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Calculus of sea-displacement operators
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Sea-displacement operators for fermions are defined in terms of the Fermi fields in a one-component Fermi
system. The main conclusions of this article fully corroborate the conjectures made in our earlier works, and
provide a mathematically rigorous foundation for these earlier works. These ideas are generalized to electron-
hole systems where we are able to clearly explore the nature of exciton-exciton interactions. We find that
exciton-exciton interactions in an ideal model of GaAs are not adequately treated simply as of the two-body
type; rather the interactions are mediated by the exchange of other bosons that are present in this system. These
bosons are identified explicitly and the exciton Green function is calculated. This exercise is also intended to
be a precursor to a systematic nonperturbative treatment of gauge theories.
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[. INTRODUCTION electron-hole pair(in other words, the usual kind of sea-
displacement bosons found in one-component Fermi sys-
This article is meant to address some technical issues thégmsg called a “valeron” or “conductron” depending upon

prevented our earlier wotkfrom being universally em- the nature of the band. Thus we find that the two-component
braced, and to place some of the conjectures that appearetiarge-conserving undoped Fermi system may be thought of
there on a firm mathematical foundation. Indeed as Cune anals consisting of several kinds of elementary excitations
Apostof pointed out in their very pertinent critique, there (which are postulated to be exact bospfi$e usual excitons
were significant technical drawbacks relating to the meaningire just one class of such excitations. Excitons can be in a
of the square-root of the number operator in the denominatasound state or in a scattering state such as that in a hydrogen
that cast doubt on the soundness of the physical conclusiongtom. Furthermore, the excitons can possess a net center-of-
This article |ayS to rest once and for all such dOUth, and dmass momentum. These excitons possess an energy disper-
an added benefit, we are able to study the precise nature gfon that is slightly different from the zero-center of mass
exciton-exciton interactions. It is interesting to note that thegycitons and are somewhat important in the analysis. Next in

rigorous formulation presented here is_ indispensable for &, qer of importance in our system is a solitronsalitron is
correct treatment of charge-conserving two-componen

Fermi svst h it d relativistic elect r%{] electron-hole pair that resides at the bottom of the con-
€rmi Systems such as excitons and relativistic €1ectrons ang, +tjon and valence bands. This pair is unbound and its ex-
positrons. This is somewhat surprising since in our earlier

work! we showed that the lack of a proper definition of the|stence is needed in order that excitons interact with one

sea-displacement operator does not invalidate the physicgpomer’ espemally when we are dealing with Auger-llkt-;- pro-
conclusions in the one-component Fermi system. Here Wgéesses-where exciton number is not conserved. In anmon to
find that a naive approach underestimates the nature ajge Selitron, we find the need to invoke two other kinds of
strength of interactions between excitons but a more caref(}osons, valerons and conductrons. Valerons are intravalence
treatment brings out many subtle features that are easy fand electrqn—hole excitations. They are analogs of the usual
overlook. Many authors who study exciton-exciton interac-S€a-bosorisin one-component Fermi systems. Conductrons
tions assume that excitons are bosons that interact via twimilarly are particle-hole excitations in the conduction band.
body interactions where the exciton number is conservedAll these bosons interact with one another and the resulting
Kavoulakis and Bayrhhave pointed out the need to include System is completely equivalent to the interacting Fermi sys-
Auger-like processes where the exciton number is not contem. Only the exciton couples to external radiation fields.
served. Although assuming that excitons are bosons is totalljherefore, we have to consider excitons as the primary ob-
acceptabldit is a matter of definitiop there are some dif- jects of interest and the other bosons in the system are simi-
ferences between a system such as a hydrogen @thioh  lar to gauge bosons. Material particlescitong interact by
interacts via two-body forces with other hydrogen atpms exchanging these other bosons. Furthermore, these gauge
and an exciton. The main difference is that in a hydrogerbosons interact amongst themselves, suggesting an analogy
atom the proton and electron do not recombine leaving bewith nonabelian gauge theories. In future publications, we
hind photons, where as an electron can recombine with atend applying these ideas to the study of relativistic gauge
hole. In fact, when two excitons scatter off each other it istheories. In this article, we compute the exciton Green func-
conceivable that nonradiative recombination processes take®n using the interaction terms that correspond to inelastic
place in addition to radiative recombination. But in place ofscattering of the excitons off the other bosons. In future pub-
that, we find that an exciton can recombine with a specialications, we intend to investigate more thoroughly the prac-
kind of electron-hole pair, which we call solitron (to be  tical aspects of this formalism—specifically, the biexciton
made clear in the main texand can create an intraband Green function and nonlinear optical susceptibilities.
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[l. CONDENSATE DISPLACEMENT OPERATORS scopically large number of theriThe number operator is no

In this section, we provide some details regarding the Cor[onger a good guantum number in such systems but perhaps

earlier workst They are important since they provide a . r \/A—
springboard from which we may write down the analogousdecomposition of the operatdo, as bo=exp(~iXg) VNg

statements for fermions. The correspondence between thhereXp=(1/2)(Xo+X{) is an operator that is strictly self-
sea-displacement operators and the canonical fermions wagljoint but it is not exactly but almost a canonical conjugate
not made sufficiently clear in our earlier works. Indeed, thereto the number operatdiy=b}bo=0 (in Appendix A we see
were inconsistencies in the technical definition, that evenhat an appropriate interpretation of the definition of the con-
though had no impact on the physical conclusi¢as we jugate allows us to circumvent these issues, for fermions we
shall see in the present article once and fortakky did leave  have to be more carefulOn the other handX, is almost
some room for doubting the soundness of the framework. Legelf-adjoint but is strictly a conjugate to the number operator
us therefore start off with the familiar Bose systems. lh&t N, (however, in the next section when we deal with fermi-
and b, be canonical boson creation and annihilation operapns, X, refers to the canonical conjugate of tia¢al number
tors, respectively. They obey the commutation rulesef fermiong. I a definition of Xj is desired, we may claim
[by b ]=0 and[by b, ]= & k' . Let us now introduce the that it is given by the manifestly self-adjoint formula
following new objects known as condensate displacement

operators i ( 1 ) i ( 1
Xo=zIn| bo—=| — zIn| —=Dbg |. (©)
1 20 VR 2 LR
d =——=Dbgby, Qq#0, 1 i :
@2(®) VN oPa: A @ In addition to the square root of the number operator in the
0 denominator that we have already made sense of, we have to
dg(0)=0 @ make sense of the logarithm. It is defined to be the power-
0 — Y

series expansion suggested by rewriting the above formula as

1+ (bo— VRy)

where N0=b$b0 is the number operator for the zero-
momentum state. A word of caution regarding notation. The
symbol N° without a hat refers to a positive integer
(ac numbej that corresponds to the total number of particles
in the system, in both Bose as well as Fermi systems. The i

1 -
symbolN refers to the operator that corresponds to the total - Eln 1+—(b{— VNo)
number of particles in the system, be it Bose or Fermi. The VNg

. "_ = 0 . . 'Y
object1=N/N"is therefore the unit operator. The symbl)  The proof of the fact thaX,, is canonically conjugate to the
refers to the operator that corresponds to the total number of

bosons in the zero-momentum state. This object does n&umber operatoN, in the restricted Hilbert space Is rel-
appear in the next section where we deal with fermions. Th&€9ated to Appendix A. Therefore we may writéo,No]=i.
square root of the operator in the denominator of B). Armed with these facts we now are able to prove thai(q)
deserves special attention. In particular, when wedé,@(q) is a canonical bosorr1 annlhll_atlon operator. We may now
on a state containing no particle in the zero-momentum statdVrt€ dq2(q) =expXg)by. Since from the definition,
we get an infinity multiplied by the same state, and when thi€xP(Xg) depends on neithéy, nor b, we see that as far as
further is acted on byr,, we get a factor of zero. Zero commutation rules ofl,»(q) go, they are identical to those
multiplied by infinity is indeterminate. This tells us that the Of by since the two differ by a trivial phase that commutes
condensate displacement operator is an ill-defined operatayith both these objects and their Hermitian conjugates. Next,
on the Fock space of bosons. This is a technical problem tha¥e reproduce some facts that have been proved
cannot be wished away. We will mitigate the severity of thissatisfactorily elsewhere, and these will be used as the point
problem by postulating that all states of the interacting sysof departure for a rigorous treatment of fermions. Earlier we
tem (both ground state and excited statemy be expressed proved (for both g=0 andg+0), the following combined

as linear combinations of states from a restricted Hilberformula:

space that contains states of the noninteracting system with a R _

fixed total number of particles, but excludes those that con- qu,zbk,q,z: Nody 09g,0t \/N—Od,q,z(—q)ékm,zvo

tain no particles in the zero-momentum state. Although we

i
X5==In
o2

1
Vi,

: 4

are unable to say precisely when this assumption breaks +dg,2(q) \/Noék_q,2’0+ d{l,z)(kw,z)
down, it is reasonable to assert that even in the case when the

interactions are strong, either because of the intrinsic nature X (k+0a/2)d(112) k- g2 (k—0/2), )
of the interaction or apparently strong due to the dimension-

ality of the system, the zero-momentum state of the interact- Ro=R— dr d 6
ing system will have at least one boson in it, if not a macro- 0 q;o 2 @) Ay 9. ©
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This equation may be. rewritten more glaborately and in &yrther we have K?ﬁo)nk:d(Tl/z)k(k)d(l/z)k(k)=(1/NO)(1
manner that is conducive to generalization gs- Q) n No)blbk- But we also know thank=bﬁbk. This seems to

qu/zbk—q/z: mAk(_qHAl(q)m suggest one of two things, r)ameljokzq or we should rg-
strict ourselves to cases whly=N"1>1. The latter possi-

LS Al (apA (—q+ay) biIity_ seems the most at_tractive until one realizes that the

4 Th0  KTa2may2i ATk ay/2 1 restricted Hilbert space is not so restrictive as to exclude

such systems where the number of particles is small and

_ E Al (a)A (—q+qy) finite. This will become clear i.n Appe.ndix A where we need

4 Tho KT ATaZ LGy 2 1 to only assume that the restricted Hilbert space contains no

states that have zero particles in the zero-momentum state.
(") Therefore we are left with the other possibility=0. This
N result is not as alarming as it seems since @8) is consis-

S + tent only with the state where all the bosons are in the zero-
n"_bkbk_nB(k)@JrqlE;&o A~ ay2l 01) A—gy2l 1) momen%/um state and no bosons have higher momenta. Fur-
ther iterations do not change this picture. That is, if we
_ 2 N (qA (ay) ®) interpret th_e square root as a power-series expansion, we
4Fo KA/ ay 2L obtain the first order correction

Hereng(k) is the momentum distribution of noninteracting 1 1
bosons at zero temperaturag(k) =8, oN°. Also, A.(q) dga(@)~| 1+ — > dg2(01)dg i2(Cl1) | —=5b5byg -
= Oy q2,0dq/2(0) . It is worthwhile to consider an alternative 2N" 070 ‘/N—
scheme for making sense of the definition in E2). It in- (13
volves writing the number operator as In order to conform to the iterative scheme, we are obliged to
replace the thel’s on the right side by the zeroth-ordéis.
N0=N°( i 1 5 dé/z(q)dq/z(q))- © But we kn?w that in the zeroth ordet}, ,,(ds)dq,/2(q1) =0
NC 470 andN=NC1. Therefore the first-ordat is the same as in the
nzeroth order,dq,z(q):(ll\/ﬁo)bgbq. All this points to the
futility of interpreting the square root as a power-series ex-
pansion around the noninteracting ground state. All further
iterations lead to precisely the same result. This should tell
us that one should solve the system self-consistently. Perhaps
1 /. 1 12 we should expand around an expectation vdlue., No
dq/z(Q)ZW( 1‘@ q;o dg/z(OI)dq/z(Q)) bbg- =_(N0>i+(l§|0—<_l§|0)i)] with the expectation value deter-
(10) mined self-consistently. This expectation value will be differ-
ent fromN° even when interactions are absent, for example,
If Eq. (10) is interpreted as a power-series expansion around we consider finite temperature. Let us now try and com-
unity, we can construct an iterative procedure to solve fopute the finite-temperature momentum distribution of nonin-
dg2(0). This may seem redundant given the fact that weteracting bosons. From elementary considerations we know
have already made an elegant argument that pins down thgat (No)=N°—=k+0(b/b,) and(n,)=(b]by). The ther-
meaning ofdg»(q) in terms ofX,. The reason for this new modynamic expectation values involve the chemical poten-
approach is that in the case of fermions we will not have theja| (.
luxury of introducing an object similar t¥, for reasons that
will become clear in the next section. Thus we are forced to 1
seek alternatives that are more fermion friendly. Unfortu- <”k>:equg(€k_m]_1'
nately, these alternatives do not allow us to venture very far ) ] ) )
from the noninteracting case, as we shall soon see. Neverth&D€ reason this appears is that in the grand canonical en-
less, this exercise is very instructive since it tells us that th&emble we have to compute the trace V¥'th the Boltzmann
correspondence that we write down for fermions in the nextveight (b,by)=(1/Z) Tr{exd — B(H—uN)Io.by}, where Z
section has exactly the same features and are therefore cor-Tr{exd—B(H—uN)]} is the grand partition function. Us-
rect, pending the resolution of the interpretation of the ubiing the cyclic property of the trace, we may write
quitous square root in the denominator. Retaining only the

