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Calculus of sea-displacement operators
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Sea-displacement operators for fermions are defined in terms of the Fermi fields in a one-component Fermi
system. The main conclusions of this article fully corroborate the conjectures made in our earlier works, and
provide a mathematically rigorous foundation for these earlier works. These ideas are generalized to electron-
hole systems where we are able to clearly explore the nature of exciton-exciton interactions. We find that
exciton-exciton interactions in an ideal model of GaAs are not adequately treated simply as of the two-body
type; rather the interactions are mediated by the exchange of other bosons that are present in this system. These
bosons are identified explicitly and the exciton Green function is calculated. This exercise is also intended to
be a precursor to a systematic nonperturbative treatment of gauge theories.
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I. INTRODUCTION

This article is meant to address some technical issues
prevented our earlier work1 from being universally em-
braced, and to place some of the conjectures that appe
there on a firm mathematical foundation. Indeed as Cune
Apostol2 pointed out in their very pertinent critique, the
were significant technical drawbacks relating to the mean
of the square-root of the number operator in the denomin
that cast doubt on the soundness of the physical conclus
This article lays to rest once and for all such doubts, and
an added benefit, we are able to study the precise natu
exciton-exciton interactions. It is interesting to note that
rigorous formulation presented here is indispensable fo
correct treatment of charge-conserving two-compon
Fermi systems such as excitons and relativistic electrons
positrons. This is somewhat surprising since in our ear
work1 we showed that the lack of a proper definition of t
sea-displacement operator does not invalidate the phy
conclusions in the one-component Fermi system. Here
find that a naive approach underestimates the nature
strength of interactions between excitons but a more car
treatment brings out many subtle features that are eas
overlook. Many authors who study exciton-exciton intera
tions assume that excitons are bosons that interact via
body interactions where the exciton number is conserv
Kavoulakis and Baym3 have pointed out the need to includ
Auger-like processes where the exciton number is not c
served. Although assuming that excitons are bosons is to
acceptable~it is a matter of definition!, there are some dif-
ferences between a system such as a hydrogen atom~which
interacts via two-body forces with other hydrogen atom!
and an exciton. The main difference is that in a hydrog
atom the proton and electron do not recombine leaving
hind photons, where as an electron can recombine wit
hole. In fact, when two excitons scatter off each other it
conceivable that nonradiative recombination processes
place in addition to radiative recombination. But in place
that, we find that an exciton can recombine with a spe
kind of electron-hole pair, which we call asolitron ~to be
made clear in the main text! and can create an intraban
0163-1829/2002/65~16!/165111~27!/$20.00 65 1651
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electron-hole pair~in other words, the usual kind of sea
displacement bosons found in one-component Fermi s
tems! called a ‘‘valeron’’ or ‘‘conductron’’ depending upon
the nature of the band. Thus we find that the two-compon
charge-conserving undoped Fermi system may be though
as consisting of several kinds of elementary excitatio
~which are postulated to be exact bosons!. The usual excitons
are just one class of such excitations. Excitons can be
bound state or in a scattering state such as that in a hydro
atom. Furthermore, the excitons can possess a net cente
mass momentum. These excitons possess an energy d
sion that is slightly different from the zero-center of ma
excitons and are somewhat important in the analysis. Nex
order of importance in our system is a solitron. Asolitron is
an electron-hole pair that resides at the bottom of the c
duction and valence bands. This pair is unbound and its
istence is needed in order that excitons interact with o
another, especially when we are dealing with Auger-like p
cesses where exciton number is not conserved. In additio
the solitron, we find the need to invoke two other kinds
bosons, valerons and conductrons. Valerons are intraval
band electron-hole excitations. They are analogs of the u
sea-bosons1 in one-component Fermi systems. Conductro
similarly are particle-hole excitations in the conduction ban
All these bosons interact with one another and the resul
system is completely equivalent to the interacting Fermi s
tem. Only the exciton couples to external radiation fiel
Therefore, we have to consider excitons as the primary
jects of interest and the other bosons in the system are s
lar to gauge bosons. Material particles~excitons! interact by
exchanging these other bosons. Furthermore, these g
bosons interact amongst themselves, suggesting an ana
with nonabelian gauge theories. In future publications,
intend applying these ideas to the study of relativistic gau
theories. In this article, we compute the exciton Green fu
tion using the interaction terms that correspond to inela
scattering of the excitons off the other bosons. In future p
lications, we intend to investigate more thoroughly the pr
tical aspects of this formalism—specifically, the biexcito
Green function and nonlinear optical susceptibilities.
©2002 The American Physical Society11-1
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II. CONDENSATE DISPLACEMENT OPERATORS

In this section, we provide some details regarding the c
respondence between the canonical bosons and their con
sate displacement analogs. These details are not found in
earlier works.1 They are important since they provide
springboard from which we may write down the analogo
statements for fermions. The correspondence between
sea-displacement operators and the canonical fermions
not made sufficiently clear in our earlier works. Indeed, th
were inconsistencies in the technical definition, that ev
though had no impact on the physical conclusions~as we
shall see in the present article once and for all! they did leave
some room for doubting the soundness of the framework.
us therefore start off with the familiar Bose systems. Letbk

†

and bk be canonical boson creation and annihilation ope
tors, respectively. They obey the commutation ru
@bk ,bk8#50 and@bk ,bk8

†
#5dk,k8 . Let us now introduce the

following new objects known as condensate displacem
operators

dq/2~q!5
1

AN̂0

b0
†bq , qÞ0, ~1!

d0~0!50, ~2!

where N̂05b0
†b0 is the number operator for the zero

momentum state. A word of caution regarding notation. T
symbol N0 without a hat refers to a positive intege
(ac number! that corresponds to the total number of partic
in the system, in both Bose as well as Fermi systems.
symbolN̂ refers to the operator that corresponds to the to
number of particles in the system, be it Bose or Fermi. T
object1̂5N̂/N0 is therefore the unit operator. The symbolN̂0
refers to the operator that corresponds to the total numbe
bosons in the zero-momentum state. This object does
appear in the next section where we deal with fermions. T
square root of the operator in the denominator of Eq.~2!
deserves special attention. In particular, when we actdq/2

† (q)
on a state containing no particle in the zero-momentum st
we get an infinity multiplied by the same state, and when t
further is acted on byb0 , we get a factor of zero. Zero
multiplied by infinity is indeterminate. This tells us that th
condensate displacement operator is an ill-defined oper
on the Fock space of bosons. This is a technical problem
cannot be wished away. We will mitigate the severity of th
problem by postulating that all states of the interacting s
tem ~both ground state and excited states! may be expressed
as linear combinations of states from a restricted Hilb
space that contains states of the noninteracting system w
fixed total number of particles, but excludes those that c
tain no particles in the zero-momentum state. Although
are unable to say precisely when this assumption bre
down, it is reasonable to assert that even in the case whe
interactions are strong, either because of the intrinsic na
of the interaction or apparently strong due to the dimensi
ality of the system, the zero-momentum state of the inter
ing system will have at least one boson in it, if not a mac
16511
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scopically large number of them.~The number operator is no
longer a good quantum number in such systems but perh
this is true in some average sense with small fluctuati
around the average.! The subsequent development will ju
tify this. Our assumption enables us to write down a po

decomposition of the operatorb0 as b05exp(2iX0
r )AN̂0

whereX0
r 5(1/2)(X01X0

†) is an operator that is strictly self
adjoint but it is not exactly but almost a canonical conjug
to the number operatorN̂05b0

†b0>0 ~in Appendix A we see
that an appropriate interpretation of the definition of the co
jugate allows us to circumvent these issues, for fermions
have to be more careful!. On the other hand,X0 is almost
self-adjoint but is strictly a conjugate to the number opera
N̂0 ~however, in the next section when we deal with ferm
ons,X0 refers to the canonical conjugate of thetotal number
of fermions!. If a definition of X0

r is desired, we may claim
that it is given by the manifestly self-adjoint formula

X0
r 5

i

2
lnS b0

1

AN̂0

D 2
i

2
lnS 1

AN̂0

b0
†D . ~3!

In addition to the square root of the number operator in
denominator that we have already made sense of, we hav
make sense of the logarithm. It is defined to be the pow
series expansion suggested by rewriting the above formul

X0
r 5

i

2
lnF 11~b02AN̂0!

1

AN̂0

G
2

i

2
lnF 11

1

AN̂0

~b0
†2AN̂0!G . ~4!

The proof of the fact thatX0 is canonically conjugate to the
number operatorN̂0 in the restricted Hilbert space is re
egated to Appendix A. Therefore we may write@X0 ,N̂0#5 i .
Armed with these facts we now are able to prove thatdq/2(q)
is a canonical boson annihilation operator. We may n
write dq/2(q)5exp(iX0

r )bq . Since from the definition,
exp(iX0

r ) depends on neitherbq nor bq
† , we see that as far a

commutation rules ofdq/2(q) go, they are identical to thos
of bq since the two differ by a trivial phase that commut
with both these objects and their Hermitian conjugates. N
we reproduce some facts that have been pro
satisfactorily1 elsewhere, and these will be used as the po
of departure for a rigorous treatment of fermions. Earlier
proved1 ~for both q50 andqÞ0), the following combined
formula:

bk1q/2
† bk2q/25N̂0dk,0dq,01AN̂0d2q/2~2q!dk1q/2,0

1dq/2
† ~q!AN̂0dk2q/2,01d(1/2)(k1q/2)

†

3~k1q/2!d(1/2)(k2q/2)~k2q/2!, ~5!

N̂05N̂2 (
qÞ0

dq/2
† ~q!dq/2~q!. ~6!
1-2
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CALCULUS OF SEA-DISPLACEMENT OPERATORS PHYSICAL REVIEW B65 165111
This equation may be rewritten more elaborately and i
manner that is conducive to generalization as (qÞ0)

bk1q/2
† bk2q/25Ank1q/2Ak~2q!1Ak

†~q!Ank2q/2

1 (
q1Þq,0

Ak1q/22q1/2
† ~q1!Ak2q1/2~2q1q1!

2 (
q1Þq,0

Ak2q/21q1/2
† ~q1!Ak1q1/2~2q1q1!,

~7!

nk5bk
†bk5nB~k!

N̂

N0
1 (

q1Þ0
Ak2q1/2

† ~q1!Ak2q1/2~q1!

2 (
q1Þ0

Ak1q1/2
† ~q1!Ak1q1/2~q1!. ~8!

Here nB(k) is the momentum distribution of noninteractin
bosons at zero temperature,nB(k)5dk,0N

0. Also, Ak(q)
5dk2q/2,0dq/2(q). It is worthwhile to consider an alternativ
scheme for making sense of the definition in Eq.~2!. It in-
volves writing the number operator as

N̂05N0S 1̂2
1

N0 (
qÞ0

dq/2
† ~q!dq/2~q!D . ~9!

Furthermore, we may write for the occupation number no
the zero-momentum state (kÞ0) asnk5d(1/2)k

† (k)d(1/2)k(k).
With these identifications, we may rewrite Eq.~2! as (q
Þ0),

dq/2~q!5
1

AN0 S 1̂2
1

N0 (
qÞ0

dq/2
† ~q!dq/2~q!D 21/2

b0
†bq .

~10!

If Eq. ~10! is interpreted as a power-series expansion aro
unity, we can construct an iterative procedure to solve
dq/2(q). This may seem redundant given the fact that
have already made an elegant argument that pins down
meaning ofdq/2(q) in terms ofX0. The reason for this new
approach is that in the case of fermions we will not have
luxury of introducing an object similar toX0 for reasons that
will become clear in the next section. Thus we are forced
seek alternatives that are more fermion friendly. Unfor
nately, these alternatives do not allow us to venture very
from the noninteracting case, as we shall soon see. Neve
less, this exercise is very instructive since it tells us that
correspondence that we write down for fermions in the n
section has exactly the same features and are therefore
rect, pending the resolution of the interpretation of the u
quitous square root in the denominator. Retaining only
lowest order in the series expansion gives us

dq/2~q!5
1

AN0
b0

†bq , ~11!

N̂05N01̂. ~12!
16511
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Further we have (kÞ0)nk5d(1/2)k
† (k)d(1/2)k(k)5(1/N0)(1̂

1N̂0)bk
†bk . But we also know thatnk5bk

†bk . This seems to
suggest one of two things, namely,nk50 or we should re-
strict ourselves to cases whenN̂05N01̂@1̂. The latter possi-
bility seems the most attractive until one realizes that
restricted Hilbert space is not so restrictive as to exclu
such systems where the number of particles is small
finite. This will become clear in Appendix A where we nee
to only assume that the restricted Hilbert space contains
states that have zero particles in the zero-momentum s
Therefore we are left with the other possibilitynk50. This
result is not as alarming as it seems since Eq.~12! is consis-
tent only with the state where all the bosons are in the ze
momentum state and no bosons have higher momenta.
ther iterations do not change this picture. That is, if w
interpret the square root as a power-series expansion,
obtain the first order correction

dq/2~q!'S 1̂1
1

2N0 (
q1Þ0

dq1/2
† ~q1!dq1/2~q1!D 1

AN0
b0

†bq .

~13!

In order to conform to the iterative scheme, we are obliged
replace the thed’s on the right side by the zeroth-orderd’s.
But we know that in the zeroth orderdq1/2

† (q1)dq1/2(q1)50

andN̂5N01̂. Therefore the first-orderd is the same as in the
zeroth order,dq/2(q)5(1/AN0)b0

†bq . All this points to the
futility of interpreting the square root as a power-series
pansion around the noninteracting ground state. All furt
iterations lead to precisely the same result. This should
us that one should solve the system self-consistently. Per
we should expand around an expectation value@i.e., N̂0

5^N̂0&1̂1(N̂02^N̂0&1̂)# with the expectation value deter
mined self-consistently. This expectation value will be diffe
ent fromN0 even when interactions are absent, for examp
if we consider finite temperature. Let us now try and co
pute the finite-temperature momentum distribution of non
teracting bosons. From elementary considerations we kn
that ^N̂0&5N02(kÞ0^bk

†bk& and ^nk&5^bk
†bk&. The ther-

modynamic expectation values involve the chemical pot
tial m:

^nk&5
1

exp@b~ek2m!#21
. ~14!

The reason this appears is that in the grand canonical
semble we have to compute the trace with the Boltzma
weight ^bk

†bk&5(1/Z)Tr$exp@2b(H2mN)#bk
†bk%, where Z

5Tr$exp@2b(H2mN)#% is the grand partition function. Us
ing the cyclic property of the trace, we may write

^bk
†bk&5

1

Z
Tr~e2b(H2mN)bk

†bk!5
1

Z
Tr~bke

2b(H2mN)bk
†!

5
1

Z
Tr~e2b(H2mN)eb(H2mN)bke

2b(H2mN)bk
†!

