the two-site blocking scheme. the Bethe ansatz for the one-dimensional Hubbard mddel
We have observed that the DMRG has difficulty findingand are numerically computed using exact diagonalization
the ground state when the interactibhis not weak or for  techniques for the two-dimensional Hubbard mddefor
some particular choices of the quantum numbsg,S, ,K). the 1f Hubbard model they are derived from a conjectured
The DMRG sometimes seems to converge first to a stateffective Hamiltoniart? Consistency of the DMRG energies
other than the ground state and only converges to the trugith the spectrum obtained from the effective Hamiltonian in
ground state after many sweeps or after the nunmbesf  turn confirms the conjecture.
density-matrix eigenstates is increased. This behavior is Figures 1a) and Xb) show the ground-state energy error
marked by a rapid drop in the energy after a relatively largeA E of the one-dimensional Hubbard model as a function of
number of sweeps or at a high valuenafA similar problem  the number of density-matrix eigenstata$or several values
has been reported with the real-space DMRG applied to twoof U/t. These results have been obtained on 16-site lattices
dimensional fermion system:® Therefore, one should not with periodic boundary conditions at half filling using the
rely on DMRG results obtained for a fixed numberof  real-space[see Fig. 1a)] and the momentum-spadéig.
density-matrix eigenstates kept or a fixed number of sweepg,(b)] approaches. The errakE of the momentum-space
but one should investigate the behavior of the DMRG as @MRG method clearly increases with/t. The error in the
function of m and of the number of sweeps. real-space DMRG increases wittecreasing Ut for this
half-filled system. In the momentum-space DMRG, the pro-
cedure becomes exact when the off-diagonal interaction
terms vanish(i.e., atU=0) and should be more accurate
when they are small—it is a weak-coupling method. In con-
In this section we discuss the convergence and accuradyast, the real-space representation becomes é@x@ctioca)
of the momentum-space DMRG method applied to the Hubwhent— 0. It is important to note that this is not equivalent
bard model3). We have also applied the real-space DMRGto the largeU/t limit, in which the real-space DMRG does
method to the real-space representatibnof the Hubbard not become exact. The increase in accuracy With shown
Hamiltonian with periodic boundary conditions. This allows here is specific to the half-filled insulator, in which the
us to make comparisons of both DMRG methods in order tacharge degrees of freedom become increasingly localized
illustrate both their differences and their common featureswith increasingU/t. In fact, in the one-dimensional system
Our real-space DMRG program uses more advanced teclsway from half band filling, there igery little dependence of
niques and is better optimized than our momentum-spacthe convergence od/t (for open boundary conditiong® In
DMRG program. Therefore, we have chosen to present nboth approachegf\E(m) does not decrease exponentially as

IV. CONVERGENCE AND ACCURACY
OF MOMENTUM-SPACE DMRG
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FIG. 2. DMRG error in the ground-state energy as a function of  F|G. 3. DMRG errors in the ground-state energy at half filling as
the numberm of density-matrix eigenstates kept for the 16-site 5 function of the interaction strengttd/W calculated withm

one-dimensional Hubbard model at half filling witht=4, includ- =000 density-matrix eigenstates. The dashed lines are guides to
ing our results for momentumd = 7 (open circlepandK =0 (filled  the eye (a) Real-space DMRG results for the Hubbard model on a
circles and Xiang's result¢Ref. 6 for unspecified momenturttri-  one-dimensional lattice with 16 sitésircles and 32 sitegsquares
angles. The dashed lines are guides to the eye. and on a two-dimensional x4 lattice (crosses (b) Momentum-

space DMRG results for the one-dimensional Hubbard model with

m increases, contrary to the behavior often reported for realt® sitésiopen circlesand 32 sitesopen squaresthe 1f Hubbard
space DMRG calculations on one-dimensional systems witt‘EOde' with 16 sitegfilled circles and 32 sitesfilled square and
open boundary conditions. In Figs(al and 1b) we also see the two-dimensional Hubbard model on x4 lattice (crosses
that the errors of the real-space approach are smaller and
decrease more rapidly witm than the errors of the difference could be responsible for the better accuracy of our
momentum-space approach. results in the weak-coupling limitW/t=1) but cannot ex-