Furthermore, we may write for the occupation number not i
the zero-momentum stat&+£0) asnk=dzl,z)k(k)d(l,z)k(k).
With these identifications, we may rewrite E@®) as (@
#0),

(14

. . . - 1 1
lowest order in the series expansion gives us (blbk)ZZTT(E_B(H_“N)bEbk)= ZTr(bke—B(H—uN)bb
d _ L bib 11 1
@2 )= 55 PoPa. (1) = ZTr(e AH-HNIQAt- s oA kM)

Rig=NO1. (12) =e Al m(bbl)=e A M1+ (biby)).
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In other words, ons. The sea-displacement operators have been introduced
elsewher& but an explicit formula for the sea-displacement
(b*b )= 1 operator in terms of the Fermi fields was lacking. In this
KR exd Bleg—pm)]—1° section, we once and for all pin down the definition of the

sea-displacement operator and show that they obey commu-
ation rules that are somewhat complicated but in the limit of
a generalized random-phase approximati&®PA) (to be
1 made clear in Appendix Bthey obey canonical boson com-
(blby)=(df(K)dy(k))= ZTr[e*B(H*“N)dl,z(k)dk,z(k)], mutation rules. This exercise hopefully is the final word as
far as the technicalities of the correspondence goes. Further-
more, as we shall see in the conclusion, the rigorous formu-
H= 2 ékdgl/z)k(k)d(l/z)k(k)- lation reinforces the rather startling clditihat in one dimen-

k#0 sion (1D), so long as the interaction between the fermions is
purely repulsive and possesses an appropriate Fourier trans-
form, and is sufficiently weak so that all states of the inter-
1 acting systemboth ground state as well as excited states
<dllz(k)dk/2(k)>: ZTr[e_ﬁ(H_”N)dl/z(k)dk/z(k)] may be expressed as linear combinations of low lying ex-

cited states of the noninteracting system and its ground state,

Let us now try to evaluate this quantity using the condensat
displacement language

We also know thafN,d /) (k)]=0:

then the momentum distribution of the interacting system

1
= ZTr[e_ﬁ(H—ﬂN)eB(H—/LN) possesses a sharp Fermi surface at precisely the same place
as the noninteracting system. Let us now proceed to the main
><dk/z(k)eiﬁ(Hi'MN)dllz(k)], task at hand.

Let ¢, andc] be canonical fermion annihilation and cre-
. . t
1 ation operators. We may writéc, ,c,,}=0 and{cy,C,,}
+ o Be ~B(H—uN T
(dia(K)dya(k))=e~# > Trle =N 5(K) digo(K) ] =, - Letn=clc, denote the number operator. The sea-

: displacement operators for fermions are definedogsQ)
=e AL+ (dyp(k) dia(K)),

1
A(@) =Ne(k—a/2)[ 1= ne(K+a/2) [-—=—=C{_g;Cr+ gz

di (k) dga(k))= ————. VN

(oK) dya(K)) expBeg) —1 k—g/2 a9
The crucialu seems to be missing. The reason is somewhat
subtle. It has to do with the fact that the trace in the original A(0)=0, (16)

case using the parent bosons spans all states including tho\f/ﬂerenF(k)= 6(ke— |K|) is the zero-temperature Fermi dis-

with Ng=0. However, in the condensate-diSplacemept lantripution. As before, the square root of the number operator
guage, the trace is over all statesceptthose that havé\, in the denominator in the definition requires clarification, a

—0. There are quite a number of states that Héye:0 and  point noted by Cune and ApostolTheir approach for deal-
an arbitrary total number of particles. It is therefore not sur-ing with this problem is unfortunately, not adequéteeither
prising that we have encountered a discrepancy. The be#tseems is the approach used for dealing with this problem in
way to resolve this is to introduce a Lagrange multiplier thatthe case of bosons, namely that we be able to interpret the
allows us to control how many bosons there are in states witbbject U(k) = (1/\/n,)c, as being a unitary operator. This
zero momentum. Thus when it comes to taking the trace ovateason for this additional complication probably stems from
states in the condensate-displacement language, we havett@ fact that in order for this object to be unitary, we should
be careful to include a new chemical potential that couples tie able to find a self-adjoint canonical conjug&e of the
No and not just toN. When this is done we can easily show number operator such thgl, ,n,]=idy x . Such an object
is not likely to exist not only because of the positivity of the
number operaton,, but also because of idempotericin
exd B(eg—pm)]—1° fact, it is a simple matter to convince ourselves that idempo-

_ _ . __tence is inconsistent with the existence®f. On the one
These considerations carry over to fermions where the diffi;, ;g e have[ Py ,n2]=[ Py , NN+ N Py ,Nic] = 2in .

culties are understandably far more severe. After all, tryin 21_ s ;
to describe fermions using Bose-like objects, and to do igtbn the other hand Py, nic] =[Py, ni] =1. This suggests that

exactly, is a daunting task. We shall now use this insight td'x= (1/2)1—a state of affairs seldom realized if at all. Some
write down a correspondence for fermions. readers of this work familiar with the more traditional

bosonization approaches may point to the importance of
“point splitting”—a procedure that does not allow us to
write nkzclck. They may wish to suggest this as the main
In this section, we provide details of the correspondenceeason for all these difficulties. It is likely that point splitting
between the sea-displacement operators and canonical fernis- a necessary technical consideration only in systems that

<dl/2(k)dk/2(k)>:

Ill. THE NATURE OF SEA-DISPLACEMENT OPERATORS
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havekg— o andm—c butvg=ke/m<, in otherwords,a =1 and ng(k—qg/2)=1 or if ne(k+q/2)=0 and ng(k
system where both the mass of the particle and the density g/2)=0, a fact easily verified. Parenthetically, we note that
are infinite such that the Fermi velocity is finftaVe deal Eg. (200 was anticipated in the comment by Cune and
with systems that are more physiddihite ke andm) and  Apostol? Just as in the case of bosons, further iterations do
are, by and large, immune to these considerations. While thgot affect these conclusions. Therefore, if one starts with the
metaphorical definition of Eq15) is quite adequate for most noninteracting system and expands around the noninteracting
practical purposes, it is desirable to have a better understanground state, one is able to treat only the noninteracting sys-
ing of the meaning of the square root. tem. Just for the sake of completeness, let us see where the
Let us divert our attention for some time to the morefirst order terms lead us. Whem:(k+q/2)=1 and ng(k
mechanical aspects of this program in the hope that soon we g/2)=0, we have from the definition E¢15) a result that
will be able to address this delicate technical problem of thgg independent of\ and therefore valid to all orders in

square root in the denominator. In a manner entirely analox \/n, /zAk(—Q)=CI+q/zCk—q/z- In addition, we have

gous to that of bosons we may write Al(q) m: CLq/zCk—q/z when ne(k+9/2)=0 and
ng(k—qg/2)=1. These two identifications are entirely consis-
CLq/zCqu/z: VNt grA(—Q) +Al(a) VNk—qgr2 Fk=a/2) y

tent with Eq.(17) to all orders in\. The other cases, namely,
; ng(k=q/2)=0 andng(k*=qg/2)=1 are given below. They
A2 . A+ gi2—q,/2(01) Ak —g,2( — 9+ d1) have to be proven iteratively. Wheng(k+q/2)=0 and

a7 ne(k—q/2)=0, we can see from Eq17) that C;+q,20k,q/2
A7) =\Zq# OI:OALq/z—ql/z(OIl)Ak—ql/z(—q+Q1)- We now
show that this result is identically zero. This is consistent
N D> AL (91)Axs .o —G+ay). with our earlier claim that further iterations do not change
;70,0 kazray 9 the zeroth order results. Since, now if we replaceAfseby
(18 the zeroth order ones, we get a first order result for
Furthermore, CLq/zCk—q/z equal to zero:
—cle = N S oAl ChigChog=N > Al (91)Ax—qy2( — G+ 0y)
nk—ckck—n,:(k)mﬂxqﬁo Ak,ql,z(ql)Ak,ql,z(ql) k+q/2Ck—g/2 0 Zho k+qi2—qq /2 d1) Ak—q, /2 1
_ T =\ ne(k+q/2
A Ay 0 A g ), (19 (2 ekt
whereng(k) = 8(kg— |K|) is the zero-temperature Fermi dis- _ql)CIJrq/2Ck+q/2—qlcl+q/27qlck—q/2
tribution function. The parametex is a book-keeping de-
vice, fam|llar frpm perturbation thepry, where in the end we =) 2 ne(k+q/l2—qy)
setA=1. This is a very useful device as we shall soon find 41,#9,0
out, one that partially addresses the problem of the square . .
root in the denominator. The proof of Eq4.7) and(19) rests X(1- nk+q/2—ql)ck+q/2ck—q/2-

crucially on the meaning of the definition 8§(q) shown in

Eq. (15). Let us now consider the _problem of ascerta[ning theThe number Operatomk+q/27q1: ne(k+q/2— Ch)i. and
meaning ofA(q) in a “perturbative” manner. That is, We herefore the first order result is zero as well. Similarly, we
shall interpret the square root of the number operator as bgj,q the same answer when(k+g/2)=1 andng(k—q/2)

ing the square root of the E¢19) where we find a natural . ) . B N
unit operator about which we may expand the square root. 1. To put it another way, |tere_1t|ons arou.npl—n,:(k)l do
Thus if we consider the lowest order i we haven, not change the form af, . That is,n, remains frozen at the

_ P _ _ _ valueng(k)1. This means that the only state consistent with
vT/rri‘tFe(k)l. Since ny—qp=1 when ne(k—q/2)=1, we may "1 identity is the noninteracting ground state. Using
this, we can convince ourselves that the program is consis-
_ _ _ t tent, just as the program was consistent in the Bose case
Ad@=ne(k= /211~ ne(k+ a2 10 galicr g2 (20 Which has been proved rigorously by other means.
In order to do better than just remain at the noninteracting
These equati%ns obviously solve E¢$7) and (19) in the  ground state, one must, just as in the Bose case replace
Ipwest order_)\ =Tl except that_ we seem to have the add"z(nk)iJr(nk—(nk)i), and expand around an expectation
tional curiosity Cy  q/2Ck—q2=0 If Ne(k+a/2)=1 andne(k  yajue (n,)+0 for all k. Thus we are obliged to consider a
—a/i2)=1 or if ne(k+0/2)=0 andng(k—a/2)=0. This is  system with interactions and at a finite temperature in order
hardly surprising given the fact thag=ng(k)1 is consistent for this scheme to be of practical significance. The philoso-
with our restricted Hilbert space having exactly one elementphy is that we solve fo{n,) self-consistently and then pass
namely, the ground state of the noninteracting Fermi seg the limit of weak interactions or low temperature if one
|[FS). This meanscl+q,zck_q,2| FS=0 when ng(k+q/2)  wants to study the ideal case. Therefore, we may write
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_ 7]1-1/2 operators. With the cutoff function we have introduced, we
1 1 ~ nk,q/z <nk,q/2>1 ) . L .
= o 5 may write the kinetic energy operator in the sea-
V—gz V(Nk—gr2) k=a/2 21 displacement language as K=koN+3Kk,q
a&Owk(q)Al(q)Ak(q). It can be seen thatw,(q)=(k
Let us now use the insight obtained in the case of bosons teq/m)ng(k—a/2)[1—ng(k+g/2)]=0. Here Ko

write down the correct commutation rules obeyed by the=(1/N% =, en(k) is the kinetic energy per particle. In or-
sea-displacement operators. This is a nontrivial task giveder not to disappoint the attentive reader, we collect here
the subtleties involved. The Bose case was soluble exactlyome facts that are true in the absolute sense. From the exact
via a polar decomposition which we do not have here. Welefinition in Eq.(15) it is fairly obvious that(independent of
write down here the final answers, details of which may bethe meaning of the square rgot

found in Appendix B. The exact commutation rules obeyed

by the sea-displacement operators it seems are rather com- [A(D),Np]=Ar(A) (Sp.k+ 2= Fpk—gi2) - (24
plicated. The sea-displacement operators do, however, ob?\x

exact closeccommutation rules as we shall see in AppendixMore generally,

B. There is a natural and simple regime where ap@roxi-

matecommutation rules are those of canonical bosons. Itis T ([{Np* dpk+ a2~ Fpk-q2r DAA) =A@ F([n]).

the regime of the RPA of Bohm and PineShey are (25)

