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A concept—quantum order—is introduced to describe a new kind of orders that generally appear in quantum
states at zero temperature. Quantum orders that characterize the universality classes of quant(me-states
scribed bycomplexground-state wave functionare much richer than classical orders that characterize the
universality classes of finite-temperature classical statescribed bypositive probability distribution func-
tions). Landau'’s theory for orders and phase transitions does not apply to quantum orders since they cannot be
described by broken symmetries and the associated order parameters. We introduced a mathematical object—
projective symmetry group—to characterize quantum orders. With the help of quantum orders and projective
symmetry groups, we construct hundreds of symmetric spin liquids, which ha¢®,3U(1), or Z, gauge
structures at low energies. We found that various spin liquids can be divided into four clasdRigid spin
liquid—spinons(and all other excitationsare fully gapped and may have bosonic, fermionic, or fractional
statistics.(b) Fermi spin liquid—spinons are gapless and are described by a Fermi liquid th®dkigebraic
spin liquid—spinons are gapless, but they are not described by free fermionic-bosonic quasip@tliBlese
spin liguid—low-lying gapless excitations are described by a free-boson theory. The stability of those spin
liquids is discussed in detail. We find that stable two-dimensional spin liquids exist in the first three classes
(a)—(c). Those stable spin liquids occupy a finite region in phase space and represent quantum phases. Re-
markably, some of the stable quantum phases support gapless excitations even without any spontaneous
symmetry breaking. In particular, the gapless excitations in algebraic spin liquids interact down to zero energy
and the interaction does not open any energy gap. We propose that it is the quantum(iosieasl of
symmetrie that protect the gapless excitations and make algebraic spin liquids and Fermi spin liquids stable.
Since highT superconductors are likely to be described by a gapless spin liquid, the quantum orders and their
projective symmetry group descriptions lay the foundation for a spin liquid approach td higiperconduct-
ors.
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[. INTRODUCTION solids and liquids can appear in many different forms and
states. With so many different states of matter, a general
Due to its long length, we would like to first outline the theory is needed to gain a deeper understanding of the states
structure of the paper so readers can choose to read the pastsmatter.
of interest. Section X summarizes the main results of the AJl the states of matter are distinguished by their internal
paper, which also serves as a guide of the whole paper. Thgructures or orders. The key step in developing a general
concept of quantum order is introduced in Sec. | A. A con-theory for states of matter is the realization that all orders are
crete mathematical description of quantum order is describedssociated with symmetridsr rather the breaking of sym-
in Secs. IVA and IV B. Readers who are interested in themetrie3. Based on the relation between orders and symme-
background and motivation of quantum orders may choosgies, Landau developed a general theory of orders and the
to read Sec. |A. Readers who are familiar with the slavetransitions between different ordeér$Landau’s theory is so
boson approach and just want a quick introduction to quansuccessful and one starts to have a feeling that we under-
tum orders may choose to read Secs. IV A and IV B. Readerstand, in principle, all kinds of orders that matter can have.
who are not familiar with the slave-boson approach may find However, nature never stops surprising us. In 1982, Tsui,
the review in Secs. Il and Il useful. Readers who do not carestormer, and Gossatdliscovered a new kind of state—
about the slave-boson approach but are interested in applicactional quantum-Hal(FQH) liquid.* Quantum-Hall lig-
tions to highT . superconductors and experimental measureuids have many amazing properties. A quantum-Hall liquid is
ments of quantum orders may choose to read Secs. | A, I Bnore “rigid” than a solid (a crystal, in the sense that a
and VIl and consult Figs. 1-15 to gain some intuitive picturequantum Hall liquid cannot be compressed. Thus a quantum
of the spinon dispersion and neutron scattering behavior dfall liquid has a fixed and well-defined density. When we
various spin liquids. measure the electron density in terms of filling factomwe
find that all discovered quantum Hall states have such den-
_ sities that the filling factors are exactly given by some ratio-
A. Topological orders and quantum orders nal numbers, such as=1,1/3,2/3,2/5... Knowing that
Matter can have many different states, such as gas, liquidsQH liquids exist only at certain magical filling factors, one
and solid. Understanding states of matter is the first step igannot help to guess that FQH liquids should have some
understanding matter. Physicists find matter can have mudhternal orders or “patterns.” Different magical filling factors
more different states than just gas, liquid, and solid. Evershould be due to those different internal “patterns.” How-
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ever, the hypothesis of internal “patterns” appears to have In a sense, the classical world described by positive prob-
one difficulty—FQH states are liquids, and how can liquidsabilities is a world with only “black and white.” Landau’s
have any internal “patterns”? theory and the symmetry principle for classical orders are
In 1989, it was realized that the internal orders in FQHcolor-blind which can only describe different “shades of
liquids (as well as the internal orders in chiral spin liqiils ~ gray” in the classical world. The quantum world described
are different from any other known orders and cannot by complex wave functions is a “colorful” world. We need
observed and characterized in any conventional Wdys. {0 use new theories, such as the theory of topological order
What is really new(and strangeabout the orders in chiral and the theory developed in this paper, to describe the rich
spin liquids and FQH liquids is that they are not associatedc!or” of the quantum world. ,
with any symmetriesor the breaking of symmetrigsand The quantum orders in FQH liquids have a special prop-

cannot be described by Landau’s theory using physical ordef'Y that f.i" e_xcitations above grouno_l state have finite_ energy
parameterS.This kind of order is calledopological order gaps. This kind of quantum orders is called topological or-

Tobological order is a new concent and a whole new theorders. In general, a topological order is defined as a quantum
polog 940 P Y%rder where all the excitations above ground state have finite
was developed to describe’it’

. S . . energy gapes.
Knovymg FQH liquids contgm a new kind of or.der'— Topological orders and quantum orders are general prop-
topological order—we would like to ask why FQH liquids gies of any states at zero temperature. Nontrivial topologi-
are so special. What is mlssed_ in Landau’s theory for st_ate@a| orders not only appear in FQH liquids; they also appear
of matter so that the theory fails to capture the topologicajy spin liquids at zero temperature. In fact, the concept of
order in FQH liquids? topological order was first introduced in a study of spin

When we talk about orders in FQH liquids, we are reallyjiquids® FQH liquid is not even the first experimentally ob-
talking about the internal structure of FQH liquids z#ro  served state with nontrivial topological orders. That honor
temperature. In other words, we are talking about the internajoes to the superconducting state discovered in 1911.
structure of the quantum ground state of FQH systems. Soontrast to a common point of view, a superconducting state
the topological order is a property of the ground-state waveannot be characterized by broken symmetries. It contains
function. Landau’s theory is developed for systems at finitenontrivial topological orders and is fundamentally different
temperatures where quantum effects can be ignored. Thigom a superfluid state.
one should not be surprised that Landau's theory does not After a long introduction, now we can state the main sub-
apply to states at zero temperature where quantum effects act of this paper. In this paper, we will study a new class of
important. The very existence of topological orders suggestguantum orders Whe_re the excitations above the ground state
that finite-temperature orders and zero-temperature orde@d® gapless. We believe that the gapless quantum orders are
are different, and zero-temperature orders contain richefMPortantin understanding high superconductors. To con-
structures. We see that what is missed by Landau’s theory R€Ct t0 highT¢ superconductors, we will study quantum or-
simply the quantum effect. Thus FQH liquids are not thatders in quantum spin liquids on a two-dimensioriaD)
special. Landau’s theory and symmetry characterization capduare lattice. We will concentrate on how to characterize
fail for any quantum states at zero temperature. As a cons@nd classify quantum spin liquids with different quantum or-
quence, new kind of orders with no broken symmetries and€s: We introduce projective symmetry groups to help us to
local order parametersuch as topological ordersan exist achieve this goal. The projective symmetry group can be
for any quantum states at zero temperature. Because the of€wed as a generalization of symmetry group that charac-
ders in quantum states at zero temperature and the orders {fffize different classical orders.
classical states at finite temperatures are very different, here
we would like to introduce two concepts to stress their
differences! (a) quantum orders® which describe the
universality classes of quantum ground stdies, the uni- There are many different approaches to the higlsuper-
versality classes otomplex ground-state wave functions conductors. Different physicists have different points of view
with infinity variables, and (b) classical orders which de- on what are the key experimental facts for the highsu-
scribe the universality classes of classical statistical stateggerconductors. The different choice of key experimental
(i.e., the universality classes pbsitiveprobability distribu-  facts leads to many different approaches and theories. The
tion functions with infinity variables spin-liquid approach is based on a point of view that the

From the above definition, it is clear that the quantumhigh-T, superconductors are doped Mott insulafgrs®
orders associated with complex functions are richer than théHere by Mott insulator we means a insulator with an odd
classical orders associated with positive functions. Landausumber of electrons per unit cglMWe believe that the most
theory is a theory for classical orders, which suggests thatnportant property of the higfiw. superconductors is that the
classical orders may be characterized by broken symmetrigsaterials are insulators when the conduction banthal
and local order parametets The existence of topological filled. The charge gap, obtained by the optical conductance
order indicates that quantum orders cannot be completelgxperiments, is about 2 eV, which is much larger than the
characterized by broken symmetries and order parameterantiferromagnetid AF) transition temperaturd 5~ 250 K,
Thus we need to develop a new theory to describe quanturihe superconducting transition temperattie-100 K, and
orders. the spin pseudogap scalie~40 meV’~'° The insulating

B. Spin-liquid approach to high-T. superconductors
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property is completely due to the strong correlations preserdescribed by a Fermi liquid theory(c) Algebraic spin
in the highT, materials. Thus the strong correlations areliquid—spinons are gapless, but they are not described by
expected to play a very important role in understanding highfree fermionic-bosonic quasiparticleggl) Bose spin liquid—
T. superconductors. Many important properties of high- low-lying gapless excitations are described by a free-boson
superconductors can be directly linked to the Mott insulatottheory. We find that some of the constructed spin liquids are
at half filling, such ag@a) the low charge densitf and su-  stable and represent stable quantum phases, while others are
perfluid density;* (b) T, being proportional to dopind.  unstable at low energies due to long-range interactions
«x,?2724 (c) the positive charge carried by the chargecaused by gauge fluctuations. The algebraic spin liquids and
carrier? etc. Fermi spin liquids are interesting since they can be stable
In the spin-liquid approach, the strategy is to try to under-gespite their gapless excitations. Those gapless excitations
stand the properties of the high-superconductors from the are not protected by symmetries. This is particularly striking
low-doping limit. We first study the spin-liquid state at half 5, gigebraic spin liquids since their gapless excitations in-
filling and try to understand the parent Mott insulatém.this  (aract down to zero energy and the states are still stable. We

paper, by spin liquid, we mean a spin state with translation, o qse that it is the quantum orders that protect the gapless
anq Spin rotation symmetjyAt half filling, the charge exci- excitations and ensure the stability of the algebraic spin lig-
tations can be ignored due to the huge charge gap. Thus YWRds and Fermi spin liquids

can use a pure spin model to describe the half filled system. . .
After understand the spin liquid, we try to understand the We would like to point out that both stable and unstable

dynamics of a few doped holes in the spin-liquid states an&pin quéjids ma;;\kl)(; impr(])rtant for understandmr?r hrlghsu—
to obtain the properties of the highs superconductors at perconductors. Although at zero temperature higrsuper-

low doping. One advantage of the spin-liquid approach is_conductors are always_described stable quantum states, some
that experiments (such as angle resolved photo- important states Qf high+, superconductors, such as the
emissiont’82526\MR 27 neutron scatterind~* etc) sug- pseudogap meta}ll[c state for underdoped §§1mples, are ob-
gest that underdoped cuperates have many striking and quafierved only at finite temperatures. Such finite-temperature
tatively new properties which are very different from the states may correspond tdoped unstable spin liquids, such
well-known Fermi liquids. It is thus easier to approve oras the staggered flux state. Thus even unstable spin liquids
disapprove a new theory in the underdoped regime by studyean be useful in understanding finite-temperature metallic
ing those qualitatively new properties. states.

Since the properties of the doped holeach as their sta- There are many different approaches to spin liquids. In
tistics, spin, effective mass, etare completely determined addition to the slave-boson approdch;t6:31-33:35-40gpjn
by the spin correlation in the parent spin liquids, thus in theliquids has been studied using the slave-fermiemodel
spin-liquid approach, each possible spin liquid leads to approach!~* quantum dimer modéf 5! and various nu-
possible theory for high-, superconductors. Using the con- merical methods?~°In particular, the numerical results and
cept of quantum orders, we can say that possible theories foecent experimental resulfsstrongly support the existence
high-T. superconductors in the low-doping limits are classi-of quantum spin liquids in some frustrated systems. A 3D
fied by possible quantum orders in spin liquids on 2D squarguantum orbital liquid was also proposed to exist in
lattices. Thus one way to study high-superconductorsisto L,T,05.%’
construct all possible spin liquids that have the same sym- However, | must point out that there is no generally ac-
metries as those observed in hih-superconductors and cepted numerical results yet that prove the existence of spin
then analyze the physical properties of those spin liquiddiquids with an odd number of electrons per unit cell for
with dopings to see which one actually describes the Aigh- spin-1/2 systems, despite intensive search in the last ten
superconductor. Although we cannot say that we have conyears. But it is my faith that spin liquids exist in spin-1/2
structed all symmetric spin liquids, in this paper we havesystems. For more general systems, spin liquids do exist.
found a way to construct a large class of symmetric spirRead and Sachd&/found stable spin liquids in a SM)
liquids. (Here by symmetric spin liquids we mean spin lig- model in the largeN limit. The spin-1/2 model studied in this
uids with all the lattice symmetries: translation, rotation, par-paper can be easily generalized to the BYJmodel with
ity, and the time reversal symmetrig8Ve also find a way to  N/2 fermions per sité>*®In the largeN limit, one can easily
characterize the quantum orders in those spin liquids via prazonstruct various Hamiltoniaffs®® whose ground states re-
jective symmetry groups. This gives us a global picture ofalize the various (L) andZ, spin liquids constructed in this
possible hight, theories. We would like to mention that a paper. The quantum orders in those laiyepin liquids can
particular ~ spin liquid—the staggered-fldvave  be described by the methods introduced in this pafpehus,
staté?32—may be important for high, superconductors. despite the uncertainly about the existence of spin-1/2 spin
Such a state can expldit* the highly unusual pseudogap liquids, the methods and the results presented in this paper
metallic state found in underdoped cuperdte$,>>?%as well  are not aboufpossibly nonexisting “ghost states.” Those
as thed-wave superconducting state. methods and results apply, at least, to certain |&tgsy/s-

The spin liquids constructed in this paper can be dividedems. In short, nontrivial quantum orders exist in theory. We
into four classesi{a) Rigid spin liquid—spinons are fully just need to find them in natur@n fact, our vacuum is likely
gapped and may have bosonic, fermionic, or fractional stato be a state with a nontrivial quantum order, due to the fact
tistics. (b) Fermi spin liquid—spinons are gapless and arethat light exists®) Knowing the existence of spin liquids

165113-3



XIAO-GANG WEN PHYSICAL REVIEW B 65 165113

in largeN systems, it is not such a big leap to go one steptron system is very interesting. The first concrete example of
further to speculate that spin liquids exist for spin-1/2true spin-charge separation in 2D is given by the chiral spin-
systems. liquid state>® where the gauge interaction between the

spinons and holons becomes short-ranged due to a Chern-

Simons term. The Chern-Simons term breaks time reversal

C. Spin-charge separation in(doped) spin liquids symmetry and gives the spinons and holons a fractional sta-

Spin-charge separation and the associated gauge theorytiﬁtics- Later in 1991, it_was reglized that there is another way
spin liquids (and in doped spin liquidsare very important t0 make the gauge Interaction short ranged through the
concepts in our attempt to understand the properties of higtf:nderson-Higgs mechanisii*® This led to a mean-field
T. superconductor¥ 163960 owever, the exact meaning of theory™ 071‘48the short-ranged resonating valence bond
spin-charge separation is different for different researcherdRVB) staté”“® conjectured earlier. We will call such a state
The term “spin-charge separation” has at least two different® Z2 Spin-liquid state, to stress thmconfined Z gauge field
interpretations. In the first interpretation, the term means thafat appears in thiew-energyeffective theory of those spin
it is better to introduce separate spindasneutral spin-1/2  liquids. (See the r_em.ark.s at the. enq of this section. We also
excitation and holonga spinless excitation with unit change note that theZ, spin liquids studied in Ref. 43 all break the
to understand the dynamical properties of highsupercon- 90° rotation symmetry and are different from the short-
ductors, instead of using the original electrons. Howeverranged RVB state studied Refs. 38, 40, 47, and 8Bce the
there may be long-range interactiofpossibly, even confin- Zz. gauge fluctuations are weak and are n.ot conf.mlng., the
ing interactions at long distancéetween the spinons and SPinons and holons have only short-ranged interactions in the
holons, and the spinons and holons may not be well-defined> Spin-liquid state. The, spin-liquid state also contains a
quasiparticles. We will call this interpretation pseudo spin-Z2 Vortex-like excitatior”®?The spinons and holons can be
charge separation. The algebraic spin liquids have the pseud®sons or fermions depending on if they are bound with the
spin-charge separation. The essence of the pseudo spiz VOrtex.
charge separation is not that spin and charge separhée. Recently, true spin-charge separation, Zegauge struc-
pseudo spin-charge separation is simply another way to safre, and theZ, vortex excitations were also proposed in a
that the gapless excitations cannot be described by free festudy of quantum-disordered superconducting states in a
mions or bosonsIn the second interpretation, the term continuum modéf and in aZ, slave-boson approacfiThe
“spin-charge separation” means that there are osiprt-  resulting liquid statgwhich was named a nodal liquichas
ranged interactions between the spinons and holons. Th&ll the novel properties of &, spin-liquid state such as the
spinons and holons are well-defined quasiparticles at least i, gauge structure and tH#, vortex excitation(which was
the dilute limit or at low energies. We will call the second named visoh From the point of view of the universality
interpretation the true spin-charge separation. The rigid spiglass, the nodal liquid is one kind &, spin liquids. How-
liquids and the Fermi spin liquids have true spin-chargeever, the particulaZ, spin liquid studied in Refs. 38 and 40
separation. and the nodal liquid are two differeit, spin liquids, despite