In Xiang’s work® the systematic convergence of the plain the discrepancy observed for intermediate coupling
momentum-space method seems to break down when tHéJ/t=4).
interaction strength) approaches the band widt. In par- In our calculations, we have often observed that the
ticular, for the half-filled Hubbard model on a one- DMRG energy initially seems to converge towards a value
dimensional 16-site lattice witb/t=4, the ground-state en- larger than the exact ground-state energy. Upon further in-
ergy obtained from the DMRG, shown in Fig. 2, does notcreasing the number of statesor the number of sweeps, it
seem to converge smoothly toward the exact ground-staté@en converges to the exact result. In all the cases we present
energy as the numben of retained density-matrix eigen- here, the momentum-space DMRG yields energies doat
states is increased—the results are oscillatory and hard ttimately converge to the exact result, even for very large
extrapolate. While the origin of this irregular convergence ininteraction strengttJ, although the rate of this convergence
Xiang's data is unclear, one factor that is essential to conand the accuracy deteriorate rapidlysncreases.
sider is that the momentum of the ground state for a half-
filled ring with 16 sites and periodic boundary conditions is
K= because it is an open-shell configuration. Our results
for K=7 do converge smoothly to the exact solution as a In this section, we discuss the dependence of the accuracy
function of 1, as seen in Fig. 2. The lowest-energy stateof the energy of momentum-space DMRG on the model pa-
with K=0, also shown in the figure, lies closer to Xiang's rameters: the single-electron dispersiik), the interaction
results for the larger values af, but converges smoothly to strengthU/W, the lattice dimensionality, and the band filling.
an energy that is clearly higher than the ground state. Th&igures 3a) and 3b) show the ground-state energy erioE
deviation of Xiang’s result could either be due to his groundas a function of the interaction strength/W for a fixed
state having a different momentum or due to convergence afumbem= 2000 of density-matrix eigenstates. We again see
the the DMRG to a state other than the ground state, athat errors decrease in the real-space apprfféigh 3(a)| but
discussed in the previous section. increase in the momentum-space approfely. 3b)] for

For weaker interactionJ/t=1, Xiang’s results converge increasingU/W. In both cases errors increase with the sys-
to the ground-state energy fé¢=, but lie significantly tem size and are larger in two dimensions than in one dimen-
above our own results for the same number of density-matrision for the same number of lattice sites. However, the de-
eigenstates kept. For instance, the DMRG error in thgendence on system size and dimensionality of the
ground-state energpE(m) for m=1200 is one order of momentum-space approach is clearly weaker than in the real-
magnitude smaller in our calculations than the value reportedpace approach. The lower precision of the DMRG in higher
by Xiang. This also suggests an incomplete convergence afimension is easily understood as a consequence of increas-
DMRG in Xiang’'s calculations even for weak coupling. ing off-diagonal coupling in the real-space approach. A pos-
However, it should also be kept in mind that in his work sible explanation for the slight decrease in accuracy with
Xiang used a different superblock structure with a single sitelimension in the momentum-space representation is that al-
between two blocks. As a consequence, the dimension of thitaough the single-electron dispersietk) remains diagonal
effective Hilbert space for a given number of statess  for any dimension, a larger proportion of single-electron
smaller in Xiang’s calculations than in our calculations. Thisstates are close to the Fermi surface and are thus strongly

A. Dependence on model parameters
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decreases upon further doping. As discussed previously, the
charge degrees of freedom are localized in the half-filled
insulator, leading to improved convergence for the real-space
algorithm. For any finite doping, the system immediately be-
comes metallic, i.e., some charge degrees of freedom become
delocalized, leading to a reduction in accuracy. As the system
is doped further from half filling, the reduction in the size of
the Hilbert space leads to an improvement in accuracy, as in
the momentum-space approach.

Extrapolation to m— oo

FIG. 4. DMRG error in the ground-state energy as function of  p\RG calculations have a truncation error that is re-
bar.1d fllllngn in thg one-dimensional I—!ubbgrd model foft=4 on duced by increasing the numberof density-matrix eigen-
lattices with 16 sitegsquaresand 32 sitegcircles. Open_symbols states kep%’.?‘ It is important to analyze the scaling of DMRG
represent the momentum-space DMRG results and filled symbols.g its as a function af to estimate DMRG errors quanti-
for the real-space DMRG results. Real-space DMRG errors for 18,4yely. In real-space DMRG calculations, one generally ob-
S|tes. are smalller than 16 and not shown. The number of dens!ty- serves that energy errofsE(m) are proportional to the dis-
matrix states isn= 1200 andm=2000 for the 16-site and 32-site carded weight Pm’18,21 provided that the DMRG has
system, respectively. converged to the right target state. Here the discarded weight

_ . P, is defined as the total weigkéum of the density-matrix
scattered. In Figs.(d) and 3b) one also sees that the preci- gjgenvaluesof the discarded density-matrix eigenstates, av-
sion of the real-space approach is generally better than thakaged over a sweep through all lattice sites in the finite-
of the momentum-space approach in the one-dimensionglystem DMRG algorithm. Thus, it is possible to extrapolate
Hubbard model. The latter becomes more accurate than tfBMRG eigenenergies to the limi,,—0. This procedure
former for U/t=<1 only. In two dimensions, however, the produces extrapolated energies that are closer to the exact
real-space approach performs very poorly for periodiceigenenergies than the DMRG energies calculated for a
boundary conditions. The momentum-space approach yieldgiven value ofm. Moreover, the extrapolation yields reliable
better results fold<W=8t. We finally note that DMRG quantitative error margins for the eigenenergies.
errors seem to be affected only a small amount by the form In momentum space, however, we have found that the
of the dispersior: (k) in the momentum-space approach. In linear relationship between the energy errdis(m) andP,,
the real-space approach, however, changing the singl@-ften does not hold, even for sm#d},,. In fact, we find that
electron dispersion by introducing longer-range hoppinghe dependence d?;,, on m can even be nonmonotonic. An
lowers the DMRG performance very rapidly. In summary, €xtrapolation to vanishing discarded weight— 0 is there-
we find that the momentum-space approach is superior to tH@re, generally not possible. That such a nonmonotonic be-
real-space approach for applications to translationally invarihavior is found at all is surprising at first glance because the
ant systems with weak-to-intermediate Coulomb interactiongliscarded weighP, of the exactdensity matrix for the sys-
in two dimensions or on one-dimensional lattices with long-tem decreases monotonically with increasmgper defini-
range hopping. tion. An exact density matrix for the ground state of the