From the definition in Eq(15) we may write

A A (g =0, 22
A A (A Jron B2 A @AL@) =Nk~ 21~ ne(k+ U211~ o).
2

6
[A(A),AL(A") Irea @

The other commutation rules are collected in Appendix B.
=Ne(k=a/2)[1—ne(K+0a/2) ]Sk k Sg,q" - They are important only for special values of the indices
23y  kik’,gandqg’. In the RPA sense and whenever we are will-
ing to overlook these nuancéwhich is always, practically
We saw in the Bose case that the RPA-commutation rulespeaking the RPA commutation rules of Eq&€2) and (23)
may be taken to be the exact rules the only care that we hagre quite sufficient and easy to use. Let us now try and com-
to exercise was to couple the condensate bosons to their ovgute the properties of the free Fermi theory using the ma-
chemical potential. Here too we have to couple the seachinery that we have just laid down. For this we need to first
bosons to a momentum dependent chemical potential as Wgk, how do we expreggKT(q)Ak(q)? We expect the answer
will soon show. We find that it is quite appropriate to view to depend crucially on the meaning of the square root. We do
the objectsA,(q) as being exact bosons, although for specialnot have any more insight into the nature of this object, but
values of the indices they behave rather strangely. Thesge will be needing its expectation value when we try to
simple-looking results belie the notoriously difficult and compute the finite temperature properties of noninteracting
technical problem of the square root in the denominatorFermi system in the sea-displacement language. Fortunately,
which incidentally, we have only partially resolvésee Eq.  the expectation value is obtained by a reasonably straightfor-
(21)]. One potential criticism of this is to claim that a schemeward method and one that is very reminiscent of the Bose
such as Eq(21) is inconsistent with the exact commutation case. We shall have occasion to introduce a chemical poten-
rules presented in Appendix B. The rebuttal to such a critiqugjal that is momentum dependent and scales as the logarithm
is that even Eq(21) is approximate, no matter how many of the volume of the system so that one may venture into
orders are summed—the reason being that this assumes thagions where the square root in the denominator vanishes
fluctuations in the number operator are small compared withias does the numerajovhere the sea-displacement method
the mean. This is inconsistent since we may show, for eXxpreaks down. The introduction of the chemical potential re-
ample, that (nf)—(n)?>=(n)(1—(ny)). Therefore, the stores the meaning of the trace that in the Fermi language
more noideal the momentum distribution is, the more it fluc-was intended to span over all the states. Let us now evaluate
tuates. In fact, a momentum distribution that is highly non-the finite-temperature properties, specifically, the finite-
ideal(n,)~1/2 for most momenta, has the largest fluctuationtemperature momentum distribution of noninteracting fermi-
equal to the mean itself. There is another important point thadns in the sea-displacement language. To this end, let us now

should be mentioned. The definition in EQ.5) closely re-  compute the following correlation function:
sembles the definition of condensate displacement operators

for bosons. This is certainly a plus. Further, the factpfk . 1 BN e
—q/2)[1—ne(k+0q/2)] serves as a cutoff function. It fulfills (A(@A(Q))= MTF(G e S R
a very important role. It ensures that the kinetic energy op-

erator is positive definite. The authors initially tried a number XA A(Q)), (27)
of alternatives that attempted to include terms beyond the
RPA-like term, for instance, one withl—ng(k+0q/2)][1 Z(k—q/2)=Tr(e™ AH=#N=p-qNk-qp2)), (28

—ng(k—0/2)]. Such attempts are always unsuccessful for
the simple reason that they lead to nonpositive kinetic energysing the cyclic property of the trace, we have
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1
(Al(@)A(Q)= WTV[AK(Q)E’B(H‘”N‘MK*Q’Z”“’Z)AI(Q)]

1
— - —uN= - —uN= - - —uN= - T
= Sl TTLe AT e adef TN ke ad Ay (e M TN g ad Al ()]

k-q 1
—e Bme Brk-qr— —B(H=uN=uy— g2k —gr2) f
e P me a Z(k—qIZ)Tr[e a2 A (q)A(9)]

— e~ Ak Amg B an( A () AL(Q)). (29

But we know from Eq(26) that 4
nF(k)e_)\k:(Zirf)n,:(k)[l—nFYB(k)]e—ﬁ(kZ/Zm)e,B(k,Z:/Zm)

(AdAL@)=Ne(k—a/2[1—Ne(k+a/2)] 278
5 (— ne(K),
X[1—-nF(k+q/2)] m

~ne(k=a/2)[1-ne(k+0a/2)] (30 1
v > Ne(@)efime
at low temperatures, since the thermodynamic expectation

value n?(k+q/2) vanishes exponentially whem:(k+q/2) 1

k 4
=0. Therefore we may writéA(q)A(a))=ng(k—q/2)[1 = 2f F271-q dq(Zlf)[l—np'ﬂ(q)]eﬁ(ké’zm)
—ne(k+0a/2)]exp(—Bk-a/m)exp(—Buk—qo). The chem- (2m)=Jo
ical potentialu, has to be chosen so that the correct thermo- =eﬁ(k§ Jom)

dynamic expectation values are recovered. It is clear that in

the absence of the chemical potential, we are bound to obtain

answers that are incorrect, unless one is at absolute zero. |t'|'§1ekl'ast relsult fOHOWSh'f we assume, as we shall,;hat we are
also clear that in order for E431) to make sense, one must WOrking atlow enough temperaturkgT <Eg . For this pro-

choose a chemical potential that scales as the logarithm @@m to be self-consistent, we have to make this assumption.
the volume of the system. Let us set e8p()=\Vexp(\,) Perhaps there is a way out of it, but for now the authors are

for some\,. This may be determined by demanding theunable to find it. In any event, it is this regime that is of
self—consistke'ncy of considerable physical significance and the fact that the sea-

displacement scheme is consistent in this regime is very
comforting indeed. Moving on, we write

N 5(K)=ne(k)+ >, ne(k—0) 1 m )
e v [1—nF<q>]eﬁ<q2/2m>=(—) e Ai2M_ (33)
X[l—n,:(k)]e_ﬁk'q/me'geqe_ﬁ'“qu V 9 278

Substituting these back into Ed32) we find ng 4(k)

—q;o (L1 ne(k+a)le P 9Me™Prae™P, _p lyn (k) +[1—ne(k) Jexd — BIC—KE)2m]. At low
temperatures when|k|>kg, we know that ng 4(k)
@31 ~exfg— ,8(k2—k,2:)/2m]. Therefore, the sea-displacement lan-
guage gives the exact same result as the original Fermi lan-
. guage. Having successfully fixed the chemical potential of
ne,p(K)=ng(k)| 1— Teﬁ(kzlzm) the sea-displacements, we now turn to the problem of com-

puting the correlation functions of the noninteracting system
at finite temperature. For instance, we have the four-point

XE [1_nF(q)]e—ﬁ(q2/2m) +[1-np(k)] function F(k.q;k'.q’)=<cl+q,2ck_q,zcl,_q,,zck,+q,,2>. In
a#k the Fermi language, it is simply given by

_ 2 1 2 _
xe Pk ’2”’)v§ ne(q)efT e N (32 E(k.qik’-q') = Sy S qNe p(K+ Q[ 1 Ng s(K—/2)].
(34)

Let us now focus on a system in two space dimensions, it may be shown that in the sea-displacement language, the
which case same quantity may be evaluated as
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F(k-qk’-q") for a different reason. At low temperatures, due to the pres-
. ence of a product such as: g(k+a/2)[1—ng(k+0a/2)],
= ik Og,q' [ {VNk+ g2A(— DA (=" ) VN 1 qr12) the correlation function vanishes exponentially fast as
exf — (& oo— Eg)/kgT]. Therefore, while it is certainly ad-
T ’ q
(A VN g2V —qr 2P (Q")) 1+ Sk Og,qr visable to be cautious, we are allowed some leeway at low
temperatures. Having done all this, it is now a simple matter
X 2 (Al go-qua QDA g-q (1)) to convince ourselves that E(5) is identical to Eq(34). If
41#9.0 ' ne(k+9g/2)=1 and ng(k—q/2)=0, then all but the first
X ne(k+q/2—qy)[1—ne(k—q/2)] term in Eq.(35) vanish and the identity is trivially satisfied.

If ng(k+9/2)=0 andng(k—0q/2)=1, then all but the sec-
ond term vanish and the identity is again trivially satisfied.

"

+5k,k’5q,q'q;qo (A= g2+ gy /20 A1) Ak—gra+ g, 2(01) ) What remains now is to compute the terms whes(k
v +g/2)=0 andng(k—q/2)=0 and whemg(k+q/2)=1 and

Xng(k+g/2)[1-neg(k—q/2+qy)]. (35  ng(k—g/2)=1. In the first instance, we have to evaluate the

— +
Equation(35) is obtained by placing two expressions in Eq. sum Sl_Eqﬁ&q_'0<Ak+q/2—qllz(‘h)Ak+q/z—ql/z(Q1)>_”F(k_ _
(17) next to each other, contracting the indices and finally™ 4/2—0a). For this we Thave to make use of the simplified
using Eq.(30). Insofar as the scheme for computing the mo-€xpression in 2D (A, (q)Ax(a)) =ne(k—a/2)[1-ng(k
mentum distribution is satisfactory, it may shown that for- +a/2)Jexp(=pk-a/m)2mg/(mV). Therefore, we may write
mula in Eq.(35) is in fact identical to Eq(34). To show this S1 @s
rigorously, we have to properly interpret the average
(\/nk+q,2Ak(—q)Al,(—q’)\/nk,+q,,2>. In fact it is a simple S _1 S ne(Q )e,g(Qf/zm)(ZL'B) e~ Bl(k+a/2)?2m]
matter to evaluate this quantity exactly in the Fermi lan- Y o)) Pt m
guage. From Eq. (15 we have ng qoA(—Q)
=ch,zck_q,an(kJrq/Z)[l—nF(k—q/Z)]. Therefore we
may write quite unambiguously

_ eB[k,Z: — (k+q/2)%2m] (39)

At low temperatures we may approximate Eg4) as F(k

. _ 2 H
e A= DAL (=g ) Ve -q,k-q)—exp{,B[ké—(k+q/2) 1/2m} since  when ng(k
(VM2 = DA (4NN —g/2)=0 and Eg>kT, and ng(k+g/2)=0 implies |k
=ng g(k+0/2)[1—ng s(k—0/2) Ine(k+0/2) +09/2|>kg. Therefore we have 4ng g(k—q/2)~1 and
Ne p(k+a/2)=exp{BkE—(k+q/2)?]/2m}, and hence the re-
X[1=ne(k=0/2)] ok 8gq - (36 suit follows. Similarly, whenng(k+09/2)=1 and ng(k
Similarly we may write, —0g/2)=1 we have
T / ’
<Ak(q) nquIZVnkf—qIIZAkf(q )> ; . <Alfq/2+q1/2(ql)Ak7q/2+q1/2(ql))
=g s(k+a/2[1-ng 5(k—0/2) Ine(k—0/2) e
X[1—ng(k—q/2+
X[1-Ne(K+012) 180 8q.q: - 37) [1=ne(k=g/2+qy)]

. : . 1 2
The main conclusion of these arguments is that one must be = — > [1—nF(Q1)]eB(Qi/Zm)<Lﬁ) eBl(k—a/2)?/2m]
careful when evaluating these expectation values. In particu- Ve m
lar, it is wrong t.o . mgke the approximatiomy, 4, _ oBl(k—qi2?—kiam] 40
~(N+ g1, since this implies

Analogous to the earlier case, we may approximate(&4).

T ’
(A VN g2V —qr 2P (A7) asF(k-q;k-q)=exp{B[(k—q/2)>—kZ]/2m}. Therefore, this
= ne(k—q/2)ng(k’ — q’/2)<Al(q)Akr(q’ ) scheme gives the right answers at finite temperature for both

the momentum distribution and the four-point functions.
=n,:(k—q/Z)[l—nF(k+q/2)]5k‘k,5q‘q,

A. Role of partial isometries
1 eB(k-q/m)(ZL’B)_

x| —
m

(38 The term partial isometfyrefers to, intuitively, an almost
unitary operator. The absolute unitary nature is spoiled by an

This result is inconsistent with the correct result in E8j/)  object that is by now ubiquitous in this article, namely the

that does not vanish in the thermodynamic limit. Having saidcanonical conjugaté, of the total number operator. Thus

this, it is still not a poor approximation at low temperatureswe would like to interpret the object

(kgT<<Eg). The reason being that although the approxima-

tion on the right-hand side of E@38) vanishes in the ther- 1
modynamic limit at any finite temperature, the exact answer U(k)=ng(k) —c] (41
for this correlation function as derived above also vanishes \/n—k
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as an almost unitary operator whep(k)=1. The presence valued distributions, which required the introduction of a

of the square root of the number operator in the denominataseparable one-particle Hilbert space, which amounts to plac-
led otheré to conclude that our theory contains divergencesing the system in a box with periodic boundary conditions.

