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Thermodynamic Bethe ansatz equations of one-dimensional Hubbard model
and high-temperature expansion
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A numerical method to calculate thermodynmic Bethe ansatz equations is proposed based on Newton’s
method. Thermodynamic quantities of the one-dimensional Hubbard model are numerically calculated and
compared with high-temperature expansion and numerical results of the quantum transfer matrix method by
Jutner, Klumper, and Suzuki. The coincidence is surprisingly good. We obtain the high-temperature expansion
of the grand potential up t@°.
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I. INTRODUCTION ™
g=e0—A—T[ f po(K)In[1+ ¢(k)]dk
Many years ago, one of the auth@M.T.) proposed ther- T
modynamic Bethe ansat¢TBA) equations for the one- o
dimensional(1D) Hubbard modef. In this theory several + _w‘TO(A)ln[1+771(A)]dA : @

kinds of strings are assumed and it is widely believed that

this set of equations gives the exact thermodynamic quantiHereeg, po(k), andoo(A) are energy per site and distribu-
ties of this model. Low-temperature thermodynamics werdion functions ofk’s and A’s at T=h=U/2—A=0 (half-
investigated by ME and actual numerical calculations at filled, zero-field ground state

finite temperature were done by Kawakami, Usuki, and

Okiji.* Essler, Korepin, and Schouténsounted the number B » Jo(w)Ji(w)de

of states by singlé- excitations,A strings, anck-A strings. €= _4tJO w[1+exp(2u’w)]' E)
They found that total number of these Bethe ansatz states

and their relatives is s, whereN, is the length of the sys- - dk

tems. This implies that the Bethe ansatz can give all eien- Uo(A)ZJ s(A—sink)E, (4)

states and eigenvalues. However, some physicists are still
skeptical about this theofyRecently Charreet al’ did a 1 .
numerical calculation of this equation and concluded that it po(K) = —+coskf a,(A—sink)og(A)dA,  (5)
does not coincide with the high-temperature expansion 2m —

(HTE) and the quantum transfer matrfQTM) method by

Jutner, Klimper, and Suzul.In this paper we give a prac- and
tical method to calculate numerically the TBA equations ,
. e . . U 1 X U
which has infinite unknown functions. Numerical results g (x)=———— s(x)= —sech—, U’'=—
e ; 12 2y’ ’ 7’ 4t°
completely coincide with those of the QTM and the HTE m(U’'+x%) 4U 2U
methods. The numerical calculation of the TBA equations of (6)

Charretet al. is wrong. The Hubbard Hamiltonian is £(k) and 7,(A) are hole-particle ratios df excitations and

single\ excitations. These are determined by the thermody-
namic Bethe ansatz equations forexcitations,A strings,

HEUAN=13 3 (choj, el andk-A strings
ij) o
N N xo(k) [~ . 1+71(A)
a a InZ(k)= +f dAs(A —sink)Inf ——————],
+U2, clieiclici =AY (clcii+cfici)) T - 1+71(A)
i=1 i=1 (7)
Na
—h2, (clici—cfjci). (1) In 7,(A)=s*In[1+ nz(A)]—f s(A —sink)
XIn[1+ ¢ (k) ]coskdk, (8)
Here cJ-T(, andc;, are creation and annihilation operators of
an electron at sitg (ij) means that sitesandj are nearest , - , m _
neighbors.N, is the number of atoms. We put-0,U>0. In7;(A)=s*In[1+ 75(A)]— _Ws(A—smk)
The thermodynamic potential per sigeat temperaturd is
determined by XIn[ 1+ £(k)]coskdk, 9
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In 7;(A)=s*In{[ 1+ 7;_1(A) ][ 1+ 7;41(A)]}, cluster expansion. From thieexpansion, we can derive thge
expansion of—gg for the 1D Hubbard model up tg®.
i=2, (20 Expansions of the susceptibility and specific heat are ob-
tained. In the Appendix, we can perfornt axpansion of the
In nj’(A):s*In{[1+ nj’,l(A)][1+ 77j'+1(A)]}’ TBA equations. The results coincide with the cluster expan-
sion up to second order. We expect that the higher terms also
=2, (11 coincide.
i In7q(A) _2h 12 Il. TRUNCATION OF THE TBA EQUATIONS TO FINITE
am T UNKNOWN FUNCTIONS
, As an approximation we replacg{A) by 38(A) at j
" In 7,(A) _U-2A 13 N in Egs.(10) and(11). Then we get the difference equa-
noe N T tions
Here s* f(A)=/"_s(A—A")f(A")dA’ and kq(k) is de- (A =[1+ 91 (M) ][ 1+ 7;41(A)],
fined by o , , _
7 (A)*=[1+ 7 (M) ][1+ 7 (A)], j>ne.
0 16
Kko(k)=—2t cosk—4tf dAs(A —sink) _ o ) (18 )
—o This approximation is reasonable because the functions
«ReyI—(A—UN)2. (14 7;(A) and»n (A) vary very slowly at sufficiently largpand