Let us now consider the effects of the band filling. In Fig. Hubbard model can be calculated numerically in small sys-
4 we show the erroE in the ground-state energy as a tems using exact diagonalization. Using the results of such a
function of band fillingn=N,/N for the one-dimensional calculation on aN=12 lattice, we have found that the
Hubbard model a) = 4t. In the momentum-space approach, density-matrix eigenvaluesv;,i=1,2,... appear to de-
the accuracy is worst at or near half filing and improves asrease exponentially as a functioniah the asymptotic re-
the density decreases from=1. One cause of this effect is gime i>1. As a consequence, the exact discarded weight
that the size of the Hilbert space is maximal at half filling P,=={",w; and the corresponding energy erraiE(m)
and decreases rapidly at large doping. This effect is magnimust also decrease exponentially with increasimdrhis is
fied in the 16-site system relative to the 32-site system, asbserved for density matrices calculated in the momentum-
seen in Fig. 4, because a substantial proportion of the Hilbepace approach as well as those obtained in the real-space
space is retained in the diagonalization step at large dopin@pproach(both for open and periodic boundary conditipns
Another possible cause is the reduction in the effectivéSuch an exponential falloff of the density-matrix eigenvalues
strength of the electron-electron scattering as the system Isas been found for exactly solvable mod€lgn an actual
doped away from half filling. The effective interaction DMRG calculation, however, the density matrix is calculated
strength depends on the ratioldfand the density of states at self-consistently. Thus different density matrices can be ob-
the Fermi energy, which becomes smaller with doping, intained for differentm, and P,,, can, in principle, be an arbi-
weak coupling. As the effective interaction becomes smallerrary function ofm, except for the condition lim_,..P,,=0.
the electrons become more localized in momentum spac&\e expect such effects to be largest whEgis large and
which should be favorable for the convergence of thethe self-consistently determined density matrix is a poor ap-
momentum-space DMRG. In the real-space approach, Fig. groximation to the exact one.
shows that the error in the ground-state energy first increases In the momentum-space approach, the error in the DMRG
as the system is doped slightly away from half filling, thenenergyAE(m) does not decrease exponentially with increas-
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0015 ———F———7— TABLE I. Ground-state energies and quasiparticle gap(Es),

r / . for the one-dimensional Hubbard model with=32 sites.

0.01F s yft=1
E E J o--Ujt=2 : U/t m=2000 Extrapolated Exact

0.005F -’ A 1 Eo(N;N)/t ~ —33.20078 —33.21423 —33.21515
C s ] Eo(N+1;N)/t —32.64191 -—32.65757 —32.65687
(A S —— Agplt 0.12186 0.11472 0.11515
0 ool m 0.002 2 Eo(N:N)/t ~ —26.80161 —27.01970 —27.01826
Eo(N+1;N)/t —2561577 —25.83275 —25.83170
FIG. 5. DMRG error in the ground-state energy as a function of Agplt 0.37737 0.37390 0.37311

1/m for the one-dimensional Hubbard model on a 32-site lattice
The lines are least-square fits to a fourth-order polynomial4 in
Eq. (12. tained for fixed values ofn, the magnitude of errors ia g,
fluctuates widely. The origin of this behavior has two com-
ing m, but rather shows a power-law behavior imlih the  peting sources. On the one hand, DMRG errors in the
limit m>1. We, therefore, extrapolate the momentum-spaceigenenergie€,(N.;N) tend to be systematic for similar
DMRG results to vanishing truncation error by performing avalues ofN and N, and cancel when calculating E@L3).
least-squares fit of the DMRG energiEgyrs(m) for sev-  Thus, the absolute error i, can be smaller than the error

eralm to anth order polynomial in In, in Eq(Ng;N) as seen in Table | for the cate=2t. On the
other hand, the eigenenergies are extensive quanfites
1 a, ap a, Eo(Ng;N) scales withN for constant densitN./N], while