A closer examination tells us that this is not the case. Th&imilarly, we are now forced, it seems, to do the same with

creation operatocl scales as the square root of the numbemmomentum space, that is, we postulateanidition a short

operator. In other words, if we write distance cutoff that amounts to introducing a lattice constant.
Space is now discretized and finite as well. There is a large
cl=\/n_kexp{—iG)([n];k)}eXp(iPl), (42) macroscopic length scale (dimension of the boxand a

small microscopic length scake(the lattice spacing In the
the creation operator becomes a nontrivial complex operatagnd we set. —« anda—0 and hope that our edifice re-
of unit modulus(ideally) times the square root of the number mains intact. Let us try and make more sense out of &8).
operator. The creation operator differs from the square rootirst, we would like a formula foX, in terms of the Fermi

of the number operator by a phase factor. Analogous to whate|ds withoutinvolving ® ([n];k). To this end, let us postu-
we found in our earlier workSthis phase factor consists of a |ate the existence of a “super boson.” It is defined as

canonical conjugate to the number operator denotedP by

and a real functional of the number opera@®{[n];Kk). The é:e*ixo\/ﬁ, (44)
sea-displacement operator may be written in the following A A
suggestive form: where N=Ekcﬁck and [ Xq,N]=i. If X, is strictly self-
adjoint, thenC is indeed an exact boson. Otherwise it is a
A(a)=ne(k—0a/2)[1-ne(k+a/2)] quasiboson. We would not like to ha¥g as self-adjoint for
—ie(n]:k-q2)ai Pl reasons already alluded to. The claim is that the filled Fermi
xe € k- d2Cyigp2- (43 sea is obtained by creating® number of these bosons from

This form, although more manageable than the definition ifhe vacuum of the fermions:
Eq. (15), is ambiguous since we have yet to pin down the
meaning ofP, and ®([n];k). We shall adopt an approach (CT)NO|0>=|FS>=( p cl) |0). (45)
similar to the one we outlined in our earlier wotkshere we Ik[<ke
transform to the Fourier space and write down a formula folyg may rewrite the filled Fermi sea as follows:
Py in terms of so-called momentum curreriés opposed to
real currents As before, we find in our formalism the object " N
X, that spoils the unitary nature of these operators. This ob-  |FS= ( |ka Ck) |0>:eXF< ; nF(k)ln(Ck)) |0).
ject though troublesome, is very important since without it F (46)
our program would be inconsistent. To understand the need
for this object more clearly let us writ@s we rightly antici- ~From this we may deduce
patd P,=X,+Py, where P, is manifestly self-adjoint
Wher?as _Xo is _nqt self-adjoint ar?d obeys .the relation CT=exp(i0 E nF(k)In(cb) %Weixg (47)
[Xg,N]=i.If X, is interpreted as being self adjoint, then the N™ K
resulting formula forA;(q)Ax(q) obtained from Ea(43  up to some phases that we will soon show are unimportant.
would be inconsistent with Eq19) unlessn,=ng(k)1, a From this we may read off a formula fo¢,:
state of affairs realized only in the noninteracting system at
zero temperature. Therefore, it is imperative that we do not i
interpret X, as being self-adjoint. However, just as in the Xo=—5 > ne(k)In(cy). (48)
. o NO X
Bose case we may still choose the Hermitian partXgf
provided we interpret the polar decomposition in E42) in - From this it is clear thaX is not self-adjoint and further we
the dlstantpn theoretic sense to be mad.e clear below.. F_“rﬁave to show that it is a conjugate . For this let us
thermore, it is not clear what the role of idempotence is '”compute
this formalism. In Appendix B, we write dowolosedcom-
mutation rules obeyed by the sea-displacement operators. iNNy A= iAN_
These are theexactrules. The derivation of these do not e Xoe Kot A. 49
require the use of idempotence, but we have to make use afsing the definition in Eq(48) we have
the fact €,)?=0. This and other similar observations such
as idempotence require point splitting techniques. This pro- . - e e e
cedure is well known to the traditional bosonizing commu- e™Xoe MNZW ; ne(k)In(e™Nee ™M) =Xo+A.
nity, mainly because it is indispensable in dealing with rela- (50)
tivistic systems in +1 dimensions which have a different
mathematical structure than the nonrelativistic systems thakherefore the conjugate obeys all the expected properties,
we consider here. Perhaps these techniques can even imelependent of the meaning of the logarithm. We would now
made mathematically rigorous in those systems. We had tlike to ascertain how this object commutes with other objects
consider the field operators in real space to be operatosuch asp= chp:

165111-9



GIRISH S. SETLUR AND D. S. CITRIN PHYSICAL REVIEW B5 165111

B. Short-range interactions

_ _ i . .
eeXoe mnp:m zk: ne(k)In(e'"Pe e 1P We have found a curious feature in our investigations of
the nature of the RPA that is worth mentioning. It seems that
ne(p) depending upon how one groups fthe Fermi field operators,
=XptA (52 one encounters an enigmatic duality between repulsion and

N° attraction(see Ref. 10, Chap.)4lt is as follows. Consider

; ; o il - 10
Now we would like a formula for the self-adjoint operator the interaction terfit in jellium:

P, . First we would like to point out some obvious pitfalls. If Vg . .

one takes the point of view advocated in our earlier work, Hi= > 2V > Ci+ g/2Ck—q/2Ck — qj2Ck + /2 (55
then we have to face up to the fact that the number operator ~ 97% <" k#K'

obeys idempotence since only the real space quantities are

. g . .. v
g|strlputlons whereas the momentum space quantities are = — > ﬁ > Cl+q/2ck’+q/20l'—q/zcqu/2
onafide operators. Idempotence, unfortunately is inconsis- q#0 k#k’
tent with the existence of a canonical conjugate sudh,aass
has been argued earlier. This then means that somehow we Up—p' 4 +
have to eschew idempotence in favor of retaining the conju- — _P#P, & 2y CP+Qi2lP-Qi2Cpr —qr2CPr + Q2
gate. It is still unclear to the authors why idempotence is (56)

such a big hurdle and how to overcome it. We take the point ) ) ] ) o
of view that anyP, should result in a(q) that obeys Eq. The last result is obtained simply by relabeling the indices. If

(19) and furthermore we also demand as indicated earlier, th¥€ S€t (sTee the end of Append'X)BCII+q/2ck—q/2: real Ak
identity in Eq.(26). This matter has been studied by us quite(™ ) *A«(a)] with equality to the level of RPA, then we
thoroughly and we are unable to find a completely satisfacMay write

tory answer. However, we write down one possibility. This

definition involves the problematic line integral encountered py — Ya > A=A A (@ +AL (—g)].

in our earlier work as weft. The resolution to this may be 470 2V \ T K

obtained by transforming to the real space analogous to the (57
approach used for making sense of the DPVBhe quantity Alternatively

_ we may also write
P, may be written down as follows:

_ S Hi== 3 S IA-a)+ Al [ A ()
Pk:j dl(—l/np)l(p)-i-([n];k)—f di[—iO®,VP](p). a#0 gk’

(52) +AlL(—9)]. (58)

The line integral is to be interpreted as being carried out afteThe first alternative yields results identical to the ones pre-
transforming the quantities to real space analogous to theented in our earlier workThe momentum distributions de-
DPVA.l The quantityI(p)=(1/2i)[chcp—(ch)cp]. Fi-  rived from this interaction term possess sharp discontinuities.
nally, we have to write down a prescription fér. Since we The second alternative is more interesting. It has a minus
have discretised the momenta by placing the system in a bosjgn signifying an apparent change from repulsion to attrac-
we may use the following natural ansatz. There is no need tdon (only apparently sp It has been argued in the
make contact with the free theory very likely since in theliteraturé® that if we assume that,=w is independent of
number-phase respresentation the free theory is recoveréih other words, as-function interaction in real spagethen
automatically. Letk,=(2m/L)(ny,n,,n3). Define the map- we may conclude by examining Eq&5) and (56), thatH,
ping t(k,)=2"tx3"2x 5", It may be seen thatis a bijec- =—H,. ThereforeH,=0. The exchange correlation energy
tion. From this we may writ&, of a system of fermions interacting viag&function interac-
tion is identically zero. This is not surprising since we know
that two fermions cannot be at the same point and the inter-
O([n]kn) = sz oLt (kn) = t(Pm) 1N, - (33 action is zero unless they are at the same point, therefore one
" obtains an answer zero. This means that for such systems the
Here 6(x)=1 if x>0 and 6(x)=0 is x<O is the usual Hamiltonian is a simple functional of the number operator:
Heaviside step function. This obeys the required recursion
relation below, necessary for ensuring that Fermi statistics

Wo
are obeyed: H= ; &N 5y k’qu&O Nic+gr2Nk— g2+ (59)

O([Np, — 3y, k}1:K)+O([n]:k") —O([n];k) Unfortunately, this Hamiltonian does not yield results too
different from the noninteracting case. However, we have

_G)([{npl_ép,k}];k,) found that if one relaxes the assumption thgtis strictly
independent of] and instead say, puts in a weak dependence
=+, (549 on g, it is still a good approximation to ignore the exchange
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correlation energyat least in comparison with the kinetic for this object. In particular, if we ignore the dependence on
energy and the exchange self-engrggnd we obtain some the anglek-k’, we may write a reasonable-looking formula
rather interesting results for the one-particle Green functionfor this object K#k'):

For instance, we could assume that the potential in real space

instead of being a striet function is somewhat smeared. For N(k, k") =[{n) —ng(K)I[{ne:) —ng(k")]. (63

; ; ) 2, 42y-1
example in 1D, we m|ght tak¥/(x) = e"(a/m)(x +a ) This has the attractive feature of conserving the number of
We merely quote the final results for the one particle prop-

. AR . ; articles and also the net momentum of the electrons
erties as this is just an aside. In order to derive these res‘“%kN(k,k’)~0,2kkN(k,k’)~0] and further since &n,
one has to make use of the Schwinger’s functional approacy 1 \ye expect— 1<N(k,k')<1 which is also obeyed. It

to dealing with quantum field theorié§This exercise high- has been pointed out that this objédtk,k’) is singular in
lights the importance of fluctuations in the momentum dis-the BCS cas@.In particular, it is identically zero unleds

tribution in determining the salient features of the one-— .y’ This means that for the BCS case which is a special
particle Green function in systems that have very short ranggse we may write

interactions and are not too strong. Following the notation of

Kadanoff and Bayni? we write down the spectral function N _

and the spectral width as NC K= A (B = Gk 1) (64)
Here A (k) is related to the gap function. Ideally, we would

— like a formula for this object that in the normal Fermi liquid
AP, w)= K(p’w), (60)  regime reduces to an unremarkable functionkdf/k’|, and
F(p) k-k’ and exhibits a phase transition to the singular appear-
ance as one crosses over into the superconducting regime. In
I'(p,w)=V—«(p,w), (61)  fact it may be seen that the BCS correlation functions sup-

ports a net momentum in the sense of a quantum fluctuation

where «(p,»)=(w—€p+u)2—4F(p)<0. In the event (P?)gos= 25 k2A ; :
- e . ses= 22 k“A (k) #0. Bare short-range interactions are
«(p,®)>0, V= «(p,w)=0, by definition. Here~ (k) is re-  4'6f much interest in continuum systems so we leave it at

lated to the number-number correlation functibifk,k’)  that[however Eqs(63) and(64) are meant to be universally
=(ngny) —(N)(ny,) where ¢, is the modified dispersion valid].

relation: e,= e,—V =g+ 0vy(ny_g). Furthermore,F (k)

=V~250,q' #0vvN(k—g,k—q’). The momentum dis- C. Long-range interactions
tribution has to be determined self-consistently: For long-range interactions, if one considers an approach
similar to the one used for deriving the traditional RPA di-
(n)y= E J’”’Z do cos'f 62) electric function, but this time including possible fluctuations
Po\m) ) _an ePlegm)g2BFPsing | 1 ° in the momentum distribution, we find a result that is differ-

_ ~_ent from the usual RPA-dielectric function but one that re-
These formulas are incomplete unless one has a prescriptigces to it in the weak coupling limit. This derivation is

for the objectN(k,k"). We note some properties of this ob- found in Appendix D. We merely quote the final answer here:
ject. First, N(k,k)=(n)(1—(ny)). It may occur to the

reader that sincgn, ,H]=0, the ground state of the system vo\2 Py(q,)
should be an eigenstate f , and therefordN(k,k’) =0 for €ei( 0, @) = €5_grpa(q,w) — (Vq> a2 (65)
k#k’. This quantity then signifies the importance of terms €g-rea(0, @)
beyond exchange energy. We have tried a number of ansatkkere,
P2(q,0) (66)
. N(k+q/2k’+q/2)—N(k—qg/2k'+g/2)—N(k+qg/2 k" —g/2)+ N(k—qg/2k’ —q/2) 67
Kk’ (0— €k gt €k g2 (0~ €xr—qrat € +.g2) ,
(nNo(k+a/2)) —(no(k—a/2))
€grea(0,0) =1+ (vg/V) X == (68)
K O~ €yt Ek—gp2
and
TS Yo
€= €x &h Vi <nk,q>. (69)
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The momentum distribution in such a system with long-ing to the strength of the dynamical structure factor at that
range interactions may be written down as follows. This for-energy. Define the weight to be
mula is derived by assuming that it is a good approximation

to totally ignore the form of the exchange correlation Hamil-

tonian in Eq.(58) in favor of retaining Eq(57) exclusively.

In fact, this assumption is valid only in systems in 3D or 2D

where the interaction is of the formme?/q? or 27e?/|q|.