JZ.s(A)dA=1/2. General solutions of these difference
Details of the derivation are given in Refs. 1, 2, 9, and 10equations are
Noting that In(t ¢ Y)=In(1+2)—In ¢ in Eq. (8) and substi-

tuting Eq.(7) we have (A)= sintf{f(A)+]]a 2_
7; sinha '
si(A) |
In 771(A): +S In[1+ 772(A)] sini{ (A)+ ]b 2

T , g J .
n(M=l—arp ) ~L iZne. 1D
- fﬁ S(A —sink)In[1+ (k) Jcoskdk, From the conditiong12) and (13), the parametera and b
i must beh/T and U/2—A)/T. Then 1+ 77nc+1(A) and 1

m + 5, . 1(A) are represented by
sy (A)=—2t J coks(A —sink)dk. (15) et

h h 2
In Ref. 2 this set of equations was solved analytically in the (COShf\/“' Mn(A)+ \/1+5|nI"F?[1+ ”nC(A)]) ,
limits T—0, t—0, andU—0 and coincided with known
exact results. In a recent paper Chageal.” solved numeri- h’ h’' 2
cally this set of equations at high temperature and argued that | coshr/1+ M (A)+ \/1+Sinhz?[l+ 77,',6(1\)]) ,
there is a discrepancy from the high-temperature expansion
and the numerical results of the tther-Klumper-Suzuki h'=U/2—A. (18)
(JKS) equation€ We recalculate the same quantities in this ) ) o )
region and find that the results coincide with the high-ThUS mtegral equations with mﬁmte unknown functions are
temperature expansion and the JKS equations to high acc@PProximated by ~ those ~with m@+1  unknowns
racy. In Sec. Ill we review the expansion for the one- N7, (A), . ... In7i(A).In{(K).In7(A), ..., In7, (A). Then
dimensional Hubbard model by the conventional linkedthe equations to be solved are

z,=s*In{(1+expz,)[ coshu,\/1+expz; + V1+sinfu,(1+expz;) 1%, (19
zj=s*In(1+expz;_1)(1+expzj,q1), j=2,...Nn.—1,

ko

Zn = s*In(1+ expznc_l) - f S(A —sink)In(1+ expzncﬂ)coskdk,

1+expz, )

ch+1= UKot jiwdAs(A—smk)ln m
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m

S(A —sink)In(1+ expznc+l)coskd K,

Zn +2=UsS+ s*In(1+ expznc+3) - J

zj=s*In(1+expz;_)(1+expzj;q1), [j=nc+3,..., 4,

Zon,+1=S*IN{(1+expz,, )[ cOShuz\/1+expzn 11+ /1+sintus(1+expza, 11)]%).

We introduce three thermodynamic parameters iterations at most to get sufficient convergenZel|A |
<10 8. We can get the thermodynamic potential through Eq.
u=1T, u,=(U/2—A)IT, us=h/T. 2):
For actual numerical calculations we chodsealiscrete g U
points ofk and A as follows: 7 ( ey— 0 Ug+Uuy— f po(k)ln[1+expznc+1(k)]dk

