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Quantum orders and symmetric spin liquids
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A concept—quantum order—is introduced to describe a new kind of orders that generally appear in quantum
states at zero temperature. Quantum orders that characterize the universality classes of quantum states~de-
scribed bycomplexground-state wave functions! are much richer than classical orders that characterize the
universality classes of finite-temperature classical states~described bypositiveprobability distribution func-
tions!. Landau’s theory for orders and phase transitions does not apply to quantum orders since they cannot be
described by broken symmetries and the associated order parameters. We introduced a mathematical object—
projective symmetry group—to characterize quantum orders. With the help of quantum orders and projective
symmetry groups, we construct hundreds of symmetric spin liquids, which have SU~2!, U~1!, or Z2 gauge
structures at low energies. We found that various spin liquids can be divided into four classes:~a! Rigid spin
liquid—spinons~and all other excitations! are fully gapped and may have bosonic, fermionic, or fractional
statistics.~b! Fermi spin liquid—spinons are gapless and are described by a Fermi liquid theory.~c! Algebraic
spin liquid—spinons are gapless, but they are not described by free fermionic-bosonic quasiparticles.~d! Bose
spin liquid—low-lying gapless excitations are described by a free-boson theory. The stability of those spin
liquids is discussed in detail. We find that stable two-dimensional spin liquids exist in the first three classes
~a!–~c!. Those stable spin liquids occupy a finite region in phase space and represent quantum phases. Re-
markably, some of the stable quantum phases support gapless excitations even without any spontaneous
symmetry breaking. In particular, the gapless excitations in algebraic spin liquids interact down to zero energy
and the interaction does not open any energy gap. We propose that it is the quantum orders~instead of
symmetries! that protect the gapless excitations and make algebraic spin liquids and Fermi spin liquids stable.
Since high-Tc superconductors are likely to be described by a gapless spin liquid, the quantum orders and their
projective symmetry group descriptions lay the foundation for a spin liquid approach to high-Tc superconduct-
ors.

DOI: 10.1103/PhysRevB.65.165113 PACS number~s!: 73.43.Nq, 74.25.2q, 11.15.Ex
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I. INTRODUCTION

Due to its long length, we would like to first outline th
structure of the paper so readers can choose to read the
of interest. Section X summarizes the main results of
paper, which also serves as a guide of the whole paper.
concept of quantum order is introduced in Sec. I A. A co
crete mathematical description of quantum order is descr
in Secs. IV A and IV B. Readers who are interested in
background and motivation of quantum orders may cho
to read Sec. I A. Readers who are familiar with the sla
boson approach and just want a quick introduction to qu
tum orders may choose to read Secs. IV A and IV B. Read
who are not familiar with the slave-boson approach may fi
the review in Secs. II and III useful. Readers who do not c
about the slave-boson approach but are interested in app
tions to high-Tc superconductors and experimental measu
ments of quantum orders may choose to read Secs. I A,
and VII and consult Figs. 1–15 to gain some intuitive pictu
of the spinon dispersion and neutron scattering behavio
various spin liquids.

A. Topological orders and quantum orders

Matter can have many different states, such as gas, liq
and solid. Understanding states of matter is the first ste
understanding matter. Physicists find matter can have m
more different states than just gas, liquid, and solid. Ev
0163-1829/2002/65~16!/165113~37!/$20.00 65 1651
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solids and liquids can appear in many different forms a
states. With so many different states of matter, a gen
theory is needed to gain a deeper understanding of the s
of matter.

All the states of matter are distinguished by their intern
structures or orders. The key step in developing a gen
theory for states of matter is the realization that all orders
associated with symmetries~or rather the breaking of sym
metries!. Based on the relation between orders and symm
tries, Landau developed a general theory of orders and
transitions between different orders.1,2 Landau’s theory is so
successful and one starts to have a feeling that we un
stand, in principle, all kinds of orders that matter can hav

However, nature never stops surprising us. In 1982, T
Stormer, and Gossard3 discovered a new kind of state—
fractional quantum-Hall~FQH! liquid.4 Quantum-Hall liq-
uids have many amazing properties. A quantum-Hall liquid
more ‘‘rigid’’ than a solid ~a crystal!, in the sense that a
quantum Hall liquid cannot be compressed. Thus a quan
Hall liquid has a fixed and well-defined density. When w
measure the electron density in terms of filling factorn, we
find that all discovered quantum Hall states have such d
sities that the filling factors are exactly given by some rat
nal numbers, such asn51,1/3,2/3,2/5, . . . Knowing that
FQH liquids exist only at certain magical filling factors, on
cannot help to guess that FQH liquids should have so
internal orders or ‘‘patterns.’’ Different magical filling factor
should be due to those different internal ‘‘patterns.’’ How
©2002 The American Physical Society13-1
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XIAO-GANG WEN PHYSICAL REVIEW B 65 165113
ever, the hypothesis of internal ‘‘patterns’’ appears to ha
one difficulty—FQH states are liquids, and how can liqui
have any internal ‘‘patterns’’?

In 1989, it was realized that the internal orders in FQ
liquids ~as well as the internal orders in chiral spin liquids5,6!
are different from any other known orders and cannot
observed and characterized in any conventional way7,8

What is really new~and strange! about the orders in chira
spin liquids and FQH liquids is that they are not associa
with any symmetries~or the breaking of symmetries! and
cannot be described by Landau’s theory using physical o
parameters.9 This kind of order is calledtopological order.
Topological order is a new concept and a whole new the
was developed to describe it.9,10

Knowing FQH liquids contain a new kind of order—
topological order—we would like to ask why FQH liquid
are so special. What is missed in Landau’s theory for sta
of matter so that the theory fails to capture the topologi
order in FQH liquids?

When we talk about orders in FQH liquids, we are rea
talking about the internal structure of FQH liquids atzero
temperature. In other words, we are talking about the inte
structure of the quantum ground state of FQH systems.
the topological order is a property of the ground-state w
function. Landau’s theory is developed for systems at fin
temperatures where quantum effects can be ignored. T
one should not be surprised that Landau’s theory does
apply to states at zero temperature where quantum effect
important. The very existence of topological orders sugge
that finite-temperature orders and zero-temperature or
are different, and zero-temperature orders contain ric
structures. We see that what is missed by Landau’s theo
simply the quantum effect. Thus FQH liquids are not th
special. Landau’s theory and symmetry characterization
fail for any quantum states at zero temperature. As a co
quence, new kind of orders with no broken symmetries a
local order parameters~such as topological orders! can exist
for any quantum states at zero temperature. Because th
ders in quantum states at zero temperature and the orde
classical states at finite temperatures are very different,
we would like to introduce two concepts to stress th
differences:11 ~a! quantum orders,93 which describe the
universality classes of quantum ground states~i.e., the uni-
versality classes ofcomplex ground-state wave function
with infinity variables!, and ~b! classical orders, which de-
scribe the universality classes of classical statistical st
~i.e., the universality classes ofpositiveprobability distribu-
tion functions with infinity variables!.

From the above definition, it is clear that the quantu
orders associated with complex functions are richer than
classical orders associated with positive functions. Landa
theory is a theory for classical orders, which suggests
classical orders may be characterized by broken symme
and local order parameters.94 The existence of topologica
order indicates that quantum orders cannot be comple
characterized by broken symmetries and order parame
Thus we need to develop a new theory to describe quan
orders.
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In a sense, the classical world described by positive pr
abilities is a world with only ‘‘black and white.’’ Landau’s
theory and the symmetry principle for classical orders
color-blind which can only describe different ‘‘shades
gray’’ in the classical world. The quantum world describ
by complex wave functions is a ‘‘colorful’’ world. We nee
to use new theories, such as the theory of topological or
and the theory developed in this paper, to describe the
‘‘color’’ of the quantum world.

The quantum orders in FQH liquids have a special pr
erty that all excitations above ground state have finite ene
gaps. This kind of quantum orders is called topological
ders. In general, a topological order is defined as a quan
order where all the excitations above ground state have fi
energy gapes.

Topological orders and quantum orders are general p
erties of any states at zero temperature. Nontrivial topolo
cal orders not only appear in FQH liquids; they also app
in spin liquids at zero temperature. In fact, the concept
topological order was first introduced in a study of sp
liquids.9 FQH liquid is not even the first experimentally ob
served state with nontrivial topological orders. That hon
goes to the superconducting state discovered in 1911.12 In
contrast to a common point of view, a superconducting s
cannot be characterized by broken symmetries. It conta
nontrivial topological orders13 and is fundamentally differen
from a superfluid state.

After a long introduction, now we can state the main su
ject of this paper. In this paper, we will study a new class
quantum orders where the excitations above the ground s
are gapless. We believe that the gapless quantum order
important in understanding high-Tc superconductors. To con
nect to high-Tc superconductors, we will study quantum o
ders in quantum spin liquids on a two-dimensional~2D!
square lattice. We will concentrate on how to character
and classify quantum spin liquids with different quantum o
ders. We introduce projective symmetry groups to help us
achieve this goal. The projective symmetry group can
viewed as a generalization of symmetry group that char
terize different classical orders.

B. Spin-liquid approach to high-Tc superconductors

There are many different approaches to the high-Tc super-
conductors. Different physicists have different points of vie
on what are the key experimental facts for the high-Tc su-
perconductors. The different choice of key experimen
facts leads to many different approaches and theories.
spin-liquid approach is based on a point of view that t
high-Tc superconductors are doped Mott insulators.14–16

~Here by Mott insulator we means a insulator with an o
number of electrons per unit cell.! We believe that the mos
important property of the high-Tc superconductors is that th
materials are insulators when the conduction band ishalf
filled. The charge gap, obtained by the optical conducta
experiments, is about 2 eV, which is much larger than
antiferromagnetic~AF! transition temperatureTAF;250 K,
the superconducting transition temperatureTc;100 K, and
the spin pseudogap scaleD;40 meV.17–19 The insulating
3-2
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QUANTUM ORDERS AND SYMMETRIC SPIN LIQUIDS PHYSICAL REVIEW B65 165113
property is completely due to the strong correlations pres
in the high-Tc materials. Thus the strong correlations a
expected to play a very important role in understanding hi
Tc superconductors. Many important properties of high-Tc
superconductors can be directly linked to the Mott insula
at half filling, such as~a! the low charge density20 and su-
perfluid density,21 ~b! Tc being proportional to dopingTc
}x,22–24 ~c! the positive charge carried by the char
carrier,20 etc.

In the spin-liquid approach, the strategy is to try to und
stand the properties of the high-Tc superconductors from th
low-doping limit. We first study the spin-liquid state at ha
filling and try to understand the parent Mott insulator.~In this
paper, by spin liquid, we mean a spin state with translat
and spin rotation symmetry.! At half filling, the charge exci-
tations can be ignored due to the huge charge gap. Thu
can use a pure spin model to describe the half filled syst
After understand the spin liquid, we try to understand
dynamics of a few doped holes in the spin-liquid states
to obtain the properties of the high-Tc superconductors a
low doping. One advantage of the spin-liquid approach
that experiments ~such as angle resolved phot
emission,17,18,25,26NMR,27 neutron scattering,28–30 etc.! sug-
gest that underdoped cuperates have many striking and q
tatively new properties which are very different from th
well-known Fermi liquids. It is thus easier to approve
disapprove a new theory in the underdoped regime by stu
ing those qualitatively new properties.

Since the properties of the doped holes~such as their sta
tistics, spin, effective mass, etc.! are completely determine
by the spin correlation in the parent spin liquids, thus in
spin-liquid approach, each possible spin liquid leads to
possible theory for high-Tc superconductors. Using the con
cept of quantum orders, we can say that possible theorie
high-Tc superconductors in the low-doping limits are clas
fied by possible quantum orders in spin liquids on 2D squ
lattices. Thus one way to study high-Tc superconductors is to
construct all possible spin liquids that have the same s
metries as those observed in high-Tc superconductors an
then analyze the physical properties of those spin liqu
with dopings to see which one actually describes the highTc
superconductor. Although we cannot say that we have c
structed all symmetric spin liquids, in this paper we ha
found a way to construct a large class of symmetric s
liquids. ~Here by symmetric spin liquids we mean spin li
uids with all the lattice symmetries: translation, rotation, p
ity, and the time reversal symmetries.! We also find a way to
characterize the quantum orders in those spin liquids via
jective symmetry groups. This gives us a global picture
possible high-Tc theories. We would like to mention that
particular spin liquid—the staggered-flux/d-wave
state31,32—may be important for high-Tc superconductors
Such a state can explain33,34 the highly unusual pseudoga
metallic state found in underdoped cuperates,17,18,25,26as well
as thed-wave superconducting state.32

The spin liquids constructed in this paper can be divid
into four classes:~a! Rigid spin liquid—spinons are fully
gapped and may have bosonic, fermionic, or fractional
tistics. ~b! Fermi spin liquid—spinons are gapless and a
16511
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described by a Fermi liquid theory.~c! Algebraic spin
liquid—spinons are gapless, but they are not described
free fermionic-bosonic quasiparticles.~d! Bose spin liquid—
low-lying gapless excitations are described by a free-bo
theory. We find that some of the constructed spin liquids
stable and represent stable quantum phases, while other
unstable at low energies due to long-range interacti
caused by gauge fluctuations. The algebraic spin liquids
Fermi spin liquids are interesting since they can be sta
despite their gapless excitations. Those gapless excitat
are not protected by symmetries. This is particularly striki
for algebraic spin liquids since their gapless excitations
teract down to zero energy and the states are still stable.
propose that it is the quantum orders that protect the gap
excitations and ensure the stability of the algebraic spin
uids and Fermi spin liquids.

We would like to point out that both stable and unstab
spin liquids may be important for understanding high-Tc su-
perconductors. Although at zero temperature high-Tc super-
conductors are always described stable quantum states,
important states of high-Tc superconductors, such as th
pseudogap metallic state for underdoped samples, are
served only at finite temperatures. Such finite-tempera
states may correspond to~doped! unstable spin liquids, such
as the staggered flux state. Thus even unstable spin liq
can be useful in understanding finite-temperature meta
states.

There are many different approaches to spin liquids.
addition to the slave-boson approach,6,15,16,31–33,35–40spin
liquids has been studied using the slave-fermion/s-model
approach,41–46 quantum dimer model,47–51 and various nu-
merical methods.52–55In particular, the numerical results an
recent experimental results56 strongly support the existenc
of quantum spin liquids in some frustrated systems. A
quantum orbital liquid was also proposed to exist
LaTiO3.57

However, I must point out that there is no generally a
cepted numerical results yet that prove the existence of
liquids with an odd number of electrons per unit cell f
spin-1/2 systems, despite intensive search in the last
years. But it is my faith that spin liquids exist in spin-1
systems. For more general systems, spin liquids do e
Read and Sachdev43 found stable spin liquids in a Sp(N)
model in the large-N limit. The spin-1/2 model studied in this
paper can be easily generalized to the SU(N) model with
N/2 fermions per site.31,58In the large-N limit, one can easily
construct various Hamiltonians58,59 whose ground states re
alize the various U~1! andZ2 spin liquids constructed in this
paper. The quantum orders in those large-N spin liquids can
be described by the methods introduced in this paper.58 Thus,
despite the uncertainly about the existence of spin-1/2 s
liquids, the methods and the results presented in this pa
are not about~possibly! nonexisting ‘‘ghost states.’’ Those
methods and results apply, at least, to certain large-N sys-
tems. In short, nontrivial quantum orders exist in theory. W
just need to find them in nature.~In fact, our vacuum is likely
to be a state with a nontrivial quantum order, due to the f
that light exists.58! Knowing the existence of spin liquid
3-3
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XIAO-GANG WEN PHYSICAL REVIEW B 65 165113
in large-N systems, it is not such a big leap to go one s
further to speculate that spin liquids exist for spin-1
systems.

C. Spin-charge separation in„doped… spin liquids

Spin-charge separation and the associated gauge theo
spin liquids ~and in doped spin liquids! are very important
concepts in our attempt to understand the properties of h
Tc superconductors.14–16,39,60However, the exact meaning o
spin-charge separation is different for different research
The term ‘‘spin-charge separation’’ has at least two differ
interpretations. In the first interpretation, the term means
it is better to introduce separate spinons~a neutral spin-1/2
excitation! and holons~a spinless excitation with unit charge!
to understand the dynamical properties of high-Tc supercon-
ductors, instead of using the original electrons. Howev
there may be long-range interactions~possibly, even confin-
ing interactions at long distance! between the spinons an
holons, and the spinons and holons may not be well-defi
quasiparticles. We will call this interpretation pseudo sp
charge separation. The algebraic spin liquids have the pse
spin-charge separation. The essence of the pseudo
charge separation is not that spin and charge separateThe
pseudo spin-charge separation is simply another way to
that the gapless excitations cannot be described by free
mions or bosons. In the second interpretation, the ter
‘‘spin-charge separation’’ means that there are onlyshort-
ranged interactions between the spinons and holons. T
spinons and holons are well-defined quasiparticles at lea
the dilute limit or at low energies. We will call the secon
interpretation the true spin-charge separation. The rigid s
liquids and the Fermi spin liquids have true spin-cha
separation.

The electron operator is not a good starting point to
scribe states with pseudo spin-charge separation or true
charge separation. To study those states, we usually rew
the electron operator as a product of several other opera
Those operators are called parton operators.~The spinon op-
erator and the holon operator are examples of parton op
tors.! We then construct the mean-field state in the enlar
Hilbert space of partons. The gauge structure can be d
mined as the most general transformations between the
tons that leave the electron operator unchanged.61 After iden-
tifying the gauge structure, we can project the mean-fi
state onto the physical~i.e., the gauge invariant! Hilbert
space and obtain a strongly correlated electron state.
procedure in its general form is called projective constr
tion. It is a generalization of the slave-boso
approach.15,16,33,36–38,40The general projective constructio
and the related gauge structure have been discussed in
for quantum Hall states.61 Now we see a third~but technical!
meaning of spin-charge separation: to construct a stron
correlated electron state, we need to use partons and pr
tive construction. The resulting effective theory natura
contains a gauge structure.

Although it is not clear which interpretation of spin
charge separation actually applies to high-Tc superconduct-
ors, the possibility of true spin-charge separation in an e
16511
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tron system is very interesting. The first concrete example
true spin-charge separation in 2D is given by the chiral sp
liquid state,5,6 where the gauge interaction between t
spinons and holons becomes short-ranged due to a Ch
Simons term. The Chern-Simons term breaks time reve
symmetry and gives the spinons and holons a fractional
tistics. Later in 1991, it was realized that there is another w
to make the gauge interaction short ranged through
Anderson-Higgs mechanism.38,43 This led to a mean-field
theory38,40 of the short-ranged resonating valence bo
~RVB! state47,48 conjectured earlier. We will call such a sta
a Z2 spin-liquid state, to stress theunconfined Z2 gauge field
that appears in thelow-energyeffective theory of those spin
liquids. ~See the remarks at the end of this section. We a
note that theZ2 spin liquids studied in Ref. 43 all break th
90° rotation symmetry and are different from the sho
ranged RVB state studied Refs. 38, 40, 47, and 48.! Since the
Z2 gauge fluctuations are weak and are not confining,
spinons and holons have only short-ranged interactions in
Z2 spin-liquid state. TheZ2 spin-liquid state also contains
Z2 vortex-like excitation.38,62The spinons and holons can b
bosons or fermions depending on if they are bound with
Z2 vortex.

Recently, true spin-charge separation, theZ2 gauge struc-
ture, and theZ2 vortex excitations were also proposed in
study of quantum-disordered superconducting states i
continuum model63 and in aZ2 slave-boson approach.64 The
resulting liquid state~which was named a nodal liquid! has
all the novel properties of aZ2 spin-liquid state such as th
Z2 gauge structure and theZ2 vortex excitation~which was
named vison!. From the point of view of the universality
class, the nodal liquid is one kind ofZ2 spin liquids. How-
ever, the particularZ2 spin liquid studied in Refs. 38 and 4
and the nodal liquid are two differentZ2 spin liquids, despite
having the same symmetry. The spinons in the firstZ2 spin
liquid have a finite energy gap while the spinons in the no
liquid are gapless and have a Dirac-like dispersion. In t
paper, we will use the projective construction to obtain mo
general spin liquids. We find that one can construct hundr
of differentZ2 spin liquids. SomeZ2 spin liquids have finite
energy gaps, while others are gapless. Among those gap
Z2 spin liquids, some have finite Fermi surfaces while oth
have only Fermi points. The spinons near the Fermi po
can have linearE(k)}uku or quadraticE(k)}k2 dispersions.
We find that there are more than oneZ2 spin liquid whose
spinons have a massless Dirac-like dispersion. ThoseZ2 spin
liquids have the same symmetry but different quantum
ders. TheirAnsätze are given by Eq.~42!, Eq. ~39!, Eq.
~106!, etc.