The term that breaks Fermi liquid behavior is the one that

couples the left movers to the right movers in the usual

bosonization schem@.This is present only in E¢58). This
term may be ignored sincer?/(k—k’)? or 27e?/|k—k'|
are vanishingly small whek~ —k’~kg in the largekg

limit. However, in 1D the inverse square interaction of the

Calogero Sutherland modHl, for example, has Vg
=—7B(B—1)|g|/2m. This makes Eq(58) the more impor-

tant form. Moving on, we may write in 2D or 3D, the fol-

lowing formula for the momentum distribution:

Ne=ne(K)F1(K)+[1—ng(k)IF5(K), (70)
Fl(k)zw, (71
s
1
FZ(k):TB(k)’ (72
Sa(k)
[ )
Sa(k)= “(—q), 73
a(K) g[wi(_qu.q/m_eq]zg.( @, (73
Se(k)=> 1= Mg o?—ql, (74
ol [w(—a)+ka/mt+e)?
W —W —1/2
a(@=| 3 —— | (75
wi(Q)—F}

This quantityg;(q) is a residue of complex integratiband
is given as the frequency derivative of the polarization

P (76)

GSff(q!w)-
0=w;(q)

\Y/
gi(q)=—

Uq

Here egﬁ is the principal part ofess. Moreoverw; are the
zeros of this dielectric function

€eri( 0, ;) =0. (77

1
W(q,w)=Im| ———|. 78
() (eeﬁ<q,w—io+>) 7
Therefore, sum over modes is now interpreted as
deW(q,w)f(q,w)
0
; f(g,0)= (79

| “dowa.w

It is worth emphasizing that Eq65) is valid for long range
interactions where it is wrong to ignore the exchange corre-
lation term. The one-particle properties that were derived in
Eq. (60) are valid for short range interactions only. The in-
teraction strength had to be weak so that one could ignore the
exchange-correlation term in the short-range case. This was
also needed in the long-range case to ensure that one could
ignore the quadratic terms in the sea displacements. How-
ever, in arriving at Eq(65) use was made of the form in Eq.
(55) rather than Eq(56). There really is n@ priori reason to
prefer one over the other. It is possible that one has to use a
combination of the twd(in fact, this has been shown in a
Ref. 14. Using the second form exclusivelizq. (56)] leads

to a dielectric function that is totally different from the RPA-
dielectric function(we have not been able to write down an
explicit formula for thig, thereby casting doubt on the sanc-
tity of the traditional methods of deriving dielectric func-
tions. This issue has probably not been addressed fully by the
many-body community even though a well known textbook
mentions some of these factdahart® end of Chap. % One

may argue that the latter form, namely, in E56) at least for
Coulomb repulsion (1) in three spatial dimensions is neg-
ligible at high density. This is because in such a case we have
two independent length scalk&‘l andag and if krag>1,

we may express all states as linear combinations of low lying
excited states of the noninteracting system and then
~|k'|~kg and 0<|g|~ag'<kg, which means thafk
—k’|>>(ag)?~0g?. This means that Eq56) is negligible
compared to Eq(55). This ambiguity in operator ordering
that leads to very different looking Hamiltonians as in Egs.
(55 and (56) suggests that this problem will persist in all
cases where electron-electron interactions are present, in
other words, in nearly all of many-body physics. This sug-
gests to the authors that one must look elsewhere to find a
more natural home for these technigques. We have some rea-
son to believe that quantum electrodynamics is such a place.
There, electron-electron interactions come about indirectly

As it stands, the above equation is ill defined since the divia coupling to gauge fields where the operator ordering am-
electric function is complex. Interpreting; to be the zero of biguity is absent. Furthermore, a phenomenon important to
the principal part results in capturing only the collective condensed matter physics, namely, magnetism, being primar-
mode. The particle-hole mode which is completely lost inily due to the spin of the electron, is taken into account
this approach is very important. In order not to lose thisnaturally in the relativistic theory, since spin is a conse-
mode we have to interpret the zeros in a special manner. Wguence of the Dirac equatidnin the next section, we study
shall take the point of view that all positive energies arecharge-conserving electron-hole systems that is a precursor
allowed as zeros but each comes with a weight corresponde this more ambitious program of reworking gauge theories
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in the sea-displacement language. To conclude this sectioreducible to quadratures only for half filling. The correlation
we point out another definition of the sea displacement thafunctions are hard to deduce in a closed form away from half
gives us the illusion of understanding the meaning of thdfilling, but it is believed that this is a Luttinger liquid for

square root. This is similar to E¢10) for bosons: arbitrarily weak repulsion. This latter result is the one we
have the greatest difficulty in proving. In any event, in order
A(@)=ne(k—a/2)[1-ne(k+a/2)] for the community to accept the sea-boson technique, we
12 have to somehow reproduce Luttinger liquid features. Work
x[1- > Al—q/2+ql/2(q1)Ak—q/2+ql/2(q1)) is in progress to do exactly this. It will be reported in a future
q:#0 publication.
+
X Ck-qCr+az: (80) IV. ELECTRON-HOLE SYSTEMS:
The reason why this formula is not too illuminating is be- EXCITON-EXCITON INTERACTIONS

cause a power series expansion around the unit operator and
an iterative solution, yields just as in the Bose case, a resuh
that amounts to ignoring the presence of the square roo

That is,

In this section, we study the exciton Green function using
e sea-displacement technique. In fact, the biexciton Green
unction would be more interesting since it determines non-
linear optical response. This technique is ideally suited to
_ T study this quantity since exciton-exciton interactions are cru-
Ad@) = 2Ne(k=q/2)[1=Ne(k+a/2) JC—giCicr g cial ?:1 detgrminin)g/; the true nature of the biexciton. We find
(81) ) L2 .
that exciton-exciton interactions are not of the two-body type
This is not the definition that is intendédnstead, one must as it is often assumed in the literature but rather more com-
also consider regimes in which the square root is close tplicated. These interactions are mediated by other bosons
zero rather than close to unity. The exact definitioldpfg)  that are present in the system, namely, the intraband particle
is the “self-consistent” solution of the nonlinear operator hole excitations and the zero-momentum interband particle-
equation Eq(80). Readers with superior mathematical skills hole excitation. All this will be made clear in the present
may finally be able to solve this operator equation and maection. Let us now move on to the details. As we have said
out its domain and range in Fock space and explain how thibefore, a generalization is possible of these techniques to

object acts on elements of its domain. two-component charge-conserving electron-hole systems.
One may define sea-displacement operafgyrs(gqo’) that
D. Comparison with other truly exactly solved models include discrete internal degrees of freedom that may be

metaphorically called spin. These objects are defined below.

One of the other criticisms that has been expressedince the definition in Eq(15) was valid for bothq=0 and
against the sea-boson method is that it is unable to reprodugﬁﬁo we have

Luttinger liquid behavior. The authors have convinced them-

selves that the Calogero-Sutherland md@$M) is in fact a Ars(go’)=ng(k—q/20)[1—ng(k
Luttinger liquid. A Luttinger liquid is characterized by a lack
of discontinuity in the momentum distribution, and the diver- 1 T
gence(negative infinity and continuity of the slope of mo- Fck—q/200k+q/2v’ '
mentum distribution across the Fermi surface. The correla- k-9l

tion functions of this model has been derived by etaal. We now make the following identifications. Lej be the
and Forrestel® However, the correlation functions of this operator that annihilates an electron from the conduction
model depend on the use of a singular gauge transformatidpand andd” , be the operator that creates a hole in valence
that forces a particular statisti¢s our case, fermionicon  band. Then we write

the correlation functions. The authors who have computed

the correlation functions have used the natural statistics for Ci1 = Ck.
the CSM which is in general, fractional. This makes com- +

parison with our approach difficult. The CSM for statistical Gy =d-k- (84)
parameter3=3 (in the notation of Lesaget al’®) is the  Then we have the following formulas for the electron-hole
simplest model that describes interacting fermions. Howevegea-displacement operatdegyain for bothg=0 andq#0)

this choice makes the potential energy of the same order as h .

the kinetic energy making the system strongly interacting. In A« (A1) =[1-ng(—k+a/2)J[1-ng(k+q/2)]

our approach, the sea-bosons were written down in the plane
wave basis with the tacit assumption that this is a good %
choice. It is easy to see that this choice is likely to be good \/i—dT q

only for weakly nonideal systems. The fermionic correlation —k+q/2¥ —k+q/2
functions for the weakly coupled CSM has yet to be written . h e

down. According to ouryexp:ctations, this s)r/muld result in a Ai(al)=nr(k+ai2)ne(k—af2)
sharp Fermi surface for sufficiently weak repulsion. The
Hubbard model in 1D(Ref. 16 is another system that we X —m——=0]_ 0 g2
have to compare our results with. Its correlation functions are VCk—q/2Ck—qr2

+q/20")] (82

(83

1

d_y4qoCr+qar (89

(86)

165111-13



GIRISH S. SETLUR AND D. S. CITRIN PHYSICAL REVIEW B5 165111

A (aT)=ng(k—a/2)[1-ng(k+a/2)]

1
A (l)= =6 g 1= 6y gp)———=
1 Vi-dld
—leq/20k+q/21 87 ad
VCx—q/2Ck—q/2

did,. (99)
X

Let us now ascertain the commutation rules obeyed by these

A (al)= —nE(—k—q/Z)[l—nE(—k+q/2)] objects. Following the prescription outlined in Appendix B,
we may write down the RPA-like commutation rules by re-
1 R placing the right side of the approximate ones by the leading
X—= - dZ g god—k+q- order results. Ik# +q/2 andk’ # +q'/2 andq#0 then,
\/1_dfk+q/2dfk+q/2
9 [Ac,(a1). A (a'1)]=0,

If the system is undoped, we are tempted to sgtk)
— Ny — ; ; ; )
=ng(k)=0. But this would be unwise. For such a choice [AkL(QT)vAl'L(q 1= Sk g - (95)

would make all the sea-displacement operators but one, iden-
tically zero and this would lead to the conclusion that the
exciton-exciton interactions are of the two-body type exclu-Also,
sively. We will soon argue that this underestimates the
strength and importance of exciton-exciton interactions. The
reason for this fallacy it seems is that we have to careful with [A;(07),Ac(01)]=0, [Akl(OT),Al/l(OT)]Z Sk’ s
the order in which we take limits. At any nonzero tempera- (96)
ture, we expect that thie=0 state of the noninteracting sys-
tem is always occupied even in a fully undoped system.
Thermal fluctuations lead to a nonempty band. This in turn [Ao(0]),A%(0])]=1, (97)
facilitates exciton-exciton interaction, since we may now
contemplate intraband particle-hole excitations competing
for prominence with excitons and scattering off them and so [Agr21(AT),Aq21(9' 1)]=0,
on. In order to make all this more concrete, let us proceed as
follows. We know that for a noninteracting Fermi system,
[Agrzr (A1),AL (4" 1)]= 8q.qr (98)

nE(k)=0(ke= kD), nR(k)=6(ke—[k]). (89
. _ [Agr2(dl),Aq2(9"1)]=0,
If we go to the limit of an undoped syster;— 0 we find
the following result:
[Aq2y(al), AL (A" 1)]= g - (99)
NE(K) =nE(K) =y 0. (90)

That is, only the zero momentum state is occupied, the redtinally, Ay;(07)=Ay(0])=0 . All other commutators in-
are unoccupied. This choice enables us to have a scheme ¥9IVing any two of these sea-displacement operators are
which even in an undoped system, exciton-exciton interaczero. In deriving these commutation rules, use has been
tions may be present and may contribute to the line shape dpade of the following approximate formulas. On the right-
the exciton. With this simplification we may writéor both hand side of commutation rules we are obliged to set the off

q=0 andq+0) diagonal terms to be identically zero awgc,=djdo~1.
cley=cle,=0. It is worthwhile to verify some of these
A (AN =(1= 8 g (1= 8 — ) commutation rules explicitly. For example,
! Ao (0]),Al(0])]~[chdd docol = cheo—dodd=cf
><\/A - d_k+q/2Ck+qr2, (92) [Ao;(01),Aq; (01)]=[codg,doCo] = CoCo— dody=CqCo
1-d° d_

krgiz"—k+ai2 +didy—1~2-1=1. (100
A (A1) = 8q.08k.0—=—Chd?, (92)  The rest are reasonably straightforward. Using these facts,
VC€oCo we may write the following correspondence for the number

conserving Fermi bilinearghe total number of electrons and
holes commutes with these objects; see Appendix B for some

1
Ai(aT)= Sy qra( 1— 5k,_q,2)\/?cgcq, (93)  hints asto how to derive these f_ormL)IaHereq;t 0, and we
CoCo have singled outj=0 as a special case. ki = q/2
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Clt+q/2ck7q/2: )\Azrl/z)(kJrq/z)T(kJr 2T A2y kg2 (K= al2T), + A >

q i a2 Al+q/27ql/2i(q1T)Ak7q1/21(_q+qlT),
1

(101

dtk+q/2d—k—q/2:)\ AIl/Z)(k—q/Z)L(_k+q/2l)A(1/2)(k+q/2)l(_k_qlzi)"’)\ > , AI—q/2+ql/21(Q1T)Ak+q1/2i(_q+QIT):

qlsﬁ—k+q/
(102
CHC—q= VCICOA gz (—aT)~A_gry(—q1), (103
CaCo= Al (A1) ehco= Al (aT), (104
d_di=(1-d" d_ ) YA (—ql)~Agm (— 10
—qdo Lqd-q) T Agre (—al)=Agp (—al), (105
dod]=A" o (a1 (A-didg)2=AT 5 (ql). (108
Also we have for the number operatots#0):
tTa 2 E T _ T
CoCo=1 7\q = Aqyr21(A1T)Aq 21 (A1) = NAg; (01) Ao (0L), (107
1
CKC =\ AI/ZT(knAk/zT(kT)ﬂqgk Ak a2 (A1) Ak g2, (11, (108
1
didy=1-1 > Al A —NA!L(0])Aq (0 (109
0% <o Zayr2t (A1l)A—g 2 (A1) o1 (01)Ag(01),
1
d"d = NAL (=KD Az (— kD+A 2 Mgy (@A 2 (drl)- (110
ol

Now for the charge-conserving Fermi bilineéthe total d—qu:_)\AET(OUAq/zl(—QU
charge operator commutes with these objedfsk # +q/2
then( with q#0)

- AqE#O Agllz,T(Qﬁ JAgi2+qyr2,(— A+ 0z, T).
1
d_y— q2Ck—qr2= (i- dT—k—qlzd—k—q/z) Y2a (—at) (115

