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Effect of backward carrier jumps on variable-range hopping in disordered materials
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A variable-range hopping model is described that accounts for the effect of back-and-forth carrier jumps
between occasionally close hopping sites isolated from the rest of the hopping network. It is shown that
accounting for this effect for constant density of states~DOS! does not change the MottT21/4 law but yields
a modified coefficient that can be considered as a percolation threshold for dc conductivity in a positionally and
energetically disordered hopping system. In a system with an exponential DOS distribution, the backward
jumps significantly reduce dc conductivity but only slightly affect its functional dependence upon temperature.
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I. INTRODUCTION

In a positionally and energetically disordered hoppi
system, both the distancer and the energy differenceDE
between hopping sites are subject to a considerable varia
Since the carrier hopping rate exponentially decreases
increasingr andDE, carrier jumps to nearest hopping neig
bors, i.e., to sites with minimum possible values ofr and
DE, should represent the major transport mode. Howe
groups of two, three, or more sites, that are occasion
close to each other, can form an ‘‘exclusive circle.’’A carrie
localized in one of such sites, must make several jumps b
and forth within such an isolated group of sites before it w
jump to a site that does not belong to this group. The occ
rence of such exclusive circles is well known from Mon
Carlo simulations of charge-carrier hopping transport in d
ordered materials.1,2

Analytic approaches to the variable-range hopping~VRH!
in disordered systems are based on averaging carrier j
rates.3,4 The averaging often accounts for all possible carr
jumps including those within exclusive circles. This leads
an overestimate of the average hopping rate and, furthe
an overestimated dc hopping conductivity. The reason
that is obvious. The dc conductivity can occur only if char
carriers travel across the whole sample, i.e., only via an
finitely large percolation cluster of connected hopping sit
However, if two sites happen to be very close to each oth
carrier would most probably jump back and forth betwe
these sites many times before the less probable jump in
more distant site would occur.

In the present work we formulate an analytic VRH mod
that eliminates back-and-forth carrier jumps within isolat
pairs of hopping sites. It will be shown that the occurrence
such jumps does not affect the functional temperature de
dence of the conductivity that still obeys the MottT21/4 law.
This implies applicability of the percolation approach to t
VRH problem based on the concept of the minimum num
of bonds,pc , required for the infinite hopping cluster.4 The
value of pc can then be calculated within the framework
the VRH model. Carrier ‘‘multiple hopping’’ between occa
sionally close hopping neighbors in a positionally and en
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getically disordered hopping system was recently conside
within the framework of a single-particle approximation5

This approximation is relevant to the carrier mobility as d
termined from time-of-flight measurements. However, fillin
of localized states is disregarded in that case and, therefo
does not describe the dark dc conductivity that is control
by carrier hopping around the Fermi level.

II. PERCOLATION APPROACH TO HOPPING IN A
POSITIONALLY RANDOM SYSTEM

Charge-carrier transport in positionally random syste
of hopping sites is traditionally considered in terms of t
percolation theory.6 Owing to an exponentially strong depen
dence of the hopping rate upon the jump distance, jump
nearest hopping neighbors are the dominant mode of ch
transport. In a disordered system, hopping distances are
ject to strong variation and, therefore, a longest distance
tween hopping sites,r c , can be identified in the infinite hop
ping cluster that is required for dc conductivity. The value
r c must be proportional to the average distance between
that is determined by the concentration of hopping sites,N:
r c5cN21/3, wherec is a universal numeric coefficient. Vari
ous Monte Carlo simulations yielded7,8 the value ofc rang-
ing from 0.86 to 0.89. Carrier jumps between sites, separa
by the longest distance, are assumed to be the rate-lim
steps that determine the carrier mobilitym. Concomitantly,
the concentration dependence of the mobility takes the fo

m5m0 exp~22cgN21/3!, ~1!

where g is the inverse carrier localization radius and t
prefactorm0 contains a weak dependence upon the conc
tration of hopping sites due to the concentration depende
of the hopping distance.