The electron operator is not a good starting point to dehaving the same symmetry. The spinons in the #rsspin
scribe states with pseudo spin-charge separation or true spiliguid have a finite energy gap while the spinons in the nodal
charge separation. To study those states, we usually rewritigiuid are gapless and have a Dirac-like dispersion. In this
the electron operator as a product of several other operatorgaper, we will use the projective construction to obtain more
Those operators are called parton operat@iise spinon op- general spin liquids. We find that one can construct hundreds
erator and the holon operator are examples of parton operaf differentZ, spin liquids. Some, spin liquids have finite
tors) We then construct the mean-field state in the enlarge@nergy gaps, while others are gapless. Among those gapless
Hilbert space of partons. The gauge structure can be deter-, spin liquids, some have finite Fermi surfaces while others
mined as the most general transformations between the pdrave only Fermi points. The spinons near the Fermi points
tons that leave the electron operator uncharfyédter iden-  can have lineaE(k)|k| or quadraticE(k)<k? dispersions.
tifying the gauge structure, we can project the mean-fieldVe find that there are more than ode spin liquid whose
state onto the physicdii.e., the gauge invariantHilbert  spinons have a massless Dirac-like dispersion. TEgsin
space and obtain a strongly correlated electron state. Thiguids have the same symmetry but different quantum or-
procedure in its general form is called projective construcders. TheirAnsdze are given by Eq.(42), Eq. (39), Eq.
tion. It is a generalization of the slave-boson (106), etc.
approach>16:3336-3840rhe general projective construction  Both chiral spin-liquid andZ, spin-liquid states are Mott
and the related gauge structure have been discussed in detaisulators with one electron per unit cell if not doped. Their
for quantum Hall state¥ Now we see a thirdbut technical internal structures are characterized by a new kind of order—
meaning of spin-charge separation: to construct a strongljopological order—if they are gapped or if the gapless sector
correlated electron state, we need to use partons and projegecouples. Topological order is not related to any symmetries
tive construction. The resulting effective theory naturallyand has ndlocal) order parameters. Thus, the topological
contains a gauge structure. order is robust against all perturbations that can break any

Although it is not clear which interpretation of spin- symmetriesincluding random perturbations that break trans-
charge separation actually applies to hifhsuperconduct- lation symmetry.®° (This point was also emphasized in
ors, the possibility of true spin-charge separation in an elecRef. 65 recently.Even though there are no order parameters
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to characterize them, the topological orders can be charactein Sec. 1l we review S(2) mean-field theory of spin liquids.
ized by other measurable quantum numbers, such as grounith Sec. Ill, we construct simple symmetric spin liquids using
state degeneracy in compact space as proposed in Refs. 9 anghslationally invariantAnsaze In Sec. 1V, the projective
10. Recently, Ref. 65 introduced a very clever experiment tagymmetry group is introduced to characterize quantum or-
test the ground-state degeneracy associated with the noders in spin liquids. In Sec. V, we study the transition be-
trivial topological orders. In addition to the ground-state de-tween different symmetric spin liquids, using the results ob-
generacy, there are other practical ways to detect topologic@ined in Ref. 66, where we find a way to construct all
orders. For example, the excitations on top of a topologicallysymmetric spin liquids in the neighborhood of some well-
ordered state can be defects of the underlying topologicatnown spin liquids. We also study the spinon spectrum to
order, which usually leads to unusual statistics for those exgain some intuitive understanding of the dynamical proper-
citations. Measuring the statistics of those excitations alsgies of the spin liquids. Using the relation between the two-
allows us to measure topological orders. spinon spectrum and quantum order, we propose, in Sec. VII,

The concepts of topological order and quantum order are practical way to use neutron scattering to measure quantum
very important in understanding quantum spin liquids  orders. We study the stability of Fermi spin liquids and alge-
any other strongly correlated quantum liquids this paper  braic spin liquids in Sec. VIII. We find that both Fermi spin
we are going to construct hundreds of different spin liquidsliquids and algebraic spin liquids can exist as zero-
Those spin liquids all have the same symmetry. To undertemperature phases. This is particularly striking for algebraic
stand those spin liquids, we need to first learn how to charspin liquids since their gapless excitations interacts even at
acterize those spin liquids. Those states break no symmetri¢swest energies and there are no free fermionic-bosonic qua-
and hence have no order parameters. One would get into giparticle excitations at low energies. We show how quantum
wrong track if trying to find an order parameter to character-order can protect gapless excitations. The Appendix contains
ize the spin liquids. We need to use a completely new wayan algebraic description of projective symmetry groups,
such as topological orders and quantum orders, to characteshich can be used to classify projective symmetry grdiips.
ize those states. Section X summarizes the main results of the paper.

In addition to the abov&, spin liquids, in this paper we
will also study many other spin liquids with different low- Il. PROJECTIVE CONSTRUCTION

energy gauge structures, such g§)land SU2) gauge struc- OF 2D SPIN LIQUIDS: A REVIEW

tures. We will use the termg, spin liquids, U1) spin lig- OF THE SU(2) SLAVE-BOSON APPROACH
uids, and S) spin liquids to describe them. We would like @

to stress thaZ,, U(1), and SU2) here are gauge groups that  In this section, we are going to use projective construction
appear in the low-energy effective theories of those spin ligto construct 2D spin liquids. We are going to review a par-
uids. They should not be confused with tde, U(1), and ticular projective construction: namely, the &V slave-
SU(2) gauge group in the slave-boson approach or otheboson approact.633:36-3840The gauge structure discov-
theories of projective construction. The latter are high-energgred by Baskaran and Andersbnin the slave-boson
gauge groups. The high-energy gauge groups have nothing &pproach plays a crucial role in our understanding of
do with the low-energy gauge groups. A high-eneiyy  strongly correlated spin liquids.

gauge theoryor aZ, slave-boson approagban have a low- We will concentrate on the spin-liquid states of a pure
energy effective theory that contains &J U(1), or Z,  spin-1/2 model on a 2D square lattice:

gauge fluctuations. Even theJ model, which has no gauge

structure at lattice scale, can have a low-energy effective He =S J.S.S+--- o
theory that contains S@), U(1), or Z, gauge fluctuations. SP'”_<”> = '

The spin liquids studied in this paper all contain some kind

of low-energy gauge fluctuations. Despite their different low-where the summation is over different linke., (ij) andji)
energy gauge groups, all those spin liquids can be conare regarded as the sanand the ellipsis represents possible
structed from any one of S®), U(1), or Z, slave-boson terms which contain three or more spin operators. Those
approaches. After all, all those slave-boson approaches déerms are needed in order for many exotic spin-liquid states
scribe the same-J model and are equivalent to each other.introduced in this paper to become the ground state. To ob-
In short, the high-energy gauge group is related to the way i@in the mean-field ground state of the spin liquids, we intro-
which we write down the Hamiltonian, while the low-energy duce fermionic parton operatds,, @=1,2, which carries
gauge group is a property of the ground state. Thus wé&pin 1/2 and no charge. The spin operaois represented as
should not regard, spin liquids as the spin liquids con-

structed using, slave-boson approach.2 spin liquid can 1.,

be constructed from the (W) or SU2) slave-boson ap- S=5faapfis- @
proaches as well. A precise mathematical definition of the

low-energy gauge group will be given in Sec. IV A. In terms of the fermion operators the Hamiltonian, EL,

can be rewritten as
D. Organization

1
St tiaflsfis].

In this paper we will use the method outlined in Refs. 38 HZE _ %Jij £t s gt figt 5,

and 40 to study gauge structures in various spin-liquid states. i tatlalip
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Here we have use, - 0,/ 5 =208,5/ 00 g~ Oap50ar g - WE
also added proper constant term§if;rafia and
2<ij>f?afiaffﬁfjﬁ to get the above form. Notice that the Hil-
bert space of Eq3) is generated by the parton operatdgs

and is larger than that of Eq1l). The equivalence between
Eq. (1) and Eq.(3) is valid only in the subspace where there
is exactly one fermion per site. Therefore to use £3).to

describe the spin state we need to impose the constraint

flf
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Using Eq.(8) and Eq.(9) we can rewrite Eq(5) and Eq.(7)
as

(yl7y=0, (10)

w

1
53|53 THU{U) = (Ui + He)

Hmear™ E

{in 8

ja™ 11 (4) (ll)

The second constraint is actually a consequence of the first _ .
one. where7, 1=1,2,3, are the Pauli matrices. From Etjl) we

A mean-field ground state at “zeroth” order is obtained can see clearly that the Hamiltonian is invariant under a local
by making the following approximations. First we replace SU(2) transformatior(i):

fiofig€ap=0. +§i: agy T,

la

the constraint, Eq(4), by its ground-state average

(fl.fi=1, (fiufig€ap)=0. (5)

Such a constraint can be enforced by includingsite-
dependent and time-independent Lagrangian multiplier
a{)(i), [=1,2,3, in the Hamiltonian. At zeroth order we ig-
nore the fluctuation§.e., the time dependenkef ay . If we
included the fluctuations af}, the constraint, Eq5), would
become the original constraint, E@).2>163¢37Second we
replace the operatorfgafjﬁ andf;,f;; by their ground-state
expectations value

nij€ap=—2Fiafip)  mi=mi,

Xii8ap=2(fltip),  Xi= X1 (6)

again ignoring their fluctuations. In this way we obtain the_Uii

zeroth-order mean-field Hamiltonian

Tt

3
Hmean:<z> - g‘]ij[(infiTafja'{' 77ijf|a ip€ap
1

FHe= il 2= 71+ 2 {ad(flufia— 1)

+[(ag+iad)fifigeqstH.Cl}.

()

Xij and z;; in Eq. (7) must satisfy the self-consistency co
dition, Eq.(6), and the site-dependent field@(i) are chosen
such that Eq(5) is satisfied by the mean-field ground state.
Suchy;j, 7, anday give us a mean-field solution. The
fluctuations iny;;, #;, and a'o(i) describe the collective
excitations above the mean-field ground state.

The Hamiltonian, Eq(7), and the constraints, Ed4),
have a local S(2) symmetry**" The local SW2) symmetry
becomes explicit if we introduce the doublet

b

—t

n_

i
U

f
fl

2
and matrix

7ij
— Xij

©)

bi—W(i) g,

Ui —W(iHU;W(j). (12
The SU2) gauge structure originates from E¢R). The
SU(2) is the most general transformation between the par-
tons that leave the physical spin operator unchanged. Thus
once we write down the parton expression of the spin opera-
tor, Eq.(2), the gauge structure of the theory is determiffed.
[The SU2) gauge structure discussed here is a high-energy
gauge structuré.

We note that both components @¢fcarry spin up. Thus
the spin-rotation symmetry is not explicit in our formalism
and it is hard to tell if Eq.(11) describes a spin-rotation-
invariant state or not. In fact, for a genefdl; satisfying
=UJTi , Eg. (1) may not describe a spin-rotation-
invariant state. However, i;; has a form

Ujj=ipi;Wij

pij=real number,

then Eqg.(11) will describe a spin-rotation-invariant state.
This is because the abou; can be rewritten in a form of
Eqg. (9). In this case Eq(11) can be rewritten as Eq7)
where the spin-rotation invariance is explicit.

To obtain the mean-field theory, we have enlarged the
Hilbert space. Because of this, the mean-field theory is not
even qualitatively correct. Let ET:L';)F} be the ground state of
the Hamiltonian, Eq(11), with energy E(Uj; ,a!r'). It is
clear that the mean-field ground state is not even a valid
wave function for the spin system since it may not have one
fermion per site. Thus it is very important to include fluctua-
tions of aj, to enforce one-fermion-per-site constraint. With
this understanding, we may obtain a valid wave function of
the spin systemW¥;({a;}) by projecting the mean-field
state to the subspace of one fermion per site:

(Uij)
mejar>' (14)

‘I'spin({ai}):<0|1_i[ fiai|q,
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Now the local SW2) transformation, Eq(12), can have a ever, when the speed of liglt=, a superconductor be-
very physical meaningt‘l'(r:eig)r} and |\I,2]IggglUijWT(j))> give comes similar tq a superfluid and is characterized k%) U
symmetry breaking.
The relation between the mean-field state and the physical
spin-wave function, Eq.14), allows us to construct transfor-
mation of the physical spin wave function from the mean-

rise to the same spin wave function after projection:

Uiy — g (WU W) )
<O|H Fie ¥ mear <O|H Fiaal ¥ mean ) (19 field Ansdze For example the mean-field stdthf:;iab with

Ui’j =U;_; j_, produces a physical spin wave function which
ThusU;; and Ui’j=W(i)UijW*(j) are just two different la- :cs tra.nslatec(lj by sdeSt?quefr_?? thﬁ phyls,lcal spln Wa\Ie
bels which label thesame physical stat@Vithin the mean- gnchon pro uce_ _Wmear>' _e physical state is transia-
field theory, a local S(®) transformation changes a mean- t|03aIrI]y sy_m_megm if and only if the transl?te_@lndsatz U,
y and the originaAnsatz U; are gauge equivalefit does not
field state|\lf(u”)r> to a different mean-field statelf(u'l) If g N gauge eq l(l

meal mear’ * requireUi’j =Ujj). We see that the gauge structure can com-

the two mean-field states always have the same physicgficate our analysis of symmetries, since the physical spin
p;topertle_s, the sthteT] has ? Ioc_:al(S)szmmetryngev_ebr, 4 pyave function¥ ¢ {{e;}) may have more symmetries than
after projection, the physical spin quantum state described by "o statpr Y1)y before projection.

wave function¥ ¢, ({;}) is invariant under the local S@) ) i . :
transformation. A local S(2) transformation just transforms Let us discuss t|me_reversal symmetry in more detail. A
quantum system described by

one labelU;; of a physical spin state to another Iatmeilj
which labels exactly the same physical state. Thus after pro- i7i9, W () =HW (1) (16)
jection, local SW2) transformations become gauge transfor- ) o _
mations. The fact thay;; and U}, label the same physical Nas atime reversal symmetryd(t) satisfying the equation
spin state creates an interesting situation when we consid&f motion implies that¥* (—t) also*sausfymg the equation
the fluctuations ol;; around a mean-field solution—some Of motion. This requires thaki=H®. We see that, for a
fluctuations ofU;; do not change the physical state and aretlnle-rgversal—symmetnc system, ¥f is an eigenstate, then
unphysical. Those fluctuations are called pure gauge fluctua? ~_Will be an eigenstate with the same energy. _
tions. For our system, the time reversal symmetry means that if

The above discussion also indicates that in order for thehe mean-field wave functiomlf:ei;aa:Tl) is a mean-field
mean-field theory to make any sense, we must at least irljround-state wave function foAnsatz (Uj; ,a: 7), then
clude the SW2) gauge (or other gaugge fluctuations de- Ui g )
scribed byal, and W;; in Eq. (13), so that the S(2) gauge (¥ emn )™ will be the mean-field ground-state wave func-
structure of the mean-field theory is revealed and the physition for Ansatz(U% ,ai(7)*). That is,
cal spin state is obtained. We will include the gauge fluctua- y o o
tions to the zeroth-order mean-field theory. The new theory (‘Pi:éééaiﬂ)* =‘l'f]:gr’]ai(” : (17)
will be called the first-order mean-field theory. It is this first- o ]
order mean-field theory that represents a proper low-energyOr & system with time reversal symmetry, the mean-field

effective theory of the spin liquid. energyE(U;; ,al7) satisfies
Here, we would like to make a remark about “gauge sym- | s
metry” and “gauge symmetry breaking.” We see that two E(Ujj a7)=E(Uf ,ai(7)*). (19

Ansdze U; andUj;=W(i)U;;W'(j) have the same physical Thys, if anAnsatz(U;; ,a;7') is a mean-field solution, then
properties. This property is usually called the “gauge sym-(* al(7)*) is also a mean-field solution with the same

metry.” However, from the above discussion, we see that th?ne”a{n-field energy.

‘gauge symmetry” isnota symmetry. A symmetry is about  From the above discussion, we see that under the time

two differentstates having the same propertiely; andUj;  reversal transformation, thensaz transforms as

are just two labels that label the same state, and the same

states always have the same properties. We do not usually UinUi’j =(—i72)Ui’}(i72): -Uj,

call the same state having the same properties a symmetry.

Because the same states always have the same properties, the  al7—a/'7=(—i?)(al/)*(i?)=-al7. (19

“gauge symmetry” can never be broken. It is very mislead- _ .

ing to call the Anderson-Higgs mechanism “gauge symmetr)NOte h-ere we hayezmcluded an additional(3lgauge 'Frans-
breaking.” With this understanding, we see that a superconformationW;=—iz“. We also note that under the time re-
ductor is fundamentally different from a superfiuid. A super-Versal tlrzlzmsformauon, the loop operator transformsPas
fluid is characterized by (1) symmetry breaking, while a =€'’"""7—(—i7?)Pg(i7?)=e "7 We see that the
superconductor has no symmetry breaking once we includg(1) flux changes the sign while the &) flux is not
the dynamical electromagnetic gauge fluctuations. A superchanged.

conductor is actually the first topologically ordered state ob- Before ending this review section, we would like to point
served in experimentsS, which has no symmetry breaking, out that the mean-fieldnsazeof the spin liquidsJ;; can be
no long-range order, and nidocal) order parameter. How- divided into two classes: unfrustratehsaze where Uj;
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only link an even lattice site to an odd lattice site and frus- E.(k)=u’k)*+Eq(k),
tratedAnsazewhereU;; are nonzero between two even sites

and/or two odd sites. An unfrustratéhsatzhas only pure

SU(2) flux through ez_ich plaguette, while an frustratmisatz_ Eo(K) = /z [u'(k) _alo]z_ (26)
has U1) flux of multiple of #/2 through some plaquettes in [

addition to the S(R) flux.
The constraints can be obtained fro?Eground/aa'o=0 and
I1l. SPIN LIQUIDS FROM TRANSLATIONALLY have the form
INVARIANT ANSATZ

| | [ |
In this section, we will study many simple examples of NGl A gy= S u (k)—ao_ u'(k)—ao _
spin liquids and theirAnsatz Through those simple ex- T kEf<o Eo(K)  kEef<o  Eo(k) '
amples, we gain some understanding as to what kind of spin (27
liquids are possible. This understanding helps us to develop
the characterization and classification of spin liquids usingvhich allows us to determing), | =1,2,3. It is interesting to
projective symmetry groups. see that ifui°=0 and theAnsatzis unfrustrated, then we can
Using the above S(2) projective construction, one can simply chooseay=0 to satisfy the mean-field constraints
construct many spin-liquid states. To limit ourselves, we will (since u#(k) = —u#[k+ (,7)] for unfrustratedAnsatzg.
concentrate on spin liquids with translation and 90° rotationsuch Ansaze always have time reversal symmetry. This is
symmetries. Although a mean-fielinsatzwith translation becausdJ;; and—U;; are gauge equivalent for unfrustrated
and rotation invariance always generates a spin liquid withansaze
translation and rotation Symmetries, a mean-fidldsatz Now let us Study some Simp|e examp|es_ First let us as-
without those invariances can also generate a spin liquid witdume that only the nearest-neighbor couplingsnd uy are
those symmetrie¥: Because of this, it is quite difficult to nonzero. In order for theAnsatzto describe a rotationally
construct all the translation- and rotation-symmetric spin lig-symmetric state, the rotatéchsatzmust be gauge equivalent

uids. In this section we will consider a simpler problem. Wetg the originalAnsatz One can easily check that the follow-
will limit ourselves to spin liquids generated from transla- jng Ansatzhas rotation symmetry:

tionally invariantAnsaze
. [ _
Uirrj+1=Uij,  agi)=ap. (20 ap=0,

In this case, we only need to find the conditions under which 5 1

the aboveAnsdze can give rise to a rotationally symmetric U=x7+ 97,

spin liquid. First let us introduce;; :
3 u§,=)(73— 7Tt (28
gJijUij:uij' (21)

For translationally invariantAnsdze we can introduce a

shorthand notation

since the 90° rotation followed by a gauge transformation
W, =i 73 leaves theAnsatzunchanged. The abovensatzalso
has time reversal symmetry, since the time reversal transfor-
mation u;;— —u;; followed by a gauge transformatiow;
uj=ut L TR=u g, (22 =i7? leaves theAnsatzunchanged.
To understand the gauge fluctuations around the above
whereu;>* are real,u is imaginary,7° is the identity ma- mean-field state, we note that the mean-figidsatz may
trix, and 7% are the Pauli matrices. The fermion spectrumgenerate nontrivial S@) flux through plaquettes. That flux
is determined by the Hamiltonian may break the S(2) gauge structure down to (W) or Z,
gauge structures as discussed in Refs. 38 and 40. In particu-
_ o ol 1 lar, the dynamics of the gauge fluctuations in the breakdown
H <.EJ> (# uJ_'¢J+H'C')+Ei vidordi. (23 from SU(2) to Z, has been discussed in detail in Ref. 40.
In k space we have According to Refs. 38 and 40, the 8) flux plays the role
of Higgs fields. A nontrivial S(2) flux corresponds to a
condensation of Higgs fields which can break the gauge

Hz—E wl[u”(k)—ag]r”zpk, (24 structure and give the SB) and/or Ul) gauge boson a
k mass. Thus to understand the dynamics of the gauge fluctua-
wherex=0,1,2,3, tions, we need to find the §P) flux.