Bt o) =Bt v 2t T (12) A, is an intensive quantitfi.e., A, tends to a constant for

increasingN and constant densitid./N). Thus, even small
An extrapolated energy for vanishing truncation errams ( but nonsystematic errors By(N;N) immediately result in
—) is given directly by the fit parametét... The energy much larger relative errors idq,. As a consequence, the
Epmra(m) must be a monotonically decreasing function of values ofA gy, (or similar physical quantitigsobtained for a
m since the DMRG is a variational method and increasinggiven number of density-matrix eigenstates kept might be
m means increasing the variational subspace dimensiomccurate but there is considerable uncertainty about their ac-
Therefore, Epuyra(1/m) must satisfy the constraint curacy. The extrapolation of the ground-state energies
dEpmra(X)/dx>0 for x in the range &<x<1/m’<1, where = Ey(N¢;N) to vanishing truncation errors allows us to elimi-
m’ is smaller than or equal to the smallest valugmadsed in  nate this uncertainty and even to improve the precision of
the fit. An obvious consequence of this constraint is that theur results. For instance, in Table | one can see that the errors
first-order term in the polynomidkg(1/m) must satisfya;  in A, calculated with extrapolated ground-state energies are
=0. We have found that the best fit under this constrainup to one order of magnitude smaller than for the largest

systematically givesi;=0. value ofm used (m=2000).
Figure 5 shows the DMRG errorsE in the ground-state
energies of the one-dimensional 32-site Hubbard model for V. DISPERSION OF SPINON EXCITATIONS

U/t=1 and 2 and the results of least-square fits to a fourth- q fth hod is th
order polynomial,n=4 in Eq. (12). The DMRG errors An advantage of the momentum-space method is that

AE(m) for the largest value ofn used are 4.510°* (m momentum-dependent quantities can be easily calculated. In
—2000) and 5.3 103 (m=2800) forU/t=1 éndU/tzZ this section, we investigate the dispersion of the spinon ex-
respectively. The accuracy is greatly improved by the poly-c'tatlon Efk) at half band filing for both the one-

nomial fit and them— extrapolation. The errors in the dimensional Hubbard model with nearest-neighbor hopping

corresponding extrapolated ground-state energies per site a?@d the 17 Hubbard model; the spinon spectrum is known

2.9 1075 for U/t=1 and 4.510"5 for U/t=2. exactly in both cases. o .

To illustrate the benefit of extrapolating DMRG energies The Iowe_st spm-tnplgt excitation with mqme_ntumn a
to vanishing truncation errors we now consider the quasipar?'yStem of sizeN with a singlet ground state is given by
ticle gapA, of the one-dimensional Hubbard model at half e(k:N)=Eo(Ng/2+ 1 N/2— 1 k+Kkg:N)
filling. The quasiparticle gap is defined by

—Eg(Ne/2Ng/2kg;N), (14

where Eo(N;,N ,k;N) denotes the energy of the lowest
whereEq(Ng;N) is the ground-state energy of a system withstate withN; (N,) up-spin(down-spin electrons and total

N sites andN, electrons with minimalS,, i.e., N;=N, or  momentunk, andk, is the momentum of the singlet ground
N;=N,;+1. The charge conjugation symmetry of the Hub- state. In one-dimensional spin-1/2 systems, a spin-triplet ex-
bard model implies thaEy(N+1;N)=Ey,(N—1;N)+U, so citation is composed of two or more spin-1/2 spinons that are
only one of these two energies need be computed. Somgapless in the thermodynamic limit. Therefore, the lowest-
results forA,, are shown in Table I. If one calculates the energy spin-one excitation allows us to map out the spinon

ap
quasiparticle gap with the DMRG results fBp(Ng;N) ob-  dispersion as a function of momentum,

Agp=Eo(N+1;N)+Eo(N—1;N)—2Eo(N;N), (13

165114-7



NISHIMOTO, JECKELMANN, GEBHARD, AND NOACK PHYSICAL REVIEW B65 165114

| T T T T T T I T T T
< (b) |
i 2_ n
= 15[ ' s} ]
--EE--u o} “ ~
ERl R N Mok -
/'
. ." L - r q
* 5 , L |
0;:1,'4.7?’, il .(Id). O - L - o
0 0.05 0.1 0 T 0 .
I/N k

FIG. 6. Spin excitations in the one-dimensional Hubbard model g/ 7. Spinon spectrury(k) of the 1f Hubbard model for

at half filling for U/t=0.4.(a) Energye(k;N) of the lowest triplet  \j;1=1. DMRG results for finite systems wittN=24 sites

excitation calculated with DMRG as a function of the inverse SYS-(squares and N=32 sites(circles. The solid curve is the exact

tem size 1IN for momentak=0 (filled circles, 0.2r (filled result for an infinite systerfEq. (17)].

squarey 0.4+ (filled triangles, 0.67 (open triangles 0.87 (open

squares and 7 (open circles Dashed lines are linear fits inNL/

(b) Spinon dispersioftg(k) in the thermodynamic limiN—o. The E (k)= 1( \/W2+ U2— 4WU( K— Z)

circles show the results obtained by extrapolation of the DMRG s 4 T 2

data in(a) [see Eq(15)]. The solid line is the exact result obtained

in Ref. 22. N 2W
o

k—g)w—u>, O<k=m (17

Es(k)=e((kiN—),  O<ks<m. 15 inthe thermodynamic limit. In order to form the lowest spin-

triplet excitations, two spinon excitations are necessary. If
_ . e they have momentk; =k andk,=0, the spin-triplet excita-