Both chiral spin-liquid andZ2 spin-liquid states are Mot
insulators with one electron per unit cell if not doped. Th
internal structures are characterized by a new kind of orde
topological order—if they are gapped or if the gapless sec
decouples. Topological order is not related to any symmet
and has no~local! order parameters. Thus, the topologic
order is robust against all perturbations that can break
symmetries~including random perturbations that break tran
lation symmetry!.9,10 ~This point was also emphasized
Ref. 65 recently.! Even though there are no order paramet
3-4
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QUANTUM ORDERS AND SYMMETRIC SPIN LIQUIDS PHYSICAL REVIEW B65 165113
to characterize them, the topological orders can be chara
ized by other measurable quantum numbers, such as gro
state degeneracy in compact space as proposed in Refs.
10. Recently, Ref. 65 introduced a very clever experimen
test the ground-state degeneracy associated with the
trivial topological orders. In addition to the ground-state d
generacy, there are other practical ways to detect topolog
orders. For example, the excitations on top of a topologic
ordered state can be defects of the underlying topolog
order, which usually leads to unusual statistics for those
citations. Measuring the statistics of those excitations a
allows us to measure topological orders.

The concepts of topological order and quantum order
very important in understanding quantum spin liquids~or
any other strongly correlated quantum liquids!. In this paper
we are going to construct hundreds of different spin liqui
Those spin liquids all have the same symmetry. To und
stand those spin liquids, we need to first learn how to ch
acterize those spin liquids. Those states break no symme
and hence have no order parameters. One would get in
wrong track if trying to find an order parameter to charact
ize the spin liquids. We need to use a completely new w
such as topological orders and quantum orders, to chara
ize those states.

In addition to the aboveZ2 spin liquids, in this paper we
will also study many other spin liquids with different low
energy gauge structures, such as U~1! and SU~2! gauge struc-
tures. We will use the termsZ2 spin liquids, U~1! spin liq-
uids, and SU~2! spin liquids to describe them. We would lik
to stress thatZ2 , U~1!, and SU~2! here are gauge groups th
appear in the low-energy effective theories of those spin
uids. They should not be confused with theZ2 , U~1!, and
SU~2! gauge group in the slave-boson approach or ot
theories of projective construction. The latter are high-ene
gauge groups. The high-energy gauge groups have nothin
do with the low-energy gauge groups. A high-energyZ2
gauge theory~or aZ2 slave-boson approach! can have a low-
energy effective theory that contains SU~2!, U~1!, or Z2
gauge fluctuations. Even thet-J model, which has no gaug
structure at lattice scale, can have a low-energy effec
theory that contains SU~2!, U~1!, or Z2 gauge fluctuations
The spin liquids studied in this paper all contain some k
of low-energy gauge fluctuations. Despite their different lo
energy gauge groups, all those spin liquids can be c
structed from any one of SU~2!, U~1!, or Z2 slave-boson
approaches. After all, all those slave-boson approaches
scribe the samet-J model and are equivalent to each oth
In short, the high-energy gauge group is related to the wa
which we write down the Hamiltonian, while the low-energ
gauge group is a property of the ground state. Thus
should not regardZ2 spin liquids as the spin liquids con
structed usingZ2 slave-boson approach. AZ2 spin liquid can
be constructed from the U~1! or SU~2! slave-boson ap-
proaches as well. A precise mathematical definition of
low-energy gauge group will be given in Sec. IV A.

D. Organization

In this paper we will use the method outlined in Refs.
and 40 to study gauge structures in various spin-liquid sta
16511
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In Sec. II we review SU~2! mean-field theory of spin liquids
In Sec. III, we construct simple symmetric spin liquids usi
translationally invariantAnsätze. In Sec. IV, the projective
symmetry group is introduced to characterize quantum
ders in spin liquids. In Sec. V, we study the transition b
tween different symmetric spin liquids, using the results o
tained in Ref. 66, where we find a way to construct
symmetric spin liquids in the neighborhood of some we
known spin liquids. We also study the spinon spectrum
gain some intuitive understanding of the dynamical prop
ties of the spin liquids. Using the relation between the tw
spinon spectrum and quantum order, we propose, in Sec.
a practical way to use neutron scattering to measure quan
orders. We study the stability of Fermi spin liquids and alg
braic spin liquids in Sec. VIII. We find that both Fermi sp
liquids and algebraic spin liquids can exist as ze
temperature phases. This is particularly striking for algebr
spin liquids since their gapless excitations interacts eve
lowest energies and there are no free fermionic-bosonic q
siparticle excitations at low energies. We show how quant
order can protect gapless excitations. The Appendix cont
an algebraic description of projective symmetry grou
which can be used to classify projective symmetry group66

Section X summarizes the main results of the paper.

II. PROJECTIVE CONSTRUCTION
OF 2D SPIN LIQUIDS: A REVIEW

OF THE SU„2… SLAVE-BOSON APPROACH

In this section, we are going to use projective construct
to construct 2D spin liquids. We are going to review a p
ticular projective construction: namely, the SU~2! slave-
boson approach.15,16,33,36–38,40The gauge structure discov
ered by Baskaran and Anderson16 in the slave-boson
approach plays a crucial role in our understanding
strongly correlated spin liquids.

We will concentrate on the spin-liquid states of a pu
spin-1/2 model on a 2D square lattice:

Hspin5(̂
i j &

Ji j Si•Sj1¯ , ~1!

where the summation is over different links~i.e., ^ij & and^ji &
are regarded as the same! and the ellipsis represents possib
terms which contain three or more spin operators. Th
terms are needed in order for many exotic spin-liquid sta
introduced in this paper to become the ground state. To
tain the mean-field ground state of the spin liquids, we int
duce fermionic parton operatorf ia , a51,2, which carries
spin 1/2 and no charge. The spin operatorSi is represented as

Si5
1

2
f ia

† sab f ib . ~2!

In terms of the fermion operators the Hamiltonian, Eq.~1!,
can be rewritten as

H5(̂
i j &

2
1

2
Ji j S f ia

† f j a f j b
† f ib1

1

2
f ia

† f ia f j b
† f j bD . ~3!
3-5
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Here we have usedsab•sa8b852dab8da8b2dabda8b8 . We
also added proper constant termsS i f ia

† f ia and
S^ i j & f ia

† f ia f j b
† f j b to get the above form. Notice that the Hi

bert space of Eq.~3! is generated by the parton operatorsf a
and is larger than that of Eq.~1!. The equivalence betwee
Eq. ~1! and Eq.~3! is valid only in the subspace where the
is exactly one fermion per site. Therefore to use Eq.~3! to
describe the spin state we need to impose the constrain15,16

f ia
† f ia51, f ia f ibeab50. ~4!

The second constraint is actually a consequence of the
one.

A mean-field ground state at ‘‘zeroth’’ order is obtaine
by making the following approximations. First we repla
the constraint, Eq.~4!, by its ground-state average

^ f ia
† f ia&51, ^ f ia f ibeab&50. ~5!

Such a constraint can be enforced by including asite-
dependent and time-independent Lagrangian multipli
a0

l ( i ), l 51,2,3, in the Hamiltonian. At zeroth order we ig
nore the fluctuations~i.e., the time dependence! of a0

l . If we
included the fluctuations ofa0

l , the constraint, Eq.~5!, would
become the original constraint, Eq.~4!.15,16,36,37Second we
replace the operatorsf ia

† f j b and f ia f ib by their ground-state
expectations value

h i j eab522^ f ia f j b&, h i j 5h j i ,

x i j dab52^ f ia
† f j b&, x i j 5x j i

† , ~6!

again ignoring their fluctuations. In this way we obtain t
zeroth-order mean-field Hamiltonian

Hmean5(̂
i j &

2
3

8
Ji j @(x j i f ia

† f j a1h i j f ia
† f j b

† eab

1H.c.2ux i j u22uh i j u2#1(
i

$a0
3~ f ia

† f ia21!

1@~a0
11 ia0

2! f ia f ibeab1H.c.#%. ~7!

x i j andh i j in Eq. ~7! must satisfy the self-consistency co
dition, Eq.~6!, and the site-dependent fieldsa0

l ( i ) are chosen
such that Eq.~5! is satisfied by the mean-field ground sta
Such x i j , h i j , and a0

l give us a mean-field solution. Th
fluctuations inx i j , h i j , and a0

l ( i ) describe the collective
excitations above the mean-field ground state.

The Hamiltonian, Eq.~7!, and the constraints, Eq.~4!,
have a local SU~2! symmetry.36,37The local SU~2! symmetry
becomes explicit if we introduce the doublet

c5S c1

c2
D5S f ↑

f ↓
†D ~8!

and matrix

Ui j 5S x i j
† h i j

h i j
† 2x i j

D 5U ji
† . ~9!
16511
rst

.

Using Eq.~8! and Eq.~9! we can rewrite Eq.~5! and Eq.~7!
as

^c i
†t lc i&50, ~10!

Hmean5(̂
i j &

3

8
Ji j F1

2
Tr~Ui j

† Ui j !2~c i
†Ui j c j1H.c.!G

1(
i

a0
l c i

†t lc i , ~11!

wheret l , l 51,2,3, are the Pauli matrices. From Eq.~11! we
can see clearly that the Hamiltonian is invariant under a lo
SU~2! transformationW( i ):

c i→W~ i !c i ,

Ui j →W~ i !Ui j W
†~ j !. ~12!

The SU~2! gauge structure originates from Eq.~2!. The
SU~2! is the most general transformation between the p
tons that leave the physical spin operator unchanged. T
once we write down the parton expression of the spin ope
tor, Eq.~2!, the gauge structure of the theory is determined61

@The SU~2! gauge structure discussed here is a high-ene
gauge structure.#

We note that both components ofc carry spin up. Thus
the spin-rotation symmetry is not explicit in our formalis
and it is hard to tell if Eq.~11! describes a spin-rotation
invariant state or not. In fact, for a generalUi j satisfying
Ui j 5U ji

† , Eq. ~11! may not describe a spin-rotation
invariant state. However, ifUi j has a form

Ui j 5 ir i j Wi j ,

r i j 5real number,

Wi j PSU~2!, ~13!

then Eq. ~11! will describe a spin-rotation-invariant state
This is because the aboveUi j can be rewritten in a form of
Eq. ~9!. In this case Eq.~11! can be rewritten as Eq.~7!
where the spin-rotation invariance is explicit.

To obtain the mean-field theory, we have enlarged
Hilbert space. Because of this, the mean-field theory is
even qualitatively correct. LetuCmean

(Ui j )& be the ground state o
the Hamiltonian, Eq.~11!, with energyE(Ui j ,ai

lt l). It is
clear that the mean-field ground state is not even a v
wave function for the spin system since it may not have o
fermion per site. Thus it is very important to include fluctu
tions of a0

l to enforce one-fermion-per-site constraint. Wi
this understanding, we may obtain a valid wave function
the spin systemCspin($a i%) by projecting the mean-field
state to the subspace of one fermion per site:

Cspin~$a i%!5^0u)
i

f ia i
uCmean

~Ui j !&. ~14!
3-6
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Now the local SU~2! transformation, Eq.~12!, can have a

very physical meaning:uCmean
(Ui j )& and uCmean

(W( i )Ui j W
†( j ))

& give
rise to the same spin wave function after projection:

^0u)
i

f ia i
uCmean

~Ui j !&5^0u)
i

f ia i
uCmean

~W~ i !Ui j W
†~ j !!

&. ~15!

ThusUi j andUi j8 5W( i )Ui j W
†( j ) are just two different la-

bels which label thesame physical state. Within the mean-
field theory, a local SU~2! transformation changes a mea

field stateuCmean
(Ui j )& to a different mean-field stateuC

mean
(Ui j8 )

&. If
the two mean-field states always have the same phys
properties, the system has a local SU~2! symmetry. However,
after projection, the physical spin quantum state describe
wave functionCspin($a i%) is invariant under the local SU~2!
transformation. A local SU~2! transformation just transform
one labelUi j of a physical spin state to another labelUi j8
which labels exactly the same physical state. Thus after
jection, local SU~2! transformations become gauge transf
mations. The fact thatUi j and Ui j8 label the same physica
spin state creates an interesting situation when we cons
the fluctuations ofUi j around a mean-field solution—som
fluctuations ofUi j do not change the physical state and a
unphysical. Those fluctuations are called pure gauge fluc
tions.

The above discussion also indicates that in order for
mean-field theory to make any sense, we must at leas
clude the SU~2! gauge ~or other gauge! fluctuations de-
scribed bya0

l andWi j in Eq. ~13!, so that the SU~2! gauge
structure of the mean-field theory is revealed and the ph
cal spin state is obtained. We will include the gauge fluct
tions to the zeroth-order mean-field theory. The new the
will be called the first-order mean-field theory. It is this firs
order mean-field theory that represents a proper low-ene
effective theory of the spin liquid.

Here, we would like to make a remark about ‘‘gauge sy
metry’’ and ‘‘gauge symmetry breaking.’’ We see that tw
Ansätze Ui j andUi j8 5W( i )Ui j W

†( j ) have the same physica
properties. This property is usually called the ‘‘gauge sy
metry.’’ However, from the above discussion, we see that
‘‘gauge symmetry’’ isnot a symmetry. A symmetry is abou
two differentstates having the same properties.Ui j andUi j8
are just two labels that label the same state, and the s
states always have the same properties. We do not us
call the same state having the same properties a symm
Because the same states always have the same propertie
‘‘gauge symmetry’’ can never be broken. It is very mislea
ing to call the Anderson-Higgs mechanism ‘‘gauge symme
breaking.’’ With this understanding, we see that a superc
ductor is fundamentally different from a superfluid. A sup
fluid is characterized by U~1! symmetry breaking, while a
superconductor has no symmetry breaking once we inc
the dynamical electromagnetic gauge fluctuations. A su
conductor is actually the first topologically ordered state
served in experiments,13 which has no symmetry breaking
no long-range order, and no~local! order parameter. How
16511
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ever, when the speed of lightc5`, a superconductor be
comes similar to a superfluid and is characterized by U~1!
symmetry breaking.

The relation between the mean-field state and the phys
spin-wave function, Eq.~14!, allows us to construct transfor
mation of the physical spin wave function from the mea

field Ansätze. For example the mean-field stateuC
mean
(Ui j8 )

& with
Ui j8 5Ui 2 l , j 2 l produces a physical spin wave function whic
is translated by a distancel from the physical spin wave
function produced byuCmean

(Ui j )&. The physical state is transla
tionally symmetric if and only if the translatedAnsatz Ui j8
and the originalAnsatz Ui j are gauge equivalent~it does not
requireUi j8 5Ui j !. We see that the gauge structure can co
plicate our analysis of symmetries, since the physical s
wave functionCspin($a i%) may have more symmetries tha
the mean-field stateuCmean

(Ui j )& before projection.
Let us discuss time reversal symmetry in more detail

quantum system described by

i\] tC~ t !5HC~ t ! ~16!

has a time reversal symmetry ifC(t) satisfying the equation
of motion implies thatC* (2t) also satisfying the equation
of motion. This requires thatH5H* . We see that, for a
time-reversal-symmetric system, ifC is an eigenstate, then
C* will be an eigenstate with the same energy.

For our system, the time reversal symmetry means tha

the mean-field wave functionC
mean
(Ui j ,ai

lt l )
is a mean-field

ground-state wave function forAnsatz (Ui j ,ai
lt l), then

(C
mean
(Ui j ,ai

lt l )
)* will be the mean-field ground-state wave fun

tion for Ansatz„Ui j* ,ai
l(t l)* …. That is,

~C
mean
~Ui j ,ai

lt l !
!* 5C

mean
„Ui j* ,ai

l
~t l !* … . ~17!

For a system with time reversal symmetry, the mean-fi
energyE(Ui j ,ai

lt l) satisfies

E~Ui j ,ai
lt l !5E„Ui j* ,ai

l~t l !* …. ~18!

Thus, if anAnsatz(Ui j ,ai
lt l) is a mean-field solution, then

„Ui j* ,ai
l(t l)* … is also a mean-field solution with the sam

mean-field energy.
From the above discussion, we see that under the t

reversal transformation, theAnsätz transforms as

Ui j →Ui j8 5~2 i t2!Ui j* ~ i t2!52Ui j ,

ai
lt l→ai8

lt l5~2 i t2!~ai
lt l !* ~ i t2!52ai

lt l . ~19!

Note here we have included an additional SU~2! gauge trans-
formation Wi52 i t2. We also note that under the time re
versal transformation, the loop operator transforms asPC

5eiu1 iu lt l→(2 i t2)PC* ( i t2)5e2 iu1 iu lt l
. We see that the

U~1! flux changes the sign while the SU~2! flux is not
changed.

Before ending this review section, we would like to poi
out that the mean-fieldAnsätzeof the spin liquidsUi j can be
divided into two classes: unfrustratedAnsätze where Ui j
3-7
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XIAO-GANG WEN PHYSICAL REVIEW B 65 165113
only link an even lattice site to an odd lattice site and fru
tratedAnsätzewhereUi j are nonzero between two even sit
and/or two odd sites. An unfrustratedAnsatzhas only pure
SU~2! flux through each plaquette, while an frustratedAnsatz
has U~1! flux of multiple of p/2 through some plaquettes i
addition to the SU~2! flux.

III. SPIN LIQUIDS FROM TRANSLATIONALLY
INVARIANT ANSATZ

In this section, we will study many simple examples
spin liquids and theirAnsatz. Through those simple ex
amples, we gain some understanding as to what kind of
liquids are possible. This understanding helps us to deve
the characterization and classification of spin liquids us
projective symmetry groups.

Using the above SU~2! projective construction, one ca
construct many spin-liquid states. To limit ourselves, we w
concentrate on spin liquids with translation and 90° rotat
symmetries. Although a mean-fieldAnsatzwith translation
and rotation invariance always generates a spin liquid w
translation and rotation symmetries, a mean-fieldAnsatz
without those invariances can also generate a spin liquid w
those symmetries.95 Because of this, it is quite difficult to
construct all the translation- and rotation-symmetric spin
uids. In this section we will consider a simpler problem. W
will limit ourselves to spin liquids generated from transl
tionally invariantAnsätze:

Ui 1 l , j 1 l5Ui j , a0
l ~ i !5a0

l . ~20!

In this case, we only need to find the conditions under wh
the aboveAnsätze can give rise to a rotationally symmetr
spin liquid. First let us introduceui j :

3

8
Ji j Ui j 5ui j . ~21!

For translationally invariantAnsätze, we can introduce a
shorthand notation

ui j 5u2 i 1 j
m tm[u2 i 1 j , ~22!

whereul
1,2,3 are real,ul

0 is imaginary,t0 is the identity ma-
trix, and t1,2,3 are the Pauli matrices. The fermion spectru
is determined by the Hamiltonian

H52(̂
i j &

~c i
†uj 2 ic j1H.c.!1(

i
c i

†a0
l t lc i . ~23!

In k space we have

H52(
k

ck
†@um~k!2a0

m#tnck , ~24!

wherem50,1,2,3,

um~k!5(
l

ul
meil •k, ~25!

a0
050, andN is the total number of sites. The fermion spe

trum has two branches and is given by
16511
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E6~k!5u0~k!6E0~k!,

E0~k!5A(
l

@ul~k!2a0
l #2. ~26!

The constraints can be obtained from]Eground/]a0
l 50 and

have the form

N^c i
†t lc i&5 (

k,E2~k!,0

ul~k!2a0
l

E0~k!
2 (

k,E1~k!,0

ul~k!2a0
l

E0~k!
50,

~27!

which allows us to determinea0
l , l 51,2,3. It is interesting to

see that ifui
050 and theAnsatzis unfrustrated, then we ca

simply choosea0
l 50 to satisfy the mean-field constrain

„since um(k)52um@k1(p,p)# for unfrustratedAnsatze….
SuchAnsätze always have time reversal symmetry. This
becauseUi j and2Ui j are gauge equivalent for unfrustrate
Ansätze.