The SU?2) flux is defined for loops with a base point. The
il Kk loop starts and ends at the base point. For example, we can
U”(k):Z upre (29 consider the following two loop€£, , with the same base
pointi: C;=i—i+X—i+X+y—i+y—i andC, is the 90°
aJ=0, andN is the total number of sites. The fermion spec-rotation of C;: C,=i—i+§—i—X+J—i—KX—i. The
trum has two branches and is given by SU(2) flux for the two loops is defined as
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_ Tt
Pe, = Ui i gUi i+ %+ 9Ui+ &+, +xUi+%i = UgUgUgUg

_ ot
Pc, = Ui i—xUi— i —x+§Ui—x+§,i +yUi+7,i = UgUgUgUy .
(29

As discussed in Refs. 38 and 40, if the @Uflux P for
all loops is trivialPc= 7°, then the S(R) gauge structure is
unbroken. This is the case whe » or whenn=0 in the
above Ansatz Eq. (28). The spinon in the spin liquid de-

scribed byn=0 has a large Fermi surface. We will call this

state the S(2)-gapless statéThis state is called the uniform
RVB state in the literaturg. The state withy= 7 has gap-
less spinons only at isolatdd points. We will call such a
state a SP)-linear state to stress the linear dispersBn

«|k| near the Fermi points(Such a state was called the under

7-flux state in the literaturg. The low-energy effective

PHYSICAL REVIEW B35 165113
| _
ay=0,
ug=in70— x(r°— 7",

(33

with x and » nonzero. The abovénsatz describes the
SU(2)-gapless spin liquid ify=0, and the S(R)-linear spin
liquid if »=0.

After a 90° rotationRgy, the aboveAnsatzbecomes

ug=i 7]7'0—)((7'3+ ),

ux=—in'—x(r°+ 1),

3 l)'

u§,=i7770—x(7' -7 (39

The rotatedAnsatzis gauge equivalent to the originahsatz
the gauge transformationGRgo(i)=(—)'X(1
—i7%)/v2. After a parity x— —x transformationP,, Eq.

theory for the SWR2)-linear state is described by massless(33) becomes

Dirac fermions(the spinonscoupled to a S(2) gauge field.
After proper gauge transformations, the (@\Jgapless
Ansatzcan be rewritten as

Ug=1x,
ug=iy (30
and the SW2)-linear Ansatzas
Ui i+x= X,
U ig=i(—)"xx. (31

ux=—inr'=x(r°= 1),

(35

which is gauge equivalent to the origindhsatzunder the
gauge transformatiorGp (i)=(—)"i(7+7")/v2. Under
time reversal transformatiof, Eq. (33) is changed to

uy=i 0= (2 +71),

ux=—in7'+x(r°— 1Y),

(36)

which is again gauge equivalent to the origidasatzunder
the gauge transformatioB(i)=(—)". [In fact anyAnsatz

Ug=—i 0+ x (2 + 1),

In these forms, the SI@) gauge structure is explicit since Which only has links between two nonoverlapping sublattices
ujj i °. Here we would also like to mention that under the (i-€., the unfrustrated\nsatz is time reversal symmetric if

projective-symmetry-group classification, the (8lJgapless
AnsatzEq. (30), is labeled by SU2A0 and the S(R)-linear
AnsdzeEq. (31), by SU2B10 [see Eq(100].

When x# n#0, the flux P¢ is nontrivial. However,P
commutes withP-, as long as the two loopS andC’ have
the same base point. In this case the&\gauge structure is
broken down to a (1) gauge structuré®*® The gapless
spinon still only appears at isolatéd points. We will call
such a state a (@)-linear state.(This state was called the
staggered flux state and/dvwave pairing state in the litera-
ture) After a proper gauge transformation, thelWlinear
state can also be described by thesatz

Uiivz=ix— (=)' n7,

Upig=ix+(—)'n7, (32

a'o=0.] To summarize, thé\nsatz Eq. (33), is invariant un-
der the rotatiorRqg, parity P,, and time reversal transfor-
mation T, followed by the following gauge transformations

Gry (1) =(—)*(1—i )2,
Gp, (i)= ()i (++ THIV2,

Gr(i)=(=)". (37)
Thus theAnsatz Eq. (33), describes a spin liquid with trans-
lation, rotation, parity, and time reversal symmetries.

Using time reversal symmetry we can show that the van-
ishing a, in our Ansatz Eq. (33), indeed satisfy the con-
straint, Eq.(27). This is because,— —ay under the time
reversal transformation. ThUSE neaydap,=0 whenah=0
for any time-reversal-symmetridnsatz including the An-

where the 1) gauge structure is explicit. Under the Satz Eq.(33). o _
projective-symmetry-group classification, such a state is la- The spinon spectrum is given lhgee Fig. %a)]

beled by U1®01n (see Sec. IVE The low-energy effec-
tive theory is described by massless Dirac fermigtie
spinong coupled to a W1) gauge field.

E. =27[sin(ky) +sin(k,)]= 2| x|V2 cos(k,) + 2 cos(ky).
(39

The above results are all known. In the following we areThe spinons have two Fermi points and two small Fermi
going to study a new class of translation and rotation sympockets(for small %). The SU2) flux is nontrivial. Further-

metric Ansatz which has the form

more,Pc andPc, do not commute. Thus the $2) gauge
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structure is broken down to @, gauge structure by the Thus the spinons are gapless only at fokir points
SU) flux Pc and Pg,.*** We will call the spin liquid  (+/2, =7/2). We also find thaP¢, and P, do not com-
described by Eq(33) a Z2-gapless spin liquid. The low- mute, where the loop€;=i—i+X—i+2X—i+2X+§—i
energy effective theory is described by massless Dirac fermiand C,=i—i+y—i+2y—i+2y—X—i. Thus the SR)

ons and fermions with small Fermi surfaces, coupled@ a fluxes Pc, and Pc, break the S\(2) gauge structure down to
gauge field. Since th&, gauge interaction is irrelevant at g 7, gauge structure. The spin liquid described by E39)

low energies, the spinons afiee fermions at low energies || be called theZ,-linear spin liquid. The low-energy ef-
and we have a true spin-charge separation in)gapless  fective theory is described by massless Dirac fermions
spin liquid. TheZ,-gapless spin liquid is one of th&, spin  coupled to aZ, gauge field. Again th&, coupling is irrel-
liquids classified in Ref. 66. Its projective symmetry group iSevant and the spinons are free fermions at low energies. We
labeled by Z2A*73737° or equivalently by Z2A2(12)n  have a true spin-charge separation. According to the classifi-

[see Sec. IV B and Ed85)]. cation scheme summarized in Sec. IV B, the abéydinear
Now let us include longer links. First we still limit our- spin liquid is Iab'eled by Z2A008 ' .
selves to unfrustratedinsaze An interestingAnsatzs given Next let us discuss frustratetinsaze A simple Z, spin
by liquid can be obtained from the following frustratédsédze
a,=0, as#, ay=0,
.3 1
u;(=)(7'3+ 777_1, Ug=x7 +n1,
3 1 Ug=x7>—nt,
Uy=x7—1n7, y
— 3
Ug o= YT,
U2§<+§/:)\TZ, X+y
, U s4y= y7o. (42
U-g+29= AT, The Ansatzhas translation, rotation, parity, and the time re-
oo om N2 versal symmetries. Whea3+ 0, y# *+ , and yn#0, ah7
-y ' does not commute with the loop operators. ThusAhsatz
-~ > breaks the S(2) gauge structure to A, gauge structure. The
Ugyo9= —NT7° (39

spinon spectrum is given Hpee Fig. 1a)]
By definition, theAnsatzis invariant under translation and E. =+ V@R TA%K
parity x— — x. After a 90° rotation, thé\nsatzis changed to == Ve (k) +A%(k),

e(k)=2x[cogk,) +cogk,)]
+ad2y[cogke+k,) + cogky— k)1,

uz=—x7°— 77,

uy= _XT3+ 7]7’1,
A(k)=2n[cogk,) —cogk,)]+a3, (43)

which is gapless only at fouk points with a linear disper-
sion. Thus the spin liquid described by E42) is aZ,-linear
spin liquid, which has a true spin-charge separation. The
Z,-linear spin liquid is described by the projective symmetry
group Z2A0032 or equivalently Z2A001Gee Sec. IVR
Us oo 4\ 72 (40) From the above two examples Bb-linear spin liquids, we
x+2y T find that it is possible to obtain true spin-charge separation
which is gauge equivalent to E€B9) under the gauge trans- With massless Dirac pointéor nodes within a pure spin
formation Gg (i) =ir5. Thus theAnsdze describe a spin model without charge fluctuations. We also find that there is

liquid with translation, rotation, parity, and the time reversalMO€ than one way to do it.

symmetries. The spinon spectrum is given[bge Fig. 1c)] ralé;}’ﬁ':;gﬂi%\gn frustratedAnsatzis the Ansatzfor the chi-

_ 2
Uost 9= —\T5,
U 5425~ +\ 7,

Upg—y=— )\7'2,

E.==* e (k)2 + ex(k)?+ e3(k)?, Ug=— x7°— x 7%,
1= —2x[ cogk,) +cogk,)], Uy=—x7m+x7,
€,=—27[cog k,) —cogk,)], Ugiy= 777,
€3= — 2\[cog 2k, + ky) + cog 2k, —k,) Uogsg=—n7"
— cogky— 2K,) — cos ky+ 2k,) . (41) a,=0. (44
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The chiral spin liquid breaks the time reversal and paritymations to distinguish different spin liquids with the same
symmetries. The S() gauge structure is unbrokéhThe  symmetry. In the following, we will introduce the projective
low-energy effective theory is an $B) Chern-Simons symmetry group in a general and formal setting.

theory(of level 1). The spinons are gapped and have a semi- We know that to find quantum numbers that characterize a
onic statistics:® The third interesting frustratednsatzis phase is to find the universal properties of the phase. For

given in Refs. 38 and 40: classical systems, we know that symmetry is a universal
3 property of a phase and we can use symmetry to characterize

Ug=uy=—Xx7", different classical phases. To find universal properties of

g ) guantum phases we need to find universal properties of

Uy = N7+ AT many-body wave functions. This is too hard. Here we want

to simplify the problem by limiting ourselves to a subclass of
many-body wave functions which can be describedAlny

satz (uj; ,ay™) via Eq. (14). Instead of looking for the uni-
versal properties of many-body wave functions, we try to
This Ansatzhas translation, rotation, parity, and time reversalfind the universal properties @énsatz(u;; ,a'or'). Certainly,
symmetries. The spinons are fully gapped and th€2pU one may object that the universal properties of Amsatz(or
gauge structure is broken down tdZa gauge structure. We the subclass of wave functionsnay not be the universal
may call such a state &,-gapped spin liquidit was called properties of the spin quantum phase. This is indeed the case
the RVB state in Refs. 38 and %0t is described by the for someAnsdze However, if the mean-field state described
projective symmetry group Z2#0z. Both the chiral spin by Ansatz(u;; ,ay™) is stable against fluctuatiorse., the
liquid and theZ,-gapped spin liquid have true spin-charge fluctuations around the mean-field state do not cause any

U_g+9= 777'1—)\7'2,

a3®=0, ag#0. (45)

separation. infrared divergence then the mean-field state faithfully de-
scribes a spin quantum state and the universal properties of
IV. QUANTUM ORDERS IN SYMMETRIC SPIN LIQUIDS the Ansatzwill be the universal properties of the correspond

spin quantum phase. This completes the link between the
properties ofAnsazeand properties of physical spin liquids.
We have seen that there can be many different spin liquidblotivated by Landau’s theory for classical orders, here we
with the samesymmetries. The stability analysis in Sec. VIII whould like to propose that the invariance gro(g the
shows that many of those spin liquids occupy a finite regiori'symmetry” group) of an Ansatzis a universal property of
in phase space and represent stable quantum phases. So HeeAnsatz Such a group will be called the projective sym-
we are facing a similar situation as in the quantum Hall ef-metry group(PSG. We will show that the PSG can be used
fect: there are many distinct quantum phases not separatéd characterize quantum orders in quantum spin liquids.
by symmetries and order parameters. The quantum Hall lig- Let us give a detailed definition of the PSG. A PSG is a
uids have finite energy gaps and are rigid states. The conceptoperty of anAnstaz It is formed by all the transformations
of topological order was introduced to describe the internathat keep theAnsatzunchanged. Each transformatigaor
order of those rigid states. Here we can also use the top@ach element in the P§@an be written as a combination of
logical order to describe the internal orders of rigid spin lig-a symmetry transformatioty (such as translationand a
uids. However, we also have many other stable quantum spigauge transformatio®,, . The invariance of thénsatzun-

A. Quantum orders and projective symmetry groups

liquids that have gapless excitations. der its PSG can be expressed as
To describe internal orders in gapless quantum spin lig-
uids (as well as gapped spin liquigsve have introduced a GuU(u) =y,
new concept—quantum order—which describes the internal
orders in any quantum phases. The key point in introducing U(uij)) =Uuyiyug) »
guantum orders is that quantum phases, in general, cannot be
completely characterized by broken symmetries and local or- Gy (ui))=Gy(i )UijGL(J' ),
der parameters. This point is illustrated by the quantum Hall
states and by the stable spin liquids constructed in this paper. Gu(i)eSU2), (46)

However, to make the concept of quantum order useful, we
need to find concrete mathematical characterizations of thiyr eachG U € PSG.

quantum orders. Since quantum orders are not described by Every PSG contains a special subgroup, which will be
symmetries and order parameters, we need to find a congalled invariant gauge grouppGG). The IGG(denoted byg)
pletely new way to characterize them. Here we would like tofor an Ansatzis formed by all the gauge transformations that
propose to use the projective symmetry group to characterizeave theAnsatzunchanged:

guantum(or topologica) orders in quantum spin liquids. The

projective symmetry group is motivated from the following g:{Wi|WiuijoT:uij W, e SU(2)}. (47
observation. AlthougtAnsdze for different symmetric spin

liquids all have the same symmetry, thasdzeare invariant  If we want to relate the IGG to a symmetry transformation,
under symmetry transformations followed differentgauge  then the associated transformation is simply an identity
transformations. We can use those different gauge transfotransformation.
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If the IGG is nontrivial, then for a fixed symmetry trans- Now we consider the following type of fluctuations around
formation U there can be many gauge transformati@®s  the mean-field solution; : uijzjijeiaﬁ ° Sinceu;; is in-
that leave theAnsatzunchanged. IiG,U is in the PSG of
ujj , GGyU will also be in the PSG iffs € G. Thus, for each _ VR
symmetry transformatiob, the different choices o, have spaﬂal-dep_endeant gauge t;ansformatebﬁ will transforr3n
a one-to-one correspondence with the elements in the 1GANe ﬂl;ctuanona” t0 @jj=aj;+ 6 — 6;. This means thatj
From the above definition, we see that the PSG, the IGG, an@nda;} label the same physical state aafl correspond to

variant under the constant gauge transformat@b?f3, a

the symmetry grougSG) of an Ansatzare related: gauge fluctuations. The energy of the fluctuations has a
gauge invarianc&({af}}) =E({&}}). We see that the mass
SG=PSG/IGG. (48)  term of the gauge field,aﬁ)z, is not allowed and the (1)

_ _ _ o ~ gauge fluctuations described bﬁj will appear at low ener-
This relation tells us that a PSG is a projective representatiofjjes.

or an extension of the symmetry grotfp(In the Appendix If the U(1) subgroup ofg is formed by spatial-dependent
we will introduce a closely related but different definition of gauge transformations

the PSG. To distinguish the two definitions, we will call the

PSG defined above the invariant PSG and the PSG defined in (W, =€ 79 e[0,2m),|n| =1} CG, (51)
the Appendix the algebraic PSG.