A conceptually different approach to positional disorder
based on consideration of an ordered~for instance, cubic!
lattice of hopping sites in which some bonds are random
broken or some sites are randomly blocked. The question
what is the minimum number of survived bonds, or u
blocked sitespc sufficient to form an infinite percolation
cluster? The answer to this question depends upon the la
©2002 The American Physical Society10-1
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configuration and for a cubic latticepc>630.32>1.9 for
sites andpc>630.25>1.5 for bonds was found.6 It is worth
noting that number of unblocked sites should be higher
cause a broken bond between two unblocked sites does
exclude a finite probability to get from one site to the oth
Phenomenologically, one can extend this approach by in
ducing a minimum effective number of bonds required for
infinite percolation cluster in a positionally disordered sy
tem. In such a system, hopping sites may have neigh
over short distances. Jumps to such neighbors are very
but these jumps could hardly contribute to dc conductiv
since the return jump will be equally easy. The effect of su
backward jumps can be eliminated if one requires that
ways at least one hopping neighbor must be found within
sphere of average jump distance^r&. The distancêr& should
then be found from the condition that the number of hopp
neighbors within this sphere must be equal topc.1. In the
limit this gives

4p

3
^r &3N5pc , ~2!

and solving Eq.~2! then leads to the following expression fo
the mobility:

m5m0 expF22gS 3pc

4p D 1/3

N21/3G , ~3!

which is completely equivalent to Eq.~1! with parametersc
andpc being related to each other as

pc5
4p

3
c3. ~4!

Consequently,pc ranges from 2.7 to 3.0~Refs. 7–9! for a
positionally random hopping system. It is worth noting th
these percolation parameters were calculated disregar
the energy disorder. In the following section we sugges
model that accounts for backward carrier jumps and yie
the percolation parameters in a hopping system, which
disordered both positionally and energetically.

III. VRH INCLUDING BACKWARD CARRIER JUMPS

Charge-carrier transport in a positionallyand energeti-
cally random system of localized states is described in te
of the VRH theory.3,4 The rate of carrier jumps,n(r ,Est,Et),
over the distancer between a starting site of energyEst and
a target site of energyEt is described by the Miller-
Abrahams formula as

n~r ,Est,Et!5n0 exp@2u~r ,Est,Et!#,

u~r ,Est,Et!52gr 1
Et2Est

kT
h~Et2Est!, ~5!

whereu is the hopping parameter,h the unity step function,
T the temperature, andk the Boltzmann’s constant.

Low-temperature dark equilibrium conductivity in amo
phous semiconductors is due to carrier jumps via locali
states around the Fermi level. The rate-limiting step is th
16511
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thermally activated carrier jumps from occupied localiz
states at the Fermi level and the starting energy for s
jumps must be just the Fermi energyEF . Every neighbor of
a given starting site can be characterized by its hopping
rameter. For a site of the energyEF , the average number o
neighbors,n(u), whose hopping parameters are not larg
thanu, can be calculated as

n~u!54pE
0

u/2g

dr r 2E
EF

EF1kT~u22gr !

g~Et!dEt , ~6!

whereg(E) is density of states~DOS! distribution function.
The dc conductivitys will be governed by carrier jumps

to the sites with the most probable values of the hopp
parameter. The most probable jump from a starting state
target site can be characterized by the average hopping
rameter̂ u&. This parameter can be calculated by averaginu
over the Poisson probability distribution of finding a near
hopping neighbor of the hopping parameteru. The result
reads

^u&5E
0

`

du uexp@2n~u!#
dn~u!

du
5E

0

`

du exp@2n~u!#.

~7!

In the classical Mott version of the VRH, which disregar
the backward jumps of carriers, the dc conductivity is calc
lated for a DOS distribution that remains constant on
energy scale relevant to the low-temperature hopping:g(E)
5g0 . The use of a constant DOS distribution in Eqs.~6! and
~7! leads to the following expression for^u&M :

^u&M5E
0

`

du expF2S u

u0
D 4G5u0E

0

`

dn exp~2n4!

5
u0

4
G~ 1

4 !'0.906u0 , ~8!

whereG is the gamma-function andu0 is the dimensionless
parameter defined as

u05F3~2g!3

pg0kTG1/4

. ~9!