Now let us study some simple examples. First let us
sume that only the nearest-neighbor couplingsux̂ anduŷ are
nonzero. In order for theAnsatzto describe a rotationally
symmetric state, the rotatedAnsatzmust be gauge equivalen
to the originalAnsatz. One can easily check that the follow
ing Ansatzhas rotation symmetry:

a0
l 50,

ux̂5xt31ht1,

uŷ5xt32ht1, ~28!

since the 90° rotation followed by a gauge transformat
Wi5 i t3 leaves theAnsatzunchanged. The aboveAnsatzalso
has time reversal symmetry, since the time reversal trans
mation ui j →2ui j followed by a gauge transformationWi
5 i t2 leaves theAnsatzunchanged.

To understand the gauge fluctuations around the ab
mean-field state, we note that the mean-fieldAnsatzmay
generate nontrivial SU~2! flux through plaquettes. That flux
may break the SU~2! gauge structure down to U~1! or Z2
gauge structures as discussed in Refs. 38 and 40. In par
lar, the dynamics of the gauge fluctuations in the breakdo
from SU~2! to Z2 has been discussed in detail in Ref. 4
According to Refs. 38 and 40, the SU~2! flux plays the role
of Higgs fields. A nontrivial SU~2! flux corresponds to a
condensation of Higgs fields which can break the gau
structure and give the SU~2! and/or U~1! gauge boson a
mass. Thus to understand the dynamics of the gauge fluc
tions, we need to find the SU~2! flux.

The SU~2! flux is defined for loops with a base point. Th
loop starts and ends at the base point. For example, we
consider the following two loopsC1,2 with the same base
point i: C15 i→ i 1 x̂→ i 1 x̂1 ŷ→ i 1 ŷ→ i andC2 is the 90°
rotation of C1 : C25 i→ i 1 ŷ→ i 2 x̂1 ŷ→ i 2 x̂→ i . The
SU~2! flux for the two loops is defined as
3-8
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PC1
[ui ,i 1 ŷui 1 ŷ,i 1 x̂1 ŷui 1 x̂1 ŷ,i 1 x̂ui 1 x̂,i5uŷ

†ux̂
†uŷux̂ ,

PC2
[ui ,i 2 x̂ui 2 x̂,i 2 x̂1 ŷui 2 x̂1 ŷ,i 1 ŷui 1 ŷ,i5ux̂uŷ

†ux̂uŷ .
~29!

As discussed in Refs. 38 and 40, if the SU~2! flux PC for
all loops is trivialPC}t0, then the SU~2! gauge structure is
unbroken. This is the case whenx5h or whenh50 in the
aboveAnsatz, Eq. ~28!. The spinon in the spin liquid de
scribed byh50 has a large Fermi surface. We will call th
state the SU~2!-gapless state.~This state is called the uniform
RVB state in the literature.! The state withx5h has gap-
less spinons only at isolatedk points. We will call such a
state a SU~2!-linear state to stress the linear dispersionE
}uku near the Fermi points.~Such a state was called th
p-flux state in the literature.! The low-energy effective
theory for the SU~2!-linear state is described by massle
Dirac fermions~the spinons! coupled to a SU~2! gauge field.

After proper gauge transformations, the SU~2!-gapless
Ansatzcan be rewritten as

ux̂5 ix,

uŷ5 ix ~30!

and the SU~2!-linear Ansatzas

ui ,i 1 x̂5 ix,

ui ,i 1 ŷ5 i ~2 ! i xx. ~31!

In these forms, the SU~2! gauge structure is explicit sinc
ui j } i t0. Here we would also like to mention that under t
projective-symmetry-group classification, the SU~2!-gapless
AnsatzEq. ~30!, is labeled by SU2An0 and the SU~2!-linear
AnsätzeEq. ~31!, by SU2Bn0 @see Eq.~100!#.

When xÞhÞ0, the flux PC is nontrivial. However,PC
commutes withPC8 as long as the two loopsC andC8 have
the same base point. In this case the SU~2! gauge structure is
broken down to a U~1! gauge structure.38,40 The gapless
spinon still only appears at isolatedk points. We will call
such a state a U~1!-linear state.~This state was called th
staggered flux state and/ord-wave pairing state in the litera
ture.! After a proper gauge transformation, the U~1!-linear
state can also be described by theAnsatz

ui ,i 1 x̂5 ix2~2 ! iht3,

ui ,i 1 ŷ5 ix1~2 ! iht3, ~32!

where the U~1! gauge structure is explicit. Under th
projective-symmetry-group classification, such a state is
beled by U1Cn01n ~see Sec. IV C!. The low-energy effec-
tive theory is described by massless Dirac fermions~the
spinons! coupled to a U~1! gauge field.

The above results are all known. In the following we a
going to study a new class of translation and rotation sy
metric Ansatz, which has the form
16511
-

-

a0
l 50,

ux̂5 iht02x~t32t l !,

uŷ5 iht02x~t31t1!, ~33!

with x and h nonzero. The aboveAnsatz describes the
SU~2!-gapless spin liquid ifx50, and the SU~2!-linear spin
liquid if h50.

After a 90° rotationR90, the aboveAnsatzbecomes

ux̂52 iht02x~t31t1!,

uŷ5 iht02x~t32t1!. ~34!

The rotatedAnsatzis gauge equivalent to the originalAnsatz
under the gauge transformationGR90

( i )5(2) i x(1

2 i t2)/&. After a parity x→2x transformationPx , Eq.
~33! becomes

ux̂52 iht02x~t32t1!,

uŷ5 iht02x~t31t1!, ~35!

which is gauge equivalent to the originalAnsatzunder the
gauge transformationGPx

( i )5(2) i xi (t31t1)/&. Under
time reversal transformationT, Eq. ~33! is changed to

ux̂52 iht01x~t32t1!,

uŷ52 iht01x~t31t1!, ~36!

which is again gauge equivalent to the originalAnsatzunder
the gauge transformationGT( i )5(2) i . @In fact anyAnsatz
which only has links between two nonoverlapping sublattic
~i.e., the unfrustratedAnsatz! is time reversal symmetric if
a0

l 50.# To summarize, theAnsatz, Eq. ~33!, is invariant un-
der the rotationR90, parity Px , and time reversal transfor
mationT, followed by the following gauge transformations:

GR90
~ i !5~2 ! i x~12 i t2!/&,

GPx
~ i !5~2 ! i xi ~t31t1!/&,

GT~ i !5~2 ! i . ~37!

Thus theAnsatz, Eq. ~33!, describes a spin liquid with trans
lation, rotation, parity, and time reversal symmetries.

Using time reversal symmetry we can show that the v
ishing a0

l in our Ansatz, Eq. ~33!, indeed satisfy the con
straint, Eq.~27!. This is becausea0

l →2a0
l under the time

reversal transformation. Thus]Emean/]a0
l 50 when a0

l 50
for any time-reversal-symmetricAnsatz, including theAn-
satz, Eq. ~33!.

The spinon spectrum is given by@see Fig. 5~a!#

E652h@sin~kx!1sin~ky!#62uxuA2 cos2~kx!12 cos2~ky!.

~38!
The spinons have two Fermi points and two small Fer
pockets~for small h!. The SU~2! flux is nontrivial. Further-
more,PC1

and PC2
do not commute. Thus the SU~2! gauge
3-9
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structure is broken down to aZ2 gauge structure by the
SU~2! flux PC1

and PC2
.38,40 We will call the spin liquid

described by Eq.~33! a Z2-gapless spin liquid. The low
energy effective theory is described by massless Dirac fe
ons and fermions with small Fermi surfaces, coupled to aZ2
gauge field. Since theZ2 gauge interaction is irrelevant a
low energies, the spinons arefree fermions at low energies
and we have a true spin-charge separation in theZ2-gapless
spin liquid. TheZ2-gapless spin liquid is one of theZ2 spin
liquids classified in Ref. 66. Its projective symmetry group

labeled by Z2At2
13t1

13̄t3t2
0 or equivalently by Z2Ax2(12)n

@see Sec. IV B and Eq.~85!#.
Now let us include longer links. First we still limit our

selves to unfrustratedAnsätze. An interestingAnsatzis given
by

a0
l 50,

ux̂5xt31ht1,

uŷ5xt32ht1,

u2x̂1 ŷ5lt2,

u2 x̂12ŷ52lt2,

u2x̂2 ŷ5lt2,

ux̂12ŷ52lt2. ~39!

By definition, theAnsatzis invariant under translation an
parity x→2x. After a 90° rotation, theAnsatzis changed to

ux̂52xt32ht1,

uŷ52xt31ht1,

u2x̂1 ŷ52lt2,

u2 x̂12ŷ51lt2,

u2x̂2 ŷ52lt2,

ux̂12ŷ51lt2, ~40!

which is gauge equivalent to Eq.~39! under the gauge trans
formation GR90

( i )5 i t3 . Thus theAnsätze describe a spin
liquid with translation, rotation, parity, and the time revers
symmetries. The spinon spectrum is given by@see Fig. 1~c!#

E656Ae1~k!21e2~k!21e3~k!2,

e1522x@cos~kx!1cos~ky!#,

e2522h@cos~kx!2cos~ky!#,

e3522l@cos~2kx1ky!1cos~2kx2ky!

2cos~kx22ky!2cos~kx12ky!#. ~41!
16511
i-

l

Thus the spinons are gapless only at fourk points
~6p/2, 6p/2!. We also find thatPC3

and PC4
do not com-

mute, where the loopsC35 i→ i 1 x̂→ i 12x̂→ i 12x̂1 ŷ→ i
and C45 i→ i 1 ŷ→ i 12ŷ→ i 12ŷ2 x̂→ i . Thus the SU~2!
fluxesPC3

andPC4
break the SU~2! gauge structure down to

a Z2 gauge structure. The spin liquid described by Eq.~39!
will be called theZ2-linear spin liquid. The low-energy ef
fective theory is described by massless Dirac fermio
coupled to aZ2 gauge field. Again theZ2 coupling is irrel-
evant and the spinons are free fermions at low energies.
have a true spin-charge separation. According to the clas
cation scheme summarized in Sec. IV B, the aboveZ2-linear
spin liquid is labeled by Z2A003n.

Next let us discuss frustratedAnsätze. A simple Z2 spin
liquid can be obtained from the following frustratedAnsätze:

a0
3Þ, a0

1,250,

ux̂5xt31ht1,

uŷ5xt32ht1,

ux̂1 ŷ5gt3,

u2 x̂1 ŷ5gt3. ~42!

The Ansatzhas translation, rotation, parity, and the time r
versal symmetries. Whena0

3Þ0, xÞ6h, andxhÞ0, a0
l t l

does not commute with the loop operators. Thus theAnsatz
breaks the SU~2! gauge structure to aZ2 gauge structure. The
spinon spectrum is given by@see Fig. 1~a!#

E656Ae2~k!1D2~k!,

e~k!52x@cos~kx!1cos~ky!#

1a0
32g@cos~kx1ky!1cos~kx2ky!#,

D~k‘ !52h @cos~kx!2cos~ky!#1a0
3, ~43!

which is gapless only at fourk points with a linear disper-
sion. Thus the spin liquid described by Eq.~42! is aZ2-linear
spin liquid, which has a true spin-charge separation. T
Z2-linear spin liquid is described by the projective symme
group Z2A0032 or equivalently Z2A0013~see Sec. IV B!.
From the above two examples ofZ2-linear spin liquids, we
find that it is possible to obtain true spin-charge separa
with massless Dirac points~or nodes! within a pure spin
model without charge fluctuations. We also find that there
more than one way to do it.

A well-known frustratedAnsatzis theAnsatzfor the chi-
ral spin liquid:6

ux̂52xt32xt1,

uŷ52xt31xt1,

ux̂1 ŷ5ht2,

u2 x̂1 ŷ52ht2,

a0
l 50. ~44!
3-10
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The chiral spin liquid breaks the time reversal and pa
symmetries. The SU~2! gauge structure is unbroken.38 The
low-energy effective theory is an SU~2! Chern-Simons
theory~of level 1!. The spinons are gapped and have a se
onic statistics.5,6 The third interesting frustratedAnsatz is
given in Refs. 38 and 40:

ux̂5uŷ52xt3,

ux̂1 ŷ5ht11lt2,

u2 x̂1 ŷ5ht12lt2,

a0
2,350, a0

1Þ0. ~45!

This Ansatzhas translation, rotation, parity, and time rever
symmetries. The spinons are fully gapped and the SU~2!
gauge structure is broken down to aZ2 gauge structure. We
may call such a state aZ2-gapped spin liquid~it was called
the RVB state in Refs. 38 and 40!. It is described by the
projective symmetry group Z2Axx0z. Both the chiral spin
liquid and theZ2-gapped spin liquid have true spin-char
separation.

IV. QUANTUM ORDERS IN SYMMETRIC SPIN LIQUIDS

A. Quantum orders and projective symmetry groups

We have seen that there can be many different spin liqu
with thesamesymmetries. The stability analysis in Sec. VI
shows that many of those spin liquids occupy a finite reg
in phase space and represent stable quantum phases. S
we are facing a similar situation as in the quantum Hall
fect: there are many distinct quantum phases not separ
by symmetries and order parameters. The quantum Hall
uids have finite energy gaps and are rigid states. The con
of topological order was introduced to describe the inter
order of those rigid states. Here we can also use the to
logical order to describe the internal orders of rigid spin l
uids. However, we also have many other stable quantum
liquids that have gapless excitations.

To describe internal orders in gapless quantum spin
uids ~as well as gapped spin liquids!, we have introduced a
new concept—quantum order—which describes the inte
orders in any quantum phases. The key point in introduc
quantum orders is that quantum phases, in general, cann
completely characterized by broken symmetries and loca
der parameters. This point is illustrated by the quantum H
states and by the stable spin liquids constructed in this pa
However, to make the concept of quantum order useful,
need to find concrete mathematical characterizations of
quantum orders. Since quantum orders are not describe
symmetries and order parameters, we need to find a c
pletely new way to characterize them. Here we would like
propose to use the projective symmetry group to characte
quantum~or topological! orders in quantum spin liquids. Th
projective symmetry group is motivated from the followin
observation. AlthoughAnsätze for different symmetric spin
liquids all have the same symmetry, theAnsätzeare invariant
under symmetry transformations followed bydifferentgauge
transformations. We can use those different gauge trans
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mations to distinguish different spin liquids with the sam
symmetry. In the following, we will introduce the projectiv
symmetry group in a general and formal setting.

We know that to find quantum numbers that characteriz
phase is to find the universal properties of the phase.
classical systems, we know that symmetry is a univer
property of a phase and we can use symmetry to characte
different classical phases. To find universal properties
quantum phases we need to find universal properties
many-body wave functions. This is too hard. Here we w
to simplify the problem by limiting ourselves to a subclass
many-body wave functions which can be described byAn-
satz(ui j ,a0

l t l) via Eq. ~14!. Instead of looking for the uni-
versal properties of many-body wave functions, we try
find the universal properties ofAnsatz(ui j ,a0

l t l). Certainly,
one may object that the universal properties of theAnsatz~or
the subclass of wave functions! may not be the universa
properties of the spin quantum phase. This is indeed the
for someAnsätze. However, if the mean-field state describe
by Ansatz(ui j ,a0

l t l) is stable against fluctuations~i.e., the
fluctuations around the mean-field state do not cause
infrared divergence!, then the mean-field state faithfully de
scribes a spin quantum state and the universal propertie
the Ansatzwill be the universal properties of the correspo
spin quantum phase. This completes the link between
properties ofAnsätzeand properties of physical spin liquids
Motivated by Landau’s theory for classical orders, here
whould like to propose that the invariance group~or the
‘‘symmetry’’ group! of an Ansatzis a universal property of
the Ansatz. Such a group will be called the projective sym
metry group~PSG!. We will show that the PSG can be use
to characterize quantum orders in quantum spin liquids.

Let us give a detailed definition of the PSG. A PSG is
property of anAnstaz. It is formed by all the transformation
that keep theAnsatzunchanged. Each transformation~or
each element in the PSG! can be written as a combination o
a symmetry transformationU ~such as translation! and a
gauge transformationGU . The invariance of theAnsatzun-
der its PSG can be expressed as

GUU~ui j !5ui j ,

U~ui j ![uU~ i !,U~ j ! ,

GU~ui j ![GU~ i !ui j GU
† ~ j !,

GU~ i !PSU~2!, ~46!

for eachGUUPPSG.
Every PSG contains a special subgroup, which will

called invariant gauge group~IGG!. The IGG~denoted byG!
for anAnsatzis formed by all the gauge transformations th
leave theAnsatzunchanged:

G5$Wi uWiui j Wj
†5ui j ,WiPSU~2!%. ~47!

If we want to relate the IGG to a symmetry transformatio
then the associated transformation is simply an iden
transformation.
3-11
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If the IGG is nontrivial, then for a fixed symmetry tran
formation U there can be many gauge transformationsGU
that leave theAnsatzunchanged. IfGUU is in the PSG of
ui j , GGUU will also be in the PSG iffGPG. Thus, for each
symmetry transformationU, the different choices ofGU have
a one-to-one correspondence with the elements in the I
From the above definition, we see that the PSG, the IGG,
the symmetry group~SG! of an Ansatzare related:

SG5PSG/IGG. ~48!

This relation tells us that a PSG is a projective representa
or an extension of the symmetry group.96 ~In the Appendix
we will introduce a closely related but different definition
the PSG. To distinguish the two definitions, we will call th
PSG defined above the invariant PSG and the PSG define
the Appendix the algebraic PSG.!

Certainly the PSG’s for two gauge-equivalentAnsätze ui j
and W( i )ui j W

†( j ) are related. FromWGUU(ui j )5W(ui j ),
whereW(ui j )[W( i )ui j W

†( j ), we find WGUUW21W(ui j )
5WGUWU

21UW(ui j )5W(ui j ), where WU[UWU21 is
given by WU( i )5W„U( i )…. Thus if GUU is in the PSG of
Ansatz ui j , then (WGUWU)U is in the PSG of gauge
transformedAnsatz W( i )ui j W

†( j ). We see that the gaug
transformationGU associated with the symmetry transform
tion U is changed in the following way:

GU~ i !→W~ i !GU~ i !W†
„U~ i !… ~49!

after a gauge transformationW( i ).
Since the PSG is a property of anAnsatz, we can group all

the Ansätzesharing the same PSG together to form a cla
We claim that such a class is formed by one or several
versality classes that correspond to quantum phases.~A more
detailed discussion of this important point is given in S
VIII E. ! It is in this sense that we say that quantum orders
characterized by PSG’s.

We know that a classical order can be described by
symmetry properties. Mathematically, we say that a class
order is characterized by its symmetry group. Using the p
jective symmetry group to describe a quantum order, conc
tually, is similar to using the symmetry group to describe
classical order. The symmetry description of a classical or
is very useful since it allows us to obtain many univer
properties, such as the number of Nambu-Goldstone mo
without knowing the details of the system. Similarly, know
ing the PSG of a quantum order also allows us to obtain
low-energy properties of a quantum system without know
its details. As an example, we will discuss a particular k
of low-energy fluctuations—the gauge fluctuations—in
quantum state. We will show that the low-energy gauge fl
tuations can be determined completely from the PSG. In
the gauge group of the low-energy gauge fluctuations
nothing but the IGG of theAnsatz.

To see this, let us assume that, as an example, an IGG
contains a U~1! subgroup which is formed by the followin
constant gauge transformations:

$Wi5eiut3
uuP@0,2p!%,G. ~50!
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Now we consider the following type of fluctuations aroun

the mean-field solutionūi j : ui j 5ūi j e
iai j

3 t3
. Since ūi j is in-

variant under the constant gauge transformationeiut3
, a

spatial-dependent gauge transformationeiu it
3

will transform
the fluctuationai j

3 to ãi j
3 5ai j

3 1u i2u j . This means thatai j
3

and ãi j
3 label the same physical state andai j

3 correspond to
gauge fluctuations. The energy of the fluctuations ha
gauge invarianceE($ai j

3 %)5E($ãi j
3 %). We see that the mas

term of the gauge field, (ai j
3 )2, is not allowed and the U~1!

gauge fluctuations described byai j
3 will appear at low ener-

gies.
If the U~1! subgroup ofG is formed by spatial-dependen

gauge transformations

$Wi5eiuni•tuuP@0,2p!,uni u51%,G, ~51!

we can always use an SU~2! gauge transformation to rotat
ni to the ẑ direction on every site and reduce the problem
the one discussed above. Thus, regardless if the gauge t
formations in the IGG have spatial dependence or not,
gauge group for low-energy gauge fluctuations is alwa
given byG.