In Fig. 6@, we show the lowest triplet excitatian(k;N)  {ion will have total momentumk and excitation energy
of the half-filled Hubbard model with nearest-neighbor hOP‘st(k)zEs(k) with respect to the ground state, &(k,
ping atU/t=0.4 for several momentand system sizefl  —0)=0. In Fig. 7, this analytical result for an infinite system
up to 70 sites. The excitation energies scale approximately compared to our momentum-space DMRG results in finite
linearly with 1N for all momenta but the slope varies con- systems of siz&l =24 andN=232 forU/t=1. We observe an
siderably for the differenk. This finite-size scaling is readily almost perfect agreement, implying the absence of signifi-
understood from the exact resultldt=0 for a closed-shell cant finite-size effects. This is a consequence of the linear
system, dispersion and weak coupling considered here. It can be in-

ferred from the results of Ref. 12 that the dispersion of spin-
triplet excitations has no explicit dependence on the system

. kY [ m) (ko size to first order inJ/W
e¢(k;N)=2t sin(k) + 8t sin > sin N sin 572N/ |
(16) e(K:N) =tk( 1- v_v) . (19)
where k=27n/N and n=1,... N/2. We, therefore, ex- Therefore, the finite-size corrections are of the ordeNj1/

trapolate the energies;(k;N) to the thermodynamic limit x(U/W)?<1 and are negligible in the results far/t=1
using a linear fit in 1N to obtain the spinon dispersidy(k) and N=24 presented in Fig. 7. As in the nearest-neighbor
though Eq(15). The results foE¢(k) are shown in Fig. @)  hopping case, DMRG errors in the energy are negligibly
and compared with the exact spinon disper&idior U/t  small compared to the spinon bandwidth because of the weak
=0.4. One sees that our numerical results (k) agree interaction used here. Thus in Fig. 7 we show DMRG results
very well with the analytical curve. In particulag,(k for a fixed numbem of density-matrix statesnf=800 for
=0,m;N—)=0 within the accuracy of the extrapolation. N=24 andm=1600 for N=32) instead of results extrapo-
Note that because of the weak interactidr-0.4t consid-  lated to them— < limit. These results, along with the results
ered in this example, DMRG is very accurate and extrapolafor the one-dimensional Hubbard model discussed previ-
tion of eigenenergies as a function of the numinerof  ously, show that the low-lying spin-excitation spectrum can
density-matrix states is not necessary. Thus, we have usés accurately calculated using the momentum-space DMRG,
fixed numbers of statesn=400, 800, 1200,2000 foml at least in the weak-coupling limit.

=10, 30,50, 70, respectively. Actually, errors due to the
infinite-system extrapolation are at least an order of magni-

. VI. MOMENTUM DISTRIBUTION
tude larger than the DMRG error in the ground-state energy

(per sitg, which is 2.7 10" * in the worst caselN=70. Another quantity that is easily accessible to the
In the 1f Hubbard model, the spinon spectrum at half momentum-space DMRG is the single-particle momentum
band filling is given by? distribution
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1
n(k)=5 2 (No). (19

We have calculatedh(k) in the ground state of the one-

dimensional Hubbard model with nearest-neighbor hopping 305‘_ . ]
and of the ¥ Hubbard model at half band filling using e \
DMRG. Since DMRG truncation errors are typically larger “a

for quantities such as(k) than for eigenenergies, it is cru- i
cial to examine the effect of varying. The relative size of
the finite-size effects is also important because one is inter- 0 1
ested in the behavior af(k) in the thermodynamic limit. In 0
the following, we compare our DMRG results to analytic

results forn(k) on infinite lattices in the limit of both large FIG. 8. Ground-state momentum distribution functiogk) of

and small interaction strength. the one-dimensional half-filled Hubbard modellft = 20 for sys-
tem sizesN=12 (crosse N=14 (triangles and N= 16 (circles
A. Nearest-neighbor hopping keepingm= 2000 states, and &i/t=10 for N=16 sites(squares

. . eepingm= 1200 states. The lines correspond to the a
In the ground state of the one-dimensional Hubbaror ping P daad

model with nearest-neighbor hopping, the distributigk) o ) )
is symmetric,n(—k) =n(k). Therefore, we show results for ment becomes less good with increasing system size for
o<k= only. U/t=20. An analysis of the behavior for differemt shows

We compare our DMRG results with an approximate ex-that our DMRG results underestimatg(k) for |k|<kg
pression for n(k) proposed recenﬂy by Koch and = /2 and Overestlmatﬂ(k) for |k|>k|: . Therefore the de-
Goedeckef® They make the ansatz that the real-space oneviations seen in Fig. 8 are a consequence of DMRG errors
particle density matriXc/,c;,,) of the interacting system can which become larger for the larger system sizes and we
be written as a product of the density matrix for the nonin-WO‘_Jld expect aII.re.suIts to lie on the analytic curve as in Ref.
teracting system and an exponential decay factor that is &3 in them—oce limit. _ o .
function of the particle-hole distance. The corresponding mo- N the limit of weak coupling,y is given by
mentum distribution is

