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Effect of backward carrier jumps on variable-range hopping in disordered materials
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A variable-range hopping model is described that accounts for the effect of back-and-forth carrier jumps
between occasionally close hopping sites isolated from the rest of the hopping network. It is shown that
accounting for this effect for constant density of staf@®S) does not change the Mot law but yields
a modified coefficient that can be considered as a percolation threshold for dc conductivity in a positionally and
energetically disordered hopping system. In a system with an exponential DOS distribution, the backward
jumps significantly reduce dc conductivity but only slightly affect its functional dependence upon temperature.
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[. INTRODUCTION getically disordered hopping system was recently considered
within the framework of a single-particle approximation.

In a positionally and energetically disordered hoppingThis approximation is relevant to the carrier mobility as de-
system, both the distanaeand the energy differencAE  termined from time-of-flight measurements. However, filling
between hopping sites are subject to a considerable variatioRf localized states is disregarded in that case and, therefore, it
Since the carrier hopping rate exponentially decreases witdoes not describe the dark dc conductivity that is controlled
increasing andAE, carrier jumps to nearest hopping neigh- by carrier hopping around the Fermi level.
bors, i.e., to sites with minimum possible valuesroénd
AE, should represent the major transport mode. However, 1l. PERCOLATION APPROACH TO HOPPING IN A
groups of two, three, or more sites, that are occasionally POSITIONALLY RANDOM SYSTEM
close to each other, can form an “exclusive circle.” A carrier, . . -
localized in one of such sites, must make several jumps back Charge-ca_rrler_transp(_)rt n posmo_nally rf_;mdom systems
and forth within such an isolated group of sites before it wiIIOf hopp|_ng sites Is trz_ad|t|0nally con3|dered in terms of the
jump to a site that does not belong to this group. The occurperCOIat'on theor?.meg toan expon_entlally strong (_jepen—
rence of such exclusive circles is well known from Monte 4€NCe Of the hopping rate upon the jump distance, jumps to

Carlo simulations of charge-carrier hopping transport in dis_nearest hoppmg' heighbors are the dom.mant. mode of charge
ordered materials? transport. In a disordered system, hopping distances are sub-

Analytic approaches to the variable-range hopgH) ject to strong variation and, therefore, a longest distance be-

in disordered systems are based on averaging carrier ju een hopping si.tes,c, can be identified in.the infinite hop-
rates>* The averaging often accounts for all possible carrie Ing cluster that is required for dc conductivity. The value of

jumps including those within exclusive circles. This leads tof ¢ Must be proportional to the average distance between sites

an overestimate of the average hopping rate and, further, t@at is determined by the concentration of hopping sités,

— N-13 - - : o :
an overestimated dc hopping conductivity. The reason fofc=CN " wherecis a universal numeric coefficient. Vari-

that is obvious. The dc conductivity can occur only if charge_Ous Monte Carlo simulations yieldéfithe value ofc rang-

carriers travel across the whole sample, i.e., only via an ini"d from 0.86 to 0.89. Carrier jumps between sites, separated

finitely large percolation cluster of connected hopping sitesPY the longest d|s_tance, are e}ssumeq.to be the r_ate-llmmng
teps that determine the carrier mobiliy Concomitantly,

However, if two sites happen to be very close to each other ; o
carrier would most probably jump back and forth betweentn€ concentration dependence of the mobility takes the form

these sites many times before the less probable jump into a _ _ -1/3
more distant site would occur. W= o X~ 269N, @)