We would like to remark that sometimes low-ener
gauge fluctuations not only appear neark50, but also appear
near some otherk points. In this case, we will have sever
low-energy gauge fields, one for eachk point. Examples of
this phenomenon are given by someAnsätzeof SU~2! slave-
boson theory discussed in Sec. VI, which have an SU
3SU(2) gauge structures at low energies. We see that
low-energy gauge structure SU(2)3SU(2) can even be
larger than the high-energy gauge structure SU~2!. Even for
this complicated case where low-energy gauge fluctuati
appear around differentk points, the IGG still correctly de-
scribes the low-energy gauge structure of the correspon
Ansatz. If the IGG contains gauge transformations that a
independent of spatial coordinates, then such transformat
correspond to the gauge group for gapless gauge fluctua
near k50. If the IGG contains gauge transformations th
depend on spatial coordinates, then those transformat
correspond to the gauge group for gapless gauge fluctua
near nonzerok. Thus the IGG gives us a unified treatment
all low-energy gauge fluctuations, regardless of their m
menta.

In this paper, we have used the termsZ2 spin liquids, U~1!
spin liquids, SU~2! spin liquids, and SU(2)3SU(2) spin
liquids in many places. Now we can have a precise definit
of those low-energyZ2 , U~1!, SU~2!, and SU(2)3SU(2)
gauge groups. Those low-energy gauge groups are not
but the IGG of the correspondingAnsätze. They have noth-
ing to do with the high-energy gauge groups that appea
the SU~2!, U~1!, or Z2 slave-boson approaches. We also us
the termsZ2 gauge structure, U~1! gauge structure, and
SU~2! gauge structure of a mean-field state. Their prec
mathematical meaning is again the IGG of the correspond
Anastz. When we say a U~1! gauge structure is broken dow
to a Z2 gauge structure, we mean that anAnsatzis changed
in such a way that its IGG is changed from the U~1! to theZ2
group.
3-12



um
’s
th
o

r-

-
ne

a

nt
e

w

the

of
ry

very
of
d

We
w-
an
of

he

o-
ng

ut

y

y

QUANTUM ORDERS AND SYMMETRIC SPIN LIQUIDS PHYSICAL REVIEW B65 165113
B. Classification of symmetricZ2 spin liquids

As an application of the PSG characterization of quant
orders in spin liquids, we would like to classify the PSG
associated with translation transformations assuming
IGG G5Z2 . Such a classification leads to a classification
translation-symmetricZ2 spin liquids.

When G5Z2 , it contains two elements—gauge transfo
mationsG1 andG2 :

G5$G1 ,G2%,

G1~ i !5t0, G2~ i !52t0. ~52!

Let us assume that aZ2 spin liquid has a translation symme
try. The PSG associated with the translation group is ge
ated by four elements6GxTx ,6GyTx where

Tx~ui j !5ui 2 x̂, j 2 x̂ , Ty~ui j !5ui 2 ŷ, j 2 ŷ . ~53!

Due to the translation symmetry of theAnsatz, we can
choose a gauge in which all the loop operators of theAnsatz
are translation invariant. That is,PC1

5PC2
if the two loops

C1 and C2 are related by a translation. We will call such
gauge a uniform gauge.

Under transformationGxTx , a loop operatorPC based at
i transforms asPC→Gx( i 8)PTxCGx

†( i 8)5Gx( i 8)PCGx
†( i 8)

wherei 85Txi is the base point of the translated loopTx(C).
We see that translation invariance ofPC in the uniform
gauge requires

Gx~ i !56t0, Gy~ i !56t0, ~54!

since different loop operators based at the same base poi
not commute forZ2 spin liquids. We note that the gaug
transformations of the formW( i )56t0 do not change the
translation-invariant property of the loop operators. Thus
can use such gauge transformations to further simplifyGx,y
through Eq.~49!. First we can choose a gauge to make

Gy~ i !5t0. ~55!

We note that a gauge transformation satisfyingW( i )
5W( i x) does not change the conditionGy( i )5t0. We can
use such a kind of gauge transformations to make

Gx~ i x ,i y50!5t0. ~56!

Since the translations in thex andy directions commute,
Gx,y must satisfy~for any Ansatz, Z2 or not Z2!

GxTxGyTy~GxTx!
21~GyTy!21

5GxTxGyTyTx
21Gx

21Ty
21Gy

21PG. ~57!

That means

Gx~ i !Gy~ i 2 x̂!Gx
21~ i 2 ŷ!Gy~ i !21PG. ~58!

For Z2 spin liquids, Eq.~58! reduces to

Gx~ i !Gx
21~ i 2 ŷ!51t0 ~59!

or
16511
e
f

r-

do

e

Gx~ i !Gx
21~ i 2 ŷ!52t0. ~60!

When combined with Eq.~55! and Eq.~56!, we find that
there are only two gauge-inequivalent extensions of
translation group when IGG isG5Z2 . The two PSG’s are
given by

Gx~ i !5t0, Gy~ i !5t0 ~61!

and

Gx~ i !5~2 ! i yt0, Gy~ i !5t0. ~62!

Thus, under PSG classification, there are only two types
Z2 spin liquids if they have only the translation symmet
and no other symmetries. TheAnsätze that satisfy Eq.~61!
have a form

ui ,i 1m5um ~63!

and the ones that satisfy Eq.~62! have a form

ui ,i 1m5~2 !myi xum . ~64!

Through the above example, we see that the PSG is a
powerful tool. It can lead to a complete classification
~mean-field! spin liquids with prescribed symmetries an
low-energy gauge structures.

In the above, we have studiedZ2 spin liquids which have
only the translation symmetry and no other symmetries.
find that there are only two types of such spin liquids. Ho
ever, if spin liquids have more symmetries, then they c
have much more types. In Ref. 66, we give a classification
symmetricZ2 spin liquids using the PSG. Here we use t
term ‘‘symmetric spin liquid’’ to refer to a spin liquid with
translation symmetryTx,y , time reversal symmetryT: ui j
→2ui j , and three parity symmetriesPx : ( i x ,i y)
→(2 i x ,i y), Py : ( i x ,i y)→( i x ,2 i y), and Pxy : ( i x ,i y)
→( i y ,i x). The three parity symmetries also imply a 90° r
tation symmetry. The classification is obtained by notici
that the gauge transformationsGxy , GPx,Py,Pxy

, andGT must
satisfy certain algebraic relations~see the Appendix A!.
Solving those algebraic relations and factoring o
gauge-equivalent solutions,66 we find that there are 272
different extensions of the symmetry group$Tx,y ,Px,y,xy ,T%
if IGG G5Z2 . Those PSG’s are generated b
(GxTx ,GyTy ,GTT,GPx

Px ,GPy
Py ,GPxy

Pxy). The PSG’s
can be divided into two classes. The first class is given b

Gx~ i !5t0, Gy~ i !5t0,

GPx
~ i !5hxpx

i x hxpy
i y gPx

, GPy
~ i !5hxpy

i x hxpx
i y gPy

,

GPxy
~ i !5gPxy

, GT~ i !5h t
igT ~65!

and the second class by

Gx~ i !5~2 ! i yt0, Gy~ i !5t0,

GPx
~ i !5hxpx

i x hxpy
i y gPx

, GPy
~ i !5hxpy

i x hxpx
i y gPy

,

GPxy
~ i !5~2 ! i xi ygPxy

, GT~ i !5h t
igT . ~66!
3-13
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Here the threeh’s can independently take two values61. g’s
have 17 different choices which are given by~see Ref. 66!

gPxy5t0, gPx
5t0, gPy

5t0, gT5t0; ~67!

gPxy5t0, gPx
5 i t3, gPy

5 i t3, gT5t0; ~68!

gPxy5 i t3, gPx
5t0, gPy

5t0, gT5t0; ~69!

gPxy5 i t3, gPx
5 i t3, gPy

5t3, gT5t0; ~70!

gPxy5 i t3, gPx
5 i t1, gPy

5 i t1, gT5t0; ~71!

gPxy5t0, gPx
5t0, gPy

5t0, gT5 i t3; ~72!

gPxy5t0, gPx
5 i t3, gPy

5 i t3, gT5 i t3; ~73!

gPxy5t0, gPx
5 i t1, gPy

5 i t1, gT5 i t3; ~74!

gPxy5 i t3, gPx
5t0, gPy

5t0, gT5 i t3; ~75!

gPxy5 i t3, gPx
5 i t3, gPy

5 i t3, gT5 i t3; ~76!

gPxy5 i t3, gPx
5 i t1, gPy

5 i t1, gT5 i t3; ~77!

gPxy5 i t1, gPx
5t0, gPy

5t0, gT5 i t3; ~78!

gPxy5 i t1, gPx
5 i t3, gPy

5 i t3, gT5 i t3; ~79!

gPxy5 i t1, gPx
5 i t1, gPy

5 i t1, gT5 i t3; ~80!

gPxy5 i t1, gPx
5 i t2, gPy

5 i t2, gT5 i t3; ~81!

gPxy5 i t12, gPx
5 i t1, gPy

5 i t2, gT5 i t0; ~82!

gPxy5 i t12, gPx
5 i t1, gPy

5 i t2, gT5 i t3; ~83!

where

tab5
ta1tb

&
, tab̄5

ta2tb

&
. ~84!

Thus there are 23173235272 different PSG’s. They can
potentially lead to 272 different types of symmetricZ2 spin
liquids on a 2D square lattice.

To label the 272 PSG’s, we propose the followin
scheme:

Z2A~gpx!hxpx
~gpy!hxpy

gpzy~gt!h t
, ~85!

Z2B~gpx!hxpx
~gpy!hxpy

gpxy~gt!h t
. ~86!

The label Z2A... corresponds to the case of Eq.~65!, and the
label Z2B... corresponds to the case of Eq.~66!. A typical
label will look like Z2At1

1 t2
2 t12t2

3 . We will also use an
abbreviated notation. An abbreviated notation is obtained
replacing (t0,t1,t2,t3) or (t1

0 ,t1
1 ,t1

2 ,t1
3 ) by ~0,1,2,3! and
16511
y

(t2
0 ,t2

1 ,t2
2 ,t2

3 ) by ~n,x,y,z!. For example, Z2At1
1 t2

0 t12t2
3

can be abbreviated as Z2A1n(12)z.
Those 272 differentZ2 PSG’s, strictly speaking, are th

so-called algebraic PSG’s. The algebraic PSG’s are defi
as extensions of the symmetry group. They can be calcul
through the algebraic relations listed in the Appendix. T
algebraic PSG’s are different from the invariant PSG’s wh
are defined as a collection of all transformations that leave
Ansatz ui j invariant. Although an invariant PSG must be a
algebraic PSG, an algebraic PSG may not be an invar
PSG. This is because certain algebraic PSG’s have the
lowing properties: anyAnsatz ui j that is invariant under an
algebraic PSG may actually be invariant under a larger P
In this case the original algebraic PSG cannot be an invar
PSG of theAnsatz. The invariant PSG of theAnsatzis really
given by the larger PSG. If we limit ourselves to the sp
liquids constructed through theAnsatz ui j , then we should
drop the algebraic PSG’s that are not invariant PSG’s. Thi
because those algebraic PSG’s do not characterize mean
spin liquids.

We find that among the 272 algebraicZ2 PSG’s, at least
76 of them are not invariant PSG’s. Thus the 272 algebr
Z2 PSG’s can at most lead to 196 possibleZ2 spin liquids.
Since some of the mean-field spin liquid states may not s
vive the quantum fluctuations, the number of physicalZ2
spin liquids is even smaller. However, for the physical sp
liquids that can be obtained through the mean-field states
PSG’s do offer a characterization of the quantum orders
those spin liquids.

C. Classification of symmetric U„1… and SU„2… spin liquids

In addition to the Z2-symmetric spin liquids studied
above, there can be symmetric spin liquids whose lo
energy gauge structure is U~1! or SU~2!. Such U~1!- and
SU~2!-symmetric spin liquids~at the mean-field level! are
classified by U~1!- and SU~2!-symmetric PSG’s. The U~1!-
and SU~2!-symmetric PSG’s are calculated in Ref. 66. In t
following we just summarize the results.

We find that the PSG’s that characterize mean-field sy
metric U~1! spin liquids can be divided into four types: U1A
U1B, U1C, and U1n

m . There are 24 type-U1A PSG’s:

Gx5g3~ux!, Gy5g3~uy!,

GPx
5hypx

i y g3~upx!, GPy
5hypx

i x g3~upy!,

GPxy
5g3~upxy!, g3~upxy!i t

1,

GT5h t
ig3~u t!uh t521 , h t

ig3~u t!i t
1 ~87!

and

Gx5g3~ux!, Gy5g3~uy!,

GPx
5hxpx

i x g3~upx!i t
1, GPy

5hxpx
i y g3~upy!i t

1,

GPxy
5g3~upxy!,g3~upxy!i t

1,

GT5h t
ig3~u t!uh t51 , h t

ig3~u t!i t
1, ~88!
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where

ga~u![eiuta
. ~89!

We will use U1Aahxpx
bhypx

cdh t
to label the 24 PSG’s.a, b,

c, and d are associated withGPx
, GPy

, GPxy
, and GT , re-

spectively. They are equal tot1 if the correspondingG con-
tains at1 and equal tot0 otherwise. A typical notation looks
like U1At2

1 t1t0t2
1 which can be abbreviated as U1Ax10x.

There are also 24 type-U1B PSG’s:

Gx5~2 ! i yg3~ux!, Gy5g3~uy!,

GPx
5hypx

i y g3~upx!, GPy
5hypx

i x g3~upy!,

~2 ! i xi yGPxy
5g3~upxy!, g3~upxy!i t

1,

GT5h t
ig3~u t!uh t521 , h t

ig3~u t!i t
1 ~90!

and

Gx5~2 ! i yg3~ux!, Gy5g3~uy!,

GPx
5hxpx

i x g3~upx!i t
1, GPy

5hxpx
i y g3~upy!i t

1,

~2 ! i xi yGPxy
5g3~upxy!, g3~upxy!i t

1,

GT5h t
ig3~u t!uh t521 , h t

ig3~u t!i t
1. ~91!

We will use U1Bahxpx
bhypx

cdh t
to label the 24 PSG’s.

The 60 type-U1C PSG’s are given by

Gx5g3~ux!i t
1, Gy5g3~uy!i t1,

GPx
5hxpx

i x hypx
i y g3~upx!, GPy

5hypx
i x hpx

i y ~upy!,

GPxy
5hpxy

i x g3S hpxy
i p

4
1upxyD ,

GT5h t
ig3~u t!uh t521 , hpxy

i x g3~u t!i t
1, ~92!

Gx5g3~ux!i t
1, Gy5g3~uy!i t1,

GPx
5hxpx

i x g3~upx!i t
1, GPy

5hxpx
i y hpxy

i g3~upy!i t
1,

GPxy
5hpxy

i x g3S hpxy
i p

4
1upxyD ,

GT5h t
ig3~u t!uh t521 , hpxy

i x h t
ig3~u t!i t

1, ~93!

Gx5g3~ux!i t
1, Gy5g3~uy!i t1,

GPx
5hxpx

i x hypx
i y g3~upx!, GPy

5hypx
i x hxpx

i y g3~upy!,

GPxy
5g3~upxy!i t

1,

GT5h t
ig3~u t!uh t521 , ~94!
16511
Gx5g3~ux!i t
1, Gy5g3~uy!i t1,

GPx
5hxpx

i x hypx
i y g3~upx!, GPy

5hypx
i x hxpx

i y g3~upy!,

GPxy
5g3S hpxy

i p

4
1upxyD i t1,

GT5hpxy
i x h t

ig3~u t!i t
1, ~95!

Gx5g3~ux!i t
1, Gy5g3~uy!i t1,

GPx
5hxpx

i x g3~upx!i t
1, GPy

5hxpx
i y hpxy

i g3~upy!i t
1,

GPxy
5g3S hpxy

i p

4
1upxyD i t1,

GT5h t
ig3~u t!uh t521 , h t

ihpxy
i x g3~u t!i t

1, ~96!

which will be labeled by U1Cahxpx
bhypx

chpxy
dh t

.

The type-U1n
m PSG’s have not been classified. Howev

we do know that for each rational numberm/nP(0,1), there
exists at least one mean-field symmetric spin liquid, which
described by theAnsatz

ui ,i 1 x̂5xt3, ui ,i 1 ŷ5xg3S mp

n
i xD t3. ~97!

It haspm/n flux per plaquette. Thus there are infinite ma
type-U1n

m spin liquids.
We would like to point out that the above 108 U1@A,B,C#

PSG’s are algebraic PSG’s. They are only a subset of
possible algebraic U~1! PSG’s. However, they do contain a
the invariant U~1! PSG’s of type U1A, U1B, and U1C. We
find that 46 of the 108 PSG’s are also invariant PSG’s. Th
there are 46 different mean-field U~1! spin liquids of type
U1A, U1B, and U1C. TheirAnsatzand labels are given in
Ref. 66.

To classify symmetric SU~2! spin liquids, we find eight
different SU~2! PSG’s which are given by

Gx~ i !5gx , Gy~ i !5gy ,

GPx
~ i !5hxpx

i x hxpy
i y gPx

, GPy
~ i !5hxpy

i x hxpx
i y gPy

,

GPxy
~ i !5gPxy

, GT~ i !5~2 ! igT ~98!

and

Gx~ i !5~2 ! i ygx , Gy~ i !5gy ,

GPx
~ i !5hxpx

i x hxpy
i y gPx

, GPy
~ i !5hxpy

i x hxpx
i y gPy

,

GPxy
~ i !5~2 ! i xi ygPxy

, GT~ i !5~2 ! igT , ~99!

whereg’s are in SU~2!. We would like to use the notation
3-15
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SU2Athxpx

0 thxpy

0 ,

SU2Bthxpx

0 thxpy

0 ~100!

to denote the above eight PSG’s. SU2Athxpx

0 thxpy

0 is for Eq.

~98! and SU2Bthxpx

0 thxpy

0 for Eq. ~99!. We find that only four

of the eight SU~2! PSG’s, SU2A@n0,0n# and SU2B@n0,0n#,
lead to SU~2! symmetric spin liquids. The SU2An0 state is
the uniform RVB state and the SU2Bn0 state is thep-flux
state. The other two SU~2! spin liquids are given by
SU2A0n,

ui ,i 12x̂1 ŷ51 ixt0,

ui ,i 22x̂1 ŷ52 ixt0,

ui ,i 1 x̂12ŷ51 ixt0,

ui ,i 2 x̂12ŷ51 ixt0, ~101!

and SU2B0n,

ui ,i 12x̂1 ŷ51 i ~2 ! i xxt0,

ui ,i 22x̂1 ŷ52 i ~2 ! i xxt0,

ui ,i 1 x̂12ŷ51 ixt0,

ui ,i 2 x̂12ŷ51 ixt0. ~102!

The above results give us a classification of symme
U~1! and SU~2! spin liquids at the mean-field level. If
mean-field state is stable against fluctuations, it will cor
spond to a physical U~1!- or SU~2!-symmetric spin liquids.
In this way the U~1! and SU~2! PSG’s also provide a descrip
tion of some physical spin liquids.