It is worth noting that this result is obtained while neglecti
the possibility of backward carrier jumps into initially occu
pied localized states. Similar to the situation in positiona
random systems, such jumps should not be taken into
count if one addresses the dc conductivity in positionally a
energetically random systems.

At first glance, the problem of backward jumps in VR
can be solved on the basis of the same percolation ideas
were reviewed in the preceding section. However, there is
important difference between master equations govern
carrier hopping in systems that are random both position
and energetically, on the one hand, and only positionally,
the other hand. While the rates of direct and backward jum
of a carrier between any two localized states are equa
each other in a positionally random network of hopping sit
these rates are necessarily different in a positionally and
0-2
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EFFECT OF BACKWARD CARRIER JUMPS ON . . . PHYSICAL REVIEW B65 165110
ergetically disordered system unless the two sites occas
ally have the same energy. Therefore, it is nota priori
clear whether accounting for backward carrier jumps
VRH would result in changing only numeric parameters a
is in positionally disordered systems, or whether the te
perature dependence of the conductivity would also be
ferent.

The rate-limiting step in VRH are thermally assisted c
rier jumps from occupied states of energies aroundEF to
vacant hopping sites above the Fermi level. Such jumps
contribute to the dc conductivity only if subsequently t
carrier jumps further rather than coming back to the initia
occupied state. Therefore, one must exclude from consi
ation those vacant hopping sites from which carriers w
most probably jump back to their starting sites. Conside
carrier that jumped from a starting site of the energyEF over
the distancer into a target site of the energyEt . This jump
will contribute to the dc conductivity only if the target sit
has at least one neighbor with hopping parameter less
ub52gr outsidethe sphere of radiusr centred at the starting
site. The average number of such neighbors,nb(E,r ), in-
creases with increasingE and r as

nb~E,r !52pE
0

r

dr8r 82E
arccos~r 8/2r !

p

dq sinq

3E
EF

E12gkT~r 2r 8!
g~E8!dE8. ~10!

The probability,w(E,r ) that there is at least one such neig
bor is determined by the Poisson distribution,

w~E,r !512exp@2nb~E,r !#. ~11!

The functionw(E,r ) essentially determines the probabili
for a carrier that is localized in a state at the Fermi leve
find a hopping neighbor of the energyE over the distancer
such that a jump to this neighbor will, most probably,not be
followed by the return jump. The average number of su
‘‘one-way’’ neighborsn(u) whose hopping parameters a
not larger thanu for direct carrier jumps from the startin
site at the Fermi level, are given by

n~u!54pE
0

u/2g

drr 2E
EF

EF1kT~u22gr !

dE@12exp$nb~E,r !%#.

~12!

If one accounts for the possibility of backward carrier jump
the parameter̂u& can still be used for the calculation of d
conductivity:s}exp(2^u&), where^u& is defined by Eq.~7!
but with the functionn(u) as determined by Eq.~12!. For a
16511
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constant DOS distribution substituting Eqs.~10!–~12! into
Eq. ~7! yields

^u&5E
0

`

du expX2S u

u0
D 4

1 48
11 E

0

1 dx

x
expF2

13

20S u

u0
D 4

x4G
3H 12expF2 11

4 S u

u0
D 4

x3~12x!G J C
5u0E

0

`

dn expX2n41 48
11 E

0

1 dx

x
exp~2 13

20 n4x4!

3$12exp@2 11
4 n4x3~12x!#% C'1.183u0 . ~13!