In the present work we formulate an analytic VRH modelwhere v is the inverse carrier localization radius and the
that eliminates back-and-forth carrier jumps within isolatedprefactoru, contains a weak dependence upon the concen-
pairs of hopping sites. It will be shown that the occurrence oftration of hopping sites due to the concentration dependence
such jumps does not affect the functional temperature depemf the hopping distance.
dence of the conductivity that still obeys the Matt ¥ law. A conceptually different approach to positional disorder is
This implies applicability of the percolation approach to thebased on consideration of an ordergdr instance, cubic
VRH problem based on the concept of the minimum numbefattice of hopping sites in which some bonds are randomly
of bonds,p,., required for the infinite hopping clustéThe  broken or some sites are randomly blocked. The question is:
value of p. can then be calculated within the framework of what is the minimum number of survived bonds, or un-
the VRH model. Carrier “multiple hopping” between occa- blocked sitesp. sufficient to form an infinite percolation
sionally close hopping neighbors in a positionally and enercluster? The answer to this question depends upon the lattice
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configuration and for a cubic latticp,=6x0.32=1.9 for  thermally activated carrier jumps from occupied localized
sites andp,= 6% 0.25=1.5 for bonds was founfilt is worth  states at the Fermi level and the starting energy for such
noting that number of unblocked sites should be higher bejumps must be just the Fermi enerfy . Every neighbor of
cause a broken bond between two unblocked sites does natgiven starting site can be characterized by its hopping pa-
exclude a finite probability to get from one site to the other.rameter. For a site of the ener§y, the average number of
Phenomenologically, one can extend this approach by introaeighbors,n(u), whose hopping parameters are not larger
ducing a minimum effective number of bonds required for anthanu, can be calculated as

infinite percolation cluster in a positionally disordered sys-
tem. In such a system, hopping sites may have neighbors
over short distances. Jumps to such neighbors are very fast
but these jumps could hardly contribute to dc conductivity
since the return jump will be equally easy. The effect of suchvhereg(E) is density of state¢DOS) distribution function.
backward jumps can be eliminated if one requires that al- The dc conductivityo will be governed by carrier jumps
ways at least one hopping neighbor must be found within théo the sites with the most probable values of the hopping
sphere of average jump distange The distancér) should ~ parameter. The most probable jump from a starting state to a
then be found from the condition that the number of hoppingarget site can be characterized by the average hopping pa-
neighbors within this sphere must be equapto-1. In the ~ rametexu). This parameter can be calculated by averaging

u/2y Ep+kT(u—2yr)
n(u)=477J drrzf g(E)dE,, (6)
0 Er

limit this gives over the Poisson probability distribution of finding a nearest
hopping neighbor of the hopping parameter The result
am . reads
?<r> N=pc, 2
o dn(u) o
and solving Eq(2) then leads to the following expression for (W)= fo duuexd —n(u)] do fo duexg —n(u)].
the mobility: @

_ PN % 1/3N71/3 3 In the classical Mott version of the VRH, which disregards
K= Mo €X " ar ' &) the backward jumps of carriers, the dc conductivity is calcu-

o . . lated for a DOS distribution that remains constant on the
which is completely equivalent to E{l) with parameters energy scale relevant to the low-temperature hoppifte)
and p. being related to each other as

=gg. The use of a constant DOS distribution in E(®.and
(7) leads to the following expression fou)y, :

4 3
Pe=—3C" (4) B 4 B
(u)sz duex;{—(—) =u0f dvexp — vt
Consequentlyp. ranges from 2.7 to 3.0Refs. 7-9 for a 0 Uog 0
positionally random hopping system. It is worth noting that
these percolation parameters were calculated disregarding _ Yoo g
; i : I'(3)=~0.9061,, (8

the energy disorder. In the following section we suggest a 4

model that accounts for backward carrier jumps and yields herel is th funct is the di ionl
the percolation parameters in a hopping system, which ignere tIS def_ga(rjnma— unction andy is the dimensionless
disordered both positionally and energetically. parameter defined as

3(2,},)3 1/4

I1l. VRH INCLUDING BACKWARD CARRIER JUMPS Ug= W
™Yo

(©)

Charge-carrier transport in a positionalind energeti-
cally random system of localized states is described in term
of the VRH theory** The rate of carrier jumps;(r,Eg,E,),
over the distance between a starting site of energy, and
a target site of energye; is described by the Miller-
Abrahams formula as

ghis worth noting that this result is obtained while neglecting
the possibility of backward carrier jumps into initially occu-
pied localized states. Similar to the situation in positionally
random systems, such jumps should not be taken into ac-
count if one addresses the dc conductivity in positionally and
energetically random systems.