~Ax (—qT) (111 Let us now verify some of these correspondences. For ex-
ample, we know that in the Fermi language,
if, in addition, we havek#0
[cdco,Che_ql=cle_q. (116

d_yc,=(1-d",d_) %A (01)=A, (01) (112  In the sea-displacement language we have

k=0 (e300 cle-al= 3 [A-ger(~ A1) ALz (ul),
1
doCo=Ad;(0])\eico~Ag(01), (113
! ! Aqyo (@] =A_ g (— a1 ~cle_q (117
doC_q=NAL(01)A_ g2 (—0T) as required. Similarly, we have
+7\q2¢0 Atql/z,l((hl)A—qlz—qllz,i(—Q+ a:, 1), [Cgco,doco]= —doCp- (118
1

(114 In the sea-displacement language we have
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[céco ,doCol=— [A&(OL)AOT(OU,AST(OU] We show how excitons_ emerge naturally from the formali_sm.
R We are also able to pin down the precise nature of exciton-
=—Ag(0])~—doCo. (119  exciton interactions. The total Hamiltonian may be split into

Next, we write down the Hamiltonian of the electron-hole S€veral parts. First is the kinetic energy plus the part of the
system interacting via repulsion and attractive interactionsPotential energy that leads to the exciton:

k2 k? v
+
H=E(—+E cley+ D, | =—|dt d_ +Esclco— > — > ol o0k aoCh g2
0 2me g | “k“k m kY —k gvo~0 &o Vv k=&B40 o ias0 k+aq/2¥ -k’ — g2 =k’ +q/2%k—q/2

KZ0 KZ0 h
(120
v
_ q t t
H = oV 2 E Ck+qi2Cx’ — q2Ck’ +q/2Ck—q/2
q#0 k#k’;k+q/2#0 k' +q/2#0
v v
~a T T _ ~a (e) (e)
T2 5y > > A gqr2d s gk — g2l -k g2 > oV Nt g2k~ g2
q#0 k#k’;k+q/2#0 k' +q/2#0 q#0 k*q/2#0
U
_ a 2 (h) (h)
_a nth — pt ) (121
0F0 2V k= GPro KT WE kra2
Hio= > o (Cleat ¢! (€00l gti-ant = b > (d" ot dldg)d" 4, gl g
O EF0 Vo keBeo 09 T A e VA St STO 07 " ~k+a g
v v
q 1 1 1 t q t ot
TN (Ch 1 qodidaCi gt gl doChog) = 2 o 2 (Chd 4 gl —qiC
470 V k=gpzo < ¥TOTATA wz"-q VGV o k' +q/2 a2Cq
tot
+C*qdfk’+q/2d*k'*q/200)' (122)

The partH, when written out in terms of sea displacementsThis Hamiltonian has a very appealing form. The term con-
have four bosons in them. Whereas the tetiry has three  taining A (07) has been singled out since it highlights the
bosons. The kinetic energy operator has only two bosonsxciton. This is nothing but the Hamiltonian of the free ex-
Thus we may systematically regard the kinetic energy agjton with center-of mass momentum equal to zero. The

being more important thaH, o which in turn is more impor-  gther Hamiltonian involvingd, | (q1) corresponds to an ex-

tant thanH, . In the sea-displacement language, We Maygiion with nonzero center-of-mass motion. If for example,
write up to additive constants

we write,
k2 : k2
Ho=2, (Z—W)AKQT(M)AKQT(MH% (Z—mh)
X Al (—K 1) Az (—k 1)~ EgAb (01)Ag; (0]) A(0D =2 (kb (0) (123
+> (k—2+E AL(ODAG (07— 3, Tk -
Gol2u 9K “ ek vV where ¢,(k) is the Fourier transform of excitonithydro-

genig wave functions, then the Hamiltonian may be recast in
XAODAC(0N)+, 2 o @A (GDAG(aT) - the diagonal form

Uk—k’ t 2
— —_— A Ay , 123 k iy
k#Ek, v q;o L (aDA (aT) (123 S (X e Al onagon - 3 Yk
k7o | 2p eV
where t
@ K2 . +k~q( 1 1 . 1 qZ} X A (01)A(0T)
o (q)=|5— == t-5
e 2 Ame my) 420 = E(0)b}(0)by(0), (126
X (1= 8 q2) (1= 8 _qp2)- (124 '
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whereE,(0) are the energy levels of the exciton. We shallproduces an electron-hole pair lat=0. Since we have ar-
assume that a similar transformation has been performed fgjued earlier that this corresponds to the ground state of the

the full Hamiltonian including center-of-mass motion free theory, we have the following fact. The ground state of
Hg is given by
Ho= 2% Ei(a)b](Q)bi(@) ~EgAG;(01)Ag; (0L)
i |G)=Ap(0])|0). (129
k2 . .
+ It may be seen quite easily that
+2 (m) Aoy (KT Az (K1) Y f Y

cCol G) =djdo|G)=1|G). (130

k? "
+k;0 (2_mh) Az (kD Az (—k1). 127 1he objectA (k1) annihilates a conductron. Finally the
] ) ) + operatorA_, (k|) annihilates a valeron. Now we would
Of particular interest in the term-EgAq;(01)Aoi(0L). It jike to see how this evolves under the presence of the
suggests that the ground state of the system has one of thesgiton-exciton interaction terms. A few words regarding
bosons present. This is consistent with the earlier observatioese are in order. We will see here perhaps for the first time,
since we havé=0 occupied by one electron and one hole.the true nature of exciton-exciton interactions. They do not
Since[Aq(01)]°=0 it is clear that we can have only one of jnteract via simple two-body interactions rather the interac-
these bosons present. L|&) be the vacuum of the fermions. tjon is mediated by other bosons such®s, (k1) which are
Thus theAq;(0]) creates a solitron. The vacuum of the fer- intraband particle-hole excitations. Further we have also cou-
mions may be written as pling to the objectAl(0]) which is an interband zero mo-
mentum electron-hole excitation. Thus exciton-exciton inter-
c0)=0, d_J0)=0. (128 actions are mediated by these other bosons and the
It may be seen that this vacuum is the vacuum of all theénteractions are rather more complex than the simple two-
bosons as welkkxcept A;(0]). The action ofAy,(0/)on |0) body variety. Let us write down precisely what they are.

_ Yg t t
Hl,o—}\q; v k+q2/2¢0 (Agr2i (A7) +AZ g1 (= AT A w2 g g2y (K A2 T) A2y k- g2y (K= al2,T)

oV
Yq t t
+7\q¢0 Vv ktqz/zg&o (Aq/ZT(QT)"‘A—q/z](_QT))qﬁ%q/Z Ak+q/2—ql/2l(Q1aT)Ak—ql/Z,l(_q+CILT)
Yq t T
+7\q¢0 v kth/#O (=Ag2i(=al) = A g2 (AL A2 k- g2y (— K+ A2, ) Ay i+ g2y (— K= a/2,])

v
+7\q;0 Vq(_Ag/zl(—Ql)_A—qlzl(qw)qﬁzkw/z AI—q/2+q1/21(q1vT)Ak+q1/2,i(_q+Q1!T)

v
Ay qE Alvzy ks g1 (KT a2, A0 (0, DAy g2y, (K+a2,1)
A2 D Al gz (KFA2DAL (0,1 A kg (K+a2,1)
v
RO k,2/2#0AIl,z)(k,_q,z),g—k'+q/z,i)Amw,l>A(1,z)(kf+q,2+q),l<—k'+q/2,T>
e

v
g Vq k'E/zioA<Tl/2)(k'+q/2+q),¢(_k'+q/Z’T)Agﬁ(o’UA(llz)(k'—q/m(—k'+q/2'U
e

U
Ao > X A21/2)(k+q/2)7ql/2,1(k+q/2+fh,T)qullz,i(%l)A(1/2)(k—q/2—q),¢(k+q/Z,T)

U
Ao > X AZl/Z)(qu/27q),L(k+qlzaT)Atqllz,l(qll)A(llz)(k+q/2)fq1/2,1(k+q/2+qlaT)
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Uq T ’ ’
+)\q§0 v k’EIZ#O qlzio A(l’z)(k’*q/z)Jrql/z,l(_k +a/2+01, 1) Aqur21 (A DAz + g2+, 1 (— K +al2,T)
kg

Uq T ’ ’
+7\q§0 v k’E/Z;tO q12¢0 A(l/z)(kr+q/2+q),l(_k +q/21T)Agl/z,T(Qﬁ)A(l/Z)(k’—q/2)+q1/2,1(_k +q/2+ Q1-T)a (131)
—k'+q

v
H=A2Y -2 Al K+ a/2,1) A2y a2yt (K— A2, AT oy
! 470 2V k%"(, quzlbﬁo k’t%bﬁo w2y 92 (KT A2 A b-a (K H2 DAz gz

X(K'=al2,T) Ay + 21 (K" +0/2,7)

La
q#0 2V k=k' kxa2#0 k' =q/2#0 q1#k+q/2

XK'= al2,T) Ay + 21 (K" +0/2,1)

t t
+\? At qr2—qy/21 (A1) Ak q,2, (— A+ A1 DA 1) — g2t

Uq

+A2D oo
470 2V \ Sy k=20 k' +q/2#0

:
A2 k+q2)1 (KT A2, Az k- gr2)1

X (K= Q12D A% g g o, (G21 VAW g2, (A + T2, 1)

Yaq

2
+A
g70 2V k#k! KEA2#0 1/ g0 WFKHT A2 g, 2k" — g2

AL, ai2—qy2, (A1) Ak—q,12,)
X (=% G0 DAL gy, (G2 Ak g2 (A2, 1)

2 Uq + +

A P k%(, k+q2/2¢0 o 2/#0 Ay ka2 (—KT A2, Ay ka2 (K= A2, A1)« +q2)
+ s

X (=K' =al2,[ ) Ak —qr2) (=K' +0/2,])

Uq

470 2V 0 k= G220 o Sgiaz0 G # K +A2

X (=K' =al2, ) Ay —qr2) (=K' +0/2,])

t +
+\? A= qr2+ay02, (A1) Akt a2, (A A0 DA 1)« +gi2))

v
+A2Y 2y > > > Ay gz (— KT U2, AL K g2
— 3 l

470 2V \ Ty k=m0 k' +q/2#0 gy# k' —q/2 Wak=a21 w2k a2)

X(—k— q/21l)Al'+q/2+q2/2¢(QZT)Ak'+q2/2,1(q+ 0z2,1)

v
2 q T

+A >V > > > > > Ak—qr2+aqy02, (A1) Akq,2,)
a#0 k#k' KEA2#0 7 +q220 Q1 # —K+a2 g2 — k' —qg/2

X(—q+ Q1:T)AI/+q/z+q2/2,L(Q2T)Ak'+q2/2,1(q+Q2,T)

-\%> >V kinIZ;&O Aluzy ks g2y (K21 Ay s gyt (K Q21 Al gy g qrzy (K= Q21 Aary - gy (K= a/21)

42N Ya T T
A2 oV kin/M qﬁ;_q/z A2 k+ai2y1 (KT 2T Ay s qr2yr (K Q2T Ay gra— g2y (A2 1) Ak—gr2— g2 (02 T)

-\ >V kth/#O qlsﬁ%q/Z Al q/2—q1/21(Q1T)Ak+q/2—ql/21(q1T)Agllz)(k—q/Z)T(k_ A'2,T) A2y k- agiz),1 (K—a/2T)

Yq t f
_)\quo >V k+q2/2¢0 ; 9&%(]/2 ] 9&; o2 A+ qr2— 12, (A1) At gr2-a,120 (A1 T Ak gra— g2y (A21) Ak gr2— g2/ (A1)
- 1 2 -

165111-18



CALCULUS OF SEA-DISPLACEMENT OPERATORS PHYSICAL REVIEW B85 165111

_)\2 ﬂ
470 2V —k£gie+0

X(=K+al2])A)k-qgo) (—k+0a/2])

A21/2)(k+q/2)1( —k—=0a/21) A2y i+ qr) (—K—0al2] )Azrl/z)(k—q/z)i

_)\2 ﬂ
470 2V —kZg/2#0 qy* “K+qi2

X(—k— q/zi)ALq/erqz/zi(%T)Ak—q/2+q2/2¢(Q2T)

:
A2y k+ a2y (— K= A2 Aw2)k+gi2))

_)\2 ﬁ
470 2V kG20 gy K-qi2

X(=k+a/2,) Ay k—g) (—k+al2,])

t T
A+ gra+ayr2y (A1 1) Akt g+ ay21 (A1 1D A2 k- ar2))

2 Ya

Al A Al A .
&0 2V keGBr0 qe a2 ae T a2 k+q/2+q1/21(qlT) k+q/2+q1/2¢(Q1T) k q/2+q2/21(q2T) k q/2+q2/2i(QZT)

(132

It is clear that this Hamiltonian is rather more complex width, biexciton(bound state of two excitofsand so on. Let
than the simple two-body variety. In particular, the leadingus now try to verify these expectations rigorously.
contribution which is first order il\ has three operators
signifying a nonconservation of exciton number. In one such A. The Exciton Green Function
process, an exciton recombines with a solitron to produce a In this section. we compute the exciton Green function as
conductron. Only excitons couple with external fields and we ! lon, W pute’ XCl unct
are able to infer the existence of the other excitations indi-r.GSlf”tIng from excllton-exlc[ton Interacthns and'com_pare the
rectly, by studying the binding energy of biexcitons that are“.fet'me.Of the e.xc[ton arising from equtqn-excnon ".“e“?‘c'
due to these exotic many-body processes. From the abouions with the lifetime from usual radiative recombination

form of the interaction terms we see that the ground state Jprocesses. Consider the initial state which corresponds to an
H, does not evolve with time under the action of the pertur-%xc'\f\(l)i?h'?n'nrtnergtal statd_ar:;]\ncr:i] vvzho;e C(\al\?rtiter of mass is mov-
bation. However, if we first create an excitéor two exci- 9 omentumQ. Then we may €

tong and then evolve the state under the action of the full | O)=p! G 133
Hamiltonian, then the state does indeed evolve and produces 1.Q)=bi(Q)G). (133

all the effects that we expect, such as a possible exciton-lineet us now examine how this state evolves with time.