U12
=i —L2/L, Aj=sing \[1+ o - J ool A)IN[1+expz,,5(A)TdA. (26
i

q=m(j—12/2L), j=1,...L. (20) '!'o get the first-order thermodynamic guantities like mag-
_ . _ . netization (n), electron densityr{), and entropy we need to
Here the functionA =singy/1+ (U’/cosq)? is the inverse calculated(g/T)/du,, d(g/T)/du,, andd(g/T)/Jus:
function of [ARg1—(t—U'i)?]"Y2dt. We think that this
change of parameters is reasonable because the change ofg 9Zn +1(K)
51i+52i_f po(K) — dk
1+ ex —zg1(K)]

functions is very slow at largd . For very bigU’ this func- Ji T~

tion behaves a&l'tanqg and for smallU’ it behaves as siq

Unknown functions are represented by vectors with lehgth 8:Zn +2(A)

and integration kernels are represented_byL matrices. —f oo(A) : dA. (27
Usually this kind of nonlinear equation is calculated by 1+exp[—znc+2(A)]

successive iterations, which is called Kepler’'s method. In thel’he equation fop,z,, is a linear equation which has the same
solution of the TBA equations we need to repeat several tenﬁomogeneous telrr;; with that in Newton’s method. Inhomo-

or several hundreds times of iterations to get a good Conveﬁeneous terms are calculated frap. Therefore we can

gence. calculate these quantities by one operation of linear calcula-
So here we propose to use Newton’s method. Considgf . q y P

coupled nonlinear equations

eo—E

e=3d.(g/T)+Adx(g/T),
X;—Fj(X1,Xz, ... X0)=0, j=1,...N. (21 1(9/T)+Ad(0/T)
For approximate vectors!" assume that we have deviations N=dx(9/T), m=d5(g/T),
A entropy=u;(e—g) —usm+(u,—Uu,/2)n.  (28)
XO—F;(x() X9, ... X\ =4;. (22) o calculate the second-order thermodynamic quantities such
as specific heat, susceptibility, and compressibility we need
the 3X 3 tensord;d;(g/T). As this is a symmetric tensor, we
X§'+1)=XJ(')+AJ- ) (23)  need to calculate six components. We consider equations for

In Kepler's method the next approximation is

In Newton’s method we put (i o
faJ :aiajza—'_l—(&iza)(ajza)! |$J. (29)
XHD=x() 4 g, (24) +expz,
) . ) . The tensor is given by
where§; is a solution of the linear equation

IF, (X0 XD X | .Ez_f
Z 5 i(X3 kS N §=A. (29 did; T po(K)
] j

Wk
L exi —zp 1(K)]

This method is much faster than Kepler's method. But we flo(A)
f ao(A) A (30

must solve linear equations with @&ixX N matrix. In our 1+exd -z, +2(A)]d
TBA problem, N is (2n.+1)L. This large matrix is block ¢
tridiagonal. Regardind- XL blocks as a number, we can The inhomogeneous terms are calculated fynandd;z,, .

solve this set of linear equations. We need only 5—-6 times o§o we can calculate thermodynamic quantities from ten
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guantitiesg/T and its derivatives for a given temperature, (nD13t+mDyy)Dyg
magnetic field, and chemical potential after several times of k=Ug| Do~ NDoatmD
linear equation solving. The specific hesn constant and % 13
m, susceptibilityy in constanin and temperature, compress-

ibility « in constant temperature, ama/n are given by

DZgD 2o+ DI,D 33— 2D 15D 13D 3
D25~ DyiDas

C:ui D11+

If we want to calculate thermodynamic quantities at fixed
electron density, we can use Newton’s method again. Using

D§3 the compressibility we reach the target density after few
X=U1| Dag— Dy’ times of iterations.

[ll. t EXPANSION AND B (=1/T) EXPANSION

Thet expansion of thermodynamic potential uptfohas been done for the single-band Hubbard model by Kudod
Liu.'? For the one-dimensional model their expansion becomes

22 4 2 2 6 2 6
—gB=log ]+ (Bt) ?Gﬁ(ﬁt) ?Gﬁ gGs—gGl +0((B1)°), (32
where

£=1+2 costigh)efA+efA-U)