5e2b(ek2m)^bkbk
†&5e2b(ek2m)~11^bk

†bk&!.
1-3



at

h
na
th
an

ur
be
a

wi
v
ve
s
w

iffi
in

t t

nc
r

uced
nt
is

he
mu-
of

-
as
ther-

u-

is
ans-
er-
es
ex-
tate,
em
place
ain

-

a-

-
tor
a

in
the

s
m
ld

e

po-

t

e
al

of
o
in
g
that
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In other words,

^bk
†bk&5

1

exp@b~ek2m!#21
.

Let us now try to evaluate this quantity using the condens
displacement language

^bk
†bk&5^dk/2

† ~k!dk/2~k!&5
1

Z
Tr@e2b(H2mN)dk/2

† ~k!dk/2~k!#,

H5 (
kÞ0

ekd(1/2)k
† ~k!d(1/2)k~k!.

We also know that@N̂,d(1/2)k(k)#50:

^dk/2
† ~k!dk/2~k!&5

1

Z
Tr@e2b(H2mN)dk/2

† ~k!dk/2~k!#

5
1

Z
Tr@e2b(H2mN)eb(H2mN)

3dk/2~k!e2b(H2mN)dk/2
† ~k!#,

^dk/2
† ~k!dk/2~k!&5e2bek

1

Z
Tr@e2b(H2mN)dk/2~k!dk/2

† ~k!#

5e2bek@11^dk/2
† ~k!dk/2~k!&#,

^dk/2
† ~k!dk/2~k!&5

1

exp~bek!21
.

The crucialm seems to be missing. The reason is somew
subtle. It has to do with the fact that the trace in the origi
case using the parent bosons spans all states including
with N̂050. However, in the condensate-displacement l
guage, the trace is over all statesexceptthose that haveN̂0

50. There are quite a number of states that haveN̂050 and
an arbitrary total number of particles. It is therefore not s
prising that we have encountered a discrepancy. The
way to resolve this is to introduce a Lagrange multiplier th
allows us to control how many bosons there are in states
zero momentum. Thus when it comes to taking the trace o
states in the condensate-displacement language, we ha
be careful to include a new chemical potential that couple
N̂0 and not just toN̂. When this is done we can easily sho

^dk/2
† ~k!dk/2~k!&5

1

exp@b~ek2m!#21
.

These considerations carry over to fermions where the d
culties are understandably far more severe. After all, try
to describe fermions using Bose-like objects, and to do
exactly, is a daunting task. We shall now use this insigh
write down a correspondence for fermions.

III. THE NATURE OF SEA-DISPLACEMENT OPERATORS

In this section, we provide details of the corresponde
between the sea-displacement operators and canonical fe
16511
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ons. The sea-displacement operators have been introd
elsewhere1 but an explicit formula for the sea-displaceme
operator in terms of the Fermi fields was lacking. In th
section, we once and for all pin down the definition of t
sea-displacement operator and show that they obey com
tation rules that are somewhat complicated but in the limit
a generalized random-phase approximation~RPA! ~to be
made clear in Appendix B! they obey canonical boson com
mutation rules. This exercise hopefully is the final word
far as the technicalities of the correspondence goes. Fur
more, as we shall see in the conclusion, the rigorous form
lation reinforces the rather startling claim1 that in one dimen-
sion ~1D!, so long as the interaction between the fermions
purely repulsive and possesses an appropriate Fourier tr
form, and is sufficiently weak so that all states of the int
acting system~both ground state as well as excited stat!
may be expressed as linear combinations of low lying
cited states of the noninteracting system and its ground s
then the momentum distribution of the interacting syst
possesses a sharp Fermi surface at precisely the same
as the noninteracting system. Let us now proceed to the m
task at hand.

Let ck andck
† be canonical fermion annihilation and cre

ation operators. We may write$ck ,ck8%50 and $ck ,ck8
† %

5dk,k8 . Let nk5ck
†ck denote the number operator. The se

displacement operators for fermions are defined as (qÞ0)

Ak~q!5nF~k2q/2!@12nF~k1q/2!#
1

Ank2q/2

ck2q/2
† ck1q/2 ,

~15!

Ak~0!50, ~16!

wherenF(k)5u(kF2uku) is the zero-temperature Fermi dis
tribution. As before, the square root of the number opera
in the denominator in the definition requires clarification,
point noted by Cune and Apostol.2 Their approach for deal-
ing with this problem is unfortunately, not adequate.4 Neither
it seems is the approach used for dealing with this problem
the case of bosons, namely that we be able to interpret
object Û(k)5(1/Ank)ck

† as being a unitary operator. Thi
reason for this additional complication probably stems fro
the fact that in order for this object to be unitary, we shou
be able to find a self-adjoint canonical conjugatePk of the
number operator such that@Pk ,nk8#5 idk,k8 . Such an object
is not likely to exist not only because of the positivity of th
number operatornk , but also because of idempotence.5 In
fact, it is a simple matter to convince ourselves that idem
tence is inconsistent with the existence ofPk . On the one
hand, we have@Pk ,nk

2#5@Pk ,nk#nk1nk@Pk ,nk#52ink .
On the other hand,@Pk ,nk

2#5@Pk ,nk#5 i . This suggests tha

nk5(1/2)1̂—a state of affairs seldom realized if at all. Som
readers of this work familiar with the more tradition
bosonization approaches may point to the importance
‘‘point splitting’’—a procedure that does not allow us t
write nk5ck

†ck . They may wish to suggest this as the ma
reason for all these difficulties. It is likely that point splittin
is a necessary technical consideration only in systems
1-4
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CALCULUS OF SEA-DISPLACEMENT OPERATORS PHYSICAL REVIEW B65 165111
havekF→` andm→` but vF5kF /m,`, in other words, a
system where both the mass of the particle and the den
are infinite such that the Fermi velocity is finite.6 We deal
with systems that are more physical~finite kF and m) and
are, by and large, immune to these considerations. While
metaphorical definition of Eq.~15! is quite adequate for mos
practical purposes, it is desirable to have a better underst
ing of the meaning of the square root.

Let us divert our attention for some time to the mo
mechanical aspects of this program in the hope that soon
will be able to address this delicate technical problem of
square root in the denominator. In a manner entirely an
gous to that of bosons we may write

ck1q/2
† ck2q/25Ank1q/2Ak~2q!1Ak

†~q!Ank2q/2

1l (
q1Þq,0

Ak1q/22q1/2
† ~q1!Ak2q1/2~2q1q1!

~17!

2l (
q1Þq,0

Ak2q/21q1/2
† ~q1!Ak1q1/2~2q1q1!.

~18!

Furthermore,

nk5ck
†ck5nF~k!

N̂

N0
1l (

q1Þ0
Ak2q1/2

† ~q1!Ak2q1/2~q1!

2l (
q1Þ0

Ak1q1/2
† ~q1!Ak1q1/2~q1!, ~19!

wherenF(k)5u(kF2uku) is the zero-temperature Fermi di
tribution function. The parameterl is a book-keeping de
vice, familiar from perturbation theory, where in the end w
setl51. This is a very useful device as we shall soon fi
out, one that partially addresses the problem of the squ
root in the denominator. The proof of Eqs.~17! and~19! rests
crucially on the meaning of the definition ofAk(q) shown in
Eq. ~15!. Let us now consider the problem of ascertaining
meaning ofAk(q) in a ‘‘perturbative’’ manner. That is, we
shall interpret the square root of the number operator as
ing the square root of the Eq.~19! where we find a natura
unit operator about which we may expand the square r
Thus if we consider the lowest order inl we have nk

5nF(k)1̂. Since nk2q/251 when nF(k2q/2)51, we may
write

Ak~q!5nF~k2q/2!@12nF~k1q/2!#ck2q/2
† ck1q/2 .

~20!

These equations obviously solve Eqs.~17! and ~19! in the
lowest orderl051 except that we seem to have the ad
tional curiosityck1q/2

† ck2q/250 if nF(k1q/2)51 andnF(k
2q/2)51 or if nF(k1q/2)50 andnF(k2q/2)50. This is
hardly surprising given the fact thatnk5nF(k)1̂ is consistent
with our restricted Hilbert space having exactly one eleme
namely, the ground state of the noninteracting Fermi
uFS&. This meansck1q/2

† ck2q/2uFS&50 when nF(k1q/2)
16511
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51 and nF(k2q/2)51 or if nF(k1q/2)50 and nF(k
2q/2)50, a fact easily verified. Parenthetically, we note th
Eq. ~20! was anticipated in the comment by Cune a
Apostol.2 Just as in the case of bosons, further iterations
not affect these conclusions. Therefore, if one starts with
noninteracting system and expands around the noninterac
ground state, one is able to treat only the noninteracting s
tem. Just for the sake of completeness, let us see where
first order terms lead us. WhennF(k1q/2)51 and nF(k
2q/2)50, we have from the definition Eq.~15! a result that
is independent ofl and therefore valid to all orders in
l,Ank1q/2Ak(2q)5ck1q/2

† ck2q/2 . In addition, we have
Ak

†(q)Ank2q/25ck1q/2
† ck2q/2 when nF(k1q/2)50 and

nF(k2q/2)51. These two identifications are entirely cons
tent with Eq.~17! to all orders inl. The other cases, namely
nF(k6q/2)50 and nF(k6q/2)51 are given below. They
have to be proven iteratively. WhennF(k1q/2)50 and
nF(k2q/2)50, we can see from Eq.~17! that ck1q/2

† ck2q/2

5l(q1Þq,0Ak1q/22q1/2
† (q1)Ak2q1/2(2q1q1). We now

show that this result is identically zero. This is consiste
with our earlier claim that further iterations do not chan
the zeroth order results. Since, now if we replace theA’s by
the zeroth order ones, we get a first order result
ck1q/2

† ck2q/2 equal to zero:

ck1q/2
† ck2q/25l (

q1Þq,0
Ak1q/22q1/2

† ~q1!Ak2q1/2~2q1q1!

5l (
q1Þq,0

nF~k1q/2

2q1!ck1q/2
† ck1q/22q1

ck1q/22q1

† ck2q/2

5l (
q1Þq,0

nF~k1q/22q1!

3~ 1̂2nk1q/22q1
!ck1q/2

† ck2q/2 .

The number operatornk1q/22q1
5nF(k1q/22q1)1̂, and

therefore the first order result is zero as well. Similarly, w
find the same answer whennF(k1q/2)51 andnF(k2q/2)
51. To put it another way, iterations aroundnk5nF(k)1̂ do
not change the form ofnk . That is,nk remains frozen at the
valuenF(k)1̂. This means that the only state consistent w
such an identity is the noninteracting ground state. Us
this, we can convince ourselves that the program is con
tent, just as the program was consistent in the Bose c
which has been proved rigorously by other means.

In order to do better than just remain at the noninteract
ground state, one must, just as in the Bose case replacnk

5^nk&1̂1(nk2^nk&1̂), and expand around an expectatio
value ^nk&Þ0 for all k. Thus we are obliged to consider
system with interactions and at a finite temperature in or
for this scheme to be of practical significance. The philo
phy is that we solve for̂nk& self-consistently and then pas
to the limit of weak interactions or low temperature if on
wants to study the ideal case. Therefore, we may write
1-5
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1

Ank2q/2

5
1

A^nk2q/2&
F 1̂1

nk2q/22^nk2q/2&1̂

^nk2q/2&
G21/2

.

~21!

Let us now use the insight obtained in the case of boson
write down the correct commutation rules obeyed by
sea-displacement operators. This is a nontrivial task gi
the subtleties involved. The Bose case was soluble exa
via a polar decomposition which we do not have here.
write down here the final answers, details of which may
found in Appendix B. The exact commutation rules obey
by the sea-displacement operators it seems are rather
plicated. The sea-displacement operators do, however, o
exact closedcommutation rules as we shall see in Append
B. There is a natural and simple regime where theapproxi-
matecommutation rules are those of canonical bosons. I
the regime of the RPA of Bohm and Pines.7 They are

@Ak~q!,Ak8~q8!#RPA50, ~22!

@Ak~q!,Ak8
†

~q8!#RPA

5nF~k2q/2!@12nF~k1q/2!#dk,k8dq,q8 .

~23!

We saw in the Bose case that the RPA-commutation ru
may be taken to be the exact rules the only care that we
to exercise was to couple the condensate bosons to their
chemical potential. Here too we have to couple the s
bosons to a momentum dependent chemical potential a
will soon show. We find that it is quite appropriate to vie
the objectsAk(q) as being exact bosons, although for spec
values of the indices they behave rather strangely. Th
simple-looking results belie the notoriously difficult an
technical problem of the square root in the denomina
which incidentally, we have only partially resolved@see Eq.
~21!#. One potential criticism of this is to claim that a schem
such as Eq.~21! is inconsistent with the exact commutatio
rules presented in Appendix B. The rebuttal to such a critiq
is that even Eq.~21! is approximate, no matter how man
orders are summed—the reason being that this assumes
fluctuations in the number operator are small compared w
the mean. This is inconsistent since we may show, for
ample, that ^nk

2&2^nk&
25^nk&(12^nk&). Therefore, the

more noideal the momentum distribution is, the more it flu
tuates. In fact, a momentum distribution that is highly no
ideal^nk&'1/2 for most momenta, has the largest fluctuat
equal to the mean itself. There is another important point
should be mentioned. The definition in Eq.~15! closely re-
sembles the definition of condensate displacement opera
for bosons. This is certainly a plus. Further, the factornF(k
2q/2)@12nF(k1q/2)# serves as a cutoff function. It fulfills
a very important role. It ensures that the kinetic energy
erator is positive definite. The authors initially tried a numb
of alternatives that attempted to include terms beyond
RPA-like term, for instance, one with@12nF(k1q/2)#@1
2nF(k2q/2)#. Such attempts are always unsuccessful
the simple reason that they lead to nonpositive kinetic ene
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operators. With the cutoff function we have introduced,
may write the kinetic energy operator in the se
displacement language as K5k0N̂1(k,q
Þ0vk(q)Ak

†(q)Ak(q). It can be seen thatvk(q)5(k
•q/m)nF(k2q/2)@12nF(k1q/2)#>0. Here k0
5(1/N0)(keknF(k) is the kinetic energy per particle. In or
der not to disappoint the attentive reader, we collect h
some facts that are true in the absolute sense. From the e
definition in Eq.~15! it is fairly obvious that~independent of
the meaning of the square root!

@Ak~q!,np#5Ak~q!~dp,k1q/22dp,k2q/2!. ~24!

More generally,

F~@$np1dp,k1q/22dp,k2q/2%#!Ak~q!5Ak~q!F~@n# !.
~25!

From the definition in Eq.~15! we may write

Ak~q!Ak
†~q!5nF~k2q/2!@12nF~k1q/2!#~12nk1q/2!.

~26!