Certainly the PSG’s for two gauge-equivaléamisdaze y;  we can always use an $2) gauge transformation to rotate
andW(i)u;W'(j) are related. FronWGyU(u;;)=W(u;}),  n, to theZ direction on every site and reduce the problem to
Wherew(uy)EW(i)UijWT(J’), we find WGyUW ™ "W(ujj)  the one discussed above. Thus, regardless if the gauge trans-
=WGyWy 'UW(u;;) =W(u;;), where Wy=UWU™ ! is  formations in the IGG have spatial dependence or not, the
given by Wy (i)=W(U(i)). Thus if GyU is in the PSG of gauge group for low-energy gauge fluctuations is always
Ansatz y, then WGyWy)U is in the PSG of gauge- given byg.
transformedAnsatz Wi)uijWT(j). We see that the gauge  We would like to remark that sometimes low-energy
transformatiorGy associated with the symmetry transforma- gauge fluctuations not only appear nkar0, but also appear

tion U is changed in the following way: near some othek points. In this case, we will have several
low-energy gauge fields, one for eaktpoint. Examples of
Gyu(i)—W(i)Gy(HWTU(i)) (49)  this phenomenon are given by somesdze of SU(2) slave-
boson theory discussed in Sec. VI, which have an SU(2)
after a gauge transformatiof(i). X SU(2) gauge structures at low energies. We see that the

Since the PSG is a property of Amsatzwe can group all  Jow-energy gauge structure SU(2BU(2) can even be
the Ansdze sharing the same PSG together to form a classlarger than the high-energy gauge structurgBIUEven for
We claim that such a class is formed by one or several unithis complicated case where low-energy gauge fluctuations
versality classes that correspond to quantum phaéesore  appear around differerk points, the IGG still correctly de-
detailed discussion of this important point is given in Sec.scribes the low-energy gauge structure of the corresponding
VIIIE.) Itis in this sense that we say that quantum orders ar@nsatz If the IGG contains gauge transformations that are
characterized by PSG's. independent of spatial coordinates, then such transformations
We know that a classical order can be described by itgorrespond to the gauge group for gapless gauge fluctuations
symmetry properties. Mathematically, we say that a classicahear k=0. If the IGG contains gauge transformations that
order is characterized by its symmetry group. Using the prodepend on spatial coordinates, then those transformations
jective symmetry group to describe a quantum order, concefzorrespond to the gauge group for gapless gauge fluctuations
tually, is similar to using the symmetry group to describe anear nonzerd. Thus the IGG gives us a unified treatment of
classical order. The symmetry description of a classical ordesll low-energy gauge fluctuations, regardless of their mo-
is very useful since it allows us to obtain many universalmenta.
properties, such as the number of Nambu-Goldstone modes, |n this paper, we have used the terfsspin liquids, U1)
without knowing the details of the system. Similarly, know- spin liquids, SW2) spin liquids, and SU(2¥SU(2) spin
ing the PSG of a quantum order also allows us to obtain th@quids in many places. Now we can have a precise definition
low-energy properties of a quantum system without knowinggf those low-energyZ,, U(1), SU?2), and SU(2)X SU(2)
its details. As an example, we will discuss a particular kindgauge groups. Those low-energy gauge groups are nothing
of low-energy fluctuations—the gauge fluctuations—in apyt the IGG of the correspondinfgnsaze They have noth-
guantum state. We will show that the low-energy gauge flucing to do with the high-energy gauge groups that appear in
tuations can be determined completely from the PSG. In faghe Sy?2), u(2), or Z, slave-boson approaches. We also used
the gauge group of the low-energy gauge fluctuations ighe termsz, gauge structure, (1) gauge structure, and
nothing but the IGG of thé\nsatz SU(2) gauge structure of a mean-field state. Their precise
To see this, let us assume that, as an example, andGG mathematical meaning is again the IGG of the corresponding
contains a 1) subgroup which is formed by the following Anastz When we say a (1) gauge structure is broken down

constant gauge transformations: to aZ, gauge structure, we mean that Ansatzis changed
. in such a way that its IGG is changed from thellto theZ,
{W;=€'%"|9e[0,2m)} CG. (500  group.
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B. Classification of symmetricZ, spin liquids

PHYSICAL REVIEW B35 165113

Gu(i)G H(i—§)=—7". (60)

As an application of the PSG characterization of quantuMynen combined with Eq(55) and Eq.(56), we find that

orders in spin liquids, we would like to classify the PSG’s

associated with translation transformations assuming th
IGG G=Z,. Such a classification leads to a classification of

translation-symmetri@, spin liquids.
When G=2,, it contains two elements—gauge transfor-
mationsG; andG,:

G={G1,Ga},

G,(i)=7° Gy(i)=—7" (52)

Let us assume thatz, spin liquid has a translation symme-

try. The PSG associated with the translation group is gene

ated by four elements G, T, , =G, T, where
Tx(Ui) =Ui—z -5,  Ty(Uj)=Ui—gj-y. (53

Due to the translation symmetry of th&nsatz we can
choose a gauge in which all the loop operators ofAhsatz
are translation invariant. That iE>,C1= Pc, if the two loops

C, andC, are related by a translation. We will call such a
gauge a uniform gauge.

Under transformatios, T, , a loop operatoP. based at
i transforms asPc— Gy(i")Pr cG(i")=Gy(i")PcGL(i")
wherei’ =T,i is the base point of the translated lodgC).
We see that translation invariance Bz in the uniform
gauge requires

GX(I ) = i 7-01

Gy(i)==7° (54

there are only two gauge-inequivalent extensions of the
franslation group when IGG i§=Z,. The two PSG’s are
given by

GX(i):TO!

Gy(i)=1" (61)

and

=70

Gu(i)=(—)v7%  Gy(i) (62

Thus, under PSG classification, there are only two types of
Z, spin liquids if they have only the translation symmetry

gnd no other symmetries. Thiensdze that satisfy Eq(61)

have a form
Ui i+m=Um (63
and the ones that satisfy E@2) have a form
Up g m=(—)™*Up,. (64)

Through the above example, we see that the PSG is a very
powerful tool. It can lead to a complete classification of
(mean-field spin liquids with prescribed symmetries and
low-energy gauge structures.

In the above, we have studigg spin liquids which have
only the translation symmetry and no other symmetries. We
find that there are only two types of such spin liquids. How-
ever, if spin liquids have more symmetries, then they can
have much more types. In Ref. 66, we give a classification of
symmetricZ, spin liquids using the PSG. Here we use the

since different loop operators based at the same base point germ “symmetric spin liquid” to refer to a spin liquid with

not commute forZ, spin liquids. We note that the gauge
transformations of the formV(i)=+ 7° do not change the

translation-invariant property of the loop operators. Thus we— (—i, dy), Py

can use such gauge transformations to further simi@ify,
through Eq.(49). First we can choose a gauge to make

G,(i)=1" (55)

We note that a gauge transformation satisfyilg(i)
=W(i,) does not change the conditicmy(i)zro. We can
use such a kind of gauge transformations to make

Gyl(ix,iy=0)=7° (56)

Since the translations in theandy directions commute,
G,y must satisfy(for any Ansatz Z, or notZ,)

Gy TuGyTy(G, T H(GyT,) ™+

=G,T,G,T,T, 'G, 'T,'G, ' eG. (57)
That means
Gx(i)Gy(i—%)G, H(i—§)Gy(i) *eg. (58
For Z, spin liquids, Eq.58) reduces to
Gy()Gy Hi—=§)=+17° (59

or

translation symmetryl
and

time reversal symmetryl: u;;
three parity symmetriesP,: (iy,iy)
(ix,iy) = (ix,—iy), and Py, (ix,iy)
—(iy,iy). The three parity symmetries also imply a 90° ro-
tation symmetry. The classification is obtained by noticing
that the gauge transformatio@s,, pr’py‘pxy, andGyt must

satisfy certain algebraic relationsee the Appendix A
Solving those algebraic relations and factoring out
gauge-equivalent solutioi8, we find that there are 272
different extensions of the symmetry gro{ipy  ,Py y xy, T}

if IGG G=Z,. Those PSG's are generated by
(GxTx,GyTy,G7T,Gp Py ,prPy ,pryPXy). The PSG's
can be divided into two classes. The first class is given by

Xy

Gu(i)=17° Gy(i)=7°
Gp ()= nixxpxnixypygpx, Gp ()= nixxpynixypxgpy,
Gp, ()=, Grli)=mgr (65
and the second class by
Gui)=(—)v7", Gy i)=1,
Gp ()= 71,570, Gp ()= 1% m%,9p ,
Gp ()=(—)"gp , Grl)=ngr. (66
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Here the threej's can independently take two valugd. g's
have 17 different choices which are given (sge Ref. 66

gr=1° (67)

_ .0 .0
Opxy= T, gPX_T

Opwy=7" Op =17, gp =i7", gr=7% (69

Upxy=i7°, 9p, = 7, gPy:TO’ gr=7% (69
Opxy=17%, Qp =i7 9p,= ™, gr=1% (70
Opxy=17°, Qp =i7 gpy—”'l, gr=7% (71
Ipxy=7" Gp, =70 Gp =7 gr=i7h (72
Opyy=T", 9p, =17 Gp =IT gr=i7r% (73
Opy=7" Op =ith, gp=it", gr=i7; (74
Upxy=i7°, 9p, = °, gp =7, gr=it%  (7H
ngy:iTS: 9p, =177, Qp =IT gr=i7% (76)
Opxy=i7% Op =iT Op, =17, gr=ir% (77
Upxy=17", 9p, = 7° 9p,= °, gr=ir% (78
Upxy=17" ng=i7'3, 9p, =17 gr=i7% (79
ngy:iTl: QPX:ile gpy—'T gr=i7% (80
Opxy=17" QPX:iTzv 9p, =IT gr=i7% (81
Upxy=17", QPX:iTl' gp =i, gr=ir% (82
Upxy=17", gpx=i7-1, gp =it gr=ir% (83
where
PO (84
v2 V2

Thus there are 217x23=

liquids on a 2D square lattice.

To label the 272 PSG’s, we propose the following

scheme:

Z2A(9px) 5, (Ipy)

Mxpx

gpz;(gt)ntl (85)

Txpy

Upy(G) (86)

Txpy

Z2B(9px) 4,,,(9py)

Mxpx

The label Z2A... corresponds to the case of &&%), and the

label Z2B... corresponds to the case of Eg6). A typical
label will look like Z2A7t 72 71273

replacing ¢°, 7

272 different PSG’s. They can
potentially lead to 272 different types of symmetdg spin

We will also use an
abbreviated notation. An abbreviated notation is obtained by
L7273 or (72,71 ,72,73) by (0,1,2,3 and

PHYSICAL REVIEW B 65 165113

(°,71,7%,73) by (n,x.y,2. For example, Z2A! 7% 7273

can be abbreviated as Z2A(12)z.

Those 272 differenZ, PSG’s, strictly speaking, are the
so-called algebraic PSG’s. The algebraic PSG’s are defined
as extensions of the symmetry group. They can be calculated
through the algebraic relations listed in the Appendix. The
algebraic PSG's are different from the invariant PSG’s which
are defined as a collection of all transformations that leave an
Ansatz y invariant. Although an invariant PSG must be an
algebraic PSG, an algebraic PSG may not be an invariant
PSG. This is because certain algebraic PSG’s have the fol-
lowing properties: anyAnsatz  that is invariant under an
algebraic PSG may actually be invariant under a larger PSG.
In this case the original algebraic PSG cannot be an invariant
PSG of theAnsatz The invariant PSG of thAnsatzs really
given by the larger PSG. If we limit ourselves to the spin
liquids constructed through thénsatz y , then we should
drop the algebraic PSG’s that are not invariant PSG’s. This is
because those algebraic PSG's do not characterize mean-field
spin liquids.

We find that among the 272 algebrddg PSG’s, at least
76 of them are not invariant PSG’s. Thus the 272 algebraic
Z, PSG's can at most lead to 196 possile spin liquids.
Since some of the mean-field spin liquid states may not sur-
vive the quantum fluctuations, the number of physigal
spin liquids is even smaller. However, for the physical spin
liquids that can be obtained through the mean-field states, the
PSG’s do offer a characterization of the quantum orders in
those spin liquids.

C. Classification of symmetric U1) and SU(2) spin liquids

In addition to the Z,-symmetric spin liquids studied
above, there can be symmetric spin liquids whose low-
energy gauge structure is(l) or SU?2). Such U1l)- and
SU(2)-symmetric spin liquidgat the mean-field levilare
classified by W1)- and SU2)-symmetric PSG’s. The (O)-
and SU2)-symmetric PSG’s are calculated in Ref. 66. In the
following we just summarize the results.

We find that the PSG's that characterize mean-field sym-
metric U1) spin liquids can be divided into four types: U1A,
U1B, U1C, and UI'. There are 24 type-U1A PSG's:

Gx=g3( ex)v Gy=g3( ay)a
Gp, = W;,ypxgs( Opx)s  Gep,

G Pay gs( ‘9pxy) )

= 7.0,93(0py),
gs( apxy)i 71,

Gr= a0y -1, MIa(B)iT (87)

and
G,=0a(0), Gy=0a(0y),
Gp = n‘;pxgs( Op)i T, Gp =70 Ga(Opy)i 7,
93(0pxy) 93(Opxy)i T

Gr= 77{93( 00 y-1, maa(6)i T, (88)
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where

ga(0)=¢€""" (89)

We will use Ulha, b,7 cd,, to label the 24 PSG'sa, b,
xpx  “Typx t

¢, andd are associated With‘;px, pr, Gny’ and Gy, re-

spectively. They are equal td if the correspondings con-
tains ar' and equal tar® otherwise. A typical notation looks

like U1A7* 717%71 which can be abbreviated as U$20x.
There are also 24 type-U1B PSG's:

G,=(—)"gs(6), Gy=0s(6y),
Gp = ﬂ;ypxga( Opx) Gp, = ﬂ;xpxga( Opy),
(_)ixinny: 93(Opxy),  9al epxy)iTlr

Gr=m03(0)] = -1, MYa(6)i " (90)

and

Gx:(_)iy93(0x)a GyZQS( gy)r
Gp, = 7,5,05(0p)i 7' Gp = 1%, 03(0py)i 7
(_)ixinPXy= 9a( gpxy)v 9a( 0pxy)i7'1,

Gr=n03(00| -1, 7Ga(B)iT" (91)

We will use UlB, b, cd,, to label the 24 PSG's.
xpx  “Typx t

The 60 type-U1C PSG'’s are given by
Gx=03(6yi Tla Gy:g3( ey)l Tl:

Gp, = nixxpxniyypxgs( Op),  Gp,= n;xpxnipyx( Opy),
Ge,, = nipxxyg3< ”irjxyZW + apxy) ,
Gr=70a(0)] y= 1, M3,0a(0)IT, (92
Gy=03(00)i7", Gy=gs(6y)i
Gp, = 7,505(0pi T Gp = 1)k, MpyGal Opy)i 7
GPXy: 77ipxxy93< 77ipxyZ7T + 0pxy> ,
Gr=703(0)] y= 1. M mOa(B)iTh (99
Gy=03(6)it, Gy=03(6,)it,
Gp = ﬂ;xpxﬂ;ypxgs( Opx) GPy: ﬂ;xpxﬂi(ypxgs,( Opy) s
GPXy: 93(Opuy)i T

Gr=m03(0)] =1, (94)

PHYSICAL REVIEW B35 165113

GX293(0X)iTll GyZQS(ay)iTli

G, = Moo ps33(Opx)s G, = 7),71,%,93(0py),
Pay Js3 77pxy4 pxy 177

Gr= 775, NI B)i T, (95)

GX:gS(ex)iTlr GyZQS(Gy)ile

Gsz 77|XXng3( 0px)i Tl! GPy= n;(ypxnipxyg3( apy)i Tla
i 1
GPXy: 93 npxyz + Opxy |1 77,

Gr=m0s(00| =1, M7 Ga(0)iT,  (96)

which will be labeled by Ui1@, b, c, d,.
xpx  Typx pxy "t
The type-U{' PSG’s have not been classified. However,
we do know that for each rational numbern e (0,1), there
exists at least one mean-field symmetric spin liquid, which is

described by thénsatz

_ .3 _ mm. | 5
Uiiex= X7 Uiieg=X9s| ——Ix| 7 (97)
It has7Tm/n flux per plaquette. Thus there are infinite many
type-U 1] spin liquids.

We would like to point out that the above 108 [41B,C]
PSG’s are algebraic PSG’s. They are only a subset of all
possible algebraic (1) PSG'’s. However, they do contain all
the invariant Y1) PSG's of type U1A, U1B, and U1C. We
find that 46 of the 108 PSG’s are also invariant PSG's. Thus
there are 46 different mean-field(1) spin liquids of type
U1A, U1B, and U1C. TheiAnsatzand labels are given in
Ref. 66.

To classify symmetric S(2) spin liquids, we find eight
different SU2) PSG’s which are given by

Gy(i) =0y, Gy(i):gyu

S
GPy(l )= 77xxpy77xypxg Py

GPX(i )= ﬁ;xpxﬂ;ypyg P,
Gp, (1=0p,, Gr()=(-)'gr (99)

and
Gui)=(—)vgx, Gy(i)=gy,

A M
GPy(l )= NypyTxpxd Py

Gp ()= nixxpxnixypygpx,
pry(i)=(—)‘xiy9pxy, Gr(i)=(—)"gr, (99

whereg's are in SU2). We would like to use the notation
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SUZAT?, 79] , We would like to stress that the above results on the con-
Xpx Xy tinuous transitions are valid only at the mean-field level.

SUZBr‘f, 79] (100 Spme of.the mean-field results survive the quantum fluctua-
xpx “xpy tions while others do not. One needs to do a case-by-case

to denote the above eight PSG's. Swﬁ/f},[??xpy is for Eq.  study tq see which mean-field results can pe valid bgyond the
(98) and SU2B9, 75  for Eq.(99). We find that only four '[\?vzaer:}-f;aelgl}(h;}?gwl;)Tiizaios:pﬁ] T;jggi'g ;ar;'gggdbe'

. Y - .
of the eight SU2) PSG.S’ SL.JZ'MQ’O“] and SU2$n0,m],' spin liquid was studied. In particular the effects of quantum
lead to SW2) symmetric spin liquids. The SU2# state is fluctuations were discussed

the uniform RVB state and the SUAB state Is ther-flux We would also like to point out that all the above spin

state. The other two SW) spin liquids are given by liquids have the same symmetry. Thus the continuous transi-

SU2AO0N . . :
' tions between them, if they exist, represent a new class of
U i ooro=+iysO continuous transitions which do not change any
ii+2x+y XT 67
symmetrie$.
Uii—2x+9= — ix7°,
Uiisiroy= +iXTO! B. Symmetric spin liquids
around the U(1)-linear spin liquid U1Cn01n
f a1y 0
Uii—g+29= TIXT, (10D The SU2)-linear state SU2BO (the m-flux state, the
and SU2B®, U(1)-linear state U1@01n (the staggered-flugéwave statg
‘ and the SWR2)-gapless state SUZ® (the uniform RVB
Ui g oxeg=+i(=)xx7, statg are closely related to high; superconductors. They
_ . reproduce the observed electron spectra function for un-
Uii—axy=—1(—)*xT, doped, underdoped, and overdoped samples, respectively.
. However, theoretically, those spin liquids are unstable at low
Uii+x+2§= TIXT, energies due to the (W) or SU(2) gauge fluctuations. Those
0 states may change into more stable spin liquids in their
Uii—x+2§= TIXT (102 neighborhood. In the next few subsections, we are going to

The above results give us a classification of symmetricsmdy those more stable spin liquids. Since there are still

U(1) and SUY2) spin liquids at the mean-field level. If a many d!ffergl_wt spin liquids ipvc_)l_ved, we will only present
mean-field state is stable against fluctuations, it will corre-30Me S|mpl|f|ed. re;uI'Fs by.“m't'ng the length of nonzero
spond to a physical (1)- or SU2)-symmetric spin liquids. links. Thosg spin I|q.U|ds WIFh short links should be more
In this way the U1) and SU2) PSG’s also provide a descrip- stable for simple spin Hamiltonians. The length of a link
tion of some physical spin liquids. betweeni andj is defined agi,—j,|+|i,—j,|. By studying

the spinon dispersion in those mean-field states, we can un-

V. CONTINUOUS TRANSITIONS AND SPINON SPECTRA derstand some basic physical properties of those spin liquids,

IN SYMMETRIC SPIN LIQUIDS such as their stability against the gauge fluctuations and the

qualitative behaviors of spin correlations which can be mea-

A. Continuous phase transitions without symmetry breaking  syred by neutron scattering. Those results allow us to iden-

After classifying mean-field symmetric spin liquids, we tify them if those spin liquids exist in certain samples or
would like to know how those symmetric spin liquids are appear in numerical calculations. We would like to point out
related to each other. In particular, we would like to knowthat we will only study symmetric spin liquids here. The
which spin liquids can change into each other througlo  above three unstable spin liquids may also change into some
tinuousphase transition. This problem is studied in detail inother states that break certain symmetries. Such symmetry
Ref. 66, where the symmetric spin liquids in the neighbor-breaking transitions actually have been observed in figh-
hood of some important symmetric spin liquids were ob-superconductoréuch as the transitions to antiferromagnetic
tained. After lengthy calculations, we found all the mean-state,d-wave superconducting state, and stripe $tate
field symmetric spin liquids around th&,-linear state First, let us consider the spin liquids around thél)J
Z2A001n in Eq. (39), the U1)-linear state U1@01n in Eq. linear state U1@01n. In the neighborhood of the UXD1n
(32), the SU2)-gapless state SUZM in Eq. (30), and the Ansatz Eq. (32), there are eight different spin liquids that
SU(2)-linear state SU2BO0 in Eq. (31). We find that, at the break the W1) gauge structure down toz, gauge structure.
mean-field level, the ()-linear spin liquid U1®@01n can  Those eight spin liquids are labeled by different PSG’s de-
continuously change into 8 differer, spin liquids, the spite all having the same symmetry. In the following, we will
SU(2)-gapless spin liquid SU2A0 can continuously change study those eigh, spin liquids in more detail. In particular,
into 12 W1) spin liquids and 52Z, spin liquids, and the we would like to find out the spinon spectra in them.
SU(2)-linear spin liquid SU2B0 can continuously change The first one is labeled by Z2A0013 and takes the follow-
into 12 U1) spin liquids and 5&, spin liquids. ing form:
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_ 1 2
Ui i+x=XT — 77",

_ o1 2
Uii+y=XT T 777,
Uiiszsg=+ 71T

ii+Xx+y Y17,
Ui zi9=* 7
ii—X+y Y17
1
Ui isox= Y2+ \p72,
1 2
Ui jr2§= Y2T —AoT%,

ag#0, az®=0. (103

It has the same quantum order as that inAlneatzEq. (42).