2BA

2
G, =cosh gh)efA(1+ef2A~V)) 4 ,ZU (1-e A9,
4e2BA 28A
Go=— h)efA(1+ePPA~V) 4 1+e AY)— 1-e Y,
2= rosfiBh)e(1+e ) (BU)Z( e ") (Bu)g( e ")
1 3e?BA 2e2BA
G3:g§eBAcosk(,8h)(1+eﬁ(2A*U))+ 50 [1+ePCA~Y)—2 costigh)ef AV ]+ (BU)Z[Z costigh)efA(1—-2e~#Y)
2 £@2BA
—(2—e AY)(1+ePPATUN ]+ €€ (1—e AY). (33

(BU)®

G, term is the second-order term of thexpansionG,, Gs, and Gi terms are fourth order. It is expected thagg is
expanded byst,sh,Bh’,Bu’, where we puh’'=U/2—A, u'=U/4:

—9B8= 2 An n,nyn,(BD™(BN)"2(BN)"3(BU")"™, (34)

Ny,Ny,N3,n =0

From Egs.(32) and(33) we can calculate all coefficiem%;nl,r12 n, atn;<6.0n the other hand, we have

N3

(B> (Bt (BY°

~gB=In4t o — et L —0((B®), (35)

whenU=h=h"=0. Then we haveAs,o=1/144 andA; oo =0. In this way, we can determin®, . . n, atn;+n;
+n3+n,<7 and obtain theg3 expansion of the grand potential:
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U=4

specific heat

dashed line...Charret et al ,
/
i lculati
0.015 | points.. TER catoulation e FIG. 1. Specific heat ab=4, h=0, and
full line...high temperature expansion e U/2—A=0. Poaints are our results of TBA calcu-
lations and the dashed line is the calculation of
Charret et al. The solid line is the high-
0.01 temperature expansion.
0.005
— B
0.1
In4 Bz 2223222'834 2(h24 h'2 2,12 4, 14
g:—?+(h’—u’)—z(2t +2u’“+h“+h’ )_Z(h —h’ )u’+%(6t +12t°(h“+h’'%)+32t“u’“+8u’*+h

4 5
+6h%h’2+h'%) + %u’(hz—h’z)(6t2+ 2u'%2+h%+h'?)— %){mht“[soay%%(hu h'2)]+t?[288u"*

+60u’2(h?+h'2)+30(h*+6h%h'2+h'*)]+32u’ 6~ 45u'2(h*~ 2h?h' 2+ h'4) + h®+ h'6+ 15h*h'2+ h?h'4)}

6
- —Zggou'(hz—h'z){54o:4+t2[72m'2+300(h2+h'z)]+96u'4+40(h2+ h’2)u’2+17(h*+h’*)+62h*h"?+O(B7),
(36)
U=8
specific heat
dashed line...Charret et al
0.04 points...TBA calculation P
s
full line...high temperature expansion , FIG. 2. Specific heat aU:8, h:0, and

U/2—A=0.
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susceptibility
dashed line...Charret et al
0.05
points...TBA calculation
0.04 full line...high temperature expansion
’ P FIG. 3. Magnetic susceptibility at/=4, h
-
e =0, andU/2—A=0.
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This expansion up t@* is equivalent to the one obtained TBA equations is not correct. Probably the convergence con-
by Charretet al. Moreover, we could get two more terms dition is too generous. Our numerical calculation is done by
higher than theirs in the high-temperature expansion of th&ise of MATHEMATICA 4.1. The source file is available from
grand potential. From this expansion we get the specific heatttp://www.issp.u-tokyo.ac.jp/labs/theory/mtaka/index.html.
and magnetic susceptibility per site in the half-filled and The calculations of Kawakaneit al. and Jutner et al. are
zero-field cases: based on Kepler's method. The TBA equations show a very