The other commutation rules are collected in Appendix
They are important only for special values of the indic
k,k8,q andq8. In the RPA sense and whenever we are w
ing to overlook these nuances~which is always, practically
speaking! the RPA commutation rules of Eqs.~22! and ~23!
are quite sufficient and easy to use. Let us now try and co
pute the properties of the free Fermi theory using the m
chinery that we have just laid down. For this we need to fi
ask, how do we expressAk

†(q)Ak(q)? We expect the answe
to depend crucially on the meaning of the square root. We
not have any more insight into the nature of this object,
we will be needing its expectation value when we try
compute the finite temperature properties of noninterac
Fermi system in the sea-displacement language. Fortuna
the expectation value is obtained by a reasonably straigh
ward method and one that is very reminiscent of the B
case. We shall have occasion to introduce a chemical po
tial that is momentum dependent and scales as the logar
of the volume of the system so that one may venture i
regions where the square root in the denominator vanis
~as does the numerator! where the sea-displacement meth
breaks down. The introduction of the chemical potential
stores the meaning of the trace that in the Fermi langu
was intended to span over all the states. Let us now eval
the finite-temperature properties, specifically, the fini
temperature momentum distribution of noninteracting ferm
ons in the sea-displacement language. To this end, let us
compute the following correlation function:

^Ak
†~q!Ak~q!&5

1

Z~k2q/2!
Tr~e2b(H2mN2mk2q/2nk2q/2)

3Ak
†~q!Ak~q!!, ~27!

Z~k2q/2!5Tr~e2b(H2mN2mk2q/2nk2q/2)!. ~28!

Using the cyclic property of the trace, we have
1-6
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^Ak
†~q!Ak~q!&5

1

Z~k2q/2!
Tr@Ak~q!e2b(H2mN2mk2q/2nk2q/2)Ak

†~q!#

5
1

Z~k2q/2!
Tr@e2b(H2mN2mk2q/2nk2q/2)eb(H2mN2mk2q/2nk2q/2)Ak~q!e2b(H2mN2mk2q/2nk2q/2)Ak

†~q!#

5e2b
k•q
m e2bmk2q/2

1

Z~k2q/2!
Tr@e2b(H2mN2mk2q/2nk2q/2)Ak~q!Ak

†~q!#

5e2bk•q/me2bmk2q/2^Ak~q!Ak
†~q!&. ~29!
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But we know from Eq.~26! that

^Ak~q!Ak
†~q!&5nF~k2q/2!@12nF~k1q/2!#

3@12nb~k1q/2!#

'nF~k2q/2!@12nF~k1q/2!# ~30!

at low temperatures, since the thermodynamic expecta
value nb(k1q/2) vanishes exponentially whennF(k1q/2)
50. Therefore we may writêAk

†(q)Ak(q)&5nF(k2q/2)@1
2nF(k1q/2)#exp(2bk•q/m)exp(2bmk2q/2). The chem-
ical potentialmk has to be chosen so that the correct therm
dynamic expectation values are recovered. It is clear tha
the absence of the chemical potential, we are bound to ob
answers that are incorrect, unless one is at absolute zero
also clear that in order for Eq.~31! to make sense, one mu
choose a chemical potential that scales as the logarithm
the volume of the system. Let us set exp(bmk)5Vexp(lk)
for somelk . This may be determined by demanding t
self-consistency of

nF,b~k!5nF~k!1 (
qÞ0

nF~k2q!

3@12nF~k!#e2bk•q/mebeqe2bmk2q

2 (
qÞ0

nF~k!@12nF~k1q!#e2bk•q/me2beqe2bmk,

~31!

nF,b~k!5nF~k!S 12
e2lk

V
eb(k2/2m)

3 (
qÞk

@12nF~q!#e2b(q2/2m)D 1@12nF~k!#

3e2b(k2/2m)
1

V (
q

nF~q!eb(q2/2m)e2lq. ~32!

Let us now focus on a system in two space dimensions
which case
16511
n

-
in
in

t is

of

in

nF~k!e2lk5S 4pb

2m DnF~k!@12nF,b~k!#e2b(k2/2m)eb(kF
2 /2m)

'S 2pb

m DnF~k!,

1

V (
q

nF~q!eb(q2/2m)e2lq

5
1

~2p!2E0

kF
2pq dq S 4pb

2m D @12nF,b~q!#eb(kF
2 /2m)

5eb(kF
2 /2m).

The last result follows if we assume, as we shall, that we
working at low enough temperatureskBT!EF . For this pro-
gram to be self-consistent, we have to make this assump
Perhaps there is a way out of it, but for now the authors
unable to find it. In any event, it is this regime that is
considerable physical significance and the fact that the
displacement scheme is consistent in this regime is v
comforting indeed. Moving on, we write

1

V (
q

@12nF~q!#e2b(q2/2m)5S m

2pb De2b(kF
2 /2m). ~33!

Substituting these back into Eq.~32! we find nF,b(k)
5nF(k)nF,b(k)1@12nF(k)#exp@2b(k22kF

2)/2m#. At low
temperatures whenuku.kF , we know that nF,b(k)
'exp@2b(k22kF

2)/2m#. Therefore, the sea-displacement la
guage gives the exact same result as the original Fermi
guage. Having successfully fixed the chemical potential
the sea-displacements, we now turn to the problem of co
puting the correlation functions of the noninteracting syst
at finite temperature. For instance, we have the four-po
function F(k•q;k8•q8)5^ck1q/2

† ck2q/2ck82q8/2
† ck81q8/2&. In

the Fermi language, it is simply given by

F~k•q;k8•q8!5dk,k8dq,q8nF,b~k1q/2!@12nF,b~k2q/2!#.
~34!

It may be shown that in the sea-displacement language,
same quantity may be evaluated as
1-7
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F~k•q;k8•q8!

5dk,k8dq,q8@^Ank1q/2Ak~2q!Ak8
†

~2q8!Ank81q8/2&

1^Ak
†~q!Ank2q/2Ank82q8/2Ak8~q8!&#1dk,k8dq,q8

3 (
q1Þq,0

^Ak1q/22q1/2
† ~q1!Ak1q/22q1/2~q1!&

3nF~k1q/22q1!@12nF~k2q/2!#

1dk,k8dq,q8 (
q1Þq,0

^Ak2q/21q1/2
† ~q1!Ak2q/21q1/2~q1!&

3nF~k1q/2!@12nF~k2q/21q1!#. ~35!

Equation~35! is obtained by placing two expressions in E
~17! next to each other, contracting the indices and fina
using Eq.~30!. Insofar as the scheme for computing the m
mentum distribution is satisfactory, it may shown that fo
mula in Eq.~35! is in fact identical to Eq.~34!. To show this
rigorously, we have to properly interpret the avera
^Ank1q/2Ak(2q)Ak8

† (2q8)Ank81q8/2&. In fact it is a simple
matter to evaluate this quantity exactly in the Fermi la
guage. From Eq. ~15! we have Ank1q/2Ak(2q)
5ck1q/2

† ck2q/2nF(k1q/2)@12nF(k2q/2)#. Therefore we
may write quite unambiguously

^Ank1q/2Ak~2q!Ak8
†

~2q8!Ank81q8/2&

5nF,b~k1q/2!@12nF,b~k2q/2!#nF~k1q/2!

3@12nF~k2q/2!#dk,k8dq,q8 . ~36!

Similarly we may write,

^Ak
†~q!Ank2q/2Ank82q8/2Ak8~q8!&

5nF,b~k1q/2!@12nF,b~k2q/2!#nF~k2q/2!

3@12nF~k1q/2!#dk,k8dq,q8 . ~37!

The main conclusion of these arguments is that one mus
careful when evaluating these expectation values. In part
lar, it is wrong to make the approximationnk1q/2

'^nk1q/2&1̂, since this implies

^Ak
†~q!Ank2q/2Ank82q8/2Ak8~q8!&

5?nF~k2q/2!nF~k82q8/2!^Ak
†~q!Ak8~q8!&

5nF~k2q/2!@12nF~k1q/2!#dk,k8dq,q8

3S 1

VDe2b(k•q/m)S 2pb

m D . ~38!

This result is inconsistent with the correct result in Eq.~37!
that does not vanish in the thermodynamic limit. Having s
this, it is still not a poor approximation at low temperatur
(kBT!EF). The reason being that although the approxim
tion on the right-hand side of Eq.~38! vanishes in the ther
modynamic limit at any finite temperature, the exact answ
for this correlation function as derived above also vanis
16511
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for a different reason. At low temperatures, due to the pr
ence of a product such asnF,b(k1q/2)@12nF(k1q/2)#,
the correlation function vanishes exponentially fast
exp@2(ek1q/22EF)/kBT#. Therefore, while it is certainly ad
visable to be cautious, we are allowed some leeway at
temperatures. Having done all this, it is now a simple ma
to convince ourselves that Eq.~35! is identical to Eq.~34!. If
nF(k1q/2)51 and nF(k2q/2)50, then all but the first
term in Eq.~35! vanish and the identity is trivially satisfied
If nF(k1q/2)50 andnF(k2q/2)51, then all but the sec-
ond term vanish and the identity is again trivially satisfie
What remains now is to compute the terms whennF(k
1q/2)50 andnF(k2q/2)50 and whennF(k1q/2)51 and
nF(k2q/2)51. In the first instance, we have to evaluate t
sum S15(q1Þq,0^Ak1q/22q1/2

† (q1)Ak1q/22q1/2(q1)&nF(k

1q/22q1). For this we have to make use of the simplifie
expression in 2D ^Ak

†(q)Ak(q)&5nF(k2q/2)@12nF(k
1q/2)#exp(2bk•q/m)2pb/(mV). Therefore, we may write
S1 as

S15
1

V (
Q1

nF~Q1!eb(Q1
2/2m)S 2pb

m De2b[(k1q/2)2/2m]

5eb[kF
2

2(k1q/2)2/2m] . ~39!

At low temperatures we may approximate Eq.~34! as F(k
•q;k•q)5exp$b@kF

22(k1q/2)2#/2m% since when nF(k
2q/2)50 and EF@kT, and nF(k1q/2)50 implies uk
1q/2u.kF . Therefore we have 12nF,b(k2q/2)'1 and
nF,b(k1q/2)5exp$b@kF

22(k1q/2)2#/2m%, and hence the re
sult follows. Similarly, when nF(k1q/2)51 and nF(k
2q/2)51 we have

(
q1Þq,0

^Ak2q/21q1/2
† ~q1!Ak2q/21q1/2~q1!&

3@12nF~k2q/21q1!#

5
1

V (
Q1

@12nF~Q1!#e2b(Q1
2/2m)S 2pb

m Deb[(k2q/2)2/2m]

5eb[(k2q/2)22kF
2 /2m] . ~40!

Analogous to the earlier case, we may approximate Eq.~34!
asF(k•q;k•q)5exp$b@(k2q/2)22kF

2 #/2m%. Therefore, this
scheme gives the right answers at finite temperature for b
the momentum distribution and the four-point functions.

A. Role of partial isometries

The term partial isometry8 refers to, intuitively, an almos
unitary operator. The absolute unitary nature is spoiled by
object that is by now ubiquitous in this article, namely t
canonical conjugateX0 of the total number operator. Thu
we would like to interpret the object

U~k!5nF~k!
1

Ank

ck
† ~41!
1-8
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as an almost unitary operator whennF(k)51. The presence
of the square root of the number operator in the denomin
led others2 to conclude that our theory contains divergenc
A closer examination tells us that this is not the case. T
creation operatorck

† scales as the square root of the numb
operator. In other words, if we write

ck
†5Ankexp$2 iQ~@n#;k!%exp~ iPk

†!, ~42!

the creation operator becomes a nontrivial complex oper
of unit modulus~ideally! times the square root of the numb
operator. The creation operator differs from the square r
of the number operator by a phase factor. Analogous to w
we found in our earlier works,1 this phase factor consists of
canonical conjugate to the number operator denoted byPk
and a real functional of the number operatorQ(@n#;k). The
sea-displacement operator may be written in the follow
suggestive form:

Ak~q!5nF~k2q/2!@12nF~k1q/2!#

3e2 iQ([n];k2q/2)ei Pk2q/2
†

ck1q/2 . ~43!

This form, although more manageable than the definition
Eq. ~15!, is ambiguous since we have yet to pin down t
meaning ofPk and Q(@n#;k). We shall adopt an approac
similar to the one we outlined in our earlier works1 where we
transform to the Fourier space and write down a formula
Pk in terms of so-called momentum currents~as opposed to
real currents!. As before, we find in our formalism the obje
X0 that spoils the unitary nature of these operators. This
ject though troublesome, is very important since withou
our program would be inconsistent. To understand the n
for this object more clearly let us write~as we rightly antici-
pate! Pk5X01 P̃k , where P̃k is manifestly self-adjoint
whereas X0 is not self-adjoint and obeys the relatio

@X0 ,N̂#5 i . If X0 is interpreted as being self adjoint, then t
resulting formula forAk

†(q)Ak(q) obtained from Eq.~43!

would be inconsistent with Eq.~19! unlessnk5nF(k)1̂, a
state of affairs realized only in the noninteracting system
zero temperature. Therefore, it is imperative that we do
interpret X0 as being self-adjoint. However, just as in th
Bose case we may still choose the Hermitian part ofX0
provided we interpret the polar decomposition in Eq.~42! in
the distribution theoretic sense to be made clear below.
thermore, it is not clear what the role of idempotence is
this formalism. In Appendix B, we write downclosedcom-
mutation rules obeyed by the sea-displacement opera
These are theexact rules. The derivation of these do no
require the use of idempotence, but we have to make us
the fact (ck)

250. This and other similar observations su
as idempotence require point splitting techniques. This p
cedure is well known to the traditional bosonizing comm
nity, mainly because it is indispensable in dealing with re
tivistic systems in 111 dimensions which have a differen
mathematical structure than the nonrelativistic systems
we consider here. Perhaps these techniques can eve
made mathematically rigorous in those systems. We ha
consider the field operators in real space to be opera
16511
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valued distributions,1 which required the introduction of a
separable one-particle Hilbert space, which amounts to p
ing the system in a box with periodic boundary condition
Similarly, we are now forced, it seems, to do the same w
momentum space, that is, we postulate inaddition a short
distance cutoff that amounts to introducing a lattice consta
Space is now discretized and finite as well. There is a la
macroscopic length scaleL ~dimension of the box! and a
small microscopic length scalea ~the lattice spacing!. In the
end we setL→` and a→0 and hope that our edifice re
mains intact. Let us try and make more sense out of Eq.~43!.
First, we would like a formula forX0 in terms of the Fermi
fields without involving Q(@n#;k). To this end, let us postu
late the existence of a ‘‘super boson.’’ It is defined as

Ĉ5e2 iX0AN̂, ~44!

where N̂5(kck
†ck and @X0 ,N̂#5 i . If X0 is strictly self-

adjoint, thenĈ is indeed an exact boson. Otherwise it is
quasiboson. We would not like to haveX0 as self-adjoint for
reasons already alluded to. The claim is that the filled Fe
sea is obtained by creatingN0 number of these bosons from
the vacuum of the fermions:

~C†!N0
u0&5uFS&5S )

uku,kF

ck
†D u0&. ~45!