V. CONTINUOUS TRANSITIONS AND SPINON SPECTRA
IN SYMMETRIC SPIN LIQUIDS

A. Continuous phase transitions without symmetry breaking

After classifying mean-field symmetric spin liquids, w
would like to know how those symmetric spin liquids a
related to each other. In particular, we would like to kno
which spin liquids can change into each other through acon-
tinuousphase transition. This problem is studied in detail
Ref. 66, where the symmetric spin liquids in the neighb
hood of some important symmetric spin liquids were o
tained. After lengthy calculations, we found all the mea
field symmetric spin liquids around theZ2-linear state
Z2A001n in Eq. ~39!, the U~1!-linear state U1Cn01n in Eq.
~32!, the SU~2!-gapless state SU2An0 in Eq. ~30!, and the
SU~2!-linear state SU2Bn0 in Eq. ~31!. We find that, at the
mean-field level, the U~1!-linear spin liquid U1Cn01n can
continuously change into 8 differentZ2 spin liquids, the
SU~2!-gapless spin liquid SU2An0 can continuously chang
into 12 U~1! spin liquids and 52Z2 spin liquids, and the
SU~2!-linear spin liquid SU2Bn0 can continuously chang
into 12 U~1! spin liquids and 58Z2 spin liquids.
16511
c

-

-
-
-

We would like to stress that the above results on the c
tinuous transitions are valid only at the mean-field lev
Some of the mean-field results survive the quantum fluct
tions while others do not. One needs to do a case-by-c
study to see which mean-field results can be valid beyond
mean-field theory. In Ref. 40, a mean-field transition b
tween a SU(2)3SU(2)-linear spin liquid and aZ2-gapped
spin liquid was studied. In particular the effects of quantu
fluctuations were discussed.

We would also like to point out that all the above sp
liquids have the same symmetry. Thus the continuous tra
tions between them, if they exist, represent a new clas
continuous transitions which do not change a
symmetries.67

B. Symmetric spin liquids
around the U„1…-linear spin liquid U1Cn01n

The SU~2!-linear state SU2Bn0 ~the p-flux state!, the
U~1!-linear state U1Cn01n ~the staggered-flux/d-wave state!,
and the SU~2!-gapless state SU2An0 ~the uniform RVB
state! are closely related to high-Tc superconductors. They
reproduce the observed electron spectra function for
doped, underdoped, and overdoped samples, respecti
However, theoretically, those spin liquids are unstable at
energies due to the U~1! or SU~2! gauge fluctuations. Thos
states may change into more stable spin liquids in th
neighborhood. In the next few subsections, we are going
study those more stable spin liquids. Since there are
many different spin liquids involved, we will only presen
some simplified results by limiting the length of nonze
links. Those spin liquids with short links should be mo
stable for simple spin Hamiltonians. The length of a lin
betweeni and j is defined asu i x2 j xu1u i y2 j yu. By studying
the spinon dispersion in those mean-field states, we can
derstand some basic physical properties of those spin liqu
such as their stability against the gauge fluctuations and
qualitative behaviors of spin correlations which can be m
sured by neutron scattering. Those results allow us to id
tify them if those spin liquids exist in certain samples
appear in numerical calculations. We would like to point o
that we will only study symmetric spin liquids here. Th
above three unstable spin liquids may also change into s
other states that break certain symmetries. Such symm
breaking transitions actually have been observed in highTc
superconductors~such as the transitions to antiferromagne
state,d-wave superconducting state, and stripe state!.

First, let us consider the spin liquids around the U~1!-
linear state U1Cn01n. In the neighborhood of the U1Cn01n
Ansatz, Eq. ~32!, there are eight different spin liquids tha
break the U~1! gauge structure down to aZ2 gauge structure.
Those eight spin liquids are labeled by different PSG’s
spite all having the same symmetry. In the following, we w
study those eightZ2 spin liquids in more detail. In particular
we would like to find out the spinon spectra in them.

The first one is labeled by Z2A0013 and takes the follo
ing form:
3-16
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ui ,i 1 x̂5xt12ht2,

ui ,i 1 ŷ5xt11ht2,

ui ,i 1 x̂1 ŷ51g1t1,

ui ,i 2 x̂1 ŷ51g1t1,

ui ,i 12x̂5g2t11l2t2,

ui ,i 12ŷ5g2t12l2t2,

a0
1Þ0, a0

2,350. ~103!

It has the same quantum order as that in theAnsatzEq. ~42!.
The label Z2A0013 tells us the PSG that characterizes
spin liquid. The secondAnsatzis labeled by Z2Azz13:

ui ,i 1 x̂5xt12ht2,

ui ,i 1 ŷ5xt11ht2,

ui ,i 1 x̂1 ŷ52g1t1,

ui ,i 2 x̂1 ŷ51g1t1,

ui ,i 12x̂5ui ,i 12ŷ50,

a0
1,2,350. ~104!

The third one is labeled by Z2A001n ~or equivalently
Z2A003n!:

a0
l 50,

ui ,i 1 x̂5xt11ht2,

ui ,i 1 ŷ5xt12ht2,

ui ,i 12x̂1 ŷ5lt3,

ui ,i 2 x̂12ŷ52lt3,

ui ,i 12x̂2 ŷ5lt3,

ui ,i 1 x̂12ŷ52lt3. ~105!

Such a spin liquid has the same quantum order as Eq.~39!.
The fourth one is labeled by Z2Azz1n:

a0
l 50,

ui ,i 1 x̂5xt11ht2,

ui ,i 1 ŷ5xt12ht2,

ui ,i 12x̂1 ŷ5x1t11h1t21lt3,

ui ,i 2 x̂12ŷ5x1t12h1t21lt3,

ui ,i 12x̂2 ŷ5x1t11h1t22lt3,

ui ,i 1 x̂12ŷ5x1t12h1t22lt3. ~106!
16511
e

The above fourAnsätze have translation invariance. Th
next fourZ2 Ansätzedo not have translation invariance.~But
they still describe translation symmetric spin liquids after t
projection.! ThoseZ2 spin liquids are the following.

Z2B0013:

ui ,i 1 x̂5xt12ht2,

ui ,i 1 ŷ5~2 ! i x~xt11ht2!,

ui ,i 12x̂52g2t11l2t2,

ui ,i 12ŷ52g2t12l2t2,

a0
1Þ0, a0

2,350. ~107!

Z2Bzz13:

ui ,i 1 x̂5xt12ht2,

ui ,i 1 ŷ5~2 ! i x~xt11ht2!,

ui ,i 12x̂12ŷ52g1t1,

ui ,i 22x̂12ŷ5g1t1,

a0
1,2,350. ~108!

Z2B001n:

ui , î 1x5xt11ht2,

ui , ı̂1y5~2 ! i x~xt12ht2!,

ui ,i 12̂x1y5~2 ! i xlt3,

ui ,i 2 x̂12y52lt3,

ui ,i 12̂x2y5~2 ! i xlt3,

ui ,i 1 x̂12y52lt3,

a0
l 50. ~109!

Z2Bzz1n:

ux̂5xt11ht2,

uŷ5~2 ! i x~xt12ht2!,

u2x̂1y5~2 ! i x~x1t11h1t21lt3!,

u2 x̂12y5x1t12h1t21lt3,

u2x̂2y5~2 ! i x~x1t11h1t22lt3!,

ux̂12y5x1t12h1t22lt3,

a0
l 50. ~110!
3-17
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FIG. 1. Contour plot of the
spinon dispersionE1(k) as a
function of (kx/2p,ky/2p) for the
Z2-linear spin liquids.~a! is for
the Z2A0013 state in Eq.~103!,
~b! for the Z2Azz13 state in Eq.
~104!, ~c! for the Z2A001n state
in Eq. ~105!, and ~d! for the
Z2Azz1n state in Eq.~106!.
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The spinons are gapless at four isolated points wit
linear dispersion for the first fourZ2 spin liquids Eq.~103!,
Eq. ~104!, Eq. ~105!, and Eq.~106! ~see Fig. 1!. Therefore
the four Ansätze describe symmetricZ2-linear spin liquids.
The single-spinon dispersion for the secondZ2 spin liquid
Z2Azz13 is quite interesting. It has 90° rotation symme
aroundk5(0,p) and parity symmetry aboutk5(0,0). One
very important thing to notice is that the spinon dispersio
for the fourZ2-linear spin liquids, Eq.~103!, Eq. ~104!, Eq.
~105!, and Eq.~106!, have some qualitative differences b
tween them. Those differences can be used to physic
measure quantum orders~see Sec. VII!.

Next let us consider theAnsatzZ2B0013 in Eq.~107!.
The spinon spectrum for theAnsatz, Eq. ~107!, is determined
by

H522x cos~kx!G022h cos~kx!G222x cos~ky!G1

12h cos~ky!G31lG4 , ~111!

wherekxP(0,p), kyP(2p,p), and

G05t1
^ t3, G15t1

^ t1,

G25t2
^ t3, G35t2

^ t1,

G45t1
^ t0, ~112!

assumingg1,25l250. The four bands of spinon dispersio
have a form6E1(k),6E2(k). We find that the spinon spec
16511
a

s

lly

trum vanishes at eight isolated points neark5(p/2,6p/2)
@see Fig. 2~a!#. Thus the state Z2B0013 is aZ2-linear spin
liquid.

Knowing the translation symmetry of the aboveZ2-linear
spin liquid, it seems strange to find that the spinon spectr
is defined only on half of the lattice Brillouin zone. Howeve
this is not inconsistent with translation symmetry since
single-spinon excitation is not physical. Only two-spinon e
citations correspond to physical excitations and their sp
trum should be defined on the full Brillouin zone. Now th
problem is that how to obtain the two-spinon spectrum
fined on the full Brillouin zone from the single-spinon spe
trum defined on half of the Brillouin zone. Letuk, 1& and uk,
2& be the two eigenstates of the single spinon with posit
energiesE1(k) and E2(k) @herekxP(2p/2,p/2) andkyP
(2p,p)#. The translation byx̂ ~followed by a gauge trans
formation! changesuk, 1& and uk, 2& to the other two eigen-
states with the same energies:

uk,1&→uk1p ŷ,1&,

uk,2&→uk1p ŷ,2&. ~113!

Now we see that the momentum and energy of the tw
spinon states uk1 ,a1&uk2 ,a2&6uk11p ŷ,a1&uk21p ŷ,a2&
are given by

E2-spinon5Ea1
~k1!1Ea2

~k2!,

k5k11k2 , k11k21p x̂. ~114!
3-18
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FIG. 2. Contour plot of
the spinon dispersion
min„E1(k),E2(k)… as a function
of (kx/2p,ky/2p) for theZ2-linear
states.~a! is for the Z2B0013 state
in Eq. ~107!, ~b! for the Z2Bzz13
state in Eq. ~108!, ~c! for the
Z2B001n state in Eq.~109!, and
~d! for the Z2Bzz1n state in Eq.
~110!.
c-

in
Equation~114! allows us to construct the two-spinon spe
trum from the single-spinon spectrum.

Now let us consider theAnsatzZ2Bzz13 in Eq. ~108!.
The spinon spectrum for theAnsatz, Eq. ~108!, is determined
by

H522x cos~kx!G022h cos~kx!G222x cos~ky!G1

12h cos~ky!G322g1 cos~2kx12ky!G4

12g1 cos~2kx22ky!G4 , ~115!

wherekxP(0,p), kyP(2p,p), and

G05t1
^ t3, G15t1

^ t1,

G25t2
^ t3, G35t2

^ t1,

G45t1
^ t0. ~116!

We find the spinon spectrum to vanish at two isolated po
k5(p/2,6p/2) @see Fig. 2~b!#. The state Z2Bzz13 is a
Z2-linear spin liquid.

The spinon spectrum for theAnsatz Z2B001n in Eq.
~109! is determined by

H522x cos~kx!G022h cos~kx!G222x cos~ky!G1

12h cos~ky!G312l@cos~kx12ky!1cos~2kx

12ky!#G422l@cos~2kx1ky!1cos~2kx2ky!#G5 ,

~117!
16511
ts

wherekxP(0,p), kyP(2p,p), and

G05t1
^ t3, G15t1

^ t1,

G25t2
^ t3, G35t2

^ t1,

G45t3
^ t3, G55t3

^ t1. ~118!

The spinon spectrum vanishes at two isolated pointsk
5(p/2,6p/2) @see Fig. 2~c!#. The state Z2B001n is also a
Z2-linear spin liquid.

The spinon spectrum for theAnsatz Z2Bzz1n in Eq.
~110! can be obtained from

H522x cos~kx!G022h cos~kx!G222x cos~ky!G1

12h cos~ky!G312l@cos~kx12ky!2cos~2kx

12ky!#G422l@cos~2kx1ky!2cos~2kx2ky!#G5 ,

~119!

wherekxP(0,p), kyP(2p,p), and

G05t1
^ t3, G15t1

^ t1,

G25t2
^ t3, G35t2

^ t1,

G45t3
^ t3, G55t3

^ t1. ~120!

We have also assumed thatx15h150. The spinon spectrum
vanishes at two isolated pointsk5(p/2,6p/2) @see Fig.
2~d!#. The state Z2Bzz1n is again aZ2-linear spin liquid.
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C. Symmetric spin liquids around the SU„2…-gapless spin
liquid SU2An0

There are many types of symmetricAnsätze in the neigh-
borhood of the SU~2!-gapless state, Eq.~30!. Let us first
consider the 12 classes of symmetric U~1! spin liquids
around the SU~2!-gapless state. Here we just present
simple cases whereui j are nonzero only for links with length
<2. Among the 12 classes of symmetricAnsätze, we find
that 5 classes actually give us the SU~2!-gapless spin liquid
when the link length is limited to<2. The other 7 symmetric
U~1! spin liquids are given below.

The U1Cn01n state:

ui ,i 1 x̂5xt12ht2, ui ,i 1 ŷ5xt11ht2,

a0
1,2,350,

Gx5Gy5t0, GPx
5GPy

5t0,

GPxy
5 i t1, GT5~2 ! it0. ~121!

In the above, we have also listed the gauge transformat
Gx,y , GPx ,Py ,Pxy

, andGT associated translation, parity, an
time reversal transformations. Those gauge transformat
define the PSG that characterizes the U~1! spin liquid. In
Sec. IV C, we have introduced a notation U1Cn01n to label
the above PSG. We will use the same notation to label
Ansatz.

U1Cn00x state:

ui ,i 1 x̂5xt1, ui ,i 1 ŷ5xt1,

ui ,i 1 x̂1 ŷ5h1t3, ui ,i 2 x̂1 ŷ5h1t3,

ui ,i 12x̂5h2t3, ui ,i 12ŷ5h2t3,

a0
35h3 , a0

1,250,

Gx5Gy5t0, GPx
5GPy

5t0,

GPxy
5t0, GT5 i t2. ~122!

U1Cn01x state:

ui ,i 1 x̂5xt1, ui ,i 1 ŷ5xt1,

ui ,i 12x̂52h2t3, ui ,i 12ŷ5h2t3,

a0
1,2,350,

Gx5Gy5t0, GPx
5GPy

5t0,

GPxy
5 i t1, GT5 i t2. ~123!
16511
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U1Cx10x state:

ui ,i 1 x̂5xt1, ui ,i 1 ŷ5xt1,

ui ,i 1 x̂1 ŷ52ht3, ui ,i 2 x̂1 ŷ5ht3,

a0
1,2,350,

Gx5Gy5t0, GPx
5GPy

5 i t1,

GPxy
5t0, GT5 i t2. ~124!

U1A0001 state:

ui ,i 1 x̂5 ixt0, ui ,i 1 ŷ5 ixt0,

ui ,i 1 x̂1 ŷ52h1t3, ui ,i 2 x̂1 ŷ5h1t3,

ui ,i 12x̂5h2t3, ui ,i 12ŷ5h2t3,

a0
1,2,350,

Gx5Gy5t0, ~2 ! i xGPx
5~2 ! i xGPy

5t0,

GPxy
5t0, GT5 i ~2 ! it1. ~125!

U1A0011 state:

ui ,i 1 x̂5 ixt0, ui ,i 1 ŷ5 ixt0,

ui ,i 12x̂52h2t3, ui ,i 12ŷ5h2t3 ,

a0
1,2,350,

Gx5Gy5t0, ~2 ! i xGPx
5~2 ! i xGPy

5t0,

GPxy
5 i t1, GT5 i ~2 ! it1. ~126!

U1Ax10x state:

ui ,i 1 x̂5 ixt0, ui ,i 1 ŷ5 ixt0,

ui ,i 1 x̂1 ŷ5ht3, ui ,i 2 x̂1 ŷ5ht3,

a0
1,2,350,

Gx5Gy5t0, ~2 ! i xGPx
5~2 ! i xGPy

5 i t1,

GPxy
5t0, GT5 i ~2 ! it1. ~127!

In addition to the labels, we also explicitly list the gaug
transformationsGx,y , GPx ,Py ,Pxy

, and GT for eachAnsatz.
Note that when we define the labels of the U~1! PSG from
the gauge transformationsGx,y , GPx ,Py ,Pxy

, and GT , we
have chosen a particular gauge called the canonical gaug
the canonical gauge, the IGG is generated by a cons
gauge transformationeiut3

. Some of the aboveAnsätze are
given in the canonical gauge while others are not. For
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FIG. 3. Contour plot of the
spinon dispersionE1(k) as a
function of (kx/2p,ky/2p) for ~a!
the U~1!-linear state U1Cn00x in
Eq. ~122! and ~b! the U~1!-
quadratic state U1Cx10x in Eq.
~124!. In the U~1!-quadratic state,
the spinon energy vanishes asDk2

near two pointsk5(p,0),(0,p).
al

e

g

e
tect

nt
latter Ansätze, the listed gauge transformationsGx,y ,
GPx ,Py ,Pxy

, andGT are different from those in the canonic
gauge.

Equation ~121! is the U1Cn01n U~1!-linear state~the
staggered flux state! studied before. After examining th
spinon dispersion, we find that the U1Cn00x state in Eq.
~122! can be a U~1!-linear or a U~1!-gapped state dependin
on the value ofa0

3. If it is a U~1!-linear state, it will have
eight isolated Fermi points@see Fig. 3~a!#. The U1Cn01x
state in Eq.~123! is a U~1!-gapless state@see Fig. 4~a!#. The
U1Cx10x state in Eq.~124! has two Fermi points atk1
5(p,0) andk25(0,p) @see Fig. 3~b!#. However, the spinon
energy has a quadratic formE(k)}(k2k1,2)

2 near k1 and
k2 . Thus we call the U1Cx10x spin liquid, Eq.~124!, a U~1!-
quadratic state. The U1A0001 state in Eq.~125!, the
16511
U1A0011 state in Eq.~126!, and the U1Ax10x state in Eq.
~127! are U~1!-gapless states~see Fig. 4!. Again the spinon
dispersions for the U~1! spin liquids have some qualitativ
differences between each other, which can be used to de
different quantum orders in those U~1! spin liquids.

We next consider the 52 classes of symmetricZ2 spin
liquids around the SU~2!-gapless state. Here we just prese
the simplest case whereui j are nonzero only for links with
length<1. We find that 48 out of the 52 classes ofAnsätze
reduce to U~1! or SU~2! spin liquids when the link’s length is
<1. In the following we discuss the four remainingZ2 An-
sätze.

The first one isZ2 spin liquid Z2Ax2(12)n described by
Eq. ~33!. The second one isZ2 spin liquid Z2A0013 de-
scribed by Eq.~103! or Eq. ~42!. The third one isZ2 spin
FIG. 4. Contour plot of the
spinon dispersionE1(k) as a
function of (kx/2p,ky/2p) for the
U~1!-gapless states.~a! is for the
U1Cn01x state in Eq.~123!, ~b!
for the U1A0001 state in Eq.
~125!, ~c! for the U1A0011 state
in Eq. ~126!, and ~d! for the
U1Ax10x state in Eq.~127!.
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FIG. 5. Contour plot of the
spinon dispersionE1(k) as a
function of (kx/2p,ky/2p) for the
Z2 spin liquids. ~a! is for
Z2-gapless state Z2Ax2(12)n in
Eq. ~33!, and ~b! is for
Z2-quadratic state Z2Bx2(12)n in
Eq. ~128!. Despite the lack of ro-
tation and parity symmetries in
the single-spinon dispersion in~a!,
the two-spinon spectrum doe
have those symmetries.
fo

arly
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liquid Z2By1(12)n @note that Z2By1(12)n is gauge equiva-
lent to Z2Bx2(12)n#:

ui ,i 1 x̂5 ixt01h1t1,

ui ,i 1 ŷ5~2 ! i x~ ixt01h1t2!,

a0
1,2,350. ~128!

The fourth one isZ2 spin liquid Z2B0013, which is de-
scribed by Eq.~107!.