slow convergence in Kepler's method. One needs several
4 tens or several hundreds of iterations if one takes6. The
B QTM equation of Jtiner et al. is a bit faster but one needs
several tens of iterations. The method of Chaetedl. seems
55+0(°) to be based on Kepler's method as they reported that the
' TBA equations converged after 2—3 times iterations. This is
37) too short and not reliable. We conclude that the discrepancy
between the TBA equations with the QTM equations or high-
temperature expansion comes from their inappropriate con-
g uwps > 1 vergence conditions.
X=5+t—F5———=(3t°+u')u’'B ; ;
2 2 4 6 We get very fast convergence if we adopt Newton'’s
4 23 s method. After 5—-6 times of iterations we get sufficient con-
stu” tu™ u . [ : hod the error decreases
Ly _) B8 vergence Mor_eover, in Newton’s metho
8 2 15 with acceleration.
+O(B7) 38) We made numerical programs for the TBA and QTM
' equations. In Table I, we observe the dependence of the nu-
In Fig. 1 we plot our numerical results of the TBA equationsmerical results om.. As n. increases they converge to the
of the specific heat dt =4, h=0, andA=U/2. They agree high-temperature expansion and the QTM calculation tif Ju
very well with the high-temperature expansion whgn neret al. Both equations give completely the same numerical
<0.1. The dashed line is the numerical calculation of theresults. Especially for the grand potential the values coincide
TBA equations by Charredt al. Figure 2 is the specific heat Within five digits accuracy. We can conclude that both equa-
at U=8. Figure 3 is the susceptibility ai=4, h=0, and tions are equivalent, although the mathematical equivalence
A=U/2. is not yet proved.

About the S@4) symmetry Ref. 2 did not treat explicitly.
But in Ref. 1 the symmetry is treated carefully and the same
equations are derived. The thermodynamics may not be sen-
sitive to the S@4) symmetry. In conclusion we can use the

In this paper, we show that the TBA equations and QTMTBA equations for thermodynamic quantities of the 1D Hub-
formulations by Jttner et al. give completely the same nu- bard model. But one needs some numerical technique shown
merical results and coincide also with the high-temperaturén this paper.
expansion. The numerical calculation of Chaetal. for the For the XXZ model it is known that the TBA equations

3t*
c:(t2+u’2)ﬁ2—(7+4t2u’2+ u'?

. 5t6+51t4u’2+62 iy 2u’®
22" M T

1
2 12\+2 25
+ 5z (3220

IV. DISCUSSION AND CONCLUSION
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TABLE |. Numerical results of the TBA equations for the grand potential, energy, entropy, specific heat,

PHYSICAL REVIEW B 65 165104

and susceptibility aB=0.1, U=4, andh=U/2—A=0 for various values ofi,. We putL=64 and com-

pare with the high-temperature expansi86) and the QTM equations of ttneret al. We find thatn,=6 is
practically sufficient.

-g e Entropy C X
n.=6 14.96245182 0.801931104 1.37643829 0.01943355 0.05459858
n.=12 14.96247427 0.801886862 1.37643611 0.01943778 0.05465946
n.=24 14.96247646 0.801882551 1.37643590 0.01943818 0.05467815
n.=48 14.96247660 0.801882261 1.37643588 0.01943821 0.05468324
n.=96 14.96247662 0.801882219 1.37643588 0.01943821 0.05468587
B expt. 14.96246886 0.801890167 1.37643590 0.01943825 0.05468635
JKS 14.96246887 0.801890163 1.37643590 0.01943818 0.05468632
and the QTM method give completely the same results 2t

Tt X
numerically’*~1” Recently, it is shown that the TBA equa- S1(A)=— TSGCh2—+O(t3)-
tions can be derived from the quantum transfer matrix for-

mulations for this modet®'° An intriguing simple equation, The integralf” ,dAs(A —sink)- - - becomes

which has only one unknown function, was also derived both

from the TBA and the QTM? In the future, we hope to L 2mt T 27wt \?
show the equivalence of the two formulations for the Hub- __dxs(x)| 1+ ysink tanh; x+| =sink
bard model.
1 T
X ——+tanh’-—x)+0(t3) ,
ACKNOWLEDGMENTS 2 2
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— 1 T
s(X)= Zsechz—x.