We may rewrite the filled Fermi sea as follows:

uFS&5S )
uku,kF

ck
†D u0&5expS (

k
nF~k!ln~ck

†! D u0&.

~46!

From this we may deduce

C†5expS 1

N0 (
k

nF~k!ln~ck
†!D 'AN0eiX0

†
~47!

up to some phases that we will soon show are unimport
From this we may read off a formula forX0:

X05
i

N0 (
k

nF~k!ln~ck!. ~48!

From this it is clear thatX0 is not self-adjoint and further we
have to show that it is a conjugate toN̂. For this let us
compute

eilN̂X0e2 ilN̂5X01l. ~49!

Using the definition in Eq.~48! we have

eilN̂X0e2 ilN̂5
i

N0 (
k

nF~k!ln~eilN̂cke
2 ilN̂!5X01l.

~50!

Therefore the conjugate obeys all the expected proper
independent of the meaning of the logarithm. We would n
like to ascertain how this object commutes with other obje
such asnP5cP

†cP :
1-9
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eilnPX0e2 ilnP5
i

N0 (
k

nF~k!ln~eilnPcke
2 ilnP!

5X01l
nF~p!

N0
. ~51!

Now we would like a formula for the self-adjoint operat
P̃k . First we would like to point out some obvious pitfalls.
one takes the point of view advocated in our earlier wor1

then we have to face up to the fact that the number oper
obeys idempotence since only the real space quantities
distributions whereas the momentum space quantities
bonafide operators. Idempotence, unfortunately is incon
tent with the existence of a canonical conjugate such asPk as
has been argued earlier. This then means that somehow
have to eschew idempotence in favor of retaining the con
gate. It is still unclear to the authors why idempotence
such a big hurdle and how to overcome it. We take the po
of view that anyP̃k should result in aAk(q) that obeys Eq.
~19! and furthermore we also demand as indicated earlier,
identity in Eq.~26!. This matter has been studied by us qu
thoroughly and we are unable to find a completely satisf
tory answer. However, we write down one possibility. Th
definition involves the problematic line integral encounter
in our earlier work as well.1 The resolution to this may be
obtained by transforming to the real space analogous to
approach used for making sense of the DPVA.1 The quantity
P̃k may be written down as follows:

P̃k5Ek
dl~21/nP!I ~p!1Q~@n#;k!2Ek

dl@2 iQ,¹ P̃#~p!.

~52!

The line integral is to be interpreted as being carried out a
transforming the quantities to real space analogous to
DPVA.1 The quantity I (p)5(1/2i )@cp

†¹cp2(¹cp
†)cp#. Fi-

nally, we have to write down a prescription forQ. Since we
have discretised the momenta by placing the system in a
we may use the following natural ansatz. There is no nee
make contact with the free theory very likely since in t
number-phase respresentation the free theory is recov
automatically. Letkn5(2p/L)(n1 ,n2 ,n3). Define the map-
ping t(kn)52n133n235n3. It may be seen thatt is a bijec-
tion. From this we may write,9

Q~@n#;kn!5p(
pm

u@ t~kn!2t~pm!#npm
. ~53!

Here u(x)51 if x.0 and u(x)50 is x<0 is the usual
Heaviside step function. This obeys the required recurs
relation below, necessary for ensuring that Fermi statis
are obeyed:

Q~@np1
2dp1 ,k8%#;k)1Q~@n#;k8!2Q~@n#;k!

2Q~@$np1
2dp,k%#;k8!

56p. ~54!
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B. Short-range interactions

We have found a curious feature in our investigations
the nature of the RPA that is worth mentioning. It seems t
depending upon how one groups the Fermi field operat
one encounters an enigmatic duality between repulsion
attraction~see Ref. 10, Chap. 4!. It is as follows. Consider
the interaction term11 in jellium:10

HI5 (
qÞ0

vq

2V (
kÞk8

ck1q/2
† ck2q/2ck82q/2

† ck81q/2 , ~55!

52 (
qÞ0

vq

2V (
kÞk8

ck1q/2
† ck81q/2ck82q/2

† ck2q/2

52 (
PÞP8

(
QÞ0

vP2P8
2V

cP1Q/2
† cP2Q/2cP82Q/2

† cP81Q/2 .

~56!

The last result is obtained simply by relabeling the indices
we set ~see the end of Appendix B! ck1q/2

† ck2q/25RPA@Ak

(2q)1Ak
†(q)# with equality to the level of RPA, then we

may write

HI5 (
qÞ0

vq

2V (
kÞk8

@Ak~2q!1Ak
†~q!#@Ak8~q!1Ak8

†
~2q!#.

~57!

Alternatively, we may also write

HI52 (
qÞ0

(
kÞk8

vk2k8
2V

@Ak~2q!1Ak
†~q!#@Ak8~q!

1Ak8
†

~2q!#. ~58!

The first alternative yields results identical to the ones p
sented in our earlier work.1 The momentum distributions de
rived from this interaction term possess sharp discontinuit
The second alternative is more interesting. It has a mi
sign signifying an apparent change from repulsion to attr
tion ~only apparently so!. It has been argued in th
literature10 that if we assume thatvq5w0 is independent ofq
~in other words, ad-function interaction in real space!, then
we may conclude by examining Eqs.~55! and ~56!, that HI
52HI . Therefore,HI50. The exchange correlation energ
of a system of fermions interacting via ad-function interac-
tion is identically zero. This is not surprising since we kno
that two fermions cannot be at the same point and the in
action is zero unless they are at the same point, therefore
obtains an answer zero. This means that for such system
Hamiltonian is a simple functional of the number operato

H5(
k

eknk2
w0

2V (
k,qÞ0

nk1q/2nk2q/2 . ~59!

Unfortunately, this Hamiltonian does not yield results t
different from the noninteracting case. However, we ha
found that if one relaxes the assumption thatvq is strictly
independent ofq and instead say, puts in a weak depende
on q, it is still a good approximation to ignore the exchan
1-10
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correlation energy~at least in comparison with the kineti
energy and the exchange self-energy!, and we obtain some
rather interesting results for the one-particle Green funct
For instance, we could assume that the potential in real sp
instead of being a strictd function is somewhat smeared. F
example in 1D, we might takeV(x)5e2(a/p)(x21a2)21.
We merely quote the final results for the one particle pr
erties as this is just an aside. In order to derive these res
one has to make use of the Schwinger’s functional appro
to dealing with quantum field theories.12 This exercise high-
lights the importance of fluctuations in the momentum d
tribution in determining the salient features of the on
particle Green function in systems that have very short ra
interactions and are not too strong. Following the notation
Kadanoff and Baym,12 we write down the spectral functio
and the spectral width as

A~p,v!5
A2k~p,v!

F~p!
, ~60!

G~p,v!5A2k~p,v!, ~61!

where k(p,v)5(v2 ẽP1m)224F(p),0. In the event
k(p,v).0, A2k(p,v)50, by definition. HereF(k) is re-
lated to the number-number correlation functionN(k,k8)
5^nknk8&2^nk&^nk8& where ẽk is the modified dispersion
relation: ẽk5ek2V21(qÞ0vq^nk2q&. Furthermore,F(k)
5V22(q,q8Þ0vqvq8N(k2q,k2q8). The momentum dis-
tribution has to be determined self-consistently:

^np&5S 2

p D E
2p/2

p/2

du
cos2u

eb( ẽp2m)e2bAF(p)sin u11
. ~62!

These formulas are incomplete unless one has a prescri
for the objectN(k,k8). We note some properties of this ob
ject. First, N(k,k)5^nk&(12^nk&). It may occur to the
reader that since@nk ,H#50, the ground state of the syste
should be an eigenstate ofnk , and thereforeN(k,k8)50 for
kÞk8. This quantity then signifies the importance of term
beyond exchange energy. We have tried a number of ans
n.
ce

-
lts
ch

-
-
e
f

ion

tzs

for this object. In particular, if we ignore the dependence
the anglek•k8, we may write a reasonable-looking formu
for this object (kÞk8):

N~k,k8!5@^nk&2nb~k!#@^nk8&2nb~k8!#. ~63!

This has the attractive feature of conserving the numbe
particles and also the net momentum of the electr
@(kN(k,k8)'0,(kkN(k,k8)'0# and further since 0,nk
,1 we expect21,N(k,k8),1 which is also obeyed. It
has been pointed out that this objectN(k,k8) is singular in
the BCS case.9 In particular, it is identically zero unlessk
56k8. This means that for the BCS case which is a spe
case we may write

N~k,k8!5D~k!~dk,k82dk,2k8!. ~64!

HereD(k) is related to the gap function. Ideally, we wou
like a formula for this object that in the normal Fermi liqu
regime reduces to an unremarkable function ofuku,uk8u, and
k•k8 and exhibits a phase transition to the singular appe
ance as one crosses over into the superconducting regim
fact it may be seen that the BCS correlation functions s
ports a net momentum in the sense of a quantum fluctua

^PW 2&BCS52(kk
2D(k)Þ0. Bare short-range interactions a

not of much interest in continuum systems so we leave i
that @however Eqs.~63! and~64! are meant to be universall
valid#.

C. Long-range interactions

For long-range interactions, if one considers an appro
similar to the one used for deriving the traditional RPA d
electric function, but this time including possible fluctuatio
in the momentum distribution, we find a result that is diffe
ent from the usual RPA-dielectric function but one that
duces to it in the weak coupling limit. This derivation
found in Appendix D. We merely quote the final answer he

eeff~q,v!5eg2RPA~q,v!2S vq

V D 2 P2~q,v!

eg2RPA~q,v!
. ~65!

Here,
P2~q,v! ~66!

5(
k,k8

N~k1q/2,k81q/2!2N~k2q/2,k81q/2!2N~k1q/2,k82q/2!1N~k2q/2,k82q/2!

~v2 ẽk2q/21 ẽk1q/2!~v2 ẽk82q/21 ẽk81q/2!
, ~67!

eg2RPA~q,v!511~vq /V!(
k

^n0~k1q/2!&2^n0~k2q/2!&

v2 ẽk1q/21 ẽk2q/2

~68!

and

ẽk5ek2 (
qÞ0

vq

V
^nk2q&. ~69!

165111-11
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The momentum distribution in such a system with lon
range interactions may be written down as follows. This f
mula is derived by assuming that it is a good approximat
to totally ignore the form of the exchange correlation Ham
tonian in Eq.~58! in favor of retaining Eq.~57! exclusively.
In fact, this assumption is valid only in systems in 3D or 2
where the interaction is of the form 4pe2/q2 or 2pe2/uqu.
The term that breaks Fermi liquid behavior is the one t
couples the left movers to the right movers in the us
bosonization scheme.10 This is present only in Eq.~58!. This
term may be ignored since 4pe2/(k2k8)2 or 2pe2/uk2k8u
are vanishingly small whenk'2k8'kF in the largekF
limit. However, in 1D the inverse square interaction of t
Calogero Sutherland model,13 for example, has vq
52pb(b21)uqu/2m. This makes Eq.~58! the more impor-
tant form. Moving on, we may write in 2D or 3D, the fo
lowing formula for the momentum distribution:

n̄k5nF~k!F1~k!1@12nF~k!#F2~k!, ~70!

F1~k!5
1

11
SB~k!

11SA~k!

, ~71!

F2~k!5
1

11
11SB~k!

SA~k!

, ~72!

SA~k!5(
q,i

n̄k2q

@v i~2q!1k"q/m2eq#2
gi

2~2q!, ~73!

SB~k!5(
q,i

12n̄k1q

@v i~2q!1k"q/m1eq!2
gi

22q], ~74!

gi~q!5F(
k

n̄k2q2n̄k1q

Fv i~q!2
k"q

m G2G21/2

. ~75!

This quantitygi(q) is a residue of complex integration1 and
is given as the frequency derivative of the polarization

gi~q!5
V

vq
S ]

]v D
v5v i (q)

eeff
P ~q,v!. ~76!

Here eeff
P is the principal part ofeeff . Moreoverv i are the

zeros of this dielectric function

eeff~q,v i !50. ~77!

As it stands, the above equation is ill defined since the
electric function is complex. Interpretingv i to be the zero of
the principal part results in capturing only the collecti
mode. The particle-hole mode which is completely lost
this approach is very important. In order not to lose t
mode we have to interpret the zeros in a special manner
shall take the point of view that all positive energies a
allowed as zeros but each comes with a weight correspo
16511
-
-
n
-

t
l

i-

s
e

d-

ing to the strength of the dynamical structure factor at t
energy. Define the weight to be

W~q,v!5ImS 1

eeff~q,v2 i01!
D . ~78!

Therefore, sum over modes is now interpreted as

(
q,i

f ~q,v i !5

E
0

`

dvW~q,v! f ~q,v!

E
0

`

dvW~q,v!

. ~79!

It is worth emphasizing that Eq.~65! is valid for long range
interactions where it is wrong to ignore the exchange co
lation term. The one-particle properties that were derived
Eq. ~60! are valid for short range interactions only. The i
teraction strength had to be weak so that one could ignore
exchange-correlation term in the short-range case. This
also needed in the long-range case to ensure that one c
ignore the quadratic terms in the sea displacements. H
ever, in arriving at Eq.~65! use was made of the form in Eq
~55! rather than Eq.~56!. There really is noa priori reason to
prefer one over the other. It is possible that one has to u
combination of the two~in fact, this has been shown in
Ref. 14!. Using the second form exclusively@Eq. ~56!# leads
to a dielectric function that is totally different from the RPA
dielectric function~we have not been able to write down a
explicit formula for this!, thereby casting doubt on the san
tity of the traditional methods of deriving dielectric func
tions. This issue has probably not been addressed fully by
many-body community even though a well known textbo
mentions some of these facts~Mahan10: end of Chap. 4!. One
may argue that the latter form, namely, in Eq.~56! at least for
Coulomb repulsion (1/r ) in three spatial dimensions is neg
ligible at high density. This is because in such a case we h
two independent length scaleskF

21 and aB and if kFaB@1,
we may express all states as linear combinations of low ly
excited states of the noninteracting system and thenuku
'uk8u'kF and 0,uqu'aB

21!kF , which means thatuk
2k8u2@(aB

21)2'q2. This means that Eq.~56! is negligible
compared to Eq.~55!. This ambiguity in operator ordering
that leads to very different looking Hamiltonians as in Eq
~55! and ~56! suggests that this problem will persist in a
cases where electron-electron interactions are presen
other words, in nearly all of many-body physics. This su
gests to the authors that one must look elsewhere to fin
more natural home for these techniques. We have some
son to believe that quantum electrodynamics is such a pl
There, electron-electron interactions come about indire
via coupling to gauge fields where the operator ordering a
biguity is absent. Furthermore, a phenomenon importan
condensed matter physics, namely, magnetism, being prim
ily due to the spin of the electron, is taken into accou
naturally in the relativistic theory, since spin is a cons
quence of the Dirac equation.15 In the next section, we study
charge-conserving electron-hole systems that is a precu
to this more ambitious program of reworking gauge theor
1-12
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in the sea-displacement language. To conclude this sec
we point out another definition of the sea displacement
gives us the illusion of understanding the meaning of
square root. This is similar to Eq.~10! for bosons:

Ak~q!5nF~k2q/2!@12nF~k1q/2!#

3S 1̂2 (
q1Þ0

Ak2q/21q1/2
† ~q1!Ak2q/21q1/2~q1! D 21/2

3ck2q/2
† ck1q/2 . ~80!