The AnsatzZ2Bx2(12)n in Eq. ~128! is a newZ2 spin
liquid. The spinon spectrum for theAnsatz, Eq. ~128!, is
determined by

H522x sin~kx!G012h cos~kx!G222x sin~ky!G1

12h cos~ky!G3 , ~129!

wherekxP(2p/2,p/2), kyP(2p,p), and

G05t0
^ t3, G25t1

^ t3,

G15t0
^ t1, G35t2

^ t1. ~130!

The spinon spectrum can be calculated exactly and its
branches take a form6E1(k) and6E2(k). The spinon en-
ergy vanishes at two isolated pointsk5(0,0),(0,p). Near
k50 the low-energy spectrum is given by@see Fig. 5~b!#

E56h21A~x21h2!2~kx
22ky

2!214x4kx
2ky

2. ~131!
16511
ur

It is interesting to see that the energy does not vanish line
ask→0: instead it vanishes likek2.

We find that the loop operators for the loopsi→ i 1 x̂→ i
1 x̂1 ŷ→ i 1 ŷ→ i and i→ i 1 ŷ→ i 2 x̂1 ŷ→ i 2 x̂→ i do not
commute as long as bothx andh are nonzero. Thus the spi
liquid described by Eq.~128! indeed has aZ2 gauge struc-
ture. We will call such a stateZ2-quadratic spin liquid to
stress the quadraticE}k2 dispersion. Such a state cannot
constructed from translation-invariantAnsätze. The two-
spinon spectrum is still related to the one-spinon spectr
through Eq.~114! ~see Fig. 6!.

D. Symmetric spin liquids
around the SU„2…-linear spin liquid SU2Bn0

Last, we consider symmetric states in the neighborhoo
the SU~2!-linear state, Eq.~31!. We would like to use the
following result proved in Ref. 66. Given a PSG genera
by Gx,y,T andGPx ,Py ,Pxy

, the generators

G̃x~ i !5~2 ! i yGx~ i !, G̃y~ i !5Gy~ i !,

G̃Px
~ i !5GPx

~ i !, G̃Py
~ i !5GPy

~ i !,

G̃Pxy
~ i !5~2 ! i xi yGPxy

~ i !, G̃T~ i !5GT~ i ! ~132!

generate a new PSG. The new PSG has the same IGG a
an extension of the same symmetry group as the orig
PSG. The PSG’s for states in the neighborhood of the SU~2!-
FIG. 6. Contour plot of the
spinon dispersionE1(k) as a
function of (kx/2p,ky/2p) for ~a!
the U~1!-linear state U1Cn0x1 in
Eq. ~134! and ~b! the U~1!-linear
state Eq.~142!.
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FIG. 7. Contour plot of the
spinon dispersion min„E1(k),
E2(k)… as a function of (kx/2p,
ky/2p) for the U~1! spin-liquid
states.~a! is for the U~1!-gapless
state U1B0001 in Eq.~136! and
~b! is for the U~1!-linear state
U1B0011 in Eq.~137!.
t

ric

is
linear state can be obtained through above mapping from
PSG’s of symmetric spin liquids around the SU~2!-gapless
spin liquid.

Here we will only consider the 12 classes of symmet
U~1! spin liquids around the SU~2!-linear state. We will just
present the simple cases whereui j are nonzero only for links
with length <2. We find that 5 of 12 classes ofAnsätze
reduce SU~2!-gapless spin liquids when the link length
<2. Thus we only obtain the following 5 symmetric U~1!
spin liquids.

U1Cn01n Ansatz:

ui ,i 1 x̂5xt12ht2, ui ,i 1 ŷ5xt11ht2,

a0
1,2,350,

Gx5Gy5t0, GPx
5GPx

5t0,

GPxy
5 i t1, GT5~2 ! it0, ~133!

which has the same quantum order as in the U~1!-linear state,
Eq. ~32!.

U1Cn0x1 Ansatz:

ui ,i 1 x̂5xt2, ui ,i 1 ŷ5xt1,

ui ,i 12x̂52ht3, ui ,i 12ŷ5ht3,

a0
1,2,350,

Gx5Gy5t0, GPx
5GPy

5t0,

GPxy
5 i t12, GT5~2 ! i yi t1. ~134!

U1Cn0n1 Ansatz:

ui ,i 1 x̂5xt2, ui ,i 1 ŷ5xt1,

ui ,i 12x̂5ht3, ui ,i 12ŷ5ht3,

a0
35h1 , a0

1,250,

Gx5Gy5t0, GT5~2 ! i yi t1,

GPx
5GPy

5t0,
16511
he GPxy
5~2 ! i xi yg3$@~2 ! i x2~2 ! i y#p/4%. ~135!

U1B0001Ansatz:

ui ,i 1 x̂5 ixt0, ui ,i 1 ŷ5 i ~2 ! i xxt0,

ui ,i 12x̂5ht3, ui ,i 12ŷ5ht3,

a0
35h1 , a0

1,2,50,

~2 ! i yGx5Gy5t0, ~2 ! i xGPx
5~2 ! i xGPy

5t0,

GPxy
5~2 ! i xi yt0, GT5 i ~2 ! it1. ~136!

U1B0011Ansatz:

ui ,i 1 x̂5 ixt0, ui ,i 1 ŷ5 i ~2 ! i xxt0,

ui ,i 12x̂52ht3, ui ,i 12ŷ5ht3,

a0
1,2,350,

~2 ! i yGx5Gy5t0, ~2 ! i xGPx
5~2 ! i xGPy

5t0,

GPxy
5 i ~2 ! i xi yt1, GT5 i ~2 ! it1. ~137!

Now let us discuss spinon dispersions in the above U~1!
spin liquids. The spinon in the U1Cn0x1 state Eq.~134! has
four linear nodes at~6p/2,6p/2!. Thus the U1Cn0x1 state
is a U~1!-linear spin liquid. The U1Cn0n1 state Eq.~135!
has fully gapped spinons and is a U~1!-gapped spin liquid.

The four spinon bands in the U1B0001 state Eq.~136! are
given by @see Fig. 7~a!#

62xAsin2~kx!1sin2~ky!6@2h cos~2kx!

12h cos~2ky!1h1#. ~138!

We find that the U1B0001 state is a U~1!-gapless spin liquid.
The four spinon bands in the U1B0011 state Eq.~137! are
given by @see Fig. 7~b!#

62xAsin2~kx!1sin2~ky!62h@cos~2kx!2cos~2ky!#.
~139!

Hence, the U1B0011 state is a U~1!-linear spin liquid.
3-23
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To summarize we list all the spin liquids discussed so
in Table I.

VI. MEAN-FIELD PHASE DIAGRAM
OF THE J1-J2 MODEL

To see which of theZ2 , U~1!, and SU~2! spin liquids
discussed in the last section have low ground energies
may appear in real high-Tc superconductors, we calculate th
mean-field energy of a large class oftranslation-invariant
Ansätze. In Fig. 8, we present the resulting mean-field pha
diagram for aJ1-J2 spin system. HereJ1 is the nearest-
neighbor spin coupling andJ2 is the next-nearest-neighbo
spin coupling. We have fixedJ11J251. The y axis is the
mean-field energy per site~multiplied by a factor 8/3!. The
phase ~A! is the p-flux state @the SU2Bn0 SU~2!-linear
state#, Eq. ~31!. The phase~B! is a state with two indepen
dent uniform RVB states on the diagonal links. It h
SU(2)3SU(2) gauge fluctuations at low energies and w
be called an SU(2)3SU(2)-gapless state. ItsAnsatzis given
by

ui ,i 1 x̂1 ŷ5xt3,

ui ,i 1 x̂2 ŷ5xt3,

a0
l 50. ~140!

The phase~C! is a state with two independentp-flux states
on the diagonal links. It has SU(2)3SU(2) gauge fluctua-
tions at low energies and will be called a
SU(2)3SU(2)-linear state. ItsAnsatzis given by

TABLE I. Spin liquids.
16511
r

nd

e

l

ui ,i 1 x̂1 ŷ5x~t31t1!,

ui ,i 1 x̂2 ŷ5x~t32t1!,

a0
l 50. ~141!

The phase~D! is the chiral spin state, Eq.~44!. The phase
~E! is described by anAnsatz

ui ,i 1 x̂1 ŷ5x1t11x2t2,

ui ,i 1 x̂2 ŷ5x1t12x2t2,

ui ,i 1 ŷ5ht3,

a0
l 50, ~142!

which breaks the 90° rotation symmetry and is a U~1!-linear
state @see Fig. 6~b!#. The phase~F! is described by the
U1Cn00x Ansatzin Eq. ~122!. The U1Cn00x state can be a
U~1!-linear or a U~1!-gapped state. The state for phase~F!
turns out to be a U~1!-gapped state. The phase~G! is de-
scribed by the Z2Azz13 Ansatz in Eq. ~104! which is a
Z2-linear state. The phase~H! is described by the Z2A0013
Ansatzin Eq. ~103! and is also aZ2-linear state. The phas
~I! is the uniform RVB state@the SU~2!-gapless state
SU2An0, Eq. ~30!#.

From Fig. 8, we see continuous phase transitions~at
mean-field level! between the following pairs of phase
~A,D!, ~A,G!, ~B,G!, ~C,E!, and~B,H!. The three continuous
transitions~B,G!, ~B,H!, and~A,G! do not change any sym

FIG. 8. The mean-field energies for various phases in aJ1-J2

spin system.~A! Thep-flux state@the SU~2!-linear state SU2Bn0#.
~B! The SU(2)3SU(2)-gapless state in Eq.~140!. ~C! The
SU(2)3SU(2)-linear state in Eq.~141!. ~D! The chiral spin state
@an SU~2!-gapped state#. ~E! The U~1!-linear state Eq.~142! which
breaks 90° rotation symmetry.~F! The U~1!-gapped state U1Cn00x
in Eq. ~122!. ~G! TheZ2-linear state Z2Azz13 in Eq.~104!. ~H! The
Z2-linear state Z2A0013 in Eq.~103!. ~I! The uniform RVB state
@the SU~2!-gapless state SU2An0#.
3-24
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FIG. 9. Contour plot of the
dispersion for spin-1 excitation
E2s(k), as a function of
(kx/2p,ky/2p) for ~a! the SU~2!-
linear spin liquid SU2Bn0 in
Eq. ~31! ~the p-flux phase! and
~b! the U~1!-quadratic spin liquid
U1Cx10x in Eq. ~124!.
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metries. We also note that the SU~2! gauge structure in the
phase~A! breaks down toZ2 in the continuous transition
from the phase~A! to the phase~G!. The SU(2)3SU(2)
gauge structure in the phase~B! breaks down toZ2 in the
two transitions~B,G! and ~B,H!.

VII. PHYSICAL MEASUREMENTS
OF QUANTUM ORDERS

After characterizing the quantum orders using the P
mathematically, we would like to ask how to measure qu
tum orders in experiments. The quantum orders in gap
states are related to the topological orders. The measure
of topological orders are discussed in Refs. 9, 10 and 65.
quantum order in a state with gapless excitations can be m
sured, in general, by the dynamical properties of gapless
citation. However, not all dynamical properties are univers
Thus we need to identify the universal properties of gapl
excitations before using them to characterize and mea
quantum orders. The PSG characterization of quantum or
allows us obtain those universal properties. We simply n
to identify the common properties of gapless excitations t
are shared by all theAnsatzwith the same PSG.

To demonstrate the above idea, we would like to study
spectrum of two-spinon excitations. We note that spinons
only be created in pairs. Thus the one-spinon spectrum is
physical. We also note that the two-spinon spectrum incl
spin-1 excitations which can be measured in experiments
a given momentum, the two-spinon spectrum is distribute
one or several ranges of energy. LetE2s(k) be the lower
edge of the two-spinon spectrum at momentumk. In the
mean-field theory, the two-spinon spectrum can be c
structed from the one-spinon dispersion

E2-spinon~k!5E1-spinon~q!1E1-spinon~k2q!. ~143!

In Figs. 9–15 we present the mean fieldE2s for some simple
spin liquids. If the mean-field state is stable against the ga
fluctuations, we expect that the mean fieldE2s should quali-
tatively agree with the realE2s .

Among our examples, there are eightZ2-linear spin liq-
uids ~see Fig. 10 and Fig. 11!. We see that some of thos
eight differentZ2-linear spin liquids~or eight different quan-
tum orders! have a different number of gapless points. T
16511
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gapless points of some spin liquids are pinned at positiok
5(p,p) and/or k5(p,0),(0,p). By measuring the low-
energy spin excitations~say, using neutron scattering!, we
can distinguish thoseZ2 spin liquids. We note that all two-
spinon spectra have rotation and parity symmetries aro
k50. This is expected. Since the two-spinon spectra
physical, they should have all the symmetries the spin liqu
have.

We also have four U~1!-linear spin liquids. Some of them
can be distinguished by their different numbers of gapl
points. It is interesting to note that all the U~1! spin liquids
discussed here have a gapless point in the two-spinon s
trum pinned at positionk5(p,p). The U~1!-linear spin liq-
uids are also different from theZ2-linear spin liquids in that
the spin-spin correlations have different decay expone
once the U~1! gauge fluctuations are included. We also s
that E2s has a quadratic formE2s}k2 for the U~1!-quadratic
spin liquid.E2s vanishes in two finite regions ink space for
the Z2-gapless spin liquids.

Neutron scattering experiments probe the two-spinon s
tor. Thus low-energy neutron scattering allows us to meas
quantum orders in high-Tc superconductors.

Let us discuss the U~1! linear state U1Cn01n ~the
staggered-flux state! in more detail. The U1Cn01n state is
proposed to describe the pseudogap metallic state in un
doped high-Tc superconductors.33,34 The U1Cn01n state
naturally explains the spin pseudogap in the underdoped
tallic state. As an algebraic spin liquid, the U1Cn01n state
also explain the Luttinger-like electron spectral function34

and the enhancement of the~p,p! spin fluctuations68 in the
pseudogap state. From Fig. 13~a!, we see that gapless poin
of the spin-1 excitations in the U1Cn01n state are always a
k5(p,p), ~0,0!, ~p,0!, and~0,p!. The equal energy contou
for the edge of the spin-1 continuum has a shape of
overlapped ellipses at all fourk points. Also the energy con
tours are not perpendicular to the zone boundary. All th
are the universal properties of the U1Cn01n state. Measuring
those properties in neutron scattering experiments will all
us to determine if the pseudogap metallic state is descr
by the U1Cn01n ~the staggered-flux! state or not.

We have seen that at low energies, the U1Cn01n state is
unstable due to the instanton effect. Thus the U1Cn01n state
has to change into some other states, such as the eighZ2
3-25
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FIG. 10. Contour plot of
E2s(k) as a function of
(kx/2p,ky/2p) for the Z2-linear
spin liquids. ~a! is for the
Z2A0013 state in Eq.~103!, ~b!
for the Z2Azz13 state in Eq.
~104!, ~c! for the Z2A001n state
in Eq. ~105!, and ~d! for the
Z2Azz1n state in Eq.~106!.

FIG. 11. Contour plot of
E2s(k) as a function of
(kx/2p,ky/2p) for the Z2-linear
spin liquids. ~a! is for the
Z2B0013 state in Eq.~107!, ~b!
for the Z2Bzz13 state in Eq.
~108!, ~c! for the Z2B001n state in
Eq. ~109!, and ~d! for the
Z2Bzz1n state in Eq.~110!.
165113-26
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FIG. 12. Contour plot of
E2s(k) as a function of
(kx/2p,ky/2p) for ~a! the
Z2-gapless state Z2Ax2(12)n in
Eq. ~33!, and~b! the Z2-quadratic
state Z2Bx2(12)n in Eq. ~128!.
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spin liquids discussed in Sec. V or some other states
discussed in this paper. From Fig. 10~a!, we see that the
transition from the U1Cn01n state to theZ2-linear state
Z2A0013 can be detected by neutron scattering if one
serves the splitting of the node at~p,p! into four nodes at
(p6d,p6d) and the splitting of the nodes at~p, 0! and
~0,p! into two nodes at (p6d,0) and (0,p6d). From Fig.
10~b!, we see that, for the transition from the U1Cn01n state
to theZ2-linear state Z2Azz13, the node at~p,p! still splits
into four nodes at (p6d,p6d). However, the nodes a
~p,0! and~0,p! split differently into two nodes at~p,6d! and
~6d, p!. We can also study the transition from the U1Cn01n
state to other sixZ2 spin liquids. We find that the spectra o
spin-1 excitations all change in certain characteristic wa
Thus, by measuring the spin-1 excitation spectrum and
evolution, we not only can detect a quantum transition t
does not change any symmetries, we can also tell wh
transition is happening.

The neutron scattering on high-Tc superconductors indee
showed a splitting of the scattering peak at~p,p! into four
peaks at (p6d,p),(p,p6d) ~Refs. 30 and 69–75! or into
two peaks at (p,p)→(p1d,p2d),(p2d,p1d) ~Refs. 28
and 76! as we lower the energy. This is consistent with o
belief that the U1Cn01n state is unstable at low energie
However, it is still unclear if we can identify the position o
the neutron scattering peak as the position of the node in
spin-1 spectrum. If we do identify the scattering peak as
node, then none of the eightZ2 spin liquids in the neighbor-
16511
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hood of the U1Cn01n state can explain the splitting patter
(p6d,p),(p,p6d). This will imply that the U1Cn01n
state changes into another state not studied in this paper.
example illustrates that detailed neutron scattering exp
ments are powerful tools in detecting quantum orders
studying new transitions between quantum orders that m
not change any symmetries.

VIII. FOUR CLASSES OF SPIN LIQUIDS
AND THEIR STABILITY

We have concentrated on the mean-field states of s
liquids and presented many examples of mean-fieldAnsätze
for symmetric spin liquids. In order for those mean-fie
states to represent real physical spin liquids, we need to
clude the gauge fluctuations. We also need to show that
inclusion of the gauge fluctuations does not destabilize
mean-field states at low energies. This requires that~a! the
gauge interaction be not too strong and~b! the gauge inter-
action be not a relevant perturbation.~The gauge interaction
however, can be a marginal perturbation.! The requirement
~a! can be satisfied through the large-N limit and/or adjust-
ment of short-range spin couplings in the spin Hamiltonia
if necessary. Here we will mainly consider the requireme
~b!. We find that, at least in certain large-N limits, many~but
not all! mean-field states do correspond to real quantum s
liquids which are stable at low energies. In this case,
characterization of the mean-field states by PSG’s co
FIG. 13. Contour plot of
E2s(k) as a function of
(kx/2p,ky/2p) for two U~1!-
linear spin liquids.~a! is for the
U1Cn01n state Eq.~32! ~the stag-
gered flux phase! and ~b! for the
U1Cn00x state Eq.~122! in the
gapless phase.
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FIG. 14. Contour plot of the
two-spinon dispersionE2s(k) as a
function of (kx/2p,ky/2p) for ~a!
the U~1!-linear spin liquid state
U1Cn0x1 in Eq.~134! and~b! the
U~1!-linear spin liquid Eq.~142!.
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sponds to the characterization of real quantum spin liqui
All spin liquids ~with an odd number of electrons per un

cell! studied so far can be divided into four classes. In
following we will study each class in turn.

A. Rigid spin liquid

In rigid spin liquids, by definition, the spinons and a
other excitations are fully gapped. The gapped gauge fi
only induces short-range interactions between spinons du
Chern-Simons terms or the Anderson-Higgs mechanism.
definition, the rigid spin liquids are locally stable and se
consistent. The rigid spin liquids are characterized by to
logical orders and they have true spin-charge separation.
low-energy effective theories for rigid spin liquids are top
logical field theories. TheZ2-gapped spin liquid and chira
spin liquid are examples of rigid spin liquids.

B. Bose spin liquid

The U~1!-gapped spin liquid discussed in the last sect
is not a rigid spin liquid. It is a Bose spin liquid. Althoug
the spinon excitations are gapped, the U~1! gauge fluctua-
tions are gapless in the U~1!-gapped spin liquid. The dynam
ics of the gapless U~1! gauge fluctuations is described b
low-energy effective theory

L5
1

2g
~ f mn!2, ~144!
16511
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wheref mn is the field strength of the U~1! gauge field. How-
ever, in 112 dimensions and after including the instant
effect, the U~1! gauge fluctuations will gain an energy gap77

The properties of the resulting quantum state remain to be
open problem.