1 1 ’6 cos(k))

Nke(k)= > + ;arcta Sinf(7)

Here 1/ denotes the decay length and is given by

U 2
(20 7~7§<3>(%) , (24

. B2(x)—J3(x) where{(z) is the Riemaqn zeta functiqd(3)~1.2]. In Fig.
—=(cl,,,c >:J o A (21 9 we compare Eq(20) with our DMRG results folU/t=1

™ Rl Jo 7T 1+ exp(Ux/2t) andU/t=2 on a 70-site lattice. We superimpose results with
different phases € $<2#/N to obtain better resolution in
the vicinity of the Fermi momenturk:= 7/2. Note that we

e 7

whereJy(x) andJ(x) are Bessel functions of the first kind.

In Ref. 23 it is found that exact diagonalization calculations
on systems of up to 16 sites agree well with this form for
U/t=6. For smalletU/t, deviations are seen for wave vec-

torsk~kg.
Expansion of Eq(21) in the strong-coupling limit yields
. 2twiIn2 -
and one recovers the perturbative redult
1 2In(2)e(k
nk)=-— (Dello), Ust. (23

2 U '

In Fig. 8, we compare EQq.20) for k>0 with the
momentum-space DMRG results for/t=10 andU/t=20 FIG. 9. Single-particle momentum distribution of the one-

on small finite lattices. We use periodic boundary conditiongjimensional half-filled Hubbard model on a 70-site lattice for dif-
(¢=0) for systems withN=4n+2 sites and antiperiodic ferent phasesp. The circles are folU/t=1 (with m=800 states

boundary conditions¢= m/N) for system withN=4n sites  kep and the triangles fou/t=2 (with m= 1200 states keptThe
(wheren is an integer to ensure closed-shell configurations. jines correspond to Eq(20) for U/t=1 (solid) and U/t=2

The momentum-space DMRG calculations agree reasonablyashesl The inset shows a blowup of the regiopm/2
well with the analytical result, but we note that the agree-—0.0143r, #/2+0.01437] around the Fermi momentum.
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02k T T T T T T T3 the lattice result. This is supported by the fact that the field-
theoretic formula (26) correctly reproduces the strong-
coupling form(23), but with a prefactor Z,/7~1.2 rather
than 4 In2=2.8, indicating that the field-theoretic formula

=7/2)l
<
\
1 L

Tv: underestimates the slope at larger valued) of
ToF B. 1/r hopping
0 0.010.02-0.03-0.04 0.05-0.06 In the ground state of the lHubbard model at half fill-

ing, n(—k)=1—n(k). The half-filled model describes a
metal forU<W=2sxt and an insulator foJ>W.

FIG. 10. Inverse of the slope at the Fermi wave vecton'{k The momentum distribution in therlHubbard model can
=m/2)| as a function of inverse system sizé\lfor U/t=1 (open  be calculated in perturbation theory. For large couplihg
circles andU/t=2 (open triangles The lines are linear fits to the >t, we use Takahashi's approa%hTo this end, we need the
DMRG data. The filled symbols are the corresponding field-spin-spin correlation function in the Gutzwiller-projected
theoretic results and the crosses are calculated from the KOCfparamagnetic Fermi-sea at half band filling, which is the
Goedecker ansat20). ground state of the Haldane-Shastry spin ch&ifihe spin-

) . ] ] spin correlation function for the Haldane-Shastry model is
can do this only in the insulating phase where the depengiven by?3*

dence of the ground state on the phasés negligible for
small ¢ because the Drude weidtit(which is proportional 1  3Si(7r)

to °Eq/d$?| 4-o) vanishes. Unlike the limit of strong cou- N EI: (S-S:)=(-1)'——— (r#0), (27
pling, the agreement between our DMRG data and(E0).

is not good neakg, as seen in the inset of Fig. 9. The first where Sik) denotes the sine integral. The momentum distri-
derivative ofn(k) atk=kg is n'(kg)~—64 atU/t=1 and  bution for largeU/t is then

n'(kg)~—10.3 at U/t=2, whereas Egq.(21) yields
Nia(ke)=—23 atU/t=1 andngg(kg)=—5.0 atU/t=2.
Although the ansat220) correctly describes the overall
shape ofn(k) deep in the insulating regimdJ(t=6), we
find that it does not quantitatively recover th#t—0 and 1 1 E( 1-3In
|[k—kg|—0 scaling limit. -2 U

k
/I (28
The behavior of the slope in the scaling limit can be un- o .
derstood by examining the Green function for the sine-Note that although the momentum distribution is continuous