The reason why this formula is not too illuminating is b
cause a power series expansion around the unit operato
an iterative solution, yields just as in the Bose case, a re
that amounts to ignoring the presence of the square r
That is,

Ak~q!5?nF~k2q/2!@12nF~k1q/2!#ck2q/2
† ck1q/2 .

~81!

This is not the definition that is intended.4 Instead, one mus
also consider regimes in which the square root is close
zero rather than close to unity. The exact definition ofAk(q)
is the ‘‘self-consistent’’ solution of the nonlinear operat
equation Eq.~80!. Readers with superior mathematical ski
may finally be able to solve this operator equation and m
out its domain and range in Fock space and explain how
object acts on elements of its domain.

D. Comparison with other truly exactly solved models

One of the other criticisms that has been expres
against the sea-boson method is that it is unable to repro
Luttinger liquid behavior. The authors have convinced the
selves that the Calogero-Sutherland model~CSM! is in fact a
Luttinger liquid. A Luttinger liquid is characterized by a lac
of discontinuity in the momentum distribution, and the dive
gence~negative infinity! and continuity of the slope of mo
mentum distribution across the Fermi surface. The corr
tion functions of this model has been derived by Haet al.
and Forrester.13 However, the correlation functions of thi
model depend on the use of a singular gauge transforma
that forces a particular statistics~in our case, fermionic! on
the correlation functions. The authors who have compu
the correlation functions have used the natural statistics
the CSM which is in general, fractional. This makes co
parison with our approach difficult. The CSM for statistic
parameterb53 ~in the notation of Lesageet al.13! is the
simplest model that describes interacting fermions. Howe
this choice makes the potential energy of the same orde
the kinetic energy making the system strongly interacting
our approach, the sea-bosons were written down in the p
wave basis with the tacit assumption that this is a go
choice. It is easy to see that this choice is likely to be go
only for weakly nonideal systems. The fermionic correlati
functions for the weakly coupled CSM has yet to be writt
down. According to our expectations, this should result i
sharp Fermi surface for sufficiently weak repulsion. T
Hubbard model in 1D~Ref. 16! is another system that w
have to compare our results with. Its correlation functions
16511
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reducible to quadratures only for half filling. The correlatio
functions are hard to deduce in a closed form away from h
filling, but it is believed that this is a Luttinger liquid fo
arbitrarily weak repulsion. This latter result is the one w
have the greatest difficulty in proving. In any event, in ord
for the community to accept the sea-boson technique,
have to somehow reproduce Luttinger liquid features. W
is in progress to do exactly this. It will be reported in a futu
publication.

IV. ELECTRON-HOLE SYSTEMS:
EXCITON-EXCITON INTERACTIONS

In this section, we study the exciton Green function us
the sea-displacement technique. In fact, the biexciton Gr
function would be more interesting since it determines n
linear optical response. This technique is ideally suited
study this quantity since exciton-exciton interactions are c
cial in determining the true nature of the biexciton. We fi
that exciton-exciton interactions are not of the two-body ty
as it is often assumed in the literature but rather more co
plicated. These interactions are mediated by other bos
that are present in the system, namely, the intraband par
hole excitations and the zero-momentum interband parti
hole excitation. All this will be made clear in the prese
section. Let us now move on to the details. As we have s
before, a generalization is possible of these technique
two-component charge-conserving electron-hole syste
One may define sea-displacement operatorsAks(qs8) that
include discrete internal degrees of freedom that may
metaphorically called spin. These objects are defined be
Since the definition in Eq.~15! was valid for bothq50 and
qÞ0, we have

Aks~qs8!5nF~k2q/2s!@12nF~k

1q/2s8!#
1

Ank2q/2s

ck2q/2s
† ck1q/2s8 . ~82!

We now make the following identifications. Letck be the
operator that annihilates an electron from the conduct
band andd2k

† be the operator that creates a hole in valen
band. Then we write

ck↑5ck , ~83!

ck↓5d2k
† . ~84!

Then we have the following formulas for the electron-ho
sea-displacement operators~again for bothq50 andqÞ0)

Ak↓~q↑ !5@12nF
h~2k1q/2!#@12nF

e~k1q/2!#

3
1

A1̂2d2k1q/2
† d2k1q/2

d2k1q/2ck1q/2 , ~85!

Ak↑~q↓ !5nF
h~k1q/2!nF

e~k2q/2!

3
1

Ack2q/2
† ck2q/2

ck2q/2
† d2k2q/2

† , ~86!
1-13
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Ak↑~q↑ !5nF
e~k2q/2!@12nF

e~k1q/2!#

3
1

Ack2q/2
† ck2q/2

ck2q/2
† ck1q/2 , ~87!

Ak↓~q↓ !52nF
h~2k2q/2!@12nF

h~2k1q/2!#

3
1

A1̂2d2k1q/2
† d2k1q/2

d2k2q/2
† d2k1q/2 .

~88!

If the system is undoped, we are tempted to setnF
e(k)

5nF
h(k)50. But this would be unwise. For such a choi

would make all the sea-displacement operators but one, i
tically zero and this would lead to the conclusion that t
exciton-exciton interactions are of the two-body type exc
sively. We will soon argue that this underestimates
strength and importance of exciton-exciton interactions. T
reason for this fallacy it seems is that we have to careful w
the order in which we take limits. At any nonzero tempe
ture, we expect that thek50 state of the noninteracting sys
tem is always occupied even in a fully undoped syste
Thermal fluctuations lead to a nonempty band. This in t
facilitates exciton-exciton interaction, since we may no
contemplate intraband particle-hole excitations compe
for prominence with excitons and scattering off them and
on. In order to make all this more concrete, let us procee
follows. We know that for a noninteracting Fermi system

nF
e~k!5u~kF2uku!, nF

h~k!5u~kF2uku!. ~89!

If we go to the limit of an undoped system,kF→0 we find
the following result:

nF
e~k!5nF

h~k!5dk,0 . ~90!

That is, only the zero momentum state is occupied, the
are unoccupied. This choice enables us to have a schem
which even in an undoped system, exciton-exciton inter
tions may be present and may contribute to the line shap
the exciton. With this simplification we may write~for both
q50 andqÞ0)

Ak↓~q↑ !5~12dk,q/2!~12dk,2q/2!

3
1

A1̂2d2k1q/2
† d2k1q/2

d2k1q/2ck1q/2 , ~91!

Ak↑~q↓ !5dq,0dk,0

1

Ac0
†c0

c0
†d0

† , ~92!

Ak↑~q↑ !5dk,q/2~12dk,2q/2!
1

Ac0
†c0

c0
†cq , ~93!
16511
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Ak↓~q↓ !52dk,2q/2~12dk,q/2!
1

A1̂2dq
†dq

d0
†dq . ~94!

Let us now ascertain the commutation rules obeyed by th
objects. Following the prescription outlined in Appendix
we may write down the RPA-like commutation rules by r
placing the right side of the approximate ones by the lead
order results. IfkÞ6q/2 andk8Þ6q8/2 andqÞ0 then,

@Ak↓~q↑ !,Ak8↓~q8↑ !#50,

@Ak↓~q↑ !,Ak8↓
†

~q8↑ !#5dk,k8dq,q8 . ~95!

Also,

@Ak↓~0↑ !,Ak8↓~0↑ !#50, @Ak↓~0↑ !,Ak8↓
†

~0↑ !#5dk,k8 ,
~96!

@A0↑~0↓ !,A0↑
† ~0↓ !#51, ~97!

@Aq/2↑~q↑ !,Aq8/2↑~q8↑ !#50,

@Aq/2↑~q↑ !,Aq8/2↑
†

~q8↑ !#5dq,q8 , ~98!

@Aq/2↓~q↓ !,Aq8/2↓~q8↓ !#50,

@Aq/2↓~q↓ !,Aq8/2↓
†

~q8↓ !#5dq,q8 . ~99!

Finally, Ak↑(0↑)5Ak↓(0↓)50 . All other commutators in-
volving any two of these sea-displacement operators
zero. In deriving these commutation rules, use has b
made of the following approximate formulas. On the righ
hand side of commutation rules we are obliged to set the
diagonal terms to be identically zero andc0

†c05d0
†d0'1.

ck
†ck5ck

†ck'0. It is worthwhile to verify some of these
commutation rules explicitly. For example,

@A0↑~0↓ !,A0↑
† ~0↓ !#'@c0

†d0
† ,d0c0#5c0

†c02d0d0
†5c0

†c0

1d0
†d021'22151. ~100!

The rest are reasonably straightforward. Using these fa
we may write the following correspondence for the numb
conserving Fermi bilinears~the total number of electrons an
holes commutes with these objects; see Appendix B for so
hints as to how to derive these formulas!. HereqÞ0, and we
have singled outq50 as a special case. IfkÞ6q/2
1-14
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ck1q/2
† ck2q/25lA(1/2)(k1q/2)↑

† ~k1q/2↑ !A(1/2)(k2q/2)↑~k2q/2↑ !,1l (
q1Þk1q/2

Ak1q/22q1/2↓
† ~q1↑ !Ak2q1/2↓~2q1q1↑ !,

~101!

d2k1q/2
† d2k2q/25l A(1/2)(k2q/2)↓

† ~2k1q/2↓ !A(1/2)(k1q/2)↓~2k2q/2↓ !1l (
q1Þ2k1q/2

Ak2q/21q1/2↓
† ~q1↑ !Ak1q1/2↓~2q1q1↑ !,

~102!

c0
†c2q5Ac0

†c0A2q/2↑~2q↑ !'A2q/2↑~2q↑ !, ~103!

cq
†c05Aq/2↑

† ~q↑ !Ac0
†c0'Aq/2↑

† ~q↑ !, ~104!

d2qd0
†5~ 1̂2d2q

† d2q!1/2Aq/2↓~2q↓ !'Aq/2↓~2q↓ !, ~105!

d0dq
†5A2q/2↓

† ~q↓ !~ 1̂2dq
†dq!1/2'A2q/2↓

† ~q↓ !. ~106!

Also we have for the number operators (kÞ0):

c0
†c051̂2l (

q1Þ0
Aq1/2↑

† ~q1↑ !Aq1/2↑~q1↑ !2lA0↑
† ~0↓ !A0↑~0↓ !, ~107!

ck
†ck5l Ak/2↑

† ~k↑ !Ak/2↑~k↑ !1l (
q1Þk

Ak2q1/2↓
† ~q1↑ !Ak2q1/2↓~q1↑ !, ~108!

d0
†d051̂2l (

q1Þ0
A2q1/2↓

† ~q1↓ !A2q1/2↓~q1↓ !2lA0↑
† ~0↓ !A0↑~0↓ !, ~109!

d2k
† d2k5lAk/2↓

† ~2k↓ !Ak/2↓~2k↓ !1l (
q1Þ2k

Ak1q1/2↓
† ~q1↑ !Ak1q1/2↓~q1↑ !. ~110!
ex-
Now for the charge-conserving Fermi bilinear~the total
charge operator commutes with these objects!. If kÞ6q/2
then ~ with qÞ0)

d2k2q/2ck2q/25~ 1̂2d2k2q/2
† d2k2q/2!

1/2Ak↓~2q↑ !

'Ak↓~2q↑ ! ~111!

if, in addition, we havekÞ0

d2kck5~ 1̂2d2k
† d2k!1/2Ak↓~0↑ !'Ak↓~0↑ ! ~112!

if k50

d0c05A0↑
† ~0↓ !Ac0

†c0'A0↑
† ~0↓ !, ~113!

d0c2q5lA0↑
† ~0↓ !A2q/2↑~2q↑ !

1l (
q1Þ0

A2q1/2,↓
† ~q1↓ !A2q/22q1/2,↓~2q1q1 ,↑ !,

~114!
16511
d2qc052lA0↑
† ~0↓ !Aq/2↓~2q↓ !

2l (
q1Þ0

Aq1/2,↑
† ~q1↑ !Aq/21q1/2,↓~2q1q1 ,↑ !.

~115!

Let us now verify some of these correspondences. For
ample, we know that in the Fermi language,

@c0
†c0 ,c0

†c2q#5c0
†c2q . ~116!

In the sea-displacement language we have

@c0
†c0 ,c0

†c2q#5 (
q1Þ0

@A2q/2↑~2q↑ !,Aq1/2↑
† ~q1↑ !,

Aq1/2↑~q1↑ !] 5A2q/2↑~2q↑ !'c0
†c2q ~117!

as required. Similarly, we have

@c0
†c0 ,d0c0#52d0c0 . ~118!

In the sea-displacement language we have
1-15
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@c0
†c0 ,d0c0#52@A0↑

† ~0↓ !A0↑~0↓ !,A0↑
† ~0↓ !#

52A0↑
† ~0↓ !'2d0c0 . ~119!

Next, we write down the Hamiltonian of the electron-ho
system interacting via repulsion and attractive interactio
ts

n
a

a

16511
s.

We show how excitons emerge naturally from the formalis
We are also able to pin down the precise nature of excit
exciton interactions. The total Hamiltonian may be split in
several parts. First is the kinetic energy plus the part of
potential energy that leads to the exciton:
H05 (
kÞ0

S k2

2me
1EgD ck

†ck1 (
kÞ0

S k2

2mh
Dd2k

† d2k1Egc0
†c02 (

qÞ0

vq

V (
k6q/2Þ0

(
2k86q/2Þ0

ck1q/2
† d2k82q/2

† d2k81q/2ck2q/2 ,

~120!

HI5 (
qÞ0

vq

2V (
kÞk8;k6q/2Þ0

(
k86q/2Þ0

ck1q/2
† ck82q/2

† ck81q/2ck2q/2

1 (
qÞ0

vq

2V (
kÞk8;k6q/2Þ0

(
k86q/2Þ0

d2k2q/2
† d2k81q/2

† d2k82q/2d2k1q/22 (
qÞ0

vq

2V (
k6q/2Þ0

nk1q/2
(e) nk2q/2

(e)

2 (
qÞ0

vq

2V (
k6q/2Þ0

n2k2q/2
(h) n2k1q/2

(h) , ~121!