v(r,Eq.E)=voexd —u(r,Eq,E)], At first glance, the problem of backward jumps in VRH
can be solved on the basis of the same percolation ideas that
E.—E were reviewed in the preceding section. However, there is an

t t
KT > (E—Eg, (5  important difference between master equations governing

carrier hopping in systems that are random both positionally

whereu is the hopping parametes the unity step function, and energetically, on the one hand, and only positionally, on
T the temperature, arkithe Boltzmann’s constant. the other hand. While the rates of direct and backward jumps
Low-temperature dark equilibrium conductivity in amor- of a carrier between any two localized states are equal to
phous semiconductors is due to carrier jumps via localizegach other in a positionally random network of hopping sites,
states around the Fermi level. The rate-limiting step is therthese rates are necessarily different in a positionally and en-

u(r,Eg,E))=2yr+
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X

ergetically disordered system unless the two sites occasiomonstant DOS distribution substituting Eq4.0)—(12) into

ally have the same energy. Therefore, it is rotpriori Eq. (7) yields

clear whether accounting for backward carrier jumps in 4 . 4

VRH would result in changing only numeric parameters as it (u)= fcduex;{— (i) n i—?f i(ex;{ _ E’(i) 4

is in positionally disordered systems, or whether the tem- 0 Uo 0 X 20

perature dependence of the conductivity would also be dif- A

ferent. ulY) .3

The rate-limiting step in VRH are thermally assisted car- 1—exp{ a T(u_o) X(1=x) ))

rier jumps from occupied states of energies arolmdto J

vacant hopping sites above the Fermi level. Such jumps do * 4 [1OX 13

contribute to the dc conductivity only if subsequently the :Uofo dveX[(— V4+Hfo 7exp(—ﬁv4x4)

carrier jumps further rather than coming back to the initially

occupied state. Therefore, one must exclude from consider- 1143

ation those vacant hopping sites from which carriers will X{1-exd = Zvx(1=x)]} |~ 1.1830. (13

most probably jump back to their starting sites. Consider a ) ) _ )

carrier that jumped from a starting site of the enelgyover ~ Despite the rather complicated form of H4.3) it predicts

the distance into a target site of the enerds;. This jump  €Xactly the same temperature dependencéupr as Eq.(8)

will contribute to the dc conductivity only if the target site fOF the traditional approach. Only the numeric coefficient is

has at least one neighbor with hopping parameter less thag{fferent._Tkus proves that accounting for the pos_S|bII|ty Qf

u,=27yr outsidethe sphere of radiuscentred at the starting r_oungl rips” of carriers changesftl)/rlly the numeric coeffi-

site. The average number of such neighbers(E.r), in- cient in the exponent of the Moft - law while the func-

creases with increasirg andr as tlonal' dependence of the _conductmty upon the temperature
remains unaffected. This implies that the concept of a mini-

mum number of bonds that is sufficient for the formation of

the infinite percolation path, can be also applied to hopping

nb(E,r)=27-rJ'rdr’r’2f7T dd sing systems with both energetic and positional disorder. This
0 arccogr’ /2r) number can be evaluated from the following condition:
E+2ykT(r—r")
X (E")dE'. (10
fE,: g nM(<u>)=pC1 (14