C. Fermi spin liquid

The Fermi spin liquids have gapless excitations that
described by spin-1/2 fermions. Those gapless excitati
have only short-range interactions between them. T
Z2-linear, Z2-quadratic, andZ2-gapless spin liquids dis
cussed above are examples of Fermi spin liquids.

The spinons have a massless Dirac dispersion inZ2-linear
spin liquids. ThusZ2-linear spin liquids are locally stable
since short-range interactions between massless Dirac fe
ons are irrelevant in 112 dimensions. We would like to
point out that the massless Dirac dispersion of theZ2-linear
spin liquids is protected by the PSG~or the quantum order!.
That is, any perturbations around, for example, theZ2-linear
AnsatzZ2A003z in Eq. ~39! cannot destroy the massles
Dirac dispersion as long as the PSG’s are not changed by
perturbations. To understand this result, we start with
most general form of symmetric perturbations~see Ref. 66!:

ui ,i 1m5um
l t l u l 51,2,3,

uPxy~m!
1,2 52um

1,2,
FIG. 15. Contour plot of the
two-spinon dispersionE2s(k) as a
function of (kx/2p,ky/2p) for the
U~1! spin liquid states.~a! is for
the U~1!-gapless state U1B0001 in
Eq. ~136! and ~b! is for the U~1!-
linear state U1B0011 in Eq.~137!.
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uPxy~m!
3 5um

3 ,

uPx~m!
1,2,3 5um

1,2,3,

uPy~m!
1,2,3 5um

1,2,3,

um50, for m5even, ~145!

around theZ2-linear Ansatz, Eq. ~39!. We find that such
perturbations vanish in momentum space atk
5(6p/2,6p/2). The translation, parity, and the time reve
sal symmetries do not allow any mass terms or chem
potential terms. Thus theZ2-linear spin liquid is a phase tha
occupies a finite region in the phase space~at T50!. One
does not need any fine-tuning of the coupling constants
ui j to get a massless Dirac spectrum.

Now let us consider the stability of theZ2-quadratic spin
liquid Z2Bx2(12)n in Eq. ~128!. The spinons have a gaples
quadratic dispersion in theZ2-quadratic spin liquid. The gap
less quadratic dispersion of theZ2-quadratic spin liquid is
also protected by the symmetries. The most general form
symmetric perturbations around theZ2-quadraticAnsatz, Eq.
~128!, is given by~see Ref. 66!

ui ,i 1m5~2 !myi x~um
0 t01um

1 t11um
2 t2!,

um
0,1,250, for m5even. ~146!

In momentum space, the most general symme
Z2-quadraticAnsätzegive rise to the following Hamiltonian
~after considering the 90 ° rotation symmetry!:

H522( xmn@sin~nkx2mky!G01sin~mkx1nky!G1#

12( hmn@cos~nkx2mky!G21cos~mkx1nky!G3#

12( lmn@cos~nkx2mky!G41cos~mkx1nky!G6#,

~147!

where

G05t0
^ t3, G25t1

^ t3,

G15t0
^ t1, G35t2

^ t1,

G452t2
^ t3, G55t1

^ t1, ~148!

and the summation is overm5even, n5odd. We find that
the spinon dispersion still vanishes atk5(0,0),0,p) and the
energy still satisfiesE}k2. The translation, parity, and th
time reversal symmetric perturbations do not change
qualitative behavior of the low-energy spinon dispersio
Thus, at the mean-field level, theZ2-quadratic spin liquid is
a phase that occupies a finite region in phase space~at T
50!. One does not need any fine-tuning of the coupl
constants to get a gapless quadratic dispersion of the spin
However, unlike theZ2-linear spin liquid, the short-rang
16511
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four-fermion interactions between the gapless spinons in
Z2-quadratic state are marginal in 112 dimensions. Further
studies are needed to understand the dynamical stabilit
the Z2-quadratic spin liquid beyond the mean-field level.

TheZ2-gapless spin liquid is as stable as a Fermi liquid
112 dimensions. Again we expect theZ2-gapless spin liquid
to be a phase that occupies a finite region in phase spac
least at the mean-field level.

D. Algebraic spin liquid

U~1!-linear spin liquids are examples of algebraic sp
liquids. Their low-lying excitations are described by mas
less Dirac fermions coupled to a U~1! gauge field. Although
the massless Dirac fermions are protected by quantum
ders, the gauge couplings remain large at low energies. T
the low-lying excitations in the U~1!-linear spin liquids are
not described by free fermions. This makes a discussion
the stability of those states much more difficult.

Here we would like to concentrate on the U~1!-linear spin
liquid U1Cn01n in Eq. ~32!. The spinons have a massle
Dirac dispersion in the U~1!-linear spin liquid. First we
would like to know if the massless Dirac dispersion is g
neric property of the U~1!-linear spin liquid, i.e., if the mass
less Dirac dispersion is a property shared by all the s
liquids that have the same quantum order as that in Eq.~32!.
The most general perturbations around the U~1!-linear An-
satz, Eq. ~32!, are given by

dui ,i 1m5dum
0 t01~2 ! idum

3 t3, ~149!

ui ,i 1m5um
0 t01~2 ! ium

3 t3,

um
0,350, for m5even,

uPxy~m!
0 5um

0 ,

uPxy~m!
3 52um

3 ,

uPx~m!
0,3 5~2 !mxum

0,3,

uPy~m!
0,3 5~2 !myum

0,3, ~150!

if the perturbations respect translation, parity, and time rev
sal symmetries, and if the perturbations do not break
U~1! gauge structure. Sincedum

3 5dum
0 50 for m5even,

their contributions in momentum space vanish atk5(0,0)
and k5(0,p). The spinon energy also vanishes at tho
points for theAnsatz, Eq. ~32!. Thus the massless Dirac dis
persion is protected by the symmetries and the U~1! gauge
structure in the U~1!-linear spin liquid, Eq.~32!. In other
words, the massless Dirac dispersion is protected by
quantum order in the U~1!-linear spin liquid.

Next we consider if the symmetries and the U~1! gauge
structure in the U~1!-linear spin liquid can be broken spon
taneously due to interactions and fluctuations at low ene
The low-energy effective theory is described by the Lagra
ian ~in imaginary time!
3-29
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L5(
a,m

ca
†g0@vm,agm~]m1 iam!#ca , ~151!

wherem50,1,2,a51,2,gm are 434 g matrices,va
051, and

(v1,a ,v2,a) are velocities forau fermions in thex and y di-
rections. We make a large-N generalization of the above e
fective theory and allowa51,2, . . . ,N. Our first concern is
about whether the self-energy from the gauge interaction
generate any mass/chemical-potential term, due to infra
divergence. It turns out that, in the 1/N expansion, the gaug
fluctuations represent an exact marginal perturbation
does not generate any mass/chemical5potential term.78 In-
stead the gauge interaction changes the quantum fixed p
described by free massless Dirac fermions to a new quan
fixed point which has no free fermionic excitations at lo
energies.34,78The new quantum fixed point has gapless ex
tations and correlation functions all have algebraic dec
Such a quantum fixed point was called an algebraic s
liquid.34 Actually, it is easy to understand why the gau
fluctuations represent an exact marginal perturbation. Th
because the conserved current that couples to the gaug
tential cannot have any anomalous dimensions. Thus, if
gauge interaction is marginal at first order, then it is margi
at all orders. The gauge interaction as an exact marginal
turbation is also supported by the following results. T
gauge-invariant Green’s function ofc is found to be gapless
after coupling to the gauge field, to all orders in the 1N
expansion.78 Recently it was argued that the U~1! gauge in-
teraction does not generate any mass perturbatively e
whenN is as small as 2.79

Now let us discuss other possible instabilities. First
would like consider a possible instability that change
U~1!-linear state to theZ2-linear state. To study such an in
stability we add a charge-2 Higgs field to our effecti
theory:

L5ca
†g0@gm~]m1 iam!#ca1u~]022ia0!fu2

1v2u~] i22ia1!fu21V~f!, ~152!

whereV(f) has its minimum atf50 and we have assume
v1,a5v2,a51 for simplicity. @Note thatf corresponds tol in
Eq. ~39!. It is a nonzerol that breaks the U~1! gauge struc-
ture down to theZ2 gauge structure.# If after integrating out
c and am the resulting effective potentialVeff(ufu) has its
minimum at a nonzerof, then the U~1!-linear state has an
instability towards theZ2-linear state.

To calculateVeff(ufu), we first integrate outc and get

L5
1

2
ampmnan1u@~]022ia0!f#2

1v2u~] i22iai !fu21V~f!, ~153!

where

pmn5
N

8
~p2!21/2~p2dmn2pmpn!. ~154!
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Now the effective potentialVeff(ufu) can be obtained by in-
tegrating outam ~in thea050 gauge! and the phaseu of the
f field, f5reiu ~Ref. 97!:

Veff~f!2V~f!5E
0

` dv

p E d2k

~2p!2

1

2
Im ln$ ln@2K'~ iv!#

1 ln@2Ki~ iv!#%

5E
0

` dv

p E d2k

~2p!2

3Im lnS 2
N

8
~k22v2201!1/224ufu2D ,

~155!

where

K'5
N

8
~v21k2!1/214ufu2,

Ki5
N

8
~v21k2!21/2v214ufu2

v2

v21v2k2

5
v2

v21v2k2 S N

8
~v21k2!1/214ufu2D . ~156!

We find thatVeff5V2C1ufu6 lnufu where C1 is a constant.
Now it is clear that the gapless gauge fluctuations can
shift the minimum ofV from f50 and the U~1!-linear state
is stable against spontaneously changing into theZ2-linear
state.

So far we only considered the effects of perturbative flu
tuations. The nonperturbative instanton effects can also ca
instability of the algebraic spin liquid. The instanton effec
have been discussed in Ref. 60 for the caseva

15va
2. It was

found that the instanton effects represent a relevant pertu
tion which can destabilize the algebraic spin liquid whenN
,24. In the following, we will generalize the analysis o
Ref. 60 to theva

1Þva
2 case. First we rewrite

S5E d3k

~2p!3

1

2
am~2k!pmnan~k!

5E d3k

~2p!3

1

2
f m~2k!Kmn f n~k!, ~157!

where

f m5emnl]nal . ~158!

When pmn5k2dmn2kmkn , we find Kmn5dmn . When pmn

5(k2dmn2kmkn)/Ak2, we may assumeKmn5dmn /Ak2.
Whenv1,aÞv2,a we have
3-30
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~Kmn!5(
a

1

8
~v21v1,a

2 k1
21v2,a

2 k2
2!21/2

3S v1,av2,a 0 0

0 v2,a /v1,a 0

0 0 v1,a /v2,a

D . ~159!

The instanton fieldf m minimizes the action, Eq.~157!, and
satisfies

Kmn f n5c~k!km , ~160!

wherec(k) is chosen such thatkm f m52ip. We find that

f 05
8cv

(a~v21v1,a
2 k1

21v2,a
2 k2

2!21/2v1,av2,a
,

f 15
8ck1

(a~v21v1,a
2 k1

21v2,a
2 k2

2!21/2v2,a /v1,a
,

f 25
8ck2

(a~v21v1,a
2 k1

21v2,a
2 k2

2!21/2v1,a /v2,a
, ~161!

and

c52ipS 8v2

(a~v21v1,a
2 k1

21v2,a
2 k2

2!21/2v1,av2,a

1
8k1

2

(a~v21v1,a
2 k1

21v2,a
2 k2

2!21/2v2,a /v1,a

1
8k2

2

(a~v21v1,a
2 k1

21v2,a
2 k2

2!21/2v1,a /v2,a
D 21

.

~162!

Using the above solution, we can calculate the action fo
single instanton, which has the form

Sinst5
N

2
a~v2 /v1!ln~L !, ~163!

whereL is the size of the system and we have assumed
N/2 fermions have velocity (vx ,vy)5(v1 ,v2) and the other
N/2 fermions have velocity (vx ,vy)5(v2 ,v1). We find
a(1)51/41O(1/N) and a(0.003)531O(1/N). When
(N/2)a(v2 /v1).3, the instanton effect is irrelevant. We s
that even for the caseN52, the instanton effect can be irre
evant for small enoughv2 /v1 . Therefore, the algebraic spi
liquid exists and can be stable.

It has been proposed that the pseudogap metallic sta
underdoped high-Tc superconductors is described by t
~doped! staggered flux state@the U~1!-linear state U1Cn01n#
which contains a long-rangeU~1! gauge interaction.33,34

From the above result, we see that, for realisticv2 /v1;0.1
in high-Tc superconductors, the U1Cn01n spin liquid is un-
stable at low energies. However, this does not mean tha
cannot not use the algebraic spin liquid U1Cn01n to de-
scribe the pseudogap metallic state. It simply means tha
low temperatures, the algebraic spin liquid will change in
16511
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other stable quantum states, such as superconducting sta
antiferromagnetic state80 as observed in experiments.

The unstable algebraic spin liquid can be viewed as
unstable quantum fixed point. Thus the algebraic-spin-liq
approach to the pseudogap metallic state in underdo
samples looks similar to the quantum-critical-poi
approach.81,82 However, there is an important distinction b
tween the two approaches. The quantum-critical-point
proach assumes a nearby continuous phase transition
changes symmetries and strong fluctuations of local or
parameters that cause the criticality. The algebraic-sp
liquid approach does not require any nearby symme
breaking state and there is no local order parameter
fluctuate.

E. Quantum order and the stability of spin liquids

After introducing quantum orders and the PSG, we c
have a deeper discussion of the stability of mean-field sta
The existence of the algebraic spin liquid is a very striki
phenomenon, since gapless excitations interact down to
energy and cannot be described by free fermions or
bosons. According to a conventional wisdom, if bosons a
fermions interact at low energies, the interaction will open
energy gap for those low-lying excitations. This implies th
a system either has free bosonic and fermionic excitation
low energies or has no low-energy excitations at all. Acco
ing to the discussion in Sec. VIII, such conventional wisdo
is incorrect. But it nevertheless raises an important quest
what protects gapless excitations~in particular when they
interact at all energy scales!. There should be a ‘‘reason’’ o
‘‘principle’’ for the existence of the gapless excitations. He
we would like to propose thatit is the quantum order that
protects the gapless excitations. We would like to stress tha
gapless excitations in the Fermi spin liquids and in the al
braic spin liquids exist even without any spontaneous sy
metry breaking and they are not protected by symmetr
The existence of gapless excitations without symme
breaking is a truly remarkable feature of quantum-orde
states. In addition to the gapless Nambu-Goldstone mo
from spontaneous continuous symmetry breaking, quan
orders offer another origin for gapless excitations.

We have seen from several examples discussed in Se
that the quantum order~or the PSG! not only protects the
zero-energy gap, it also protects certain qualitative proper
of the low-energy excitations. Those properties include
linear, quadratic, or gapless dispersions, thek locations
where the two-spinon energyE2s(k) vanishes, etc.

Since quantum order is a generic property for any qu
tum state at zero temperature, we expect that the existenc
interacting gapless excitations is also a generic property
quantum states. We see that the algebraic state is a norm
the Fermi liquid state that is special.

In the following, we would like to argue that the PSG ca
be a stable~or universal! property of a quantum state. It i
robust against perturbative fluctuations. Thus, the PSG,
universal property, can be used to characterize a quan
phase. From the examples discussed in Secs. VIII C
3-31
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VIII D, we see that the PSG protects gapless excitatio
Thus, the stability of the PSG also implies the stability
gapless excitations.

We know that a mean-field spin-liquid state is charact
ized byUi j 5^c ic j

†&. If we include perturbative fluctuation
around the mean-field state, we expectUi j to receive pertur-
bative correctionsdUi j . Here we would like to argue tha
the perturbative fluctuations can only changeUi j in such a
way thatUi j andUi j 1dUi j have the same PSG.

First we would like to note the following well known
facts: the perturbative fluctuations cannot change the sym
tries and the gauge structures. For example, ifUi j and the
Hamiltonian have a symmetry, thendUi j generated by per
turbative fluctuations will have the same symmetry. Sim
larly, the perturbative fluctuations cannot generatedUi j that,
for example, break a U~1! gauge structure down to aZ2
gauge structure.

Since both the gauge structure~described by the IGG! and
the symmetry are part of the PSG, it is reasonable to ge
alize the above observation by saying that not only the I
and the symmetry in the PSG cannot be changed: the w
PSG cannot be changed by the perturbative fluctuations
fact, the mean-field Hamiltonian and the mean-field grou
state are invariant under the transformations in the P
Thus in a perturbative calculation around a mean-field st
the transformations in the PSG behave just like symme
transformations. Therefore, the perturbative fluctuations
only generatedUi j that are invariant under the transform
tions in the PSG.

Since the perturbative fluctuations~by definition! do not
change the phase,Ui j and Ui j 1dUi j describe the same
phase. In other words, we can groupUi j into classes~which
are called universality classes! such thatUi j in each class are
connected by the the perturbative fluctuations and desc
the same phase. We see that if the above argument is
then the universality classes are classified by the PSG’s~or
quantum orders!.

We would like to point out that we have assumed t
perturbative fluctuations to have no infrared divergence
the above discussion. The infrared divergence implies
perturbative fluctuations to be relevant perturbations, wh
cause phase transitions.

IX. RELATION TO PREVIOUSLY CONSTRUCTED
SPIN LIQUIDS

Since the discovery of high-Tc superconductor in 1987
many spin liquids were constructed. After classifying a
constructing a large class of spin liquids, we would like
understand the relation between the previously constru
spin liquids and the spin liquids constructed in this pape

Anderson, Baskaran, and Zou14–16 first used the slave
boson approach to construct a uniform RVB state. The u
form RVB state is a symmetric spin liquid which has all t
symmetries of the lattice. It is a SU~2!-gapless state charac
terized by the PSG SU2An0. Later two more spin liquids
were constructed using the same U~1! slave-boson approach
One is thep-flux phase and the other is the staggered-fl
d-wave state.31,32,83The p-flux phase is a SU~2!-linear sym-
16511
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metric spin liquid characterized by PSG SU2Bn0. The
staggered-flux/d-wave state is a U~1!-linear symmetric spin
liquid characterized by PSG U1Cn01n. The U1Cn01n state
was found to be the mean-field ground for underdop
samples. Upon doping the U1Cn01n state becomes a meta
with a pseudogap at high temperatures and ad-wave super-
conductor at low temperatures.

It is amazing to see that the slave-boson approach, wh
is regarded as a very unreliable approach, predicted
d-wave superconducting state 5 years before its experime
confirmation.21,84–86Maybe predicting thed-wave supercon-
ductor is not a big deal. After all, thed-wave superconducto
is a commonly known state and the paramagn
approach87,88predicted thed-wave superconductor before th
slave-boson approach. However, what is really a big dea
that the slave-boson approach also predicted the pseud
metal which is a completely new state of matter. It is ve
rare in condensed matter physics to predict a new stat
matter before experiments.

The above U~1! and SU~2! spin liquids are likely to be
unstable at low energies and may not appear as the gro
states of spin systems. The first known stable spin liquid
the chiral spin liquid.5,6 It has a true spin-charge separatio
The spinons and holons carry fractional statistics. Suc
state breaks the time reversal and parity symmetries and
SU~2!-gapped state. The SU~2! gauge fluctuations in the chi
ral spin state does not cause any instability since the ga
fluctuations are suppressed and become massive due t
Chern-Simons term. Due to the broken time reversal a
parity symmetries, the chiral spin state does not fit within o
classification scheme.

Spin liquids can also be constructed using the sla
fermion/s-model approach.41,42 Some gapped spin liquid
were constructed using this approach.43,44 Those states turn
out to beZ2 spin liquids. But they are not symmetric sp
liquids since the 90° rotation symmetry is broken. Thus th
do not fit within our classification scheme. Later,
Z2-gapped symmetric spin liquid was constructed using
SU~2! slave-boson approach@or the SU~2! projective
construction#.38 The PSG for such a state is Z2Axx0z. Re-
cently, anotherZ2 state was constructed using slave-bos
approach.63,64It is a Z2-linear-symmetric spin liquid. Its PSG
is given by Z2A0013. NewZ2 spin liquids were also ob-
tained recently using the slave-fermion/s-model approach.46

It appears that most of those states break certain symme
and are not symmetric spin liquids. We would like to me
tion that Z2 spin liquids have a nice property that they a
stable at low energies and can appear as the ground stat
spin systems.