The label Z2A0013 tells us the PSG that characterizes the

spin liquid. The seconénsatzis labeled by Z2&Z713:
ui,i+§<:XTl_ 7]sz
Ui,i+9:XTl+ 772,

717'1-

Uii+x+y= —
_ 1

Uii—x+y= T Y17

Ui it 2x=Uii+25=0,

ag?®=0.

(104

The third one is labeled by Z2A001 (or equivalently
Z2A003):

ap=0,
Uiis=xT"+ 77,
Uiig=x7"= 77,
Ui,i+2§<+9:)\7'3:
Ui i-3+25= — AT,
Ui+ 25-5= N7,
(109

Such a spin liquid has the same quantum order ag¥3)-
The fourth one is labeled by Z2Zn:

e 3
Uii+x+29= — AT

ap=0,

Uiis=xT"+ 77,
Uiy =x7"= 77,
Uity =Xa7 + mar2 TP,
Uiiogr2g= X127 = T2+ AT,
Ui is2i-g= X1 + M 72— N 75,

Uiitir2g=X1T — Mo — N 7o (106)
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The above fourAnsadze have translation invariance. The

next fourZ, Ansazedo not have translation invariand@ut

they still describe translation symmetric spin liquids after the

projection) ThoseZ, spin liquids are the following.
Z2B0013:

Ui,i+>‘<:XTl_777'2,
Uiivy=(—)x(x7+ 777,
Uiit2x=— Y27 +\o7,
Ui i+29= = Y27 = No7,

ag#0, a2®=o. (107
Z2Bz713:

U= X7 — 77,
U ig= (=) n72),
Ui,i+2>‘<+2§/:_71Tl,
Uii—2x+2y= Y
ag?®=0. (108
Z2B001n:
Ui x=x7+ 97,
Ui ey=(—)X(x7" =777,
Uj it oxry=(— )N T,
Ui,i—>“<+2y:—)\7'3,
Uj s xmy= ()N 72,
Ui,i+§<+2y:_)\7'3,
ay=0. (109
Z2BzZ7ln:
=0,
ug=(=)x(x7" = n7?),
U2§<+y:(_)ix()(17'1+ MmTHNT),
U groy=X1T = T2+ N T,
Uzify:(_)ix(XlTl"‘ M —\T),
U>‘<+2y=X17'1_ M= \T3,

ah=0. (110
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1l

[N SIS

FIG. 1. Contour plot of the
spinon dispersionE (k) as a
function of (k,/2m,k,/2m) for the
Z,-linear spin liquids.(a) is for
the Z2A0013 state in Eq(103),
(b) for the Z2AzZ13 state in Eq.

4 (104), (c) for the Z2A00h state
% — in Eg. (105, and (d) for the
0% - Z2AzZln state in Eq.(106).

The spinons are gapless at four isolated points with d@rum vanishes at eight isolated points né&ar(w/2,+ 7/2)
linear dispersion for the first fouZ, spin liquids Eq.(103, [see Fig. 2a)]. Thus the state Z2B0013 is &,-linear spin
Eq. (104), Eg. (105, and Eq.(106) (see Fig. 1L Therefore liquid.
the four Ansaze describe symmetri@,-linear spin liquids. Knowing the translation symmetry of the abaxglinear
The single-spinon dispersion for the secaf spin liquid  spin liquid, it seems strange to find that the spinon spectrum
Z2AzZ13 is quite interesting. It has 90° rotation symmetryis defined only on half of the lattice Brillouin zone. However,
aroundk=(0,77) and parity symmetry abow=(0,0). One this is not inconsistent with translation symmetry since the
very important thing to notice is that the spinon dispersionssingle-spinon excitation is not physical. Only two-spinon ex-
for the fourZ,-linear spin liquids, Eq(103), Eq. (104), Eq.  citations correspond to physical excitations and their spec-
(105, and Eq.(106), have some qualitative differences be- trum should be defined on the full Brillouin zone. Now the
tween them. Those differences can be used to physicallproblem is that how to obtain the two-spinon spectrum de-
measure quantum ordefsee Sec. V). fined on the full Brillouin zone from the single-spinon spec-
Next let us consider thénsatzZ2B0013 in Eq.(107).  trum defined on half of the Brillouin zone. L&, 1) and |k,
The spinon spectrum for thensatz Eq.(107), is determined  2) be the two eigenstates of the single spinon with positive
by energiesE, (k) and E,(k) [herek,e (—w/2,m/2) andk, e
(=, m)]. The translation by (followed by a gauge trans-
H=—2x cogk,)I'y—27cogk,)I',—2y cogky)I'; formation changesk, 1) and |k, 2) to the other two eigen-
states with the same energies:
+27700$ky)r3+)\r4, (111)

k,)—|k+=79,1),
wherek, e (0,7), kye (—m,7), and [k, 1)—|k+7¥,1)

Fo=rl®, I=rer [k, 2)—|k+7§,2). (113
Now we see that the momentum and energy of the two-

=707, T3=7?@7, spinon  states |ky,a1)|ky, az) £ [Ky+ 7Y, a1) Ko+ 7Y, @)
are given by

_ 15,0
Fe=rer, (112 Ey-cpinor= Ea, (k) + Ea (K2,
assumingy; ,=\,=0. The four bands of spinon dispersion
have a form* E;(k), = E,(k). We find that the spinon spec- k=k;+k,, ki+k,+ 7K. (114
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. ! ! FIG. 2. Contour plot of
| | | the spinon dispersion
r 05 o e 1—1 min(E;(k),E,(k)) as a function
b) ’ ’ of (k27 k,/27) for the Z,-linear
states(a) is for the Z2B0013 state
1 in Eq. (107), (b) for the Z2B 13
B @®@@® .- mmaLras s
: . = state in Eq. , an
e’t‘ P> H E =—105 % - (d) for the Z2Bz71n state in Eq.
5 e — 110.
B @®® = -
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Equation(114) allows us to construct the two-spinon spec-wherek, e (0,7), k, e (—,7), and

trum from the single-spinon spectrum.
Now let us consider thé\nsatzZ2BzZz13 in Eq. (108).
The spinon spectrum for thensatz Eq. (108), is determined

by
H

2x cogk,)I'g—2n cogk,)I',—2x cogk,)I";
+2ncogky)l'3—2y, cog 2k, +2k,)I'4

+ 21y, cog 2k, — 2k,)T4, (115
wherek, € (0,7), kye (—m,m), and
Iy=r'e®r, I'i=re,
F2:7'2®7'3, F3=7'2®7'1,
I,=r'®7°. (116

We find the spinon spectrum to vanish at two isolated points

k=(m/2,=m/2) [see Fig. &)]. The state Z2Bz13 is a
Zs-linear spin liquid.

The spinon spectrum for thA&nsatzZ2B00In in Eq.
(109 is determined by

H=—2x cogk,)['o—27ncogk,)I',—2y cogk,)I'y
+2n cogky) '3+ 2N [cogk,+ 2ky) + cog — K,
+2ky) " s— 2\[ cog 2k, + ky) + cog 2k, — k) IT's,

(117

Fo=7te7, T';=7ter,
F2:7'2®T3, F3=7'2®Tl,
I,=r87, Is=rer. (118

The spinon spectrum vanishes at two isolated poiats
=(m/2,=ml2) [see Fig. 2c)]. The state Z2B0Q1i is also a
Z,-linear spin liquid.

The spinon spectrum for thAnsatzZ2Bzzln in Eq.
(110 can be obtained from

H=—2x cogk,)I'o—27ncogk,)Il',—2y cogk,)I';
+ 27 cogky) '3+ 2\ [ cog k,+ 2k,) — coq — Ky
+2ky) ]I's— 2\[ coq 2k, + ky) — cog 2k, — k) ]T's,

(119
wherek, € (0,7), k, e (— 7, 7), and
Fo=r'®7, TI'j=rer,
F2=72®T3, F3=7'2®Tl,
=787, I's=rer. (120

We have also assumed that= 7, =0. The spinon spectrum
vanishes at two isolated points=(=/2,+= w/2) [see Fig.
2(d)]. The state Z2BZzLn is again aZ,-linear spin liquid.
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C. Symmetric spin liquids around the SU?2)-gapless spin U1Cx10x state:
liquid SU2An0

L A= 1
There are many types of symmetAnsdzein the neigh- Uiiex=XT5  Uiisg=XT

borhood of the S(P)-gapless state, Eq30). Let us first
consider the 12 classes of symmetriq1l spin liquids
around the S(2)-gapless state. Here we just present the 123

i ; ; a; =0,
simple cases wheng; are nonzero only for links with length 0
<2. Among the 12 classes of symmetAmsaze we find
that 5 classes actually give us the @Wgapless spin liquid
when the link length is limited te<2. The other 7 symmetric )

U(1) spin liquids are given below. Ge,,= °, Gr=ir (124

The U1(01n state: ULA0001 state:

= 3
Uivx+y= =77 Uji—x+9~ 777

Ui i+x=XT — 77, Ui,i+§/:X7'1+ 77, Ui i+x=ix7° U iﬂ”,:i)(TO,
a023 0, ui,i+§(+§/:_771731 Ui i—x+y~ 7717'
Gx:Gy: TO, GPX:GPy: 7.0' Ui 2™ 7727 Uii+29= 7727'
123 0
Gp, =it Gr=(—)'7". (121

G=Gy=1° (-)"Gp =(—)"Gp =7
In the above, we have also listed the gauge transformations Y
Gyy» pr,py,pxy, and Gt associated translation, parity, and GPXy: P Gr=i(—)irt (125
time reversal transformations. Those gauge transformations
define the PSG that characterizes thél)Uspin liquid. In ~ U1AQ011 state:
Sec. IV C, we have introduced a notation Uidn to label

. ) i, 0 0
the above PSG. We will use the same notation to label the Uii+x=IXT Uii+g=IXT,
Ansatz 3

U1Cn0O0Ox state: Uiiv2x= — 727,  Ujj+29~= 7lzT
123_
Uii+x= XT ui,i+§/:X7'1a Qo 0,

G,=G,=7, (—)xGp =(—)xGp =
Uii+x+9~= 7]17'3' Uii—x+y~= 7717' X Y (=) Px (=) Py
Gp =i7t, Gr=i(—)'7 (126
Uii+2x= 727, Uii+29~= 727, Pxy T
U1Ax10x state:
ag=7ns, ag’=o0, L0 0
Ui i+x=IXT, Ui ipg=IXT,

Gy=G,=1% Gp =Gp =17°,
Y X y Ui i+x+y~= 777 Ui i—x+y~= 777'1

Gp,,= P, Gr=irl (122 al?3=0,
U1Cn01x state: G,=G,=1", (—)iXGpX=(—)iXpr=irl,
U= X7 Upiag=xT Gp, = ©, Gr=i(—)'r. (127
Upisoi=— 1275 Uiisy= 727, In addition to the labels, we also explicitly list the gauge

transformationsG, , , prypyypxy, and Gy for eachAnsatz

aév2v3:o, Note that when we define the labels of thélUPSG from
the gauge transformatiornS, ,, Gp p p , and Gy, we
Y x'Ty Xy

Gy=G,=1° Gp =Gp =1° have chosen a particular gauge called the canonical gauge. In
X y the canonical gauge, the IGG is generated by a constant

il 07 :
Gp —irl, Gy=id2 (123 gauge transformatior'’”. Some of the abovAnsdze are

Xy given in the canonical gauge while others are not. For the
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FIG. 3. Contour plot of the
spinon dispersionE (k) as a
function of (k,/27,k,/2m) for (a)
the U(1)-linear state U1@00x in
Eq. (122 and (b) the U1)-
quadratic state UDX0x in Eq.
(124). In the U1)-quadratic state,
the spinon energy vanishes &k?
near two pointk=(,0),(07).
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latter Ansaze the listed gauge transformation§,,,  U1A0011 state in Eq(126), and the ULA10x state in Eq.
prypy,pxy, andGy are different from those in the canonical (127) are U1)-gapless statetsee Fig. 4 Again the spinon
gauge. dispersions for the (1) spin liquids have some qualitative
Equation (121) is the U1Gi01n U(1)-linear state(the  differences between each other, which can be used to detect
staggered flux statestudied before. After examining the different quantum orders in those(1) spin liquids.
spinon dispersion, we find that the Ud@x state in Eq. We next consider the 52 classes of symme#ic spin
(122) can be a 1)-linear or a W1)-gapped state depending liquids around the S(2)-gapless state. Here we just present
on the value ofag. If it is a U(1)-linear state, it will have the simplest case wherg; are nonzero only for links with
eight isolated Fermi pointgsee Fig. 8a)]. The U101x  length<1. We find that 48 out of the 52 classesAufisaze
state in Eq(123) is a U1)-gapless statgsee Fig. 4a)]. The  reduce to W1) or SU?2) spin liquids when the link’s length is
U1Cx10x state in EQ.(124) has two Fermi points ak; <1. In the following we discuss the four remaini@g An-
=(m,0) andk,=(0,7) [see Fig. 80)]. However, the spinon saze
energy has a quadratic fori(k)«(k—k;»)? neark; and The first one isZ, spin liquid Z2Ax2(12)n described by
k,. Thus we call the U1&€10x spin liquid, Eq.(124), a U(1)- Eqg. (33). The second one iZ, spin liquid Z2A0013 de-
quadratic state. The U1A0001 state in E@.25, the scribed by Eq(103 or Eq.(42). The third one isZ, spin

FIG. 4. Contour plot of the
spinon dispersionE (k) as a
function of (k,/2m,k,/2m) for the
U(1)-gapless statega) is for the
U1Cn01x state in Eq.(123), (b)
for the UL1AO0001 state in Eq.
(125, (c) for the ULA0011 state
in Eqg. (126), and (d) for the
U1Ax10x state in Eq(127).
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= -
g s FIG. 5. Contour plot of the
s =) (f:& (- spinon dispersionE, (k) as a
J &) (&) (&) (\§ Y- function of (/27 k,/27) for the
L k"J k'J 0 - Z, spin liguids. y(a) is for
Y (=) (1 Z,-gapless state Z2&(12)n in
Eq. (33, and (b) is for
Z,-quadratic state Z2B(12)n in
Eq. (128. Despite the lack of ro-
tation and parity symmetries in
the single-spinon dispersion {g),

WL
) ﬁ% @ ) (= - the two-spinon spectrum does
-1 -0.5 0 0.5 1 have those symmetries.

liquid Z2By1(12)n [note that Z2B1(12)n is gauge equiva- Itis interesting to see that the energy does not vanish linearly
lent to Z2Bx2(12)n]: ask—0: instead it vanishes likk?.
We find that the loop operators for the loopsi+X—i
Uiii=1x70+ 717", +X+§—i+9—i andi—i+§—i—K+§—i—KX—i do not
, commute as long as bothand » are nonzero. Thus the spin
Ujiyg=(—)(ix 7%+ 7179, liquid described by Eq(128) indeed has &, gauge struc-
ture. We will call such a stat&,-quadratic spin liquid to
ag?3=0. (128  stress the quadratigxk? dispersion. Such a state cannot be
. o L constructed from translation-invariainsdze The two-
The fourth one isZ, spin liquid Z2B0013, which is de-  gyinon spectrum is still related to the one-spinon spectrum

scribed by Eq(107). th h Eq(11 Fi
The AnsatzZ2Bx2(12)n in Eq. (128 is a newz, spin 1 oudh Ea(119 (see Fig. &

liquid. The spinon spectrum for thAnsatz Eq. (128), is

determined by D. Symmetric spin liquids

around the SU(2)-linear spin liquid SU2Bn0

H=—2x sin(k)I'o+27 cog k)l >—2x sin(ky)I'y Last, we consider symmetric states in the neighborhood of
the SU2)-linear state, Eq(31). We would like to use the

25 codky)l's, (129 following result proved in Ref. 66. Given a PSG generated
whereky e (= 7/2,m/2), kye (=, ), and by Gyy,randGe p p . the generators
Fo=rer, T=ror, By(i)=(—)hGy(0), Gyli)=Gy(0),
r=r"97, TI';=re7 (130

Gp(i)=Gp (i), Gp (i)=Gp (i),
The spinon spectrum can be calculated exactly and its four

branches take a formt E;(k) and = E,(k). The spinon en- Gp (i)=(—)"yGp (i), G(i)=Gq(i) (132
ergy vanishes at two isolated poirks=(0,0),(0s). Near Pry P T i
k=0 the low-energy spectrum is given pyee Fig. £0)] generate a new PSG. The new PSG has the same IGG and is

L s an extension of the same symmetry group as the original
E=+7 1O+ 7))k k)2 +4x*Cks. (13D psG. The PSG's for states in the neighborhood of thé@sU

FIG. 6. Contour plot of the
spinon dispersionE, (k) as a
function of (k,/27,k,/2) for (a)
the U1)-linear state U1@0x1 in
Eq. (134 and (b) the U(1)-linear
state Eq(142.
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FIG. 7. Contour plot of the

spinon dispersion mii4(k),

E,(k)) as a function of K, /2,

ky/27) for the U1) spin-liquid
states.(a) is for the U1)-gapless

state U1B0001 in Eq(136) and

(b) is for the Ul)-linear state
U1B0011 in Eq.(137).

linear state can be obtained through above mapping from the

PSG's of symmetric spin liquids around the @Wgapless
spin liquid.