The TBA equations are

APPENDIX: t EXPANSION FOR THE TBA EQUATIONS U 4t%In 2 o
) ] In¢(k)=pB| — =—2t cosk— )+f dxg(x)
First, we expana, as a power series @i’ =4t/U: 2 u —
2 2 2t 2t 2
en=—4 E In2u’—1— 1x3)7463) 1— i X |1+ Twsinktanhngr(TWsink)
0 2 2x4) 3 22
1 P T | 1+ 71(x)
XU’ "3+...| (A1) X —§+tan EX nm,
Then we have thé expansion of the constant term ofg3: 8mwpt2_ At (7 2t
In 9,(x)=— U S(X) — Uf_ s(x)| 1+ T
(A—ep)p=pA+ 2 (g2 %) gias o(pnye W
—ey)B= T - .
° BU (BU)°

2 ><sinktanh721x) In[1+ £(k)]coskdk

We putA=U'X. aq, pg, kg, ands; are written as follows: +§*In[1+ 72(X) ],

t T mt? T T
oo(A)= gsech; X 1+ 57| —1+2tanff 5x |+ O(th) |, In 77(x)=— %tf_ws(x) 1+ %sinktanhgx)
(k)= i+ 2tIn zcosk+0(t3), XIn[1+ ¢(k)]coskdk+s*In[1+ n,5(X)],
27 U o
In 72;(X) =s*IN{[ 1+ 5, _ 1) ][ 1+ 7+ 1) ]},
B 4t%In 2 . B
wo(k) =2t cosk= 5 = +O(), (A3 In 7} () =5"N{[1+ 7] _;(0I[1+ 7], (0T} (Ad)
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—gp is given by

A+4 024 J (1+2In2t k)
—gB=p BU (B)“+ I pey cos

2+2
F(_l

XIn[1+ ¢(k)]dk+ Jw s(x)| 1+

In[1+ 7,(x)]dx. (A5)

ar
+2 tanh2—x>

We expand the functions by a power seriesBof

In[1+ 7 ()] =In—=+(BOF00 + (B (x) + -

|n[l+ 77J,(X)] =In + (ﬂt)fj’(l)(x) + (Bt)Zer(Z)(X)

12D +(BOZZA() + -
(A6)

In[1+Z(k)]=

We get

1
In 7;(x)=In _1+(3t)ajf}1>(x)+(5t)2 a;f(x)

1
+ 5 (a0

In 7] (0 =In——=+ (B a] ]P0 + (B o] f] D)

J

1
+ 5 (af—a])Lf{ P (x0)?

+ .,
In (k)= 2 22 (k)
1 2
+5(2o= 2 [ZDP |+, (A7)
where
B U O Vit T L
O+ Yy 0 [2]’
(A8)

and[j] and[j]’ areq integers defined by

sinhj Bh __sinhjB(U/2—A)

U= Singn e U= Ginngom—ay - 49
We have
) =1 Mx)=0, z(k)= -2z, cosk.
(A10)

PHYSICAL REVIEW B 65 165104

The equations fof{"(x), f;/(x), andz®)(k) are

artP(x) =~ Z—Z(l—z&ﬁ(x) +s*12(x),
87 _
ajf;@(x)= aU% Is(x) +s* £53)(x),
o FP(x) = s* [1{2, () + 12,01,
o] f{ P00 =s*[f] 200+ A00],

41In2

202 P (k)=2(1—z, *)cogk— 30

+ [ axsori@e0- 12001, (a1

The same kind of equation has appeared in the high-

temperature expansion of theX X model. See pp. 124-126
of Ref. 1 or 13. The solutions of these equations are

8w (1-z,Y
1200=- 55 [2]“21]{n+21a,<x> [iTa)2(0},
1(2)( X)= — 8 ;{[ +2] a(x) [l a; (x)},
BU [2)j+1] : 1812
2(z—1) 1 (2] _
) _ _ BUI2
2= {Coszk BU[2]2<1+[2]’e H

(Xt

Substituting Eqs(A10) and (A12) into Eqgs.(A6) and (A5)
we get

—gB=pBA—In(1—2z, ) +In(2 coshsh) + (Bt)?

4|n2+ 1
BU _wfﬁ

+fjc s(X)

ar
—1+2tant’?§x

41In2
Z2(k)+ U coskzY(k) |dk

77_2':2

(2)
f (x)+|n 1,3 3202

.

cosh Bh)efA(1+ef(2A~L))

2(Bt)?
§2

=Iné+

; ﬂ%eZBA(l—e‘BU) | (A13)

where¢ is defined in Eq(33). This coincides with Eq(32)

up to second order. Thus we have proved that the TBA equa-

tions give the correct expansion of-g3 up to (t3)2.
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