Gordon modef® The Fourier transform of the equal-time &tKr=0, we can expect to observe a large apparent jump in
Green function becom&s numerical simulations of finite systems even at latgé
because of the sizeable logarithmic term in E2B).
vn(k—/2) For small couplings, standard perturbation theoryJift
A—plz) (25) is applicable because the model reduces to a gunmmodel
q in the conformal limit? It turns out that the Gutzwiller wave

wherev,= 2t is the holon velocity and,=0.9219 has been function becomes exact in the small-coupling limit so that
calculated in Ref. 28. The slope ket ke= 7/2 is then given the momentum distribution fot <t become®

by

1/N

1 1<
n(k)ZE_Uzl(_l) r r

 sin(kr) (38i(77r) _1)

1 Z
ng(k=0)= 57 ?arcta

1—-(UW?)f(k) for —m<k<O

4z n(k)= (29
nflt(k:kF):_ ﬂ.AO ' (26) (UZ/WZ)f(k) for O<k<mw
. » with f(K)=3/16—[1/4— |K|/(27)2].
which has the valuesij(k=kg)=—233 at U/t=1 and Figure 11a) displays the momentum distribution function

ny(k=Kkg)=—6.8 atU/t=2 when the exact values fdy,, for the half-filled 1f Hubbard model folJ/t=20 on anN

in the thermodynamic limi are used. In Fig. 10 we show =12 lattice compared with the strong-coupling reS@®),

the scaling with inverse system size of the DMRG results forand forU/t=4 on anN=16 lattice compared with the the
1n’'(k=kg)|. ForU/t=1, a IN—O0 extrapolationusing a  weak-coupling result29). The agreement is very good be-
linear form vyields n’(k=kg)=—207, which agrees to cause the DMRG errors are negligible for such small systems
within the fit errors with the field-theoretic result, corrobo- and because the finite-size effects are small, at least on the
rating both the field-theoretic and DMRG results in this re-scale of the figure.

gime. ForU/t=2, we obtaimn’(k=kg) =—12, whose abso- The finite-size effects in weak coupling are more visible
lute value is substantially largéice., outside our estimate for in Fig. 11(b). One can see that the perturbation theory, Eq.
the erroj than that of the field-theoretic result. We believe (29), agrees well with the numerical results at all system
that this is becaus®/t=2 is large enough so that the field- sizes forU/t=1. However, deviations that become larger
theoretic approximation to the momentum distribution of thewith system size can be seen fdft=2. The results for the
Hubbard model begins to show significant deviations fromsmaller systems incorrectly suggest that &9) applies per-
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boundary conditions, a comparison with the real-space
DMRG applied to the same system with the samendi-
cates that the accuracy of the real-space method is better for
U/t=1. The dependence of the accuracy on band filling is
weak in momentum space, except on small system sizes for
which the proportion of the Hilbert space kept changes dras-
tically with filling.

For the two-dimensional system, we have restricted our-
selves to the half-filled X4 system, the largest for which
exact diagonalization data are available, and have compared
with the real-space DMRG. We find that the momentum-
space method is more accurate than the real-space method
r the samem) whenU=<8t=W.

One crucial issue raised by Xiang is the dependence of the
tively. (b) The weak-coupling regime fdg/t=1.2.3 (from bottom accuracy on dimensionality or, relatedly, the range of the

to top. The crosses, open triangles, and filled circles demote hopping. He speculated that such effects would be smaller
=16,24,32. The solid line results from E@9). for the momentum-space DMRG than for the real-space

DMRG, a speculation that we have confirmed here. We em-

fectly and that finite-size effects are absent. This effect iP°hasize, however, that the choice of values of interaction
even more marked dt)/t=3 where the analytic weak- strength which are compared is important. It is our opinion
result agrees almost perfectly with the numerical data\for that a reasonable choice is the interaction divided by the
=16, but the data foN= 24 reveal that the agreement would bandwidth,U/W (at identical filling and number of lattice

be worse in the thermodynamic limit. Apparently, the finite- SiteS- The bandwidth sets the energy scale for many physical

size effects are approximately of the same order and sign d&J1€nomena and also is relevant to the strength of the cou-
the higher-order corrections id/t here. pling in perturbation theory(A possibly useful alternative
might be the ratio of the interaction strength and the density
of states at the Fermi energy, the coupling parameter in
weak-coupling perturbation theoyyror givenU/W (as op-

In this work, we have examined in detail the applicationposed to giverlJ/t), the accuracy of the momentum-space
of the density matrix renormalization group to the DMRG is lower in two dimensions than in one, an effect that
momentum-space representation of the Hubbard model. Weecomes smaller as the interaction becomes larger. In one
have treated three different dispersion relations correspondalimension, changing to the longer-range hopping has
ing to the one-dimensional chain with nearest-neighbor hoplittle effect on the accuracy at wedk/t, although the accu-
ping, the one-dimensional chain with hopping that decays ascy does become somewhat worsdJds is increased. We,
1/r, and the two-dimensional square lattice with isotropictherefore, conclude that while the performance of the
nearest-neighbor hopping. While the one- and two-momentum-space DMRG is less dependent on range of the
dimensional nearest-neighbor hopping cases were treatdwpping or dimensionality than the real-space DMRG, there
previously by Xiand here we have extended the scope ofis still some effect.
his results and have addressed some issues raised by hisWhile the ground-state energy is an important indicator of
work. In particular, we have taken advantage of the Beth&onvergence, it is not a particularly useful quantity in deter-
ansatz exact solutiol?,which yields the exact ground-state mining the physical behavior of a system. We have, there-
energy to within machine precision for all system sizes, tdfore, examined a number of other quantities that are easily
make more extensive studies of the convergence for the oneccessible to the momentum-space DMRG, which also yield
dimensional model with the number of density-matrix eigen-useful physical information. Gaps formed from differences in
statesm. We have examined the effect of system size, interenergies provide important information about the excitation
action strength and band filling at up me=4000. spectrum. We have examined the single-particle gap as well