Despite the rather complicated form of Eq.~13! it predicts
exactly the same temperature dependence for^u&, as Eq.~8!
for the traditional approach. Only the numeric coefficient
different. This proves that accounting for the possibility
‘‘round trips’’ of carriers changes only the numeric coef
cient in the exponent of the MottT21/4 law while the func-
tional dependence of the conductivity upon the tempera
remains unaffected. This implies that the concept of a m
mum number of bonds that is sufficient for the formation
the infinite percolation path, can be also applied to hopp
systems with both energetic and positional disorder. T
number can be evaluated from the following condition:

nM~^u&!5pc , ~14!

wherenM(^u&) should be calculated with the average ho
ping parameter determined by Eq.~6! similar to the proce-
dure of Sec. II. This calculation yieldspc51.96. This value
is smaller than the minimum number of bonds providing
the infinite percolation cluster in a 3D positionally rando
hopping system (pc>2.7). This result is not surprising be
cause the occurrence of energy disorder is virtually equ
lent to an additional dimension in ther -E space and the
minimum number of bonds is known to decrease with
creasing dimensionality.6–9

Finally, we consider VRH with backward carrier jumps
a system with an exponential DOS distributiong(E)
5(Nt /«0)exp(E/«0), whereNt is the total number of local-
ized states and«0 is the characteristic energy of the distrib
tion. This distribution is typical for band-tail states in ino
ganic disordered semiconductors. Substituting
exponential DOS function into Eqs.~7!, ~10!–~12! in order to
calculatê u&, and, respectively, into Eqs.~6! and~7! in order
to calculatê u&M , leads to complex expressions for^u& and
^u&M , that can be solved numerically. The temperature
pendences of the average hopping parameters^u& and ^u&M
are shown in Fig. 1 for different positions of the Fermi lev
i.e., for different total carrier densities. If plotted as log^u& vs
T21/4 the curves are almost parallel to each other, imply
that ^u&(T)5Q(T)^u&M(T), whereby the functionQ(T)
only weakly depends upon the temperature, as illustrate
Fig. 2. The factorQ(T) also depends upon the Fermi-lev
position. If EF is large enough, the system with an expone
0-3
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tial DOS function behaves rather similarly to that with
constant DOS. The effect of backward jumps on the dc c
ductivity is shown in Fig. 3 in which the ratio ofs’s calcu-
lated with and without accounting for backward jumps,
plotted as a function of the temperature parametric in
Fermi energy. At low temperatures, the probability of bac
ward jumps is high and, concomitantly, their effect on co
ductivity is strong: the difference in dc conductivities tur
out to be very large, especially for systems with dee
Fermi levels.

IV. CONCLUSIONS

Theoretical analysis of charge-carrier transport in an
ergetically and positionally disordered hopping system m
avoid the inclusion of an apparent contribution to the

FIG. 1. Temperature dependences of the average hopping
rameterŝu& and^u&M for an exponential DOS distribution parame
ric in the Fermi level position. The data are calculated forg
55 nm21, «050.04 eV, andNt51026 m23.

FIG. 2. The temperature dependences of theQ(T) factor in a
hopping system with an exponential DOS distribution. Material
rameters are the same as in Fig. 1.
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conductivity of multiple carrier jumps between pairs of o
casionally close hopping sites. This effect is known to
essential when the dc conductivity in positionally rando
hopping systems is concerned. In such systems, the prob
of apparently high conductivity can be resolved by the int
duction of the concept of a minimum number of bonds
quired for the occurrence of the infinitely large percolati
cluster.

At variance with positionally random hopping network
carrier transport in systems with both positional and ene
disorder implies an interplay between the jump distance
the energy difference between starting and target sites.
interplay is traditionally considered in terms of the variab
range hopping models that disregard the possibility of car
jumps from target sites back into starting sites. Since
rates of direct and backward jumps between any two sites
different in an energetically random hopping system, o
may expect that the effect of return jumps could change
temperature dependence of the VRH dc conductivity. Ho
ever, our consideration proves that the effect of return jum
does not affect the MottT21/4 functional dependence of th
conductivity for constant DOS distribution and only slight
changes the functional temperature dependence in a ma
with an exponential DOS function. This is revealed by t
fact that, for a constant DOS, round-trip jumps lead only t
different numeric factor while this factor reveals only a we
temperature dependence in the case of an exponential
distribution. This result implies that the percolation conce
of minimum bonding remains applicable for energetica
random hopping systems as well.
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FIG. 3. The temperature dependences of the dark dc condu
ity in materials with an exponential DOS distribution normalized
its valuesM calculated without account for the backward carr
jumps. Material parameters are the same as in Fig. 1.
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