GPXyz(—)ixiygs{[(_)ix_(_)iy]“'/“'}' (139

U1B0001Ansatz

Here we will only consider the 12 classes of symmetric

U(1) spin liquids around the S@)-linear state. We will just
present the simple cases whekgare nonzero only for links
with length <2. We find that 5 of 12 classes @nsdze
reduce SW2)-gapless spin liquids when the link length is
<2. Thus we only obtain the following 5 symmetric(1)
spin liquids.

U1lCnO1ln Ansatz

Uiiri=XT =772, Ujieg=X7 + 777,

1,23_
ag“=0,
— .0 — _ .0
Gy—T y GPX_GPX_T y

pry: | Tl,
which has the same quantum order as in tlig)4linear state,
Eq. (32.
U1Cn0Ox1 Ansatz

Gr=(-)'7, (133

U2 1
Ui+x= X7  Uii+y= X7,

e 3 .3
Uiit2x= =77, U ir29= 77,

ag?®=0,
Gy=G,=7°, Gp=Gp =1,
pry=i712, Gr=(—)vir. (134
UlCnOnl Ansatz
Ui i =XT0  Uijsg=XT1
Uiis25= 1770 Uiisoy= 77",
ag=mn, ay*=o,
Gy=Gy=7% Gr=(-)vi,
Gp,=Gp =1,

Uiz =iX70  Upiag=i(—)x 7,

e 3 .3
Uii+2x= 77, Ujiv2y= 77,

3_ 2,_
=71, ag =0,

(_)inx:Gy:Toa (_)iXGPX:(_)iXGPy: TO,

Gp,,=(—)"v7%  Gr=i(—)'7" (136)

U1BO00Ol11Ansatz

ui,i+§<:iXTOa Ui,i+9:i(_)ix)(7'01

_ 3 _ .3
Uiiv2x= — 77, Ujiv2y= 77,

ag?*=0,
()9G,=Gy=1%, (= )Gp =(~)"Gp =1,

pry=i(—)ixi>'7'1, Gr=i(—)' . (137

Now let us discuss spinon dispersions in the aboyg) U
spin liquids. The spinon in the UXDx1 state Eq(134) has
four linear nodes at+7/2,=x/2). Thus the U1@0x1 state
is a U1)-linear spin liquid. The U1@0n1 state Eq.(135
has fully gapped spinons and is d1)gapped spin liquid.

The four spinon bands in the U1B0001 state B&6) are
given by[see Fig. 7a)]

+2xsirf(ky) +sirf(k,) £[ 27 cog 2k,)
+27ncoq2ky)+ 74]. (138

We find that the U1B00O0L1 state is d1)-gapless spin liquid.
The four spinon bands in the U1B0011 state EB7) are

given by[see Fig. T)]

+ 2x\sir?(ky) + sir?(k,) = 2 7] cog 2k,) — cog 2k, ) ].
(139

Hence, the U1B0011 state is g )-Hinear spin liquid.
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TABLE I. Spin liquids.

Z,-gapped Z2Axx0z

Z2A0013, Z2Azz13, Z2A001n
Z2Azz1n, Z2B0013, Z2Bzz13
Z2B001n, Z2Bzz1ln

Z,-linear

Z,-quadratic Z2Bx2(12)n
Z,-gapless Z2Ax2(12)n
U(1)-gapped U1Cn00x

U(1)-linear U1B0011, U1Cr00x, UlCn0ln

UlCnOx1

U(1)-quadratic UlCx10x

U(1)-gapless U1A0001, U1A0011, Ul Ax10x

U1B0001, U1Cr0lx

SU(2)-linear SU2Br0

SU2Ar0

SU(2)-gapless

PHYSICAL REVIEW B 65 165113
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FIG. 8. The mean-field energies for various phases ih-d,
spin system(A) The m-flux state[the SU2)-linear state SU2B0].
(B) The SU(2)xSU(2)-gapless state in Eql40. (C) The
SU(2)X SU(2)-linear state in Eq.141). (D) The chiral spin state
[an SU2)-gapped stafe (E) The U(1)-linear state Eq(142) which

To summarize we list all the spin liquids discussed so fatbreaks 90° rotation symmetr{F) The U(1)-gapped state UID0x

in Table I.

VI. MEAN-FIELD PHASE DIAGRAM
OF THE J;-J, MODEL

To see which of thez,, U(1), and SU2) spin liquids

discussed in the last section have low ground energies and
may appear in real highz superconductors, we calculate the

mean-field energy of a large class wénslation-invariant

in Eq.(122). (G) TheZ,-linear state Z2&Z713 in Eq.(104). (H) The
Z,-linear state Z2A0013 in Eq103). () The uniform RVB state
[the SU2)-gapless state SUZM].

_ 3 1
Uitsry=x(T°+77),

_ 3 1
Upitsx—y=x(T°—7),

ap=0. (142

Ansdze In Fig. 8, we present the resulting mean-field phase The phaséD) is the chiral spin state, E¢44). The phase

diagram for aJ;-J, spin system. Hergl; is the nearest-

neighbor spin coupling and, is the next-nearest-neighbor

spin coupling. We have fixed;+J,=1. They axis is the
mean-field energy per sit@enultiplied by a factor 8/3 The
phase(A) is the w-flux state [the SU2BW0 SU2)-linear

statd, Eq. (31). The phasdB) is a state with two indepen-
dent uniform RVB states on the diagonal links. It has
SU(2)XSU(2) gauge fluctuations at low energies and will

be called an SU(2% SU(2)-gapless state. Insatzis given
by

= 3
Ui i+x+9=XT s
- 3
Uii+x—9=XT,
I _
ay=0.

(140

The phas€C) is a state with two independentflux states
on the diagonal links. It has SU(X)SU(2) gauge fluctua-
tions at low energies and will be

SU(2)X SU(2)-linear state. lté\nsatzis given by

(E) is described by aknsatz
Uiitseg=X17 + x27
Ui,i+>‘<—§/:X1Tl—X272,
Uii+yg= 77>,
(142

which breaks the 90° rotation symmetry and is @)inear
state [see Fig. @)]. The phase(F) is described by the
U1Cn00x Ansatzin Eqg. (122). The U1G00x state can be a
U(1)-linear or a Ul)-gapped state. The state for phd&e
turns out to be a ()-gapped state. The pha¢€) is de-
scribed by the Z2&4z13 Ansatzin Eq. (104 which is a
Z,-linear state. The phadél) is described by the Z2A0013
Ansatzin Eq. (103 and is also &,-linear state. The phase
(I) is the uniform RVB state[the SUZ2)-gapless state
SU2ANO0, Eg.(30)].

From Fig. 8, we see continuous phase transiti¢ats
mean-field level between the following pairs of phases:

a'0=0,

called an (A,D), (A,G), (B,G), (C,E), and(B,H). The three continuous

transitions(B,G), (B,H), and(A,G) do not change any sym-
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) &/ \N.. =
' 1
3

102 FIG. 9. Contour plot of the

\ / \ / \ dispersion for spin-1 excitation,
) L i E,(k), as a function of
b- 40 0 2s
» @ (ky/2m,ky/27) for (a) the SU2)-

linear spin liquid SU2BO in

-0.2 = /A 02 Eq. (31 (the m-flux phase and
\ ; , / (b) the U(1)-quadratic spin liquid
—04 \ / -04 U1Cx10x in Eq. (124).
“ b 1 /f:\\ 1 ” \ 1 1 1 /
-04 -0.2 0 0.2 0.4 -04 -02 0 0.2 0.4
(a) (b)

metries. We also note that the &) gauge structure in the gapless points of some spin liquids are pinned at poskion
phase(A) breaks down taZ, in the continuous transition =(s,7) and/or k=(#,0),(0s). By measuring the low-
from the phasgA) to the phasgG). The SU(2)XSU(2)  energy spin excitationgsay, using neutron scatteringve
gauge structure in the phasB) breaks down taZ, in the  can distinguish thos&, spin liquids. We note that all two-

two transitions(B,G) and (B,H). spinon spectra have rotation and parity symmetries around
k=0. This is expected. Since the two-spinon spectra are
VIl. PHYSICAL MEASUREMENTS physical, they should have all the symmetries the spin liquids

OF QUANTUM ORDERS have.

After characterizing the quantum orders using the PSGC ar\lNgealj_c; thr?vgsfﬁgtrj %)'“t?]iarr 3%2rgﬂl:'gshsboerpse;f t:\erl?ass
mathematically, we would like to ask how to measure quan- Istingu y their di u gap

tum orders in experiments. The quantum orders in gappe&omt& It is interesting to note that.all_the(l)l spin quUidS
states are related to the topological orders. The measureme |Iscus_sed here ha\_/(_a a gapless point in th_e two—splnqn spec-
of topological orders are discussed in Refs. 9, 10 and 65. ThiUM Pinned at positiok=(a, 7). The UD-linear spin lig-
guantum order in a state with gapless excitations can be me ids are als_o different _from th@z"'”?‘af spin liquids in that
sured, in general, by the dynamical properties of gapless ex- e spin-spin correlations have d'ffe.re”t decay exponents
citation. However, not all dynamical properties are universal2N¢€ the 1) gauge flluctuatlons a;re included. We alsq see
Thus we need to identify the universal properties of gaplesgq"’_lt E_ZS has a quad_rat|c f_orrEzS:x_k_ for th_e U(l_)-quadraﬂc
excitations before using them to characterize and measur’tEO'n liquid. Eos Vaf"shes. in two finite regions & space for
guantum orders. The PSG characterization of quantum ordef €Z,-gapless spin liquids. . :
allows us obtain those universal properties. We simply need Neutron scattering experiments p_robe the two-spinon sec-
to identify the common properties of gapless excitations thaf°" Thus Iow-ene.rgy.neutron scattering allows us to measure
are shared by all thAnsatzwith the same PSG. quantum ord_ers in highs, supgrconductors.

To demonstrate the above idea, we would like to study the L€t us discuss the (@) linear state U1@0In (the
spectrum of two-spinon excitations. We note that spinons cafit@99ered-flux staten more detail. The U1001n state is
only be created in pairs. Thus the one-spinon spectrum is n oposed to describe the pseudogap metallic state in under-

H 34
physical. We also note that the two-spinon spectrum includdoP€d hlgth_superconductor§3t The UlMOln state
spin-1 excitations which can be measured in experiments. Afaturally explains the spin pseudogap in the underdoped me-
a given momentum, the two-spinon spectrum is distributed if@llic state. As an algebraic spin liquid, the Ui@n state
one or several ranges of energy. @i (k) be the lower @S0 explain the Luttinger-like electron spectral f_uncﬂ’on
edge of the two-spinon spectrum at momentkmin the and the enhancement of tlie, ) spin fluctuation® in the

mean-field theory, the two-spinon spectrum can be conPS€udogap state. From Fig.(&B we see that gapless points
structed from the one-spinon dispersion of the spin-1 excitations in the UTD1n state are always at

k=(m,m), (0,0), (m,0), and(0,7). The equal energy contour
Ex-spinod K) = E1-spinof @) + E1-spinod K— ). (143 for the edge of the spin-1 continuum has a shape of two
overlapped ellipses at all folrpoints. Also the energy con-
In Figs. 9—-15 we present the mean fi#lgl for some simple tours are not perpendicular to the zone boundary. All those
spin liquids. If the mean-field state is stable against the gaugare the universal properties of the W @n state. Measuring
fluctuations, we expect that the mean fiélgl should quali- those properties in neutron scattering experiments will allow
tatively agree with the redt,;. us to determine if the pseudogap metallic state is described
Among our examples, there are eighy-linear spin lig- by the U1Q01n (the staggered-fluxstate or not.
uids (see Fig. 10 and Fig. 11We see that some of those = We have seen that at low energies, the QG state is
eight differentZ,-linear spin liquids(or eight different quan- unstable due to the instanton effect. Thus the AT state
tum order$ have a different number of gapless points. Thehas to change into some other states, such as the 2ight
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FIG. 10. Contour plot of
E,(k) as a function of
(ky/2m,k /27) for the Z,-linear
spin liquids. (a) is for the
Z2A0013 state in Eq(103), (b)
for the Z2Azz13 state in Eq.
(104), (c) for the Z2A00M state
in Eg. (109, and (d) for the
Z2AzZln state in Eq.(106).

FIG. 11. Contour plot of
E,(k) as a function of
(ky/2m,k/27) for the Z,-linear
spin liquids. (a) is for the
Z2B0013 state in Eq(107), (b)
for the Z2Rzz13 state in Eq.
(108), (c) for the Z2B0OM state in
Eq. (109, and (d) for the
Z2BzZln state in Eq(110.
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FIG. 12. Contour plot of
E,i(k) as a function of
(ky/2m,ky2m) for (@ the
Z,-gapless state Z2&(12)n in
-0.2 Eq. (33), and(b) the Z,-quadratic
state Z2B&2(12)n in Eq. (128).
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spin liquids discussed in Sec. V or some other states ndiood of the U1@01n state can explain the splitting pattern
discussed in this paper. From Fig. (&0 we see that the (7= 8,7),(m, 7w+ ). This will imply that the U1®01n
transition from the U1@01n state to theZ,-linear state state changes into another state not studied in this paper. This
Z2A0013 can be detected by neutron scattering if one obexample illustrates that detailed neutron scattering experi-
serves the splitting of the node @t,m) into four nodes at  ments are powerful tools in detecting quantum orders and
(m*=8,m%6) and the splitting of the nodes &tr, 0) and  studying new transitions between quantum orders that may
(0,m) into two nodes at ¢+ 6,0) and (O7* 6). From Fig.  not change any symmetries.
10(b), we see that, for the transition from the Ui@In state
to theZ,-linear state Z2&Zz13, the node atw,m) still splits
into four nodes at £+ 8,7+ ). However, the nodes at
(77,0) and(0,m) split differently into two nodes dur, =+ 8) and
(=6, m). We can also study the transition from the Uin We have concentrated on the mean-field states of spin
state to other siZ, spin liquids. We find that the spectra of liquids and presented many examples of mean-faidaze
spin-1 excitations all change in certain characteristic waysfor symmetric spin liquids. In order for those mean-field
Thus, by measuring the spin-1 excitation spectrum and itstates to represent real physical spin liquids, we need to in-
evolution, we not only can detect a quantum transition thatlude the gauge fluctuations. We also need to show that the
does not change any symmetries, we can also tell whicknhclusion of the gauge fluctuations does not destabilize the
transition is happening. mean-field states at low energies. This requires thathe

The neutron scattering on highs superconductors indeed gauge interaction be not too strong afiml the gauge inter-
showed a splitting of the scattering peak(atw) into four  action be not a relevant perturbatigithe gauge interaction,
peaks at ¢r= 8, ), (7, w* 5) (Refs. 30 and 69—-7%r into  however, can be a marginal perturbatiolhe requirement
two peaks atfr,7)— (7 + 6, 7m— 6),(7m— 6,7+ 6) (Refs. 28  (a) can be satisfied through the lartjelimit and/or adjust-
and 76 as we lower the energy. This is consistent with ourment of short-range spin couplings in the spin Hamiltonian,
belief that the U1@01n state is unstable at low energies. if necessary. Here we will mainly consider the requirement
However, it is still unclear if we can identify the position of (b). We find that, at least in certain largéelimits, many(but
the neutron scattering peak as the position of the node in theot all mean-field states do correspond to real quantum spin
spin-1 spectrum. If we do identify the scattering peak as thdiquids which are stable at low energies. In this case, the
node, then none of the eiglb spin liquids in the neighbor- characterization of the mean-field states by PSG's corre-

VIIl. FOUR CLASSES OF SPIN LIQUIDS
AND THEIR STABILITY

o) T g 4
V) (&) (Q..iz
05 =
- —02 FIG. 13. Contour plot of
N 7NN\ Y E,s(k) as a function of
:aj . ; ( @ . (kJ2m,kJ2m) for two U(1)-
( ‘ linear spin liquids.(a) is for the
</ A U1Cn01n state Eq(32) (the stag-
- -1 -0.2 gered flux phaseand (b) for the
U1Cn00x state EQ.(122) in the
¢ “\ —04 gapless phase.
m 1N ‘ m ' [ G
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FIG. 14. Contour plot of the

 1 ‘ / < - two-spinon dispersiok,s(k) as a
9 | ‘ 3 @ 0 ’D G 0 function of (kx/ZW,ky/Z;'Sj for (a)

J—— o the UQ)-linear spin liquid state
02 =N\ N 02 U1CnOx1 in Eq.(134) and(b) the
U(1)-linear spin liquid Eq(142).
| 2\ | 0. = R —{ -0.4
:\\ LU N ] rf: 04 ~— [~ G| o 0
-04 -02 0 02 04 -04 -02 0 02 04
(a) (b)

sponds to the characterization of real quantum spin liquidswheref ,, is the field strength of the (1) gauge field. How-

All spin liquids (with an odd number of electrons per unit ever, in 142 dimensions and after including the instanton
cell) studied so far can be divided into four classes. In theeffect, the Y1) gauge fluctuations will gain an energy g4p.
following we will study each class in turn. The properties of the resulting quantum state remain to be an

open problem.