For all parameters and models, we have found systematias the momentum-dependent triplet gap for both one-
variational convergence witim to the true ground state; this dimensional models at half filling. For the single-particle
does not seem to clearly occur in Xiang's, at least in hisgap, extrapolation in v is crucial in obtaining consistent
U/t=4 results for the one-dimensional system. However, theccuracy because of cancellation of variational errors and
convergence seems to be slower than exponential for thieecause the gap is an intensive quantity obtained by subtract-
range ofmaccessible to us. The accuracy decreases regularipg extensive energies. We have found that a direct extrapo-
with system size when the other parameters are fixed, as om&tion using a polynomial in i is the best method because
finds for the real-space DMRG. The accuracy also becomethe error in the ground-state energy is not well correlated
rapidly worse with interactior, as also found by Xiang. with the weight of the discarded density-matrix eigenvalues,
Our more extensive set of interaction strengths indicates thatnlike in the real-space DMRG. For the spin excitation spec-
the behavior is quite regular as a functionlfconvergence trum, we have treated parameter values for which extrapola-
does not break down at a particuldrvalue. tion in mis unnecessary and found that the finite-size effects

In the one-dimensional Hubbard model with periodic are substantial for the nearest-neighbor-hopping chain. For

1 6.0.0.00.00 6]

Ult=4 @ |

:'Q'Q"OPV.VD'O“O
= 0 w
k

FIG. 11. Momentum distribution function for therlHubbard
model at half filling withm= 2000 states kepta) DMRG results on
anN=16 lattice forU/t=4 and arlN= 12 lattice forU/t=20. The fo
solid and dashed lines are from the perturbative first-order result ir(i
t/U, Eq. (28), and the second-order resultlii't, Eq. (29), respec-

VII. DISCUSSION AND OUTLOOK
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the 1f-Hubbard model, finite-size effects were quite small.useful—such quantities are often not available on large sys-
In both cases, the size-extrapolated spectrum agrees weéms even for well-understood models. For these quantities,
with exact results. care must be taken with respect to accuracy and finite-size
Finally, we have examined the momentum distributioneffects, but we have found them to be well behaved within
function. For the nearest-neighbor chain, we compare witlthese limitations.
an analytical ansatz of Koch and GoededRet strong cou- The momentum-space DMRG code used here is far from
pling, we find very good agreement aside from deviationgmaximally optimized. With similar optimizations as used in
due inaccuracy of the DMRG results. At weak interaction,the real-space program such as the use of wave function
the DMRG results agree with field-theoretic reséfts, transformations to improve the initial guess for the target
whereas there is significant deviation from the Koch-state in the diagonalizatior,it should be possible to keep
Goedecker ansatz. For ther #ubbard model, agreement significantly more density-matrix eigenstates for given nu-
with weak and strong coupling results is good, althoughmerical effort in the momentum-space method than in the
finite-size corrections with the same sign as higher ordereal-space method applied to the same system. Use of such a
terms inU/t provide better agreement for small system sizedetter optimized program might increase the range of appli-
than is justified in the thermodynamic limit. cability of the momentum-space DMRG somewhat. In addi-
In summary, the momentum-space DMRG can be a usefuion, since the Hubbard model has a local interaction in real-
tool for the Hubbard model at weak-to-intermediate cou-space, the interaction is quite nonlocal in momentum space.
pling. While it is competitive with the real-space DMRG The momentum-space DMRG could quite possibly be better
only at quite weak coupling for the one-dimensional modelsuited to models with longer-range interaction in real space,
(even with periodic boundary conditionst is competitive  corresponding to more local interactions in momentum
up to significantly stronger coupling for longer-range hop-space. Such directions would certainly be worth exploring in
ping or in two dimensions. It should be noted that the accufuture work.
racy of the momentum-space DMRG is generally signifi-
cantly lower than that of the more favorable cases for the
real-space DMRG, and can be considered a “numerically
exact” method only with reservations. It can, however, be a This work was supported by the Deutsche Forschungsge-
useful variational method where no more exact methods armeinschaft under Grant No. GE 746/6-1. We acknowledge
available if its limitations are well understood. The ease ofhelpful discussions with F.H.L Essler, S.R. White, and T.
calculation of momentum-dependent quantities is veryXiang.
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