HI ,05 (
qÞ0

vq

V (
k6q/2Þ0

~c0
†cq1c2q

† c0!ck1q/2
† ck2q/21 (

qÞ0

vq

V (
k6q/2Þ0

~d2q
† d01d0

†dq!d2k1q/2
† d2k2q/2

2 (
qÞ0

vq

V (
k6q/2Þ0

~ck1q/2
† d0

†dqck2q/21ck1q/2
† d2q

† d0ck2q/2!2 (
qÞ0

vq

V (
2k86q/2Þ0

~c0
†d2k81q/2

† d2k82q/2cq

1c2q
† d2k81q/2

† d2k82q/2c0!. ~122!
n-
e
x-
he
-
le,

t in
The partHI when written out in terms of sea displacemen
have four bosons in them. Whereas the termHI ,0 has three
bosons. The kinetic energy operator has only two boso
Thus we may systematically regard the kinetic energy
being more important thanHI ,0 which in turn is more impor-
tant thanHI . In the sea-displacement language, we m
write up to additive constants

H05 (
kÞ0

S k2

2me
DAk/2↑

† ~k↑ !Ak/2↑~k↑ !1 (
kÞ0

S k2

2mh
D

3Ak/2↓
† ~2k↓ !Ak/2↓~2k↓ !2EgA0↑

† ~0↓ !A0↑~0↓ !

1 (
kÞ0

S k2

2m
1EgDAk↓

† ~0↑ !Ak↓~0↑ !2 (
kÞk8

vk2k8
V

3Ak↓
† ~0↑ !Ak8↓~0↑ !1 (

k,qÞ0
vk~q!Ak↓

† ~q↑ !Ak↓~q↑ !

2 (
kÞk8

vk2k8
V (

qÞ0
Ak↓

† ~q↑ !Ak8↓~q↑ !, ~123!

where

vk~q!5F k2

2m
1Eg1

k•q

2 S 1

me
2

1

mh
D1

1

4

q2

2mG
3~12dk,q/2!~12dk,2q/2!. ~124!
s.
s

y

This Hamiltonian has a very appealing form. The term co
taining Ak↓(0↑) has been singled out since it highlights th
exciton. This is nothing but the Hamiltonian of the free e
citon with center-of mass momentum equal to zero. T
other Hamiltonian involvingAk↓(q↑) corresponds to an ex
citon with nonzero center-of-mass motion. If for examp
we write,

Ak↓~0↑ !5(
I

w̃ I~k!bI~0!, ~125!

where w̃ I(k) is the Fourier transform of excitonic~hydro-
genic! wave functions, then the Hamiltonian may be recas
the diagonal form

(
kÞ0

S k2

2m
1EgDAk↓

† ~0↑ !Ak↓~0↑ !2 (
kÞk8

vk2k8
V

3Ak↓
† ~0↑ !Ak8↓~0↑ !

5(
I

EI~0!bI
†~0!bI~0!, ~126!
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whereEI(0) are the energy levels of the exciton. We sh
assume that a similar transformation has been performed
the full Hamiltonian including center-of-mass motion

H05(
I ,q

EI~q!bI
†~q!bI~q!2EgA0↑

† ~0↓ !A0↑~0↓ !

1 (
kÞ0

S k2

2me
DAk/2↑

† ~k↑ !Ak/2↑~k↑ !

1 (
kÞ0

S k2

2mh
DAk/2↓

† ~2k↓ !Ak/2↓~2k↓ !. ~127!

Of particular interest in the term2EgA0↑
† (0↓)A0↑(0↓). It

suggests that the ground state of the system has one of
bosons present. This is consistent with the earlier observa
since we havek50 occupied by one electron and one ho
Since@A0↑(0↓)#250 it is clear that we can have only one
these bosons present. Letu0& be the vacuum of the fermions
Thus theA0↑(0↓) creates a solitron. The vacuum of the fe
mions may be written as

cku0&50, d2ku0&50. ~128!

It may be seen that this vacuum is the vacuum of all
bosons as wellexcept A0↑(0↓). The action ofA0↑(0↓)on u0&
16511
l
or

ese
on
.

e

produces an electron-hole pair atk50. Since we have ar-
gued earlier that this corresponds to the ground state of
free theory, we have the following fact. The ground state
H0 is given by

uG&5A0↑~0↓ !u0&. ~129!

It may be seen quite easily that

c0
†c0uG&5d0

†d0uG&51uG&. ~130!

The objectAk/2↑(k↑) annihilates a conductron. Finally th
operatorA2k/2↓(k↓) annihilates a valeron. Now we woul
like to see how this evolves under the presence of
exciton-exciton interaction terms. A few words regardi
these are in order. We will see here perhaps for the first ti
the true nature of exciton-exciton interactions. They do
interact via simple two-body interactions rather the inter
tion is mediated by other bosons such asAk/2↑(k↑) which are
intraband particle-hole excitations. Further we have also c
pling to the objectA0↑

† (0↓) which is an interband zero mo
mentum electron-hole excitation. Thus exciton-exciton int
actions are mediated by these other bosons and
interactions are rather more complex than the simple tw
body variety. Let us write down precisely what they are.
HI ,05l (
qÞ0

vq

V (
k6q/2Þ0

~Aq/2↑~q↑ !1A2q/2↑
† ~2q↑ !!A(1/2)(k1q/2)↑

† ~k1q/2,↑ !A(1/2)(k2q/2)↑~k2q/2,↑ !

1l (
qÞ0

vq

V (
k6q/2Þ0

~Aq/2↑~q↑ !1A2q/2↑
† ~2q↑ !! (

q1Þk1q/2
Ak1q/22q1/2↓

† ~q1 ,↑ !Ak2q1/2,↓~2q1q1 ,↑ !

1l (
qÞ0

vq

V (
k6q/2Þ0

~2Aq/2↓
† ~2q↓ !2A2q/2↓~q↓ !!A(1/2)(k2q/2)↓

† ~2k1q/2,↓ !A(1/2)(k1q/2)↓~2k2q/2,↓ !

1l (
qÞ0

vq

V
~2Aq/2↓

† ~2q↓ !2A2q/2↓~q↓ !! (
q1Þ2k1q/2

Ak2q/21q1/2↓
† ~q1 ,↑ !Ak1q1/2,↓~2q1q1 ,↑ !

2l (
qÞ0

vq

V (
k6q/2Þ0

A(1/2)(k1q/2)↑
† ~k1q/2,↑ !A0,↑~0,↓ !A(1/2)(k2q/22q),↓~k1q/2,↑ !

2l (
qÞ0

vq

V (
k6q/2Þ0

A(1/2)(k2q/22q),↓
† ~k1q/2,↑ !A0,↑

† ~0,↓ !A(1/2)(k1q/2)↑~k1q/2,↑ !

1l (
qÞ0

vq

V (
2k86q/2Þ0

A(1/2)(k82q/2),↓
†

~2k81q/2,↓ !A0,↑~0,↓ !A(1/2)(k81q/21q),↓~2k81q/2,↑ !

1l (
qÞ0

vq

V (
2k86q/2Þ0

A(1/2)(k81q/21q),↓
†

~2k81q/2,↑ !A0,↑
† ~0,↓ !A(1/2)(k82q/2)↓~2k81q/2,↓ !

2l (
qÞ0

vq

V (
k6q/2Þ0

(
q1Þ0

A(1/2)(k1q/2)2q1/2,↓
† ~k1q/21q1 ,↑ !A2q1/2,↓~q1↓ !A(1/2)(k2q/22q),↓~k1q/2,↑ !

2l (
qÞ0

vq

V (
k6q/2Þ0

(
q1Þ0

A(1/2)(k2q/22q),↓
† ~k1q/2,↑ !A2q1/2,↓

† ~q1↓ !A(1/2)(k1q/2)2q1/2,↓~k1q/21q1 ,↑ !
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1l (
qÞ0

vq

V (
2k86q/2Þ0

(
q1Þ0

A(1/2)(k82q/2)1q1/2,↓
†

~2k81q/21q1 ,↑ !Aq1/2,↑~q1↑ !A(1/2)(k81q/21q),↓~2k81q/2,↑ !

1l (
qÞ0

vq

V (
2k86q/2Þ0

(
q1Þ0

A(1/2)(k81q/21q),↓
†

~2k81q/2,↑ !Aq1/2,↑
† ~q1↑ !A(1/2)(k82q/2)1q1/2,↓~2k81q/21q1 ,↑ !, ~131!

HI5l2(
qÞ0

vq

2V (
kÞk8

(
k6q/2Þ0

(
k86q/2Þ0

A(1/2)(k1q/2)↑
† ~k1q/2,↑ !A(1/2)(k2q/2)↑~k2q/2,↑ !A(1/2)(k82q/2)↑

†

3~k82q/2,↑ !A(1/2)(k81q/2)↑~k81q/2,↑ !

1l2(
qÞ0

vq

2V (
kÞk8

(
k6q/2Þ0

(
k86q/2Þ0

(
q1Þk1q/2

Ak1q/22q1/2,↓
† ~q1↑ !Ak2q1/2,↓~2q1q1 ,↑ !A(1/2)(k82q/2)↑

†

3~k82q/2,↑ !A(1/2)(k81q/2)↑~k81q/2,↑ !

1l2(
qÞ0

vq

2V (
kÞk8

(
k6q/2Þ0

(
k86q/2Þ0

A(1/2)(k1q/2)↑
† ~k1q/2,↑ !A(1/2)(k2q/2)↑

3~k2q/2,↑ !Ak82q/22q2/2,↓
†

~q2↑ !Ak82q2/2,↓~q1q2 ,↑ !

1l2(
qÞ0

vq

2V (
kÞk8

(
k6q/2Þ0

(
k86q/2Þ0

(
q1Þk1q/2

(
q2Þk82q/2

Ak1q/22q1/2,↓
† ~q1↑ !Ak2q1/2,↓

3~2q1q1 ,↑ !Ak82q/22q2/2,↓
†

~q2↑ !Ak82q2/2,↓~q1q2 ,↑ !

1l2(
qÞ0

vq

2V (
kÞk8

(
k6q/2Þ0

(
k86q/2Þ0

A(1/2)(k2q/2)↓
† ~2k1q/2,↓ !A(1/2)(k1q/2)↓~2k2q/2,↓ !A(1/2)(k81q/2)↓

†

3~2k82q/2,↓ !A(1/2)(k82q/2)↓~2k81q/2,↓ !

1l2(
qÞ0

vq

2V (
kÞk8

(
k6q/2Þ0

(
k86q/2Þ0

(
q1Þ2k1q/2

Ak2q/21q1/2,↓
† ~q1↑ !Ak1q1/2,↓~2q1q1 ,↑ !A(1/2)(k81q/2)↓

†

3~2k82q/2,↓ !A(1/2)(k82q/2)↓~2k81q/2,↓ !

1l2(
qÞ0

vq

2V (
kÞk8

(
k6q/2Þ0

(
k86q/2Þ0

(
q2Þ2k82q/2

A(1/2)(k2q/2)↓
† ~2k1q/2,↓ !A(1/2)(k1q/2)↓

3~2k2q/2,↓ !Ak81q/21q2/2,↓
†

~q2↑ !Ak81q2/2,↓~q1q2 ,↑ !

1l2(
qÞ0

vq

2V (
kÞk8

(
k6q/2Þ0

(
k86q/2Þ0

(
q1Þ2k1q/2

(
q2Þ2k82q/2

Ak2q/21q1/2,↓
† ~q1↑ !Ak1q1/2,↓

3~2q1q1 ,↑ !Ak81q/21q2/2,↓
†

~q2↑ !Ak81q2/2,↓~q1q2 ,↑ !

2l2(
qÞ0

vq

2V (
k6q/2Þ0

A(1/2)(k1q/2)↑
† ~k1q/2↑ !A(1/2)(k1q/2)↑~k1q/2↑ !A(1/2)(k2q/2)↑

† ~k2q/2↑ !A(1/2)(k2q/2)↑~k2q/2↑ !

2l2(
qÞ0

vq

2V (
k6q/2Þ0

(
q2Þk2q/2

A(1/2)(k1q/2)↑
† ~k1q/2↑ !A(1/2)(k1q/2)↑~k1q/2↑ !Ak2q/22q2/2↓

† ~q2↑ !Ak2q/22q2/2↓~q2↑ !

2l2(
qÞ0

vq

2V (
k6q/2Þ0

(
q1Þk1q/2

Ak1q/22q1/2↓
† ~q1↑ !Ak1q/22q1/2↓~q1↑ !A(1/2)(k2q/2)↑

† ~k2q/2,↑ !A(1/2)(k2q/2),↑~k2q/2↑ !

2l2(
qÞ0

vq

2V (
k6q/2Þ0

(
q1Þk1q/2

(
q2Þk2q/2

Ak1q/22q1/2↓
† ~q1↑ !Ak1q/22q1/2↓~q1↑ !Ak2q/22q2/2↓

† ~q2↑ !Ak2q/22q2/2↓~q2↑ !
165111-18



CALCULUS OF SEA-DISPLACEMENT OPERATORS PHYSICAL REVIEW B65 165111
2l2(
qÞ0

vq

2V (
2k6q/2Þ0

A(1/2)(k1q/2)↓
† ~2k2q/2↓ !A(1/2)(k1q/2)↓~2k2q/2↓ !A(1/2)(k2q/2)↓

†

3~2k1q/2↓ !A(1/2)(k2q/2)↓~2k1q/2↓ !

2l2(
qÞ0

vq

2V (
2k6q/2Þ0

(
q2Þ2k1q/2

A(1/2)(k1q/2)↓
† ~2k2q/2↓ !A(1/2)(k1q/2)↓

3~2k2q/2↓ !Ak2q/21q2/2↓
† ~q2↑ !Ak2q/21q2/2↓~q2↑ !

2l2(
qÞ0

vq

2V (
2k6q/2Þ0

(
q1Þ2k2q/2

Ak1q/21q1/2↓
† ~q1↑ !Ak1q/21q1/2↓~q1↑ !A(1/2)(k2q/2)↓

†

3~2k1q/2,↓ !A(1/2)(k2q/2)↓~2k1q/2,↓ !

2l2(
qÞ0

vq

2V (
k6q/2Þ0

(
q1Þ2k2q/2

(
q2Þ2k1q/2

Ak1q/21q1/2↓
† ~q1↑ !Ak1q/21q1/2↓~q1↑ !Ak2q/21q2/2↓

† ~q2↑ !Ak2q/21q2/2↓~q2↑ !.

~132!
ex
ng
s
c
e
w
d
r
o

e
ur

fu
uc
lin

as
the
c-
n

o an
v-
It is clear that this Hamiltonian is rather more compl
than the simple two-body variety. In particular, the leadi
contribution which is first order inl has three operator
signifying a nonconservation of exciton number. In one su
process, an exciton recombines with a solitron to produc
conductron. Only excitons couple with external fields and
are able to infer the existence of the other excitations in
rectly, by studying the binding energy of biexcitons that a
due to these exotic many-body processes. From the ab
form of the interaction terms we see that the ground stat
H0 does not evolve with time under the action of the pert
bation. However, if we first create an exciton~or two exci-
tons! and then evolve the state under the action of the
Hamiltonian, then the state does indeed evolve and prod
all the effects that we expect, such as a possible exciton-
16511
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width, biexciton~bound state of two excitons!, and so on. Let
us now try to verify these expectations rigorously.