A. Rigid spin liquid

In rigid spin liquids, by definition, the spinons and all C. Fermi spin liquid

other excitations are fully gapped. The gapped gauge field The Fermi spin liquids have gapless excitations that are
only induces short-range interactions between spinons due @escribed by spin-1/2 fermions. Those gapless excitations
Chern-Simons terms or the Anderson-Higgs mechanism. Bjpave only short-range interactions between them. The
definition, the rigid spin liquids are locally stable and self- Z,-linear, Z,-quadratic, andZ,-gapless spin liquids dis-
consistent. The rigid spin liquids are characterized by topoeussed above are examples of Fermi spin liquids.

logical orders and they have true spin-charge separation. The The spinons have a massless Dirac dispersiatyitinear
low-energy effective theories for rigid spin liquids are topo- spin liquids. ThusZ,-linear spin liquids are locally stable
logical field theories. Th&,-gapped spin liquid and chiral since short-range interactions between massless Dirac fermi-

spin liquid are examples of rigid spin liquids. ons are irrelevant in 42 dimensions. We would like to
point out that the massless Dirac dispersion of Zhdinear
B. Bose spin liquid spin liquids is protected by the PS@r the quantum ordgr

o . . That s, any perturbations around, for example, Zhdinear
_ The U1)-gapped spin liquid discussed in the last sectionangat; 72A002 in Eq. (39) cannot destroy the massless
is not a rigid spin liquid. It is a Bose spin liquid. Although prac gispersion as long as the PSG’s are not changed by the
the spinon excitations are gapped, théllUgauge fluctua- et rhations. To understand this result, we start with the

tions are gapless in the()-gapped spin liquid. The dynam- 4t general form of symmetric perturbaticisee Ref. 68
ics of the gapless (1) gauge fluctuations is described by

low-energy effective theory .
ui,i+m_um7-|I:l,2,3-

1
_ 2 12 _ 12
E—E(fw) , (144 U (m) =~ Um
7 N\ g 1.
s W [—\\* 2=
: 0.3 =
u ‘ 402 FIG. 15. Contour plot of the

two-spinon dispersiolt,¢(k) as a
function of (k./2m,k,/2m) for the
U(1) spin liquid states(a) is for
the U(1)-gapless state U1B0001 in
Eq. (136) and(b) is for the U1)-

\\ /\ // o linear state U1B0011 in EG137).
N ‘ P : AN | , p7 A
-04 -0.2 0 0.2 04

(a) (b)
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uf; (m):uﬁv four-fermion interactions between the gapless spinons in the
X Z,-quadratic state are marginal intR2 dimensions. Further
ul23 = 123 studies are needed to understand the dynamical stability of
Py(m) = =m > the Z,-quadratic spin liquid beyond the mean-field level.
123 123 The Z,-gapless spin liquid is as stable as a Fermi liquid in
U, (m) = Um ™ 1+ 2 dimensions. Again we expect tdg-gapless spin liquid
to be a phase that occupies a finite region in phase space, at
u,=0, for m=even, (145 least at the mean-field level.
around theZ,-linear Ansatz Eg. (39). We find that such S
perturbations vanish in  momentum space & D. Algebraic spin liquid

=(xw/2,=m/2). The translation, parity, and the time rever-  U(1)-linear spin liquids are examples of algebraic spin
sal symmetries do not allow any mass terms or chemicaiquids. Their low-lying excitations are described by mass-
potential terms. Thus th&,-linear spin liquid is a phase that less Dirac fermions coupled to a(lJ gauge field. Although
occupies a finite region in the phase sp&aeT=0). One the massless Dirac fermions are protected by quantum or-
does not need any fine-tuning of the coupling constants anders, the gauge couplings remain large at low energies. Thus
uj; to get a massless Dirac spectrum the low-lying excitations in the (1)-linear spin liquids are
Now let us consider the stability of th&,-quadratic spin  not described by free fermions. This makes a discussion of
liquid Z2Bx2(12)n in Eq. (128). The spinons have a gapless the stability of those states much more difficult.
quadratic dispersion in th&,-quadratic spin liquid. The gap- Here we would like to concentrate on thél)}Hlinear spin
less quadratic dispersion of tl&-quadratic spin liquid is liquid U1Cn0O1n in Eg. (32). The spinons have a massless
also protected by the symmetries. The most general form dbirac dispersion in the (@)-linear spin liquid. First we
symmetric perturbations around tdg-quadraticAnsatz Eq.  would like to know if the massless Dirac dispersion is ge-

(128), is given by(see Ref. 6B neric property of the (IL)-linear spin liquid, i.e., if the mass-
_ less Dirac dispersion is a property shared by all the spin
ui,i+m:(_)mylx(u?n70+U#Tl"_ Uﬁﬂ'z), liquids that have the same quantum order as that in(&2).
012 The most general perturbations around th@)tinear An-
up =0, for m=even. (146 satz Eq.(32), are given by

In momentum space, the most general symmetric
Z,-quadraticAnsadze give rise to the following Hamiltonian
(after considering the 90 ° rotation symmetry

SU; i +m= U7+ (=) Sud 2, (149

_ .00 i3 3
Uiim=Up7 +(—)'Up7,

H=—22 xmd Sin(nke—mk)T o+ sin(mk +nky)T';] u%3=0, for m=even,
u° -0
+2>) Nmnl COLNK,— MK )", + cog mk,+ nky)I'5] Pyy(m ™~ “m
ugxy(m): - u:rgn’

+22 Nm cognk,—mKk )I"4+cogmk+nk))I'g],
(147) Upm = (=)™ U,

where
UB = (=) ™ug, (150

Fo=r""®7, TI,=r'er, . . . . .
0= TeT 27T if the perturbations respect translation, parity, and time rever-

=97 T.=r2g7t sal symmetries, and if the perturbations do not break the
! b3 ' U(1) gauge structure. Sincéul=sul=0 for m=even,
I,=—7208 Ts=rlort (148 their contributions in momentum space vanishkat(0,0)

and k=(0,7m). The spinon energy also vanishes at those
and the summation is oven=even,n=odd. We find that points for theAnsatz Eq. (32). Thus the massless Dirac dis-
the spinon dispersion still vanisheskat (0,0),0,7) and the  persion is protected by the symmetries and th&) auge
energy still satisfie€xk?. The translation, parity, and the structure in the (L)-linear spin liquid, Eq.(32). In other
time reversal symmetric perturbations do not change thevords, the massless Dirac dispersion is protected by the
qualitative behavior of the low-energy spinon dispersion.quantum order in the (1)-linear spin liquid.
Thus, at the mean-field level, tl®-quadratic spin liquid is Next we consider if the symmetries and th¢lJgauge
a phase that occupies a finite region in phase sgpac&  structure in the (l)-linear spin liquid can be broken spon-
=0). One does not need any fine-tuning of the couplingtaneously due to interactions and fluctuations at low energy.
constants to get a gapless quadratic dispersion of the spinoriEhe low-energy effective theory is described by the Lagrang-
However, unlike theZ,-linear spin liquid, the short-range ian (in imaginary time
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Now the effective potentiaV.x(|¢|) can be obtained by in-
_2 t.0 yn P
/J—a ay [vuay“(d,tia,)ia, (15D tegrating out,, (in thea,=0 gauge and the phasé of the
# ¢ field, p= pe"’(Ref 97:

whereun=0,1,2,a=1,2, y* are 4x4 y matriceSpgz 1, and

(v1a.,v24) are velocities fora’ fermions in thex andy di- do 1 L
rections. We make a largd-generalization of the above ef- Ver($) = V(#)= fo 7f 2n)? 5 Imin{in[ - (iw)]
fective theory and allova=1,2, ... N. Our first concern is

about whether the self-energy from the gauge interaction can +In[ —Kl(iw)]}
generate any mass/chemical-potential term, due to infrared )

divergence. It turns out that, in theNLexpansion, the gauge J' f d°k
fluctuations represent an exact marginal perturbation that 0 277)2

does not generate any mass/chemigaitential term’® In-

stead the gauge interaction changes the quantum fixed point E(kz— w2—0")12— 4] p|2
described by free massless Dirac fermions to a new quantum 8 '
fixed point which has no free fermionic excitations at low (155
energies*’®The new quantum fixed point has gapless exci-

tations and correlation functions all have algebraic decay.
Such a quantum fixed point was called an algebraic spir‘f\’here

liquid.3* Actually, it is easy to understand why the gauge

fluctuations represent an exact marginal perturbation. This is

because the conserved current that couples to the gauge po- K Zg(w2+ k?)Y2+ 4] p|?,
tential cannot have any anomalous dimensions. Thus, if the

gauge interaction is marginal at first order, then it is marginal

xlmln(—

2

at all orders. The gauge interaction as an exact marginal per- N e 2 ,

turbation is also supported by the following results. The Ki=g (@ +k5) P’ + 44| PR
gauge-invariant Green'’s function gfis found to be gapless

after coupling to the gauge field, to all orders in th& 1/ w? N o )
expansior’® Recently it was argued that the(1) gauge in- = o7 oal| g le”tk) +4[¢*]. (156

teraction does not generate any mass perturbatively even

whenN is as small as 2° B 5 .
Now let us discuss other possible instabilities. First weWe find th&}weﬁ_hv (;1|¢| |ﬂ||d>| where Clﬂ IS a constant,
would like consider a possible instability that change the'\IOW it is clear that the gapless gauge fluctuations cannot
shift the minimum ofV from ¢=0 and the W1)-linear state

U(1)-linear state to th&,-linear state. To study such an in-
stability we add a charge-2 Higgs field to our effective ;stast;able against spontaneously changing into Zpdinear
theory: So far we only considered the effects of perturbative fluc-
' o _ _ 5 tuations. The nonperturbative instanton effects can also cause
L=y [y*(d,+ia,)]dat|(do—2ia0) ¢ instability of the algebraic spin liquid. The instanton effects
+02|(8,—2iay) ¢2+ V() (152) have been discussed in Ref. 60 for the cabe vZ. It was
found that the instanton effects represent a relevant perturba-

whereV(¢) has its minimum at=0 and we have assumed tion which can des?abilize thg algebraic_ spin liquid wman
v1a=v2,=1 for simplicity.[Note that¢ corresponds ta in <24. In the foilow;ng, we vy|ll generah;e the analysis of
Eq. (39). It is a nonzero\ that breaks the (1) gauge struc- Ref. 60 to thevz#v; case. First we rewrite

ture down to theZ, gauge structurgIf after integrating out

¢ and a, the resulting effective potentiaV.«(|¢|) has its d3k 1
minimg_m at a nonzerap, _then the Wl)-linear state has an f ( > a,(—k)m,,a,(k)
instability towards theZ,-linear state.

To calculateVg(|¢|), we first integrate outy and get d3k 1
(277) 2fM( KK, (k), (157
1
== Y 2
L za;tﬂ-,u,vav_l—l[(ao 2|a0)¢] where
+v?[(d,—2ia) ¢|*+V (), (153
f/.l.: G#V)\(?Va)\ . (158)
where
When =, —k2 ,—kk,, we findK, When\/@%
N — (L2
N o os =(k?5 V)/\/—z we may assumeK 5,1k
8 (P7) (P 0= PuPy)- (154 Whenglyaa&vz,a we have g
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1
(K =2 g (@ v kT3 k)
a

Ui1al2a 0 0
x| 0 vpalvia O (159
0 O U la /U 2a

The instanton field,, minimizes the action, Eq157), and
satisfies

(160

wherec(k) is chosen such that,f ,=2i7. We find that

K f,=c(kk

Mmoo

8cw

fo= 2, 2 2.2 L2 -1 '
Salw v KitvsaK5) /201,aU2,a

[ 8ck;
a0+ 0T KiH+03,K) M 02alv1,]
fo= 7, .2 1,2 8C|2(2 21/ J (161
Sa(@?+07 Ki+05.K3) Y1 ,/v0,
and
c=2imw 8o’
Sa(0?+v] Ki+05.K5) Y0100,
8k?2
@ 0T 02K Py ivra
8K> o
* Ea(wz-l—viaki-f— U%yakg)fllzv 1alV2a
(162
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other stable quantum states, such as superconducting state or
antiferromagnetic statéas observed in experiments.

The unstable algebraic spin liquid can be viewed as an
unstable quantum fixed point. Thus the algebraic-spin-liquid
approach to the pseudogap metallic state in underdoped
samples looks similar to the quantum-critical-point
approact®2 However, there is an important distinction be-
tween the two approaches. The quantum-critical-point ap-
proach assumes a nearby continuous phase transition that
changes symmetries and strong fluctuations of local order
parameters that cause the criticality. The algebraic-spin-
liquid approach does not require any nearby symmetry
breaking state and there is no local order parameter to
fluctuate.

E. Quantum order and the stability of spin liquids

After introducing quantum orders and the PSG, we can
have a deeper discussion of the stability of mean-field states.
The existence of the algebraic spin liquid is a very striking
phenomenon, since gapless excitations interact down to zero
energy and cannot be described by free fermions or free
bosons. According to a conventional wisdom, if bosons and
fermions interact at low energies, the interaction will open an
energy gap for those low-lying excitations. This implies that
a system either has free bosonic and fermionic excitations at
low energies or has no low-energy excitations at all. Accord-
ing to the discussion in Sec. VIII, such conventional wisdom
is incorrect. But it nevertheless raises an important question:
what protects gapless excitatiofi® particular when they
interact at all energy scalesThere should be a “reason” or
“principle” for the existence of the gapless excitations. Here
we would like to propose that is the quantum order that
protects the gapless excitationdfe would like to stress that

Using the above solution, we can calculate the action for &apless excitations in the Fermi spin liquids and in the alge-

single instanton, which has the form

N
Snstzga(v2lvl)ln(l—)a (163

braic spin liquids exist even without any spontaneous sym-
metry breaking and they are not protected by symmetries.
The existence of gapless excitations without symmetry
breaking is a truly remarkable feature of quantum-ordered
states. In addition to the gapless Nambu-Goldstone modes

wherelL is the size of the system and we have assumed thdtom spontaneous continuous symmetry breaking, quantum

N/2 fermions have velocityy, ,vy) = (v1,v,) and the other

N/2 fermions have velocity uy,vy)=(v,,v1). We find
a(1)=1/4+ O(1/N) and «(0.003)=3+O(1/N). When

orders offer another origin for gapless excitations.
We have seen from several examples discussed in Sec. V
that the quantum ordefor the PSG not only protects the

(N/2)a(v,/v,)>3, the instanton effect is irrelevant. We see zero-energy gap, it also protects certain qualitative properties
that even for the cagd =2, the instanton effect can be irrel- of the low-energy excitations. Those properties include the
evant for small enough,/v,. Therefore, the algebraic spin linear, quadratic, or gapless dispersions, thdocations

liquid exists and can be stable.

where the two-spinon enerdy,s(k) vanishes, etc.

It has been proposed that the pseudogap metallic state in Since quantum order is a generic property for any quan-
underdoped higf-, superconductors is described by thetum state at zero temperature, we expect that the existence of

(doped staggered flux stafghe U(1)-linear state U1@01n]
which contains a long-rangdJ(1) gauge interactiori>3*
From the above result, we see that, for realistj¢v,~0.1

interacting gapless excitations is also a generic property of
quantum states. We see that the algebraic state is a norm. Itis
the Fermi liquid state that is special.

in high-T; superconductors, the UhO1n spin liquid is un- In the following, we would like to argue that the PSG can
stable at low energies. However, this does not mean that wiee a stablgor universal property of a quantum state. It is
cannot not use the algebraic spin liquid Uidn to de-  robust against perturbative fluctuations. Thus, the PSG, as a
scribe the pseudogap metallic state. It simply means that, amiversal property, can be used to characterize a quantum
low temperatures, the algebraic spin liquid will change intophase. From the examples discussed in Secs. VIIIC and
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VIIID, we see that the PSG protects gapless excitationsmetric spin liquid characterized by PSG SUB The
Thus, the Stabl'lty of the PSG also |mpI|es the stability Ofstaggered_ﬂuxf_wave state is a )-linear Symmetric Spin
gapless excitations. liquid characterized by PSG UhO1n. The U1(G01n state
We know that a mean-field Spln-lquId state is CharaCterwas found to be the mean-field ground for underdoped
ized byUj;=(44]). If we include perturbative fluctuations samples. Upon doping the UhG1n state becomes a metal
around the mean-field state, we exp#gt to receive pertur-  with a pseudogap at high temperatures ardiveave super-
bative correctionssU;; . Here we would like to argue that conductor at low temperatures.
the perturbative fluctuations can only charidg in such a It is amazing to see that the slave-boson approach, which
way thatU;; andU;; + 6U;; have the same PSG. is regarded as a very unreliable approach, predicted the
First we would like to note the following well known d-wave superconducting state 5 years before its experimental
facts: the perturbative fluctuations cannot change the symmeonfirmation?*%4-8Maybe predicting thel-wave supercon-
tries and the gauge structures. For examplé);jf and the  ductor is not a big deal. After all, thetwave superconductor
Hamiltonian have a symmetry, thefU;; generated by per- is a commonly known state and the paramagnon
turbative fluctuations will have the same symmetry. Simi-approacf’®8predicted thel-wave superconductor before the
larly, the perturbative fluctuations cannot generéitg; that,  slave-boson approach. However, what is really a big deal is
for example, break a (1) gauge structure down to Z, that the slave-boson approach also predicted the pseudogap
gauge structure. metal which is a completely new state of matter. It is very
Since both the gauge structudescribed by the IGand  rare in condensed matter physics to predict a new state of
the symmetry are part of the PSG, it is reasonable to genematter before experiments.
alize the above observation by saying that not only the IGG The above W) and SU2) spin liquids are likely to be
and the symmetry in the PSG cannot be changed: the wholgnstable at low energies and may not appear as the ground
PSG cannot be changed by the perturbative fluctuations. Istates of spin systems. The first known stable spin liquid is
fact, the mean-field Hamiltonian and the mean-field groundhe chiral spin liquid:® It has a true spin-charge separation.
state are invariant under the transformations in the PSGThe spinons and holons carry fractional statistics. Such a
Thus in a perturbative calculation around a mean-field statestate breaks the time reversal and parity symmetries and is a
the transformations in the PSG behave just like symmetnsU(2)-gapped state. The $R) gauge fluctuations in the chi-
transformations. Therefore, the perturbative fluctuations carmal spin state does not cause any instability since the gauge
only generatesU;; that are invariant under the transforma- fluctuations are suppressed and become massive due to the
tions in the PSG. Chern-Simons term. Due to the broken time reversal and
Since the perturbative fluctuatioriby definition do not  parity symmetries, the chiral spin state does not fit within our
change the phasd);; and Uj;j+ 6U;; describe the same classification scheme.
phase. In other words, we can group into classegwhich Spin liquids can also be constructed using the slave-
are called universality classesuch thatJ;; in each class are  fermion/o-model approach**?> Some gapped spin liquids
connected by the the perturbative fluctuations and describeere constructed using this approdéfi? Those states turn
the same phase. We see that if the above argument is trueyt to beZ, spin liquids. But they are not symmetric spin
then the universality classes are classified by the P&’s liquids since the 90° rotation symmetry is broken. Thus they
guantum ordens do not fit within our classification scheme. Later, a
We would like to point out that we have assumed theZ,-gapped symmetric spin liquid was constructed using the
perturbative fluctuations to have no infrared divergence irSU(2) slave-boson approachor the SW2) projective
the above discussion. The infrared divergence implies theonstruction.® The PSG for such a state is Z2*0z. Re-
perturbative fluctuations to be relevant perturbations, whicttently, anotheiZ, state was constructed using slave-boson
cause phase transitions. approact?®®41tis a Z,-linear-symmetric spin liquid. Its PSG
is given by Z2A0013. NewZ, spin liquids were also ob-
IX_ RELATION TO PREVIOUSLY CONSTRUCTED tained recently using the slave-fermiofrhodel ap_proacf‘\f.3 _
SPIN LIQUIDS It appears that most (_)f tho_se states break certain symmetries
and are not symmetric spin liquids. We would like to men-
Since the discovery of highz superconductor in 1987, tion thatZ, spin liquids have a nice property that they are
many spin liquids were constructed. After classifying andstable at low energies and can appear as the ground states of
constructing a large class of spin liquids, we would like tospin systems.
understand the relation between the previously constructed Many spin liquids were also obtained in quantum dimer
spin liquids and the spin liquids constructed in this paper. modef’=! and in various numerical approachés™ It is
Anderson, Baskaran, and Z4a'® first used the slave- hard to compare those states with the spin liquids constructed
boson approach to construct a uniform RVB state. The unihere. This is because either the spectrum of spin-1 excita-
form RVB state is a symmetric spin liquid which has all thetions was not calculated or the model has a very different
symmetries of the lattice. It is a $B)-gapless state charac- symmetry than the model discussed here. We need to gener-
terized by the PSG SU2#0. Later two more spin liquids alize our classification to models with different symmetries
were constructed using the saméllslave-boson approach. so that we can have a direct comparison with those interest-
One is then-flux phase and the other is the staggered-fluxing results and with the nonsymmetric spin liquids obtained
d-wave staté3?®3The 7-flux phase is a S(2)-linear sym- in the slave-fermions-model approach. In the quantum