. . . t t
e"“““**noﬂz'*')ll,Q>~9‘”H°( LI f Aty olty) + (—D)?\2 f dt,F, olty)
0 0

LA LIS
< a2 [[atAe fol@ie) 134
0 0

There are many final states possible. We would like to compute the Green function

Gi(Qiw)=i f;dtei “4(1,Qle™""[1,Q) (135

The exciton line shape is given by plotting

L(w;Q)=—2, IM[G|(Q;w—i 0™)]. (136)

We may evaluate the matrix element as
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<| ,Q|efi t (H0+)\H|’0+}\2H|)||,Q>:e*i5|(Q)t+(_i)Z)\Zefiel(Q)tE

PHYSICAL REVIEW B5 165111

2
¢ (k1 +01/2-Q/2,Q) ¢y, (k1 —Q/2;— 0, + Q)

Vg,
\%

t ) ) )
X ¢ (ko= QI2; =y + Q) ¢y (Ko + 01/2— Q/2;,Q) f (A elMgla(@hea (ool

2

ty . . . . vql
ieg(dy)toni ) (Q—a)trn—i€(Q)t _ V2% 2o~ i€ (Q)t _ -

xfo dt,e'etdvi2gl €, Ve a4 (—j) N e E (V
X @i (ki = a1/2+Q/2;,Q) ¢, (K1 + Q/2;— a1 + Q) ¢ (Ko + Q/2;— 01 + Q) @y (k2 — 01/2

t t
+QI2;Q) f dt e en(@)tigia(Qtig—ie,(~Qu+ A J "dtyel n(Qtzgler, Qg —1(Qt
0 0

) Vg, | [V
(=) ANT (Vq)(vq) St [(1/2Q-Q1;Qle,[(1/2(Q-Qy)
_Q1§Q_Q1]€D|*2[(1/2)(Q_Ql)_Q2;Q_Q1]<P|[(1/2)Q_Q1§Q]

t t
XJ dtle—ifh(Ql)tlei €|(Q)tle—if|2(—Q1+Q)t1f ldtzei en(Qu)tzgi€,(Q— Q12— i€ (At
0 0

_ v v
(=) AT (Vq)(vq) oF Q1= Q2:Q) %1 [(12/(Q - Q)
+01:Q—Qulef [ (12(Qu= Q)+, Qulen(Qu— Q12 Q)

t t
X f dtle*i €e(Qut1gl €|(Q)t1e*i5|2(*Q1+Q)11f ldtzei €e(Qt2gl €,(Q= Q)2 i€ (Qty. (137
0 0

We may rewrite the above equation retaining only the most singular parts as

where
FIi(Q=-\2X (

s |

wal

<|Q>|e*it(H0+)\H|o+}\2H|)|I(j):efi t EI(Q)_| FI(Q) t e*i t €|(Q)%e*i t[e|(Q)+F|(Q)]’ (138)

Uql

v

Vg,
Vv

|
|

2ol (k1 +01/2—-Q/2;Q) @1, (K1 — Q/2;— 01+ Q) ¢f' (Ko~ Q/2;— A1 + Q) ¢y (ky + 02/2— Q/2;Q)

€e(d1) +€,(Q—0a) —&(Q)

2ol (k1= 02/2+ Q/2;Q) @1, (K1 + Q/2;— a1+ Q) ¢f' (Ko + Q12,— A1 + Q) ¢y (ky — 0a/2+ Q/2;Q)

en(dy) + € ,(Q—d1) —€(Q)

¢l (Q1=Q/2:Q) ¢, [(1/2)(Q1= Q) +01;Q—Qu]¢f [ (1/2)(Q1~ Q) +02;Q— Q1] (Q1—~ Q/2,Q)

X

w2 (3]

€e(Q1) +€,(Q—Q1)—€(Q)

o1 (= Q1+Q/2:Q) ¢ [(1/2)(Q— Q1) —01;Q— Q1] [ (1/D(Q—Q1) ~02;Q— Q1] (— Q1 +Q/2:Q)

X

en(Q1) +€,(Q—Q1)—€(Q) . (139
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Here e4(k) =k?/2m, and e,(k) =k?/2m,,. The line shape of But,
the exciton may be written as o
[0,N,]=1+0. (A4)

Im[F(Q)] Therefore,
{w—e.(Q)—Re[F.(Q)]}2+{Im[F.<Q>]}2')

L(Qw)=2
[O",No]=n O" %1+ 0) (A5)
In this article, we merely point out the feasibility of these Itis a relatively simple matter to sum this series and we may

computations. In our next article we intend to explore theWrite
practical consequences more thoroughly, specifically, the

. . . . . . R —_— n+l
F|excnon Green functions and nonlinear optical susceptibili- [Xo No]—2 E ) n O 1(i+0)
ies. n=1 n
i *© )n+l . A
V. CONCLUSIONS 2 nOM-1(i+Oh

In this article, we have laid down the ground work for a
very promising new approach for understanding excitons in P .1 P
semiconductors and charge-conserving systems such as elec- = §(1+ O)——<+ §(1+ ON—— :
trons and positrons. We have shown how to compute the 1+0 1+0
exciton line shape thdtf broadened is also due to nonradi- (A6)
ative many-body processes. We have identified the elemen- . .
tary excitations in the system and precisely pointed out thg'herefore, much to our relief, we find
role each of them play in the theory. The elementary entities % Ra=ii (A7)
in the two-component Fermi system may be thought of in [Xo.No]=i1.
two equivalent ways. One may consider them to be electronslow we move on to fermions.
and holes interacting via two-body attractive and repulsive
interactions or we may consider the system to be made of APPENDIX B:
excitons, solitrons, valerons, and conductrons all interacting
with each other by somewhat complicated, but purely local Here we would like to prove some facts about fermions
Hamiltonians. The formidable technical challenges havéhat were claimed in the main text. Writing down the com-
been overcome and now a clear path has been mapped dutitation rules obeyed bg(q) involves knowing the pre-

for a systematic exploration of nonperturbative phenomengise meaning of the square root in the denominator. Since we
in many-body physics. have not been successful in pinning down its true meaning,

we shall have to take the point of view that the meaning is

uniquely fixed bydemandinghat the following commutation

rules be obeyed. This is not very satisfying but the authors
This work was supported by the Office of Naval Researcthave exhausted their meager capabilities. Let us consider the

and the Jawaharlal Nehru Centre. We are grateful for usefutarious possibilities.

conversations with D. Sen and H. R. Krishnamurthy of l1ISc.  (a) ng(k+0/2)=0, ng(k—q/2)=1:

ACKNOWLEDGMENTS

APPENDIX A: Vg2l A)
1/2
. In this section, wg prove the clalms'made |r1the f|rs:[ sec- =(1- 2 Al a2+ /2 ) Ak gr2+ q,12(G)
tion, namely, thaiX, is canonically conjugate tbly. Let O
= (bo—VNo) (1VNo). X A(@)=Cl_ g gra- (B1)
i O (—ntl i O (—ntl We have to convince ourselves that the left hand side obeys
Xo== 2 G | N E —— 0o (A1) the same commutation rules as the right-hand side.
2p=1 N 2p=1 N (0) ne(k+9/2)=1,ns(k—q/2)=0:
. +
i (-1t A=) VN g2
[Xo.Nol=5 2 ————[0".Ny] :
n=1 =A(—q)
i © (_ 1)n+1 . . 1/2
3 nZl T[OT”,NO], (A2) x| 1= qE;&o ALq/2+q1/2(Q1)Ak+q/2+q1/2(Q1)
- 1
n = Cl_qiCict gr2- (B2)
0" Nol= >, O MO,Ny1O™ L. A3
[O%No] mzzl [O.No (A3 (© ne(k+a/2)=0,ns(k—q/2)=0:
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Ch+ 2Ck—gr2= > Al+q/2fq1/2(Q1)Aqul/2(—q+UI1)-
q:#9,0
(B3)
(d) ne(k+0/2)=1,ng(k—q/2)=1:

Cl+qlzcqu/2: - q Za 0 Alfq/2+q1/2(ql)Ak+q1/2( —q+qy).
1 ,
(B4)
Similarly, we have
(@)ne(k"+q'/2)=0,ng(k’ —q'/2)=1:

T
Vnk’—q’/ZAk'(q’)zCk/_q//zck’+q’/21 (B5)

and so on for the other cases. We would now like to write
down some statements that would be analogous to commu-
tation rules. Let us first define the following stateméibts

goes without saying thai#0 andq’ #0).
Sl:k+q/2=k’'+q'/2,
S2:k+qg/l2=k"—q'/2,

S3:k—q/l2=k’'+q'/2,

PHYSICAL REVIEW B5 165111
S4:k—qgl2=k'—q'/2,
SSl:k=k’" and g=q’,

S2:k=k’

Consider the object

VN grA(Q) VN —qr AR (7). (B6)

and g=-¢'.

We would now like to ascertain the meaning of this object

when saySl is true butS2,S3, and$4 are false. This state
of affairs in symbolic logic is written a$1/\—-S2/\—-S3
AN\—S4. Let us define

AS1=S1/\-S2/\-S3/\-$4,
AS2=S2/\-S1IN-S3\-4,
ASB=S3/\=S1N-S2/\=%4,
ASA=S4/\-S1N\-S2/\—=S3,
AA0=-S1/N\-S2/\=S3\—=34.

(1) If ASL is true then we have

VN gr2AK(D) VN — oAk (07) = VN — Ak (A7) VN grAk(a) =0, (B7)
\/nk—q/ZAk(Q)Al/( =9V 4 g 2= Al/( —d" ) VN ¢ g1V NKk- g2AR() =0, (B8)
\ nquIZAk(q) E Alwqf/zfql/z(Ch)Ak’ 7q1/2( - q’ + ql)
a1#q’,0

= leq/20k+q/20l+q/20k’ —qr2= VN gAk— g 2(d— 1’ )( 1- qzo Al+q/2*q1/2(Q1)Ak+q/2*q1/2(ch) ) : (B9)
1

( > Al,+q,,2_q1/2(Q1)Ak'—q1/2(_q/+OI1) VN - g2A(9)
a1#q9’,0
=Cp s qr2Ck/ — g/ 120k - qiaCh+ g2= — VM- qr2Pk—qr12(0— ql)( qlzo AL—q/2—ql/2(q1)Ak+q/2—q1/2(Q1)) ,  (B10)
T ’
_\/nk—q/ZAk(q)( > A gz gyl D) AR +q,2(— A"+ A1) | =0, (B11)
a1#9’,0
—( > Alr_qr/2+ql/2(q1)Ak’+q1/2(_q,+q1) VNk—gq2Ak(9) =0, (B12)
a1#q’,0
A= DV AL (=8N 2= AL (=8N g (— A Ve qr2=0, (B13)
Al(_Q)\/nk-#q/Z( > Al’+q'/2*Q1/2(ql)Ak/_q1/2(_q,+q1) =0, (B14)
a;#9',0
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> Ak,+q,,2_ql,2<ql>Akrfqlm(—q'+q1> AL(— D) VN q2=0, (B15)

a,#a’,

—Al(— q)\/nk+q/2( > AT'fq’/2+q/z(ql)Ak’+q1/2( q'+0y)

d1#9’,0

(qE Ak+q/2+q1/2(ql)Ak+q/2+q1/2(ql))\/nk g2Pk—q'2(d—1a") (B16)
l

Al k(=) VN4 g2

( > AT,,q/,2+q/2(Q1)Ak'+q/2( q’'+0ap)

a;#q'.0
- ( i_q ;q o Al+q/2+q1/2(ql)Ak+q/2+q1/2(q1)) VNk—grPk—q2(a—0a'), (B17)
1 s
(qE Ak+q/2 ay2(91) Ak—g,2( —9+01) ( E Ak’+q’l27q2/2(QZ)Ak'—qz/z(_C]'+q2) _ B18)
( 2 Al/+qfl2—q/Z(Q2)Akr—q2/2(_Q'+Q2) ( 2 ALq,z_ql,z(ql)Ak_ql/z(—q+q1) =0, (B19)
g2#9.,0 2 4,74,
( > Al—q/2+q1/2(Q1)Ak+ql/2(—Q+Q1) ( > AT,_q,,2+q,z(qz)Ak,+q2,2( q+a) | = (820)
rao d#q’,0
( > ATr,q,/2+q/2(q2)Ak’+Qz/Z( q'+0) (q%OAIq/2+q1/2(q1)Ak+q1/2(_q+q1) = (B21)
a2#q’,0 17q,