A. The Exciton Green Function

In this section, we compute the exciton Green function
resulting from exciton-exciton interactions and compare
lifetime of the exciton arising from exciton-exciton intera
tions with the lifetime from usual radiative recombinatio
processes. Consider the initial state which corresponds t
exciton in internal stateI and whose center of mass is mo
ing with momentumQ. Then we may write

uI ,Q&5bI
†~Q!uG&. ~133!

Let us now examine how this state evolves with time.
e2 i t (H1lHI ,01l2HI )uI ,Q&'e2 i t H 0S 1̂2 i l E
0

t

dt1ĤI ,0~ t1!1~2 i !2l2 E
0

t

dt1ĤI ,0~ t1!

3E
0

t1
dt2ĤI ,0~ t2!2 i l2 E

0

t

dt1ĤI~ t1! D bI
†~Q!uG&. ~134!

There are many final states possible. We would like to compute the Green function

GI~Q;v!5 i E
0

`

dt ei vt^I ,Que2 i t H uI ,Q& ~135!

The exciton line shape is given by plotting

L~v;Q!52(
I

Im@GI~Q;v2 i 01!#. ~136!

We may evaluate the matrix element as
1-19
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^I ,Que2 i t (H01lHI ,01l2HI )uI ,Q&5e2 i e I (Q)t1~2 i !2l2e2 i e I (Q)t( S vq1

V
D 2

w I* ~k11q1/22Q/2;Q!w I 2
~k12Q/2;2q11Q!

3w I 2
* ~k22Q/2;2q11Q!w I~k21q1/22Q/2;Q!E

0

t

dt1e2 i ee(q1)t1ei e I (Q)t1e2 i e I 2
(2q11Q)t1

3E
0

t1
dt2ei ee(q1)t2ei e I 2

(Q2q1)t2e2 i e I (Q)t21~2 i !2l2e2 i e I (Q)t( S vq1

V
D 2

3w I* ~k12q1/21Q/2;Q!w I 2
~k11Q/2;2q11Q!w I 2

* ~k21Q/2;2q11Q!w I~k22q1/2

1Q/2;Q!E
0

t

dt1e2 i eh(Q1)t1ei e I (Q)t1e2 i e I 2
(2Q11Q)t1E

0

t1
dt2ei eh(Q1)t2ei e I 2

(Q2q1)t2e2 i e I (Q)t2

1~2 i !2l2e2 i e I (Q)t( S vq1

V
D S vq2

V
Dw I* @~1/2!Q2Q1 ;Q#w I 2

@~1/2!~Q2Q1!

2q1 ;Q2Q1#w I 2
* @~1/2!~Q2Q1!2q2 ;Q2Q1#w I@~1/2!Q2Q1 ;Q#

3E
0

t

dt1e2 i eh(Q1)t1ei e I (Q)t1e2 i e I 2
(2Q11Q)t1E

0

t1
dt2ei eh(Q1)t2ei e I 2

(Q2Q1)t2e2 i e I (Q)t2

1~2 i !2l2e2 i e I (Q)t( S vq1

V
D S vq2

V
Dw I* ~Q12Q/2;Q!w I 2

@~1/2!~Q12Q!

1q1 ;Q2Q1#w I 2
* @~1/2!~Q12Q!1q2 ;Q2Q1#w I~Q12Q/2;Q!

3E
0

t

dt1e2 i ee(Q1)t1ei e I (Q)t1e2 i e I 2
(2Q11Q)t1E

0

t1
dt2ei ee(Q1)t2ei e I 2

(Q2Q1)t2e2 i e I (Q)t2. ~137!

We may rewrite the above equation retaining only the most singular parts as

^IQW ue2 i t (H01lHI01l2HI )uIQW &5e2 i t e I (Q)2 i F I~Q! t e2 i t e I (Q)'e2 i t [ e I (Q)1FI (Q)] , ~138!

where

FI~Q!52l2( S vq1

V
D 2 w I* ~k11q1/22Q/2;Q!w I 2

~k12Q/2;2q11Q!w I 2
* ~k22Q/2;2q11Q!w I~k21q1/22Q/2;Q!

ee~q1!1e I 2
~Q2q1!2e I~Q!

2l2( S vq1

V
D 2 w I* ~k12q1/21Q/2;Q!w I 2

~k11Q/2;2q11Q!w I 2
* ~k21Q/2;2q11Q!w I~k22q1/21Q/2;Q!

eh~q1!1e I 2
~Q2q1!2e I~Q!

2l2( S vq1

V
D S vq2

V
D

3
w I* ~Q12Q/2;Q!w I 2

@~1/2!~Q12Q!1q1 ;Q2Q1#w I 2
* @~1/2!~Q12Q!1q2 ;Q2Q1#w I~Q12Q/2;Q!

ee~Q1!1e I 2
~Q2Q1!2e I~Q!

2l2( S vq1

V
D S vq2

V
D

3
w I* ~2Q11Q/2;Q!w I 2

@~1/2!~Q2Q1!2q1 ;Q2Q1#w I 2
* @~1/2!~Q2Q1!2q2 ;Q2Q1#w I~2Q11Q/2;Q!

eh~Q1!1e I 2
~Q2Q1!2e I~Q!

. ~139!

165111-20
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Hereee(k)5k2/2me andeh(k)5k2/2mh . The line shape of
the exciton may be written as

L~Q,v!5(
I

Im@FI~Q!#

$v2e I~Q!2Re@FI~Q!#%21$Im@FI~Q!#%2
.

~140!

In this article, we merely point out the feasibility of thes
computations. In our next article we intend to explore t
practical consequences more thoroughly, specifically,
biexciton Green functions and nonlinear optical susceptib
ties.

V. CONCLUSIONS

In this article, we have laid down the ground work for
very promising new approach for understanding excitons
semiconductors and charge-conserving systems such as
trons and positrons. We have shown how to compute
exciton line shape that~if broadened! is also due to nonradi
ative many-body processes. We have identified the elem
tary excitations in the system and precisely pointed out
role each of them play in the theory. The elementary enti
in the two-component Fermi system may be thought of
two equivalent ways. One may consider them to be electr
and holes interacting via two-body attractive and repuls
interactions or we may consider the system to be made
excitons, solitrons, valerons, and conductrons all interac
with each other by somewhat complicated, but purely lo
Hamiltonians. The formidable technical challenges ha
been overcome and now a clear path has been mappe
for a systematic exploration of nonperturbative phenom
in many-body physics.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Resea
and the Jawaharlal Nehru Centre. We are grateful for us
conversations with D. Sen and H. R. Krishnamurthy of IIS

APPENDIX A:

In this section, we prove the claims made in the first s
tion, namely, thatX0 is canonically conjugate toN̂0. Let Ô

5(b02AN̂0)(1/AN̂0).

X05
i

2 (
n51

`
~21!n11

n
Ôn2

i

2 (
n51

`
~21!n11

n
Ô†n, ~A1!

@X0 ,N̂0#5
i

2 (
n51

`
~21!n11

n
@Ôn,N̂0#

2
i

2 (
n51

`
~21!n11

n
@Ô†n,N̂0#, ~A2!

@Ôn,N̂0#5 (
m51

n

Ôn2m@Ô,N̂0#Ôm21. ~A3!
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But,

@Ô,N̂0#51̂1Ô. ~A4!

Therefore,

@Ôn,N̂0#5n Ôn21~ 1̂1Ô! ~A5!

It is a relatively simple matter to sum this series and we m
write

@X0 ,N̂0#5
i

2 (
n51

`
~21!n11

n
n Ôn21~ 1̂1Ô!

1
i

2 (
n51

`
~21!n11

n
nÔ†n21~ 1̂1Ô†!

5
i

2
~ 1̂1Ô!

1̂

1̂1Ô
1

i

2
~ 1̂1Ô†!

1̂

1̂1Ô†
5 i 1̂.

~A6!

Therefore, much to our relief, we find

@X0 ,N̂0#5 i 1̂. ~A7!

Now we move on to fermions.

APPENDIX B:

Here we would like to prove some facts about fermio
that were claimed in the main text. Writing down the com
mutation rules obeyed byAk(q) involves knowing the pre-
cise meaning of the square root in the denominator. Since
have not been successful in pinning down its true mean
we shall have to take the point of view that the meaning
uniquely fixed bydemandingthat the following commutation
rules be obeyed. This is not very satisfying but the auth
have exhausted their meager capabilities. Let us conside
various possibilities.

~a! nF(k1q/2)50, nF(k2q/2)51:

Ank2q/2Ak~q!

5S 12 (
q1Þ0

Ak2q/21q1/2
† ~q1!Ak2q/21q1/2~q1! D 1/2

3Ak~q!5ck2q/2
† ck1q/2 . ~B1!

We have to convince ourselves that the left hand side ob
the same commutation rules as the right-hand side.

~b! nF(k1q/2)51,nF(k2q/2)50:

Ak
†~2q!Ank1q/2

5Ak
†~2q!

3S 12 (
q1Þ0

Ak1q/21q1/2
† ~q1!Ak1q/21q1/2~q1! D 1/2

5ck2q/2
† ck1q/2 . ~B2!

~c! nF(k1q/2)50,nF(k2q/2)50:
1-21
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ck1q/2
† ck2q/25 (

q1Þq,0
Ak1q/22q1/2

† ~q1!Ak2q1/2~2q1q1!.

~B3!

~d! nF(k1q/2)51,nF(k2q/2)51:

ck1q/2
† ck2q/252 (

q1Þq,0
Ak2q/21q1/2

† ~q1!Ak1q1/2~2q1q1!.

~B4!

Similarly, we have
(a8)nF(k81q8/2)50,nF(k82q8/2)51:

Ank82q8/2Ak8~q8!5ck82q8/2
† ck81q8/2 , ~B5!

and so on for the other cases. We would now like to wr
down some statements that would be analogous to com
tation rules. Let us first define the following statements~it
goes without saying thatqÞ0 andq8Þ0).

S1:k1q/25k81q8/2,

S2:k1q/25k82q8/2,

S3:k2q/25k81q8/2,
16511
e
u-

S4:k2q/25k82q8/2,

SS1:k5k8 and q5q8,

SS2:k5k8 and q52q8.

Consider the object

Ank2q/2Ak~q!Ank82q8/2Ak8~q8!. ~B6!

We would now like to ascertain the meaning of this obje
when say,S1 is true butS2,S3, andS4 are false. This state
of affairs in symbolic logic is written asS1`¬S2`¬S3
`¬S4. Let us define

AS15S1`¬S2`¬S3`¬S4,

AS25S2`¬S1`¬S3`¬S4,

AS35S3`¬S1`¬S2`¬S4,

AS45S4`¬S1`¬S2`¬S3,

AA05¬S1`¬S2`¬S3`¬S4.

~1! If AS1 is true then we have
Ank2q/2Ak~q!Ank82q8/2Ak8~q8!5Ank82q8/2Ak8~q8!Ank2q/2Ak~q!50, ~B7!

Ank2q/2Ak~q!Ak8
†

~2q8!Ank81q8/25Ak8
†

~2q8!Ank81q8/2Ank2q/2Ak~q!50, ~B8!

Ank2q/2Ak~q!S (
q1Þq8,0

Ak81q8/22q1/2
†

~q1!Ak82q1/2~2q81q1!D
5ck2q/2

† ck1q/2ck1q/2
† ck82q8/25Ank2q/2Ak2q8/2~q2q8!S 1̂2 (

q1Þ0
Ak1q/22q1/2

† ~q1!Ak1q/22q1/2~q1! D , ~B9!

S (
q1Þq8,0

Ak81q8/22q1/2
†

~q1!Ak82q1/2~2q81q1!DAnk2q/2Ak~q!

5ck1q/2
† ck82q8/2ck2q/2

† ck1q/252Ank2q/2Ak2q8/2~q2q8!S (
q1Þ0

Ak1q/22q1/2
† ~q1!Ak1q/22q1/2~q1! D , ~B10!

2Ank2q/2Ak~q!S (
q1Þq8,0

Ak82q8/21q1/2
†

~q1!Ak81q1/2~2q81q1!D 50, ~B11!

2S (
q1Þq8,0

Ak82q8/21q1/2
†

~q1!Ak81q1/2~2q81q1!DAnk2q/2Ak~q!50, ~B12!

Ak
†~2q!Ank1q/2Ak8

†
~2q8!Ank81q8/25Ak8

†
~2q8!Ank81q8/2Ak8

†
~2q8!Ank81q8/250, ~B13!

Ak
†~2q!Ank1q/2S (

q1Þq8,0

Ak81q8/22q1/2
†

~q1!Ak82q1/2~2q81q1!D 50, ~B14!
1-22
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S (
q1Þq8,0

Ak81q8/22q1/2
†

~q1!Ak82q1/2~2q81q1!DAk
†~2q!Ank1q/250, ~B15!

2Ak
†~2q!Ank1q/2S (

q1Þq8,0

Ak82q8/21q1/2
†

~q1!Ak81q1/2~2q81q1!D
5S (

q1Þq,0
Ak1q/21q1/2

† ~q1!Ak1q/21q1/2~q1! DAnk2q/2Ak2q8/2~q2q8! ~B16!

2S (
q1Þq8,0

Ak82q8/21q1/2
†

~q1!Ak81q1/2~2q81q1!DAk
†~2q!Ank1q/2

52S 1̂2 (
q1Þq,0

Ak1q/21q1/2
† ~q1!Ak1q/21q1/2~q1! DAnk2q/2Ak2q8/2~q2q8!, ~B17!

S (
q1Þq,0

Ak1q/22q1/2
† ~q1!Ak2q1/2~2q1q1! D S (

q2Þq,0
Ak81q8/22q2/2

†
~q2!Ak82q2/2~2q81q2! D 50, ~B18!

S (
q2Þq,0

Ak81q8/22q2/2
†

~q2!Ak82q2/2~2q81q2! D S (
q1Þq,0

Ak1q/22q1/2
† ~q1!Ak2q1/2~2q1q1! D 50, ~B19!

S (
q1Þq,0

Ak2q/21q1/2
† ~q1!Ak1q1/2~2q1q1! D S (

q2Þq8,0

Ak82q8/21q2/2
†

~q2!Ak81q2/2~2q81q2!D 50, ~B20!

S (
q2Þq8,0

Ak82q8/21q2/2
†

~q2!Ak81q2/2~2q81q2!D S (
q1Þq,0

Ak2q/21q1/2
† ~q1!Ak1q1/2~2q1q1! D 50. ~B21!
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Similarly, the reader may write down the corresponding
lations when~2! AS2 is true,~3! AS3 is true, and~4! when
AS4 is true. IfAA0 is true then we have

@Ak~q!,Ak8~q8!#5@Ak~q!,Ak8
†

~q8!#50. ~B22!