Many spin liquids were also obtained in quantum dim
model47–51 and in various numerical approaches.52–55 It is
hard to compare those states with the spin liquids constru
here. This is because either the spectrum of spin-1 exc
tions was not calculated or the model has a very differ
symmetry than the model discussed here. We need to ge
alize our classification to models with different symmetri
so that we can have a direct comparison with those inter
ing results and with the nonsymmetric spin liquids obtain
in the slave-fermion/s-model approach. In the quantum
3-32
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dimer model and in numerical approaches, we usually kn
the explicit form of the ground-state wave function. How
ever, at this moment, we do not know how to obtain the P
from the ground-wave function. Thus, knowing the expli
ground-state wave function does not help us to obtain
PSG. We see that it is important to understand the rela
between the ground-state wave function and PSG so tha
can understand quantum order in the states obtained in
merical calculations.

X. SUMMARY OF THE MAIN RESULTS

In the following we will list the main results obtained i
this paper. The summary also serves as a guide of the w
paper.

~1! A concept of quantum order is introduced. The qua
tum order describes the orders in zero-temperature quan
states. The opposite of quantum order—classical order
scribes the orders in finite-temperature classical states. M
ematically, the quantum order characterizes universa
classes of complex ground-state wave functions. It is ric
than the classical order that characterizes the univers
classes of positive distribution functions. Quantum ord
cannot be completely described by symmetries and order
rameters. Landau’s theory of orders and phase transit
does not apply to quantum orders~see Sec. I A!.

~2! Projective symmetry group is introduced to descr
different quantum orders. It is argued that the PSG is a u
versal property of a quantum phase. The PSG extends
symmetry group description of classical orders and can
tinguish different quantum orders with the same symmet
~see Secs. IV A and VIII E!.

~3! As an application of the PSG description of quantu
phases, we propose the following principle that governs
continuous phase transition between quantum phases.
PSG1 and PSG2 be the PSG’s of the two quantum phases
the two sides of a transition, and PSGcr be the PSG tha
describes the quantum critical state. Then PSG1#PSGcr and
PSG2#PSGcr . We note that the two quantum phases m
have the same symmetry and continuous quantum p
transitions are possible between quantum phases with s
symmetry.67 The continuous transitions between differe
mean-field symmetric spin liquids are discussed in Sec
and in Ref. 66 which demonstrate the above principle. Ho
ever, for continuous transitions between mean-field sta
we have an additional condition PSG15PSGcr or PSG2
5PSGcr .

~4! With the help of the PSG, we find that, within th
SU~2! mean-field slave-boson approach, there are 4 symm
ric SU~2! spin liquids and infinite many symmetric U~1! spin
liquids. There are at least 103 and at most 196 symmetricZ2
spin liquids. Those symmetric spin liquids have translati
rotation, parity, and time reversal symmetries. Although
classifications are done for the mean-field states, they a
to real physical spin liquids if the corresponding mean-fi
states turn out to be stable against fluctuations~see Sec. IV!.

~5! The stability of mean-field spin liquid states is di
cussed in detail. We find many gapless mean-field spin
uids to be stable against quantum fluctuations. They can
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stable even in the presence of long-range gauge interact
In that case the mean-field spin liquid states become a
braic spin liquids where the gapless excitations interact do
to zero energy~see Sec. VIII!.

~6! The existence of algebraic spin liquids is a strikin
phenomenon since there is no spontaneous broken symm
to protect the gapless excitations. There should be a ‘‘p
ciple’’ that prevents the interacting gapless excitations fr
opening an energy gap and makes the algebraic spin liq
stable. We propose that quantum order is such a principle
support our idea, we showed that just like the symme
group of a classical state determines the gapless Nam
Goldstone modes, the PSG of a quantum state determine
structure of gapless excitations. The gauge group of the l
energy gauge fluctuations is given by the IGG, a subgroup
the PSG. The PSG also protects massless Dirac ferm
from gaining a mass due to radiative corrections. We see
the stabilities of algebraic spin liquids and Fermi spin liqui
are protected by their PSG’s. The existence of gapless e
tations ~the gauge bosons and gapless fermions! without
symmetry breaking is a truly remarkable feature of quantu
ordered states. The gapless gauge and fermion excita
originate from the quantum orders, just like the phono
originate from translation symmetry breaking@see Secs.
VIII C, VIII D, and VIII E and discussions below Eq.~49!#.

~7! Many Z2 spin liquids are constructed. Their low
energy excitations are described by free fermions. SomeZ2
spin liquids have gapless excitations and others have a fi
energy gap. For those gaplessZ2 spin liquids some have
Fermi surface while others have only Fermi points. T
spinon dispersion near the Fermi points can be lineaE
}uku ~which gives usZ2-linear spin liquids! or quadraticE
}k2 ~which gives usZ2-quadratic spin liquids!. In particular,
we find there can be manyZ2-linear spin liquids with differ-
ent quantum orders. All those differentZ2-linear spin liquids
have nodal spinon excitations~see Secs. III and V!.

~8! Many U~1! spin liquids are constructed. Some U~1!
spin liquids have gapless excitations near the isolated Fe
point with a linear dispersion. Those U~1! linear states can be
stable against quantum fluctuations. Due to long-range U~1!
gauge fluctuations, the gapless excitations interact at low
ergies. The U~1!-linear spin liquids can be concrete realiz
tions of algebraic spin liquids34,68 ~see Secs. III and V!.

~9! Spin liquids with the same symmetry and differe
quantum orders can have continuous phase transitions
tween them. Those phase transitions are very similar to
continuous topological phase transitions between quan
Hall states.67,89–91We find that, at the mean-field level, th
U1Cn01n spin liquid in Eq.~32! ~the staggered flux phase!
can continuously change into 8 different symmetricZ2 spin
liquids. The SU2An0 spin liquid in Eq.~30! ~the uniform
RVB state! can continuously change into 12 symmetric U~1!
spin liquids and 52 symmetricZ2 spin liquids. The SU2Bn0
spin liquid in Eq.~31! ~the p-flux phase! can continuously
change into 12 symmetric U~1! spin liquids and 58 symmet
ric Z2 spin liquids~see Ref. 66!.

~10! We show that spectrum of spin-1 excitations~i.e., the
two-spinon spectrum!, which can be probed in neutron sca
tering experiments, can be used to measure quantum or
3-33
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The gapless points of the spin-1 excitations in the U1Cn01n
~the staggered-flux! state are always atk5(p,p), ~0,0!,
~p,0!, and ~0,p!. In the pseudogap metallic phase of und
doped high-Tc superconductors, the observed splitting
the neutron scattering peak (p,p)→(p6d,p),(p,p6d)
~Refs. 30 and 69–75! or (p,p)→(p1d,p2d),(p2d,p
1d) ~Refs. 28 and 76! at low energies indicates a transitio
of the U1Cn01n state into a state with a different quantu
order, if we can indeed identify the scattering peak as
gapless node. None of the eight symmetricZ2 spin liquids in
the neighborhood of the U1Cn01n state can explain the split
ting pattern. Thus we might need to construct a new lo
energy state to explain the splitting. This illustrates that
tailed neutron scattering experiments are powerful tools
detecting quantum orders and studying transitions betw
quantum orders~see Sec. VII!.

~11! The mean-field phase diagram, Fig. 8, for aJ1-J2

spin system is calculated.~Only translation symmetric state
are considered.! We find four mean-field ground states as w
changeJ2 /J1 : the p-flux state~the SU2An0 state!, the chi-
ral spin state@an SU~2!-gapped state#, the U~1!-linear state in
Eq. ~142! which breaks 90° rotation symmetry, and th
SU(2)3SU(2)-linear state in Eq.~141!. We also find severa
locally stable mean-field states: the U~1!-gapped state
U1Cn00x in Eq. ~122! and twoZ2-linear states Z2Azz13 in
Eq. ~104! and Z2A0013 in Eq.~103!. Those spin liquids have
a better chance to appear in underdoped high-Tc supercon-
ductors. The Z2A0013Z2-linear state has a spinon dispersi
very similar to the electron dispersion observed in und
doped samples. The spinon dispersion in the Z2Azz13
Z2-linear state may also be consistent with electron disp
sion in underdoped samples. We note that the two-spi
spectrum for the twoZ2-linear states have some qualitativ
differences@see Figs. 10~a! and 10~b! and note the positions
of the nodes#. Thus we can use neutron scattering to dist
guish the two states~see Sec. VI!.

Next we list some remarks and comments that may cla
certain confusing points and help to avoid possible mis
derstanding.

~a! Gauge structure is simply a redundant labeling
quantum states. The ‘‘gauge symmetries’’~referring different
labels of same physical state give rise to the same result! are
not symmetries and can never be broken@see the discussion
below Eq.~15!#.

~b! The gauge structures referred to in this paper@such as
in Z2 , U~1!, or SU~2! spin liquids# are ‘‘low-energy’’ gauge
structures. They are different from the ‘‘high-energy’’ gau
structures that appear inZ2 , U~1!, and SU~2! slave-boson
approaches. The ‘‘low-energy’’ gauge structures are prop
ties of the quantum orders in the ground state of a spin
tem. The ‘‘high-energy’’ gauge structure is a particular w
of writing down the Hamiltonian of spin systems. The tw
kinds of gauge structures have nothing to do with each o
~see discussions at the end of Sec. I C and at the end of
IV A !.

~c! There are~at least! two different interpretations o
spin-charge separation. The first interpretation~pseudo spin-
charge separation! simply means that the low-energy excit
16511
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second interpretation~true spin-charge separation! means the
existence of free spin-1/2 neutral quasiparticles and sp
charged quasiparticles. In this paper both interpretations
used. The algebraic spin liquids have a pseudo spin-ch
separation. TheZ2 and chiral spin liquids have a true spin
charge separation~see Sec. I C!.

~d! Although in this paper we stress that quantum ord
can be characterized by the PSG’s, we need to point out
the PSG’s do not completely characterize quantum ord
Two different quantum orders may be characterized by
same PSG. As an example, we have seen that theAnsatz, Eq.
~122!, can be a U~1!-linear state or a U~1!-gapped state de
pending on the values of parameters in theAnsatz. Both
states are described by the same PSG U1Cn00x. Thus the
PSG cannot distinguish the different quantum orders car
by the U~1!-linear state and the U~1!-gapped state.

~e! The unstable spin liquids can be important in und
standing the finite-temperature states in high-Tc supercon-
ductors. The pseudogap metallic state in underdoped sam
is likely to be described by the unstable U1Cn01n algebraic
spin liquid ~the staggered flux state! which contains a long-
range U~1! gauge interaction33,34 ~see discussions at the en
of Sec. VIII!.

~f! Although we have been concentrated on the charac
ization of stable quantum states, quantum order and the P
characterization can also be used to describe the interna
der of quantum critical states. Here we define ‘‘quantu
critical states’’ as states that appear at the continuous p
transition points between two states with different symm
tries or between two states with different quantum ord
~but the same symmetry!. We would like to point out that
‘‘quantum critical states’’ thus defined are more general th
‘‘quantum critical points.’’ ‘‘Quantum critical points,’’ by
definition, are the continuous phase transition points betw
two states with different symmetries. The distinction is im
portant. ‘‘Quantum critical points’’ are associated with br
ken symmetries and order parameters. Thus the low-en
excitations at ‘‘quantum critical points’’ come from th
strong fluctuations of order parameters. While ‘‘quantu
critical states’’ may not be related to broken symmetries a
order parameters. In that case it is impossible to relate
gapless fluctuations in a ‘‘quantum critical state’’ to fluctu
tions of an order parameter. The unstable spin liquids m
tioned in ~e! can be more general quantum critical stat
Since some finite temperature phases in high-Tc supercon-
ductors may be described by quantum critical states or st
algebraic spin liquids, their characterization through qu
tum order and PSG’s is useful for describing those fini
temperature phases.

~g! In this paper, we only studied quantum orders a
topological orders at zero temperature. However, we wo
like to point out that topological orders and quantum ord
may also apply to finite-temperature systems. The quan
effect can be important even at finite temperatures. In R
13, a dimension index~DI! is introduced to characterize th
robustness of the ground-state degeneracy of a topologic
ordered state. We find that if DI<1, topological orders can
not exist at finite temperature. However, if DI.1, topologi-
3-34
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cal order can exist at finite temperatures and one expe
finite-temperature phase transition without any change
symmetry. Topological orders in FQH states have DI51, and
they cannot exist at finite temperatures. The topological
der in 3D superconductors has DI52. Such a topologica
order can exist at finite temperatures, and we have a con
ous finite-temperature superconductor-metal transition
does not change any symmetry.

~h! If we regard a down-spin as an empty site and
up-spin as a site occupied by a boson, then our spin sys
can be viewed as an interacting boson system. The gap
spin liquids studied here are examples of boson metals
exist at zero temperature.

Although we mainly discussed quantum orders in 2D s
systems, the concept of quantum order is not limited to
spin systems. The concept applies to any quantum system
any dimensions. Actually, a superconductor is the simp
example of a state with nontrivial quantum order if the d
namical electromagnetic fluctuations are included. A sup
conductor breaks no symmetries and cannot be characte
by order parameters. Ans-wave and ad-wave supercon-
ductor, having the same symmetry, are distinguished only
their different quantum orders. The gapless excitations i
d-wave superconductor are not produced by broken sym
tries, but by quantum orders. We see that a supercondu
has many properties characteristic of quantum-ordered st
and it is a quantum-ordered state. The quantum orders in
superconducting states can also be characterized u
PSG’s. The IGGG5Z2 if the superconducting state is caus
by electron-pair condensation, and the IGGG5Z4 if the su-
perconducting state is caused by four-electron-cluster c
densation. The different quantum orders in ans-wave and a
d-wave superconductor can be distinguished by their dif
ent PSG’s. TheAnsatzof the s-wave superconductor is in
variant under the 90° rotation, while theAnsatz of the
d-wave superconductor is invariant under the 90° rotat
followed by gauge transformationsci→6eip/2ci .

It would be interesting to study quantum orders in 3
systems. In particular, it is interesting to find out the quant
order that describes the physical vacuum that we all live
The existence of light—a massless excitation—without a
sign of spontaneous symmetry breaking suggests that
vacuum contains a nontrivial quantum order that protect
massless photons. Thus quantum order provides an orig
light.58
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APPENDIX A: GENERAL CONDITIONS
ON PROJECTIVE SYMMETRY GROUPS

The transformations in a symmetry group satisfy vario
algebraic relations so that they form a group. Those algeb
relations lead to conditions on the elements of the PS
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Solving those conditions for a given symmetry group and
given IGG allows us to find possible extensions of the sy
metry group or, in another word, to find possible PSG’s
sociated with the symmetry group. In Sec. IV A, we ha
seen that the relationTxTyTx

21Ty
2151 between translations

in the x andy directions leads to the condition

GxTxGyTy~GxTx!
21~GyTy!21

5GxTxGyTyTx
21Gx

21Ty
21Gy

21PG, ~A1!

or

Gx~ i !Gy~ i 2 x̂!Gx
21~ i 2 ŷ!Gy~ i !21PG ~A2!

on elementsGxTx andGyTy of the PSG. HereG is the IGG.
This condition allows us to determine that there are only t
different extensions@given by Eq.~61! and Eq.~62!# for the
translation group generated byTx andTy , if G5Z2 .

However, a bigger symmetry group can have many m
extensions. In the following we are going to consider PSG
for the symmetry group generated by two translationsTx,y ,
three parity transformationsPx,y,xy , and the time reversa
transformationT. Since translations and the time revers
transformation commute, we have

~GxTx!
21~GTT!21GxTxGTTPG,

~GyTy!21~GTT!21GyTyGTTPG, ~A3!

which reduces to the following two conditions onGx,y( i )
andGT( i ):

Gx
21~ i !GT

21~ i !Gx~ i !GT~ i 2 x̂!PG,

Gy
21~ i !GT

21~ i !Gy~ i !GT~ i 2 ŷ!PG. ~A4!

Since T21Px
21TPx51, T21Py

21TPy51, andT21Pxy
21TPxy

51, one can also show that

GT
21

„Px~ i !…GPx

21~ i !GT~ i !GPx
~ i !PG,

GT
21

„Py~ i !…GPy

21~ i !GT~ i !GPy
~ i !PG,

GT
21

„Pxy~ i !…GPxy

21 ~ i !GT~ i !GPxy
~ i !PG. ~A5!

From the relation between the translations and the pa
transformations, TxPx

21TxPx5Ty
21Px

21TyPx5TyPy
21TyPy

5Tx
21Py

21TxPy5Ty
21Pxy

21TxPxy5Tx
21Pxy

21TyPxy51, we
find that

~GxTx!~GPx
Px!

21GxTxGPx
PxPG,

~GyTy!21~GPx
Px!

21GyTyGPx
PxPG, ~A6!

~GyTy!~GPy
Py!21GyTyGPy

PyPG,

~GxTx!
21~GPy

Py!21GxTxGPy
PyPG, ~A7!
3-35
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~GyTy!21~GPxy
Pxy!

21GxTxGPxy
PxyPG,

~GxTx!
21~GPxy

Pxy!
21GyTyGPxy

PxyPG, ~A8!

or

Gx„Px~ i !…GPx

21~ i 1 x̂!Gx~ i 1 x̂!GPx
~ i !PG,

Gy
21

„Px~ i !…GPx

21~ i !Gy~ i !GPx
~ i 2 ŷ!PG, ~A9!

Gy„Py~ i !…GPy

21~ i 1 ŷ!Gy~ i 1 ŷ!GPy
~ i !PG,

Gx
21

„Py~ i !…GPy

21~ i !Gx~ i !GPy
~ i 2 x̂!PG, ~A10!

Gy
21

„Pxy~ i !…GPxy

21 ~ i !Gx~ i !GPxy
~ i 2 x̂!PG,

Gy
21

„Pxy~ i !…GPxy

21 ~ i !Gx~ i !GPxy
~ i 2 ŷ!PG, ~A11!

We also havePxyPxPxyPy
215PyPxPy

21Px
2151. Thus

GPxy
PxyGPx

PxGPxy
Pxy~GPy

Py!21PG,

GPy
PyGPx

Px~GPx
Py!21~GPx

Px!
21PG, ~A12!

which implies

GPxy
~ i !GPx

„Pxy~ i !…GPxy
„PxyPx~ i !…GPy

21~ i !PG,

GPy
~ i !GPx

„Py~ i !…GPy

21
„Px~ i !…GPx

21~ i !PG. ~A13!

The fact thatT251 leads to the condition

GT
2~ i !PG, ~A14!

andPx
25Py

25Pxy
2 51 leads to
f

16511
GPx
~ i !GPx

„Px~ i !…PG,

GPy
~ i !GPy

„Py~ i !…PG,

GPxy
~ i !GPxy

„Pxy~ i !…PG. ~A15!

The above conditions completely determine the PSG
The solutions of the above equations forG5Z2 , U~1!, and
SU~2! allow us to obtain PSG’s forZ2 , U~1!, and SU~2! spin
liquids. However, we would like to point out that the abo
conditions define the so-called algebraic PSG’s, which
somewhat different from the invariant PSG defined in S
IV A. More precisely, an algebraic PSG is defined for a giv
IGG and a given symmetry group SG. It is a group equipp
with a projectionP and satisfies the following conditions:

IGG,PSG, P~PSG!5SG,

P~gu!5P~u!, for any uPPSG andgPIGG.
~A16!

It is clear that an invariant PSG is always an algebraic P
However, some algebraic PSG’s are not invariant PSG
This is because a genericAnsatz ui j that is invariant under an
algebraic PSG may be invariant under a larger invari
PSG. If we limit ourselves to spin liquids constructed usi
ui j , then an algebraic PSG characterizes a mean-field
liquid only when it is also an invariant PSG at the same tim

We would like to remark that the definition of invarian
PSG can be generalized. In Sec. IV A, the invariant PSG
defined as a collection of transformations that leave anAn-
satz ui j invariant. More generally, a spin liquid is not on
characterized by the two-point correlation (Ui j )ab

5^ca icb j
† & but also by many-point correlations such

(Ui jmn)abgl5^ca icb jcgm
† cln

† &. We may define the genera
ized invariant PSG as a collection of transformations t
leave the many-point correlation invariant. It would be ve
interesting to see if the generalized invariant PSG coinci
with the algebraic PSG.
un.
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