165113-32



QUANTUM ORDERS AND SYMMETRIC SPIN LIQUIDS PHYSICAL REVIEW B35 165113

dimer model and in numerical approaches, we usually knovstable even in the presence of long-range gauge interactions.
the explicit form of the ground-state wave function. How- In that case the mean-field spin liquid states become alge-
ever, at this moment, we do not know how to obtain the PSGraic spin liquids where the gapless excitations interact down
from the ground-wave function. Thus, knowing the explicitto zero energysee Sec. VIl
ground-state wave function does not help us to obtain the (6) The existence of algebraic spin liquids is a striking
PSG. We see that it is important to understand the relatiophenomenon since there is no spontaneous broken symmetry
between the ground-state wave function and PSG so that wg protect the gapless excitations. There should be a “prin-
can understand quantum order in the states obtained in ngiple” that prevents the interacting gapless excitations from
merical calculations. opening an energy gap and makes the algebraic spin liquids
stable. We propose that quantum order is such a principle. To
support our idea, we showed that just like the symmetry
group of a classical state determines the gapless Nambu-

In the following we will list the main results obtained in Goldstone modes, the PSG of a quantum state determines the
this paper. The summary also serves as a guide of the whoRsructure of gapless excitations. The gauge group of the low-
paper. energy gauge fluctuations is given by the IGG, a subgroup of

(1) A concept of quantum order is introduced. The quanthe PSG. The PSG also protects massless Dirac fermions
tum order describes the orders in zero-temperature quantufrom gaining a mass due to radiative corrections. We see that
states. The opposite of quantum order—classical order déhe stabilities of algebraic spin liquids and Fermi spin liquids
scribes the orders in finite-temperature classical states. Matlare protected by their PSG’s. The existence of gapless exci-
ematically, the quantum order characterizes universalityations (the gauge bosons and gapless fermiowithout
classes of complex ground-state wave functions. It is richesymmetry breaking is a truly remarkable feature of quantum-
than the classical order that characterizes the universalitprdered states. The gapless gauge and fermion excitations
classes of positive distribution functions. Quantum order®riginate from the quantum orders, just like the phonons
cannot be completely described by symmetries and order paviginate from translation symmetry breakifgee Secs.
rameters. Landau’s theory of orders and phase transitionélll C, VIIID, and VIII E and discussions below Eq49)].
does not apply to quantum orddisee Sec. | A (7) Many Z, spin liquids are constructed. Their low-

(2) Projective symmetry group is introduced to describeenergy excitations are described by free fermions. S@me
different quantum orders. It is argued that the PSG is a unispin liquids have gapless excitations and others have a finite
versal property of a quantum phase. The PSG extends thenergy gap. For those gapleZs spin liquids some have
symmetry group description of classical orders and can disFermi surface while others have only Fermi points. The
tinguish different quantum orders with the same symmetriespinon dispersion near the Fermi points can be lingar
(see Secs. IVA and VIIIE «|k| (which gives usZ,-linear spin liquid$ or quadraticE

(3) As an application of the PSG description of quantumok? (which gives usZ,-quadratic spin liquids In particular,
phases, we propose the following principle that governs theve find there can be margs,-linear spin liquids with differ-
continuous phase transition between quantum phases. Lent quantum orders. All those differefis-linear spin liquids
PSG and PSG be the PSG'’s of the two quantum phases onhave nodal spinon excitatiorisee Secs. Il and \/
the two sides of a transition, and P§®e the PSG that (8) Many U(1) spin liquids are constructed. Some 1l
describes the quantum critical state. Then PS8SG,, and  spin liquids have gapless excitations near the isolated Fermi
PSGCPSG,. We note that the two quantum phases maypoint with a linear dispersion. Thosg1) linear states can be
have the same symmetry and continuous quantum phastable against quantum fluctuations. Due to long-rangle U
transitions are possible between quantum phases with sangauge fluctuations, the gapless excitations interact at low en-
symmetny’’ The continuous transitions between different ergies. The Wl)-linear spin liquids can be concrete realiza-
mean-field symmetric spin liquids are discussed in Sec. \tions of algebraic spin liquidé®® (see Secs. Ill and ¥
and in Ref. 66 which demonstrate the above principle. How- (9) Spin liquids with the same symmetry and different
ever, for continuous transitions between mean-field stategjuantum orders can have continuous phase transitions be-
we have an additional condition P$EPSG, or PSG  tween them. Those phase transitions are very similar to the
=PSGqG, . continuous topological phase transitions between quantum

(4) With the help of the PSG, we find that, within the Hall states’#-°'We find that, at the mean-field level, the
SU(2) mean-field slave-boson approach, there are 4 symmetJ1Cn01n spin liquid in Eq.(32) (the staggered flux phase
ric SU(2) spin liquids and infinite many symmetric(l) spin ~ can continuously change into 8 different symme#icspin
liguids. There are at least 103 and at most 196 symmziric liquids. The SU2A0 spin liquid in Eq.(30) (the uniform
spin liquids. Those symmetric spin liquids have translation RVB statg can continuously change into 12 symmetricl)J
rotation, parity, and time reversal symmetries. Although thespin liquids and 52 symmetrié, spin liquids. The SU2B0
classifications are done for the mean-field states, they applspin liquid in Eq.(31) (the 7-flux phas¢ can continuously
to real physical spin liquids if the corresponding mean-fieldchange into 12 symmetric (@) spin liquids and 58 symmet-
states turn out to be stable against fluctuati@es Sec. IV. ric Z, spin liquids(see Ref. 6B

(5) The stability of mean-field spin liquid states is dis- (10) We show that spectrum of spin-1 excitatigins., the
cussed in detail. We find many gapless mean-field spin ligtwo-spinon spectruim which can be probed in neutron scat-
uids to be stable against quantum fluctuations. They can biering experiments, can be used to measure quantum orders.

X. SUMMARY OF THE MAIN RESULTS
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The gapless points of the spin-1 excitations in the bAG tions cannot be described by electronlike quasiparticles. The
(the staggered-flyxstate are always ak=(m, ), (0,0), second interpretatiofirue spin-charge separatiomeans the
(m,0), and (0,7). In the pseudogap metallic phase of under-existence of free spin-1/2 neutral quasiparticles and spin-0
doped highT, superconductors, the observed splitting ofcharged quasiparticles. In this paper both interpretations are
the neutron scattering peakr(w)— (7= 8, ), (7, 7= d) used. The algebraic spin liquids have a pseudo spin-charge
(Refs. 30 and 69—750r (m,7)— (7+ 8,7 &),(w—8,=  Separation. Th&, and chiral spin liquids have a true spin-
+5) (Refs. 28 and 76at low energies indicates a transition charge separatiofsee Sec. | €

of the U101n state into a state with a different quantum  (d) Although in this paper we stress that quantum orders
order, if we can indeed identify the scattering peak as theCan be characterized by the PSG's, we need to point out that
gapless nodeNone of the eight symmetriz, spin liquids in the PSG’s do not completely characterize quantum orders.

the neighborhood of the UT@1n state can explain the split- Two different quantum orders may be characterized by the

ting pattern. Thus we might need to construct a new low->2me PSG. As an example, we have seen thaktisaz Eq.

; o o (122, can be a Wl)-linear state or a (1)-gapped state de-
energy state to explain the splitting. This illustrates that de_z- ending on the values of parameters in #esatz Both

tailed _neutron scattering experiments_ are pov_vgrful tools i tates are described by the same PSG naDZ. Thus the
detecting quantum orders and studying transitions betweepsg cannot distinguish the different quantum orders carried
quantum order¢see Sec. VIl . by the U1)-linear state and the ({l)-gapped state.
(11) The mean-field phase diagram, Fig. 8, fodaJ, (e) The unstable spin liquids can be important in under-
spin system is calculatedOnly translation symmetric states standing the finite-temperature states in highsupercon-
are consideregiWe find four mean-field ground states as we ductors. The pseudogap metallic state in underdoped samples
changeJ,/J; : the 7-flux state(the SU2/0 state, the chi- s likely to be described by the unstable UH@In algebraic
ral spin stat¢an SU2)-gapped stafethe U1)-linear state in  spin liquid (the staggered flux statevhich contains a long-
Eqg. (142 which breaks 90° rotation symmetry, and the range W1) gauge interactiofi>* (see discussions at the end
SU(2)x SU(2)-linear state in Eq141). We also find several of Sec. VIII).
locally stable mean-field states: the(1Ygapped state (f) Although we have been concentrated on the character-
U1CnOOx in Eqg. (122 and twoZ,-linear states Z2Az13 in  ization of stable quantum states, quantum order and the PSG
Eq.(104) and Z2A0013 in Eq(103. Those spin liquids have characterization can also be used to describe the internal or-
a better chance to appear in underdoped Higlsupercon- der of quantum critical states. Here we define “quantum
ductors. The Z2A00132,-linear state has a spinon dispersion critical states” as states that appear at the continuous phase
very similar to the electron dispersion observed in underiransition points between two states with different symme-
doped samples. The spinon dispersion in the Z28  tries or between two states with different quantum orders
Z,-linear state may also be consistent with electron dispertbut the same symmetryWe would like to point out that
sion in underdoped samples. We note that the two-spinofquantum critical states” thus defined are more general than
spectrum for the tw,-linear states have some qualitative “quantum critical points.” “Quantum critical points,” by
differenceq see Figs. 1@) and 1@b) and note the positions definition, are the continuous phase transition points between
of the node$ Thus we can use neutron scattering to distin-two states with different symmetries. The distinction is im-
guish the two statetsee Sec. Vi portant. “Quantum critical points” are associated with bro-
Next we list some remarks and comments that may clarifjken symmetries and order parameters. Thus the low-energy
certain confusing points and help to avoid possible misunexcitations at “quantum critical points” come from the
derstanding. strong fluctuations of order parameters. While “quantum
(@) Gauge structure is simply a redundant labeling ofcritical states” may not be related to broken symmetries and
guantum states. The “gauge symmetrié=gferring different  order parameters. In that case it is impossible to relate the
labels of same physical state give rise to the same Jem@lt gapless fluctuations in a “quantum critical state” to fluctua-
not symmetries and can never be brokeee the discussion tions of an order parameter. The unstable spin liquids men-
below Eq.(15)]. tioned in (e) can be more general quantum critical states.
(b) The gauge structures referred to in this pgpeich as  Since some finite temperature phases in highsupercon-
in Z,, U(1), or SU?2) spin liquidg are “low-energy” gauge ductors may be described by quantum critical states or stable
structures. They are different from the “high-energy” gaugealgebraic spin liquids, their characterization through quan-
structures that appear if,, U(1), and SU2) slave-boson tum order and PSG’s is useful for describing those finite-
approaches. The “low-energy” gauge structures are propertemperature phases.
ties of the quantum orders in the ground state of a spin sys- (g) In this paper, we only studied quantum orders and
tem. The “high-energy” gauge structure is a particular waytopological orders at zero temperature. However, we would
of writing down the Hamiltonian of spin systems. The two like to point out that topological orders and quantum orders
kinds of gauge structures have nothing to do with each othemay also apply to finite-temperature systems. The quantum
(see discussions at the end of Sec. | C and at the end of Seaffect can be important even at finite temperatures. In Ref.
IVA). 13, a dimension indexDl) is introduced to characterize the
(c) There are(at least two different interpretations of robustness of the ground-state degeneracy of a topologically
spin-charge separation. The first interpretatipseudo spin- ordered state. We find that if Bd1, topological orders can-
charge separatigorsimply means that the low-energy excita- not exist at finite temperature. However, if BL, topologi-
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cal order can exist at finite temperatures and one expect &olving those conditions for a given symmetry group and a
finite-temperature phase transition without any change ofjiven IGG allows us to find possible extensions of the sym-
symmetry. Topological orders in FQH states have=lb| and  metry group or, in another word, to find possible PSG’s as-
they cannot exist at finite temperatures. The topological orsociated with the symmetry group. In Sec. IVA, we have
der in 3D superconductors has D2. Such a topological seen that the reIatioﬁTXTyT;lT;1=1 between translations
order can exist at finite temperatures, and we have a continin the x andy directions leads to the condition

ous finite-temperature superconductor-metal transition that

does not change any symmetry. GyTxGyTy(GyTy) (G, Tyt
(h) If we regard a down-spin as an empty site and an P
up-spin as a site occupied by a boson, then our spin system =G GyTyT, "G, 7Ty "Gy "e g, (A1)

can be viewed as an interacting boson system. The gaplegzﬁ
spin liquids studied here are examples of boson metals that
exist at zero temperature. : C_ove Lo g -1

Although we mainly discussed quantum orders in 2D spin GG =X)C H(1=9)Gy(1) "< (A2)
systems, the concept of quantum order is not limited to 2Dbn elementss, T, andG, T, of the PSG. Herg is the IGG.
spin systems. The concept applies to any quantum systems This condition allows us to determine that there are only two
any dimensions. Actually, a superconductor is the simplesgifferent extensionggiven by Eq.(61) and Eq.(62)] for the
example of a state with nontrivial quantum order if the dy-translation group generated By, andT,, if G=27,.
namical electromagnetic fluctuations are included. A super- However, a bigger symmetry group can have many more
conductor breaks no symmetries and cannot be characterizegttensions. In the following we are going to consider PSG’s
by order parameters. As-wave and ad-wave supercon- for the symmetry group generated by two translations ,
ductor, having the same symmetry, are distinguished only byhree parity transformation®,, ,,, and the time reversal

their different quantum orders. The gapless excitations in @&ansformationT. Since translations and the time reversal
d-wave superconductor are not produced by broken symmeransformation commute, we have

tries, but by quantum orders. We see that a superconductor

has many properties characteristic of quantum-ordered states, (G, T,) YGtT) G, T,GTeg,
and it is a quantum-ordered state. The quantum orders in the
superconducting states can also be characterized using (GyTy)‘l(GTT)‘leTyGTT egq, (A3)

PSG’s. The IGG7=Z, if the superconducting state is caused

by electron-pair condensation, and the IG& Z, if the su-  Which reduces to the following two conditions @y ,(i)
perconducting state is caused by four-electron-cluster corfndG(i):

densation. The different quantum orders insamave and a

d-wave superconductor can be distinguished by their differ- Gy H(i)GTH(1)G(i)Gr(i—%) e,

ent PSG’s. TheAnsatzof the swave superconductor is in-

variant under the 90° rotation, while tha&nsatz of the G, (HGTH)G()G(i—9) . (A4)
d-wave superconductor is invariant under the 90° rotation

followed by gauge transformatiors— + e ™2c; . Since TP, ‘TP, =1, T 'P *TP,=1, andT 'P,/TP,,

It would be interesting to study quantum orders in 3D =1, one can also show that
systems. In particular, it is interesting to find out the quantum

order that describes the physical vacuum that we all live in. Gt ' (P(i))Gp (i)G1(i)Gp (i) €G,
The existence of light—a massless excitation—without any
sign of spontaneous symmetry breaking suggests that our G{l(Py(i))G,;yl(i)GT(i)pr(i) egq,

vacuum contains a nontrivial quantum order that protect the

massless photons. Thus quantum order provides an origin of _ . _1,. . .
ight® ! " 0 G PGP ()Cr()Gr () <G (AS)

From the relation between the translations and the parity
ACKNOWLEDGMENTS transformations, T,P, 'T,P,=T P, ‘T P,=T P 'T P,

I would like to thank P. A. Lee, J. Moore, E. Fradkin, W. = Tx Py TPy =T Py TPy =T Py TyPy =1,  we
Rantner, and T. Senthil for many helpful discussions. Thidind that
work is supported by NSF Grant No. DMR-97-14198 and by -1
NSF-MRSEC Grant No. DMR-98-08941. (CxTX)(Gp, Py "CxTxGp, Pxe

-1 -1
APPENDIX A: GENERAL CONDITIONS (GyTy) *(Gp,Px) "GyTyGp, Pxel, (AB)

ON PROJECTIVE SYMMETRY GROUPS 1

(GyT)(Gp P,) "G, T,Gp Pyeg,
The transformations in a symmetry group satisfy various YRR YIRS
algebraic relations so that they form a group. Those algebraic 1 _1
relations lead to conditions on the elements of the PSG. (GxTw) (prpy) GXTXGPyPyeg' (A7)
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(GyTy) H(Gp, Pxy) 'GiT:Gp, Pryel,
(GxT) " X(Gp,_Pyy) 'GyT,Gp PyxyeG,  (A8)
or
Gy(Px(1))Gp (i +%)Gy(i +%)Gp (i) €,
G, {(P(i)Gp ()G (I)Gp (i=9)eG,  (A9)
Gy(Py(i))Gp (i+9)Gy(i+9)Gp (1) €4,
G, '(Py(1))Gp (1)Gx(1)Gp (i-%) G, (AL0)
Gy (Pyy(i))Gp, (11GK()Gp, (i ~%) €4,

Gy‘l(ny(i))Gﬁl(i)Gx(i)pr(i—9)eg. (A11)
We also haveP, PP, P '=P PP P *=1. Thus

Gp, PxyGp,PxGp, Pxy(Gp Py) “leg,

prPprxPx(GpXPy)’l(GpXPx)*leQ, (A12)
which implies

GPXy(i )GPX(ny(i ))GPXY(nyPx(i ))G;yl(l) eg,

Gp,(1)Gp, (Py(1))Gp (P(i)Gp () e G. (A1)

The fact thafT?=1 leads to the condition
G3(i)eg, (A14)

andP;=P;=PZ =1 leads to
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Gp,()Gp (Py(i)) <G,
Gr,(1)Gp, (Py())€G
Ge, (Gp, (Pyy(i))€l. (A15)

The above conditions completely determine the PSG’s.
The solutions of the above equations fo=Z,, U(1), and
SU(2) allow us to obtain PSG’s faz,, U(1), and SU2) spin
liquids. However, we would like to point out that the above
conditions define the so-called algebraic PSG’s, which are
somewhat different from the invariant PSG defined in Sec.
IV A. More precisely, an algebraic PSG is defined for a given
IGG and a given symmetry group SG. It is a group equipped
with a projectionP and satisfies the following conditions:

IGGCPSG, P(PSG=SG,

P(gu)=P(u), for any ue PSG andge IGG.
(Al6)

It is clear that an invariant PSG is always an algebraic PSG.
However, some algebraic PSG’s are not invariant PSG'’s.
This is because a genedmsatz y that is invariant under an
algebraic PSG may be invariant under a larger invariant
PSG. If we limit ourselves to spin liquids constructed using
ujj, then an algebraic PSG characterizes a mean-field spin
liquid only when it is also an invariant PSG at the same time.

We would like to remark that the definition of invariant
PSG can be generalized. In Sec. IV A, the invariant PSG is
defined as a collection of transformations that leaveAan
satz y; invariant. More generally, a spin liquid is not only
characterized by the two-point correlationU(),z
_<l,0ml//'3]> but also by many point correlations such as
(Uijmn) apyn =i thg; ymz,/;m) We may define the general-
ized invariant PSG as a collection of transformations that
leave the many-point correlation invariant. It would be very
interesting to see if the generalized invariant PSG coincides
with the algebraic PSG.
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