whereny,((u)) should be calculated with the average hop-
The probabilityw(E,r) that there is at least one such neigh- ping parameter determined by E@) similar to the proce-
bor is determined by the Poisson distribution, dure of Sec. Il. This calculation yields,=1.96. This value
is smaller than the minimum number of bonds providing for
the infinite percolation cluster in a 3D positionally random
hopping system.=2.7). This result is not surprising be-
W(E,r)=1—exd —ny(E,r)]. (12) cause the occurrence of energy disorder is virtually equiva-
lent to an additional dimension in theE space and the
minimum number of bonds is known to decrease with in-
The functionw(E,r) essentially determines the probability creasing dimensionalify.®
for a carrier that is localized in a state at the Fermi level to Finally, we consider VRH with backward carrier jumps in
find a hopping neighbor of the ener@yover the distance a system with an exponential DOS distributiag(E)
such that a jump to this neighbor will, most probabigtbe = (N;/e)expE/ey), whereN; is the total number of local-
followed by the return jump. The average number of suchzed states andj is the characteristic energy of the distribu-
“one-way” neighborsn(u) whose hopping parameters are tion. This distribution is typical for band-tail states in inor-
not larger tharu for direct carrier jumps from the starting ganic  disordered semiconductors.  Substituting an
site at the Fermi level, are given by exponential DOS function into Eqé7), (10)—(12) in order to
calculate{u), and, respectively, into Eq&) and(7) in order
to calculate{u)y, , leads to complex expressions fa) and
w2y - [EptkT(u=2y1) (U)ym, that can be solved numerically. The temperature de-
drr j dE[1—expny(E;)}]. pendences of the average hopping paraméterand (u)y,
(12) are shown in Fig. 1 for different positions of the Fermi level,
i.e., for different total carrier densities. If plotted as{ojgvs
T~ Y the curves are almost parallel to each other, implying
If one accounts for the possibility of backward carrier jumps,that (u)(T)=0(T){u)u(T), whereby the function®(T)
the parametefu) can still be used for the calculation of dc only weakly depends upon the temperature, as illustrated in
conductivity: ocexp(—(u)), where(u) is defined by Eq(7) Fig. 2. The factor®(T) also depends upon the Fermi-level
but with the functionn(u) as determined by Eq12). For a  position. If E¢ is large enough, the system with an exponen-

n(u)=47-rJ’

0 Er
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FIG. 3. The temperature dependences of the dark dc conductiv-

FIG. 1. Temperature dependences of the average hopping Py in materials with an exponential DOS distribution normalized to
rametergu) and(u)y for an exponential DOS distribution paramet- i1 yajue o, calculated without account for the backward carrier

ric in t_hle Fermi level position. T?e _oLata are calculated for jumps. Material parameters are the same as in Fig. 1.
=5nm?!, £5=0.04 eV, andN;=10°° m™3.

tial DOS function behaves rather similarly to that with acon_ductivity of multipl(_a carr_ier jumps betwe_en pairs of oc-
constant DOS. The effect of backward jumps on the dc Congasmn{ally close hopping sites. .T.h|s.effect. IS known to be
ductivity is shéwn in Fig. 3 in which the ratio af's calcu- essential when the dc conductivity in positionally random
lated with and without éccounting for backward jumps ishoppmg SVSte”?S IS concer_n.ed. In such systems, the problem
plotted as a function of the temperature parametric in thé)f apparently high conductlwty_c_an be resolved by the intro-
Fermi energy. At low temperatures, the probability of back-duf:tIon of the concept of a minimum number of bonds_re-
ward jumps is high and, concomitantly, their effect on Con_quwed for the occurrence of the infinitely large percolation
ductivity is strong: the difference in dc conductivities turns cluster.

out to be very large, especially for systems with deeper At variance W'.th posmonally random hqppmg networks,
: carrier transport in systems with both positional and energy
Fermi levels. . SR . : .
disorder implies an interplay between the jump distance and
the energy difference between starting and target sites. This
IV. CONCLUSIONS interplay is traditionally considered in terms of the variable-
range hopping models that disregard the possibility of carrier

Theoretical analysis of charge-carrier transport in an en%urnps from target sites back into starting sites. Since the

ergetically and positionally disordered hopping system must,eq of direct and backward jumps between any two sites are
avoid the inclusion of an apparent contribution to the dcjiterent in an energetically random hopping system, one

may expect that the effect of return jumps could change the
1201+ E.=-02eV . temperature dependence of the VRH dc conductivity. How-
e E.=-038V e ever, our consideration proves that the effect of return jumps
118 _E =040V e does not affect the Moff ~# functional dependence of the
F 4 P .. .. . .

—E.=-05eV..--"" conductivity for constant DOS distribution and on]y slightly .
- P - changes the functional temperature dependence in a material

___________ with an exponential DOS function. This is revealed by the
- fact that, for a constant DOS, round-trip jumps lead only to a
. different numeric factor while this factor reveals only a weak
e temperature dependence in the case of an exponential DOS
____________ distribution. This result implies that the percolation concept
of minimum bonding remains applicable for energetically
random hopping systems as well.

e(T)

_____
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