Similarly, the reader may write down the corresponding re-down as we have done here. We see here that the objects
lations when(2) AS2 is true,(3) AS3 is true, and4) when A, (q) andA](q) obeyexact closedcommutation rules. This
AS4 is true. IfAAQ is true then we have enables us to treat any theory involving fermions obeying
, ro, simple fermion commutation rules in terms of a theory in-
[Ac(@).Ac (@) ]=[Ac(Q). A (q)]=0.  (B22) volving sea displacements obeying these rather complicated-
If SS1 is true then we have looking commutation rules. However, in all cases of practical
interest we shall adopt an approximation that in the one-
1/2 2 . . . .
1— 2 AE— i (ADA - azr o) | Aq)| = compor_lent Fermi system_ls equivalent to the RPA or its gen-
0Fo 9/2+q,/20HL a/2+q /2411 eralizations. In the multicomponent case, we may write
(B23)  down the following formula for the Fermi bilinears. This has
been used to derive the corresponding formulas for the

and, for example, . : !
P charge conserving electron-hole systems in the main text. If

. g+ 0 then,
q;‘a’o A+ qj2—qy/2(A1) Ak—gyr2( =9+ d1)
f Cl+q/20'ck*q/20"
X q;loAk—qz/z(—q+Q2)Ak+q/2—q2/2(Q2) .
2 = VN g2cPAro(— Ao’ )+ A, (o) VN 267
= Al A gjo— ,
q;o k+ q/2—qy/2( A1) Ak+ g2 q1/2(Q1)) +q go Al+q/2—q1/20'1(Q1U)Ak—q1/21r1(_q+q10-)
170,00
X| 1= 2 Al o g0 AC gz ape(d) | (B24) -
Gro Ak 2 _qlgog A g2+ qyi20 (A1) At g 120

Similarly, the reader can fill in the rest of the rules once the
main techniques for deducing these rules have been laid X(=q+a0y), (B29)
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i Ac(), AL (T’
o Cho=Ne(ko) i+ > Al*ql/ZUl(qlo—)Ak*quZUl(qlo') [A(a), A (a')]

o =ne(k—a/2)[1-ne(k+a/2) Ine(k’—q'/2)
’ ’ T
- 2 Ao 1) A g2 (ho). (B26) X[1=ne(K'+0'/2)][Ch- g+ g2 Cper + qr1oChe — 2]
1 01
=ne(k—a/2)[1-ne(k+a/2) Ine(k'—q'/2)
Approximate commutation rules : The random phase ap- x[l_np(k'+q'/z)](cﬁfqlzck,7q,,25k+q,2k,+q,/2
proximation. The commutation rules presented above to- ; '

gether with prescriptions such as E¢86) and (24) form a —ck,+q,,2Ck+q,25k,q,2,k,,q/,z) (B31)

complete and closed system of rules. These rules, however, . .
are far from simple to use. It is desirable to make some>€cause of EqB28), the right-hand side of the above equa-

approximations in a systematic manner that enables us fion [Eq. (B31)] is identically zero unlesk=k’ andq=q’.
simplify these rules. One such natural approximation is the erefore we may write
RPA of Bohm and PinesThe way to do this is to make the tooe
following assertion: The RPA is obtained by retaining only ~ LA%(@),Aw (a")]=ne(k—a/2)[1—ne(k
the lowest ord(?r.sea—dlsplacement terms in (Eiq) and set- + 01218k Sq (M 2= s 2
ting n,=ng(k)1 in Eq. (19). This means that in the exact
definition in Eq.(15) we have to replace the number operator (B32)
by the unit operator. When this is done, we have the RPAf we retain the number operator as it is in the right-hand side
result for Ay(q) of Eq. (B32) we are dealing with the generalized RPA. The
generalized RPA pays attention to possible fluctuations in the
momentum distribution around a nonideal méatowever,
A(@) =nr(k= 2L 1= ne(k+ a/2) 1] qpicrgre- T o AT 2 o e
(B27) in the simple case we are obliged to sgt=ng(k)1. When
this is done we find the following simple answer:

Ignoring higher order terms amounts to the followirfigpm Ty _ _ _
Eqs. (B3) and (B4)]: [A(@),A(d") Irpa=Ne(K—a/2)[1—ng(k+0/2)]
X Sy O 1. (B33)
Ch 4 q/Ck—q2=0 (B28) : : .
k+q/2¥k—q/2 Finally, we would like to address a rather important question,

namely is the RPA as described above a controlled approxi-
when ng(k+g/2)=0 and ng(k—g/2)=0 or whenng(k  mation? Indeed, what is a “controlled approximation” re-
+0/2)=1 andng(k—q/2)=1. Let us now use these simpli- ally? And finally, does it matter whether some approximation
fications to obtain a set of closed commutation rules valid ins controlled or not? In order to answer these questions

the RPA sense for the objesi(q). From Eq.(B27) we have it is important to first define what is meant by a controlled
approximation. A definition that seems reasonable is as fol-

lows: An expansion in powers of a dimensionless parameter

[Ax(@),Ax(d")] small compared to unity that is obtained by combining the
—ne(k—a/2 1= ne(k+a/2)Tne(k’ —q' /2 various dimensionful parameters of the theory, is a controlled
F(k—ai2l F(k+ai2)Ine( a'/2) approximation. By this definition it is clear that the RPA is
X[l—n,:(k'+q’/Z)][leqlzck+q/2vcllfq'/zck’Jrq’/Z] not a controllgd approximation. Raf[her than expanding in
powers of a dimensionlegzarameterit seems that we are
=np(k—=a/2)[1—ng(k+a/2)Ing(k" —q'/2) expanding in powers of a dimensionlesgerator namely,
T —ne(k +a'/2)1(ct s A(q) . For this to be justifiable, we have to show that this
[1=nk( 9'/2) J(Ch—qiaCic +q' 120k ar2k' ~q' 12 object is in some sense small compared to unity. This means
—cf c S o) =0 (B29) that the matrix elements of this object have to be small com-
k' —qr/2-ket Q20K — g2k +qr/2) pared to unity:’ This is possible only if we restrict our Hil-

bert space to be one that contains low lying excited stated of
Now the right-hand side is identically zero as we seethe noninteracting system. However, we would like to know
from this argument. Whek+q/2=k’—q'/2 we have the beforehandwhether or not such an assumption is justified
factor [1—ng(k+0/2)Ing(k’'—q'/2)=0. When k—qg/2  given the type of interaction and its strength. In fact, in our
=k'+q'/2 we have ng(k—a/2)[1-ne(k’'+q'/2)]=0. earlier articlé we made some rather unfortunate remarks that
Therefore, may be forgiven since it was the first article in the series and

we were going to fix the technical aspects later anyway. The

formula for the “sea-boson” given there in terms of the

[Ac(d). Ak (") Jrpa=0- (B30 Fermi fields and justly criticized Cune and Apoétisl totally
wrong despite its appealing form. The other remarks in the
Now let us compute Appendix justifying the controlled nature of the RPA ap-
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proximation provided one restricts the functional form of the 9

. ~ ~ v
potential to obey the constraints outlined eatlgs far seem |En;(k) = (€k— g2~ €k+ g2 Ng(K) + vq[no(k+q/2)
alright. In any event, the moral of this discussion is that the
RPA is a strange kind of approximation. It is not possible to —No(k—0/2)1pg+ [Uex( —at) +U%(at)]
make useful statements about when such an approximation
breaks down. To say that RPA is valid if all states of the X[ng(k+a/2) —ng(k—a/2)]. (C6)

interacting system are expressible as a linear combination gfet ;5 make a first pass at the computation of the dielectric

low lying states is as iIIurTf]inﬁting as sayling that thhe behStfunction. Here, we make use of mean-field theory, that is,
strategy to win a game of chess is to play it so that t &eplacelna(k’ —(na(K’ .

opponent’s king is placed under check and cannot move an(?p (no(k")pg)=(Mo(k"))(pg):
the opponent cannot block or eliminate the check.

o (K)) = (G2 e g2 (5(K0) + <2 (oK + 0/2))
APPENDIX C:

—(Ng(k—=0/2))){pg) +[Uex( —at) +U%,(qt)]
Consider the Hamiltonian

X[{ng(k+a/2)) —(ng(k—0a/2))], (C?
~ v k+qg/2))— k—q/2
H:; 6knk+q§0 ﬁ k%(, Cl+q/2clz’—q/ZCK’JrqIZCk*q/Z' <n;(k)>: % <n0( q’{' )> inf( q/ )> (P;)
(1) W €_q2T €k+ql2

. o +[Uext(_qt)+uzxt(qt)]
where the exchange energyinus the term quartic in the sea

displacementshas been absorbed into the kinetic energy ><(no(kJrq/Z)>—<no(k—q/2)> 8
C0—~6k—q/2+~€k+q/2 .
';k: €— E %(nqu% (C2) This means that
q#0
Let nq(k)=cl+q,2ck,q,2 andng(k)=cjcy. Let us now write P =Uedd e(q,w) ’
down the equation of motion far,(k). Introduce a source
(no(k—0/2)) —(no(k+a/2))
Po(d0) =3 i +~° , (C10
w— € €y
Hex )= 2 [Uedat) + U~ a1 ng(k). (C3) kg2 fk-a2
Vg
. yw)=1——Py(q,w). C11
whereU(qt)=e"'“'Uy(q). €(a.@) v Pold.0) (C1Y
From this and the fact that
J ~ ~
i—n%(K) = (€ gro— €t ) Ny(K) U..{(qt
ot 92~ €k+q/2)Ng _ exd Qt) _
ngRPA(Q:w) Ueff(qt) E(qvw)' (Clz)
Uqr
+ 2 ﬁ[nq(k),pqr]pt,q, Next we would like to include fluctuations. Let us do this
'#0 differently this time via the use of the BBGKY hierarchy:
Vg’ t
+ Y ot ng(K),p_gr ]+ Uex(q't d ~ ~ v
2o 2vpelna0palt 2 eV 20 @ g0+ (k- 92)
+U§xt(_q,t)][nq(k):Pq’]: (C4 vg
—(no(k—=a/2))X(pg) + 1/ [Faa(k+0a/2)
[nq(k)qu’]zg [Cl+q/20k—q/2:clr+qf/2ck’—q’/2] _FZA(k_q/zvq)]+[Uext(_qt)+ngt(qt)]
X[no(k+0/2)—nyg(k—aq/2)]. (C13
=2 CLq/zCk'—q//25k—q/z,k'+q'/2 Here,
k/

Faa(k,a;t)=(no(k") pgy —(no(k))(pg),  (C14

Fa(k’ 1k, t) =(no(k )k (k) — (no(k"))(nk(k)),
~ 8, q/[No(k+a/2)~ ng(k—/2)], (CH) (C15

;
- % Cyr 4 q 120k —q/20k-+ g2k’ —q' 12
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—(No(k—0/2))IF2a(k",q;t) + [Uex( —qt)

Foa(k/,qit) =2 Fa(k';k,q;1), (C16
K + U (gt ]IN(K’ k+a/2]—N(k’ ,k—q/2)) (C17
0 , Let us write,
|EF2(k K, g;t)
- _ Fa(k":k,qi) = Uex( —qF2a(k" k,0)
:(Ek*q/Z_ €k+q/2)|:2(k’;k,q;t) "’U;xt(qt)Fz,b(k'}k,Q), (C18)
+%[N(k,’k+q/2) <P;>:Uext(_qt)<p(/1>+szt(qt)<Pg . (C19
v Also, define
=N(k" k=a/2))(pl)+ 1/ [(no(k+a/2)) N(k,k")=(no(k)ng(k")) —(ng(k))(ng(k")), (C20)

~ ~ v
oF2a(kK' K, 0) = (€k—q2— €k+q2) F2alk' K, 0) + Vq[N(k',k‘*‘q/Z)— N(k",k=a/2)]{pg)

+ %[(no(kJrq/Z))—<no(k—q/2)>]F§A(k’,Q)+[N(k',k+ a/2)—=N(k",k—q/2)] (C21

~ ~ [
—wFop(K" K,0) = (€k—gr2 €k qr) F2p(K' 1K, Q) + Vq[N(k',kJrq/Z)— N(k",k=a/2)[(pq

U
+Vq[<n0(k+q/2))—(no(k—q/2))]FgA(k’,q)+[N(k’,k+q/2)—N(k’,k—q/2)], (C22
g N(K' K+ -N(K' k—qi2) N(k’,k+q/2)— N(k’ ,k—q/2)
€(q0)F3a(K )= 2 =——= (pe)+ 2 == . (23
k O~ €c_gnt Eiqn K W~ €_gnT Ekiqn

wCq(K) = (g 6k+q/z)Cq(k)+ JT(no(k+a/2)) = (no(k— q/2)>]<Pq>+—[F on(k+0/2)=F5a(k=a/2)]

+[(no(k+0/2)) —(no(k—a/2))], (C24)
(k)_vq<no(k+q/2)> (no(k— q/2)>< ,>+<no(k+q/2> (no(k— q/2)> vg Foa(k+0a/2,0) —Foa(k—a/2q)
“ _fk—q/2+6k+q/2 Pa W~ € q/2+€k+q/2 W~ €k—qg2T kg2 .
(C2H

After all this, it may be shown that the overall dielectric function including possible fluctuations in the momentum distribution
is given by

2
_ _ Uq P2(q,w)
€eii( 0, ) = €5 rpa(q, ®) (V) m- (C26
Here,
N(k+q/2k’'+q/2)—N(k—q/2k’'+q/2)—N(k+qa/2k'—q/2)+N(k—q/2 k' —q/2)

Py(g,0)= >, = = = = , (Cc27)

Kk’ (0= €k—qgr2T €k+qr2) (W= €k g2 €k 4 g2)

vq 5 {Molkc+ /)~ (no(k—a12))
€g-rra(Q,0) =1+ qE 2 2 (C28

O~ € gt Ex—gp2
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