If SS1 is true then we have

F S 12 (
q1Þ0

Ak2q/21q1/2
† ~q1!Ak2q/21q1/2~q1! D 1/2

Ak~q!G2

50

~B23!

and, for example,

S (
q1Þq,0

Ak1q/22q1/2
† ~q1!Ak2q1/2~2q1q1! D

3S (
q2Þq,0

Ak2q2/2
† ~2q1q2!Ak1q/22q2/2~q2! D

5S (
q1Þ0

Ak1q/22q1/2
† ~q1!Ak1q/22q1/2~q1! D

3S 12 (
q2Þ0

Ak2q/22q2/2
† ~q2!Ak2q/22q2/2~q2! D . ~B24!

Similarly, the reader can fill in the rest of the rules once
main techniques for deducing these rules have been
16511
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id

down as we have done here. We see here that the ob
Ak(q) andAk

†(q) obeyexact, closedcommutation rules. This
enables us to treat any theory involving fermions obey
simple fermion commutation rules in terms of a theory
volving sea displacements obeying these rather complica
looking commutation rules. However, in all cases of practi
interest we shall adopt an approximation that in the o
component Fermi system is equivalent to the RPA or its g
eralizations. In the multicomponent case, we may wr
down the following formula for the Fermi bilinears. This ha
been used to derive the corresponding formulas for
charge conserving electron-hole systems in the main tex
qÞ0 then,

ck1q/2s
† ck2q/2s8

5Ank1q/2sAks~2qs8!1Aks8
†

~qs!Ank2q/2s8

1 (
q1Þq,0s1

Ak1q/22q1/2s1

† ~q1s!Ak2q1/2s1
~2q1q1s8!

2 (
q1Þq,0s1

Ak2q/21q1/2s8
†

~q1s1!Ak1q1/2s

3~2q1q1s1!, ~B25!
1-23
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cks
† cks5nF~ks!1̂1 (

q1Þ0,s1

Ak2q1/2s1

† ~q1s!Ak2q1/2s1
~q1s!

2 (
q1Þ0,s1

Ak1q1/2s
† ~q1s1!Ak1q1/2s~q1s1!. ~B26!

Approximate commutation rules : The random phase
proximation. The commutation rules presented above
gether with prescriptions such as Eqs.~26! and ~24! form a
complete and closed system of rules. These rules, howe
are far from simple to use. It is desirable to make so
approximations in a systematic manner that enables u
simplify these rules. One such natural approximation is
RPA of Bohm and Pines.7 The way to do this is to make th
following assertion: The RPA is obtained by retaining on
the lowest order sea-displacement terms in Eq.~17! and set-
ting nk5nF(k)1̂ in Eq. ~19!. This means that in the exac
definition in Eq.~15! we have to replace the number opera
by the unit operator. When this is done, we have the R
result forAk(q)

Ak~q!5nF~k2q/2!@12nF~k1q/2!#ck2q/2
† ck1q/2 .

~B27!

Ignoring higher order terms amounts to the following@from
Eqs.~B3! and ~B4!#:

ck1q/2
† ck2q/250 ~B28!

when nF(k1q/2)50 and nF(k2q/2)50 or when nF(k
1q/2)51 andnF(k2q/2)51. Let us now use these simpl
fications to obtain a set of closed commutation rules valid
the RPA sense for the objectAk(q). From Eq.~B27! we have

@Ak~q!,Ak8~q8!#

5nF~k2q/2!@12nF~k1q/2!#nF~k82q8/2!

3@12nF~k81q8/2!#@ck2q/2
† ck1q/2 ,ck82q8/2

† ck81q8/2#

5nF~k2q/2!@12nF~k1q/2!#nF~k82q8/2!

3@12nF~k81q8/2!#~ck2q/2
† ck81q8/2dk1q/2,k82q8/2

2ck82q8/2
† ck1q/2dk2q/2,k81q8/2!50. ~B29!

Now the right-hand side is identically zero as we s
from this argument. Whenk1q/25k82q8/2 we have the
factor @12nF(k1q/2)#nF(k82q8/2)50. When k2q/2
5k81q8/2 we have nF(k2q/2)@12nF(k81q8/2)#50.
Therefore,

@Ak~q!,Ak8~q8!#RPA50. ~B30!

Now let us compute
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@Ak~q!,Ak8
†

~q8!#

5nF~k2q/2!@12nF~k1q/2!#nF~k82q8/2!

3@12nF~k81q8/2!#@ck2q/2
† ck1q/2 ,ck81q8/2

† ck82q8/2#

5nF~k2q/2!@12nF~k1q/2!#nF~k82q8/2!

3@12nF~k81q8/2!#~ck2q/2
† ck82q8/2dk1q/2,k81q8/2

2ck81q8/2
† ck1q/2dk2q/2,k82q8/2! ~B31!

Because of Eq.~B28!, the right-hand side of the above equ
tion @Eq. ~B31!# is identically zero unlessk5k8 andq5q8.
Therefore we may write

@Ak~q!,Ak8
†

~q8!#5nF~k2q/2!@12nF~k

1q/2!#dk,k8dq,q8~nk2q/22nk1q/2!.

~B32!

If we retain the number operator as it is in the right-hand s
of Eq. ~B32! we are dealing with the generalized RPA. Th
generalized RPA pays attention to possible fluctuations in
momentum distribution around a nonideal mean.1 However,
in the simple case we are obliged to setnk5nF(k)1̂. When
this is done we find the following simple answer:

@Ak~q!,Ak8
†

~q8!#RPA5nF~k2q/2!@12nF~k1q/2!#

3dk,k8dq,q81̂. ~B33!

Finally, we would like to address a rather important questi
namely is the RPA as described above a controlled appr
mation? Indeed, what is a ‘‘controlled approximation’’ re
ally? And finally, does it matter whether some approximati
is controlled or not? In order to answer these questi
it is important to first define what is meant by a controll
approximation. A definition that seems reasonable is as
lows: An expansion in powers of a dimensionless param
small compared to unity that is obtained by combining t
various dimensionful parameters of the theory, is a contro
approximation. By this definition it is clear that the RPA
not a controlled approximation. Rather than expanding
powers of a dimensionlessparameterit seems that we are
expanding in powers of a dimensionlessoperator, namely,
Ak(q) . For this to be justifiable, we have to show that th
object is in some sense small compared to unity. This me
that the matrix elements of this object have to be small co
pared to unity.17 This is possible only if we restrict our Hil-
bert space to be one that contains low lying excited state
the noninteracting system. However, we would like to kno
beforehandwhether or not such an assumption is justifi
given the type of interaction and its strength. In fact, in o
earlier article1 we made some rather unfortunate remarks t
may be forgiven since it was the first article in the series a
we were going to fix the technical aspects later anyway. T
formula for the ‘‘sea-boson’’ given there in terms of th
Fermi fields and justly criticized Cune and Apostol2 is totally
wrong despite its appealing form. The other remarks in
Appendix1 justifying the controlled nature of the RPA ap
1-24
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proximation provided one restricts the functional form of t
potential to obey the constraints outlined earlier1 so far seem
alright. In any event, the moral of this discussion is that
RPA is a strange kind of approximation. It is not possible
make useful statements about when such an approxima
breaks down. To say that RPA is valid if all states of t
interacting system are expressible as a linear combinatio
low lying states is as illuminating as saying that the b
strategy to win a game of chess is to play it so that
opponent’s king is placed under check and cannot move
the opponent cannot block or eliminate the check.

APPENDIX C:

Consider the Hamiltonian

H5(
k

ẽknk1 (
qÞ0

vq

2V (
kÞk8

ck1q/2
† ck82q/2

† ck81q/2ck2q/2 ,

~C1!

where the exchange energy~minus the term quartic in the se
displacements! has been absorbed into the kinetic energy

ẽk5ek2 (
qÞ0

vq

V
^nk2q&. ~C2!

Let nq(k)5ck1q/2
† ck2q/2 andn0(k)5ck

†ck . Let us now write
down the equation of motion fornq(k). Introduce a source

Hext~ t !5(
q

@Uext~qt !1Uext* ~2qt !#(
k

nq~k!, ~C3!

whereUext(qt)5e2 ivtU0(q).

i
]

]t
nq

t ~k!5~ ẽk2q/22 ẽk1q/2!nq
t ~k!

1 (
q8Þ0

vq8
2V

@nq~k!,rq8#r2q8
t

1 (
q8Þ0

vq8
2V

rq8
t

@nq~k!,r2q8#1 (
q8Þ0

@Uext~q8t !

1Uext* ~2q8t !#@nq~k!,rq8#, ~C4!

@nq~k!,rq8#5(
k8

@ck1q/2
† ck2q/2 ,ck81q8/2

† ck82q8/2#

5(
k8

ck1q/2
† ck82q8/2dk2q/2,k81q8/2

2(
k8

ck81q8/2
† ck2q/2dk1q/2,k82q8/2

'dq,2q8@n0~k1q/2!2n0~k2q/2!#, ~C5!
16511
e

on

of
t
e
nd

i
]

]t
nq

t ~k!5~ ẽk2q/22 ẽk1q/2!nq
t ~k!1

vq

V
@n0~k1q/2!

2n0~k2q/2!#rq
t 1@Uext~2qt !1Uext* ~qt !#

3@n0~k1q/2!2n0~k2q/2!#. ~C6!

Let us make a first pass at the computation of the dielec
function. Here, we make use of mean-field theory, that
replace^n0(k8)rq&5^n0(k8)&^rq&:

v^nq
t ~k!&5~ ẽk2q/22 ẽk1q/2!^nq

t ~k!&1
vq

V
~^n0~k1q/2!&

2^n0~k2q/2!&!^rq
t &1@Uext~2qt !1Uext* ~qt !#

3@^n0~k1q/2!&2^n0~k2q/2!&#, ~C7!

^nq
t ~k!&5

vq

V

^n0~k1q/2!&2^n0~k2q/2!&

v2 ẽk2q/21 ẽk1q/2

^rq
t &

1@Uext~2qt !1Uext* ~qt !#

3
^n0~k1q/2!&2^n0~k2q/2!&

v2 ẽk2q/21 ẽk1q/2

. ~C8!

This means that

^r2q&5Uext~qt !
P0~q,v!

e~q,v!
, ~C9!

P0~q,v!5(
k

^n0~k2q/2!&2^n0~k1q/2!&

v2 ẽk1q/21 ẽk2q/2

, ~C10!

e~q,v!512
vq

V
P0~q,v!. ~C11!

From this and the fact that

eg2RPA~q,v!5
Uext~qt !

Ueff~qt !
5e~q,v!. ~C12!

Next we would like to include fluctuations. Let us do th
differently this time via the use of the BBGKY hierarchy:

i
]

]t
^nq

t ~k!&5~ ẽk2q/22 ẽk1q/2!^nq
t ~k!&1

vq

V
@^n0~k1q/2!&

2^n0~k2q/2!&#^rq
t &1

vq

V
@F2A~k1q/2,q!

2F2A~k2q/2,q!#1@Uext~2qt !1Uext* ~qt !#

3@n0~k1q/2!2n0~k2q/2!#. ~C13!

Here,

F2A~k8,q;t !5^n0~k8!rq
t &2^n0~k8!&^rq

t &, ~C14!

F2~k8;k,q;t !5^n0~k8!nq
t ~k!&2^n0~k8!&^nq

t ~k!&,
~C15!
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F2A~k8,q;t !5(
k

F2~k8;k,q;t !, ~C16!

i
]

]t
F2~k8;k,q;t !

5~ ẽk2q/22 ẽk1q/2!F2~k8;k,q;t !

1
vq

V
@N~k8,k1q/2!

2N~k8,k2q/2!#^rq
t &1

vq

V
@^n0~k1q/2!&
16511
2^n0~k2q/2!&#F2A~k8,q;t !1@Uext~2qt !

1Uext* ~qt !#@N~k8,k1q/2#2N~k8,k2q/2!! ~C17!

Let us write,

F2~k8;k,q;t !5Uext~2qt !F2,a~k8;k,q!

1Uext* ~qt !F2,b~k8;k,q!, ~C18!

^rq
t &5Uext~2qt !^rq8&1Uext* ~qt !^rq9&. ~C19!

Also, define

N~k,k8!5^n0~k!n0~k8!&2^n0~k!&^n0~k8!&, ~C20!
bution
vF2,a~k8;k,q!5~ ẽk2q/22 ẽk1q/2!F2,a~k8;k,q!1
vq

V
@N~k8,k1q/2!2N~k8,k2q/2!#^rq8&

1
vq

V
@^n0~k1q/2!&2^n0~k2q/2!&#F2A

a ~k8,q!1@N~k8,k1q/2!2N~k8,k2q/2!# ~C21!

2vF2,b~k8;k,q!5~ ẽk2q/22 ẽk1q/2!F2,b~k8;k,q!1
vq

V
@N~k8,k1q/2!2N~k8,k2q/2!#^rq9&

1
vq

V
@^n0~k1q/2!&2^n0~k2q/2!&#F2A

b ~k8,q!1@N~k8,k1q/2!2N~k8,k2q/2!#, ~C22!

e~q,v!F2A
a ~k8,q!5

vq

V (
k

N~k8,k1q/2!2N~k8,k2q/2!

v2 ẽk2q/21 ẽk1q/2

^rq8&1(
k

N~k8,k1q/2!2N~k8,k2q/2!

v2 ẽk2q/21 ẽk1q/2

, ~C23!

vCq~k!5~ ẽk2q/22 ẽk1q/2!Cq~k!1
vq

V
@^n0~k1q/2!&2^n0~k2q/2!&#^rq8&1

vq

V
@F2A

a ~k1q/2!2F2A
a ~k2q/2!#

1@^n0~k1q/2!&2^n0~k2q/2!&#, ~C24!

Cq~k!5
vq

V

^n0~k1q/2!&2^n0~k2q/2!&

v2 ẽk2q/21 ẽk1q/2

^rq8&1
^n0~k1q/2!&2^n0~k2q/2!&

v2 ẽk2q/21 ẽk1q/2

1
vq

V

F2A
a ~k1q/2,q!2F2A

a ~k2q/2,q!

v2ek2q/21ek1q/2
.

~C25!

After all this, it may be shown that the overall dielectric function including possible fluctuations in the momentum distri
is given by

eeff~q,v!5eg2RPA~q,v!2S vq

V D 2 P2~q,v!

eg2RPA~q,v!
. ~C26!

Here,

P2~q,v!5(
k,k8

N~k1q/2,k81q/2!2N~k2q/2,k81q/2!2N~k1q/2,k82q/2!1N~k2q/2,k82q/2!

~v2 ẽk2q/21 ẽk1q/2!~v2 ẽk82q/21 ẽk81q/2!
, ~C27!

eg2RPA~q,v!511
vq

V (
k

^n0~k1q/2!&2^n0~k2q/2!&
v2ek1q/21ek2q/2

. ~C28!
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