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Thermodynamic Bethe ansatz equations of one-dimensional Hubbard model
and high-temperature expansion
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A numerical method to calculate thermodynmic Bethe ansatz equations is proposed based on Newton’s
method. Thermodynamic quantities of the one-dimensional Hubbard model are numerically calculated and
compared with high-temperature expansion and numerical results of the quantum transfer matrix method by
Jüttner, Klümper, and Suzuki. The coincidence is surprisingly good. We obtain the high-temperature expansion
of the grand potential up tob6.
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I. INTRODUCTION

Many years ago, one of the authors~M.T.! proposed ther-
modynamic Bethe ansatz~TBA! equations for the one
dimensional~1D! Hubbard model.2 In this theory severa
kinds of strings are assumed and it is widely believed t
this set of equations gives the exact thermodynamic qua
ties of this model. Low-temperature thermodynamics w
investigated by MT,3 and actual numerical calculations
finite temperature were done by Kawakami, Usuki, a
Okiji.4 Essler, Korepin, and Schoutens5 counted the numbe
of states by single-k excitations,L strings, andk-L strings.
They found that total number of these Bethe ansatz st
and their relatives is 4Na, whereNa is the length of the sys
tems. This implies that the Bethe ansatz can give all e
states and eigenvalues. However, some physicists are
skeptical about this theory.6 Recently Charretet al.7 did a
numerical calculation of this equation and concluded tha
does not coincide with the high-temperature expans
~HTE! and the quantum transfer matrix~QTM! method by
Jüttner, Klümper, and Suzuki.8 In this paper we give a prac
tical method to calculate numerically the TBA equatio
which has infinite unknown functions. Numerical resu
completely coincide with those of the QTM and the HT
methods. The numerical calculation of the TBA equations
Charretet al. is wrong. The Hubbard Hamiltonian is

H~ t,U,A,h!52t(̂
i j &

(
s

~cis
† cj s1cj s

† cis!

1U(
i 51

Na

ci↑
† ci↑ci↓

† ci↓2A(
i 51

Na

~ci↑
† ci↑1ci↓

† ci↓!

2h(
i 51

Na

~ci↑
† ci↑2ci↓

† ci↓!. ~1!

Here cj s
† and cj s are creation and annihilation operators

an electron at sitej. ^ i j & means that sitesi and j are nearest
neighbors.Na is the number of atoms. We putt.0,U.0.
The thermodynamic potential per siteg at temperatureT is
determined by
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g5e02A2TH E
2p

p

r0~k!ln@11z~k!#dk

1E
2`

`

s0~L!ln@11h1~L!#dLJ . ~2!

Heree0 , r0(k), ands0(L) are energy per site and distribu
tion functions ofk’s and L ’s at T5h5U/22A50 ~half-
filled, zero-field ground state!,

e0524tE
0

` J0~v!J1~v!dv

v@11exp~2U8v!#
, ~3!

s0~L!5E
2p

p

s~L2sink!
dk

2p
, ~4!

r0~k!5
1

2p
1coskE

2`

`

a1~L2sink!s0~L!dL, ~5!

and

a1~x![
U8

p~U821x2!
, s~x![

1

4U8
sech

px

2U8
, U8[

U

4t
.

~6!

z(k) andh1(L) are hole-particle ratios ofk excitations and
single-L excitations. These are determined by the thermo
namic Bethe ansatz equations fork excitations,L strings,
andk-L strings:

ln z~k!5
k0~k!

T
1E

2`

`

dLs~L2sink!lnS 11h18~L!

11h1~L!
D ,

~7!

ln h1~L!5s*ln @11h2~L!#2E
2p

p

s~L2sink!

3 ln@11z21~k!#coskdk, ~8!

ln h18~L!5s*ln @11h28~L!#2E
2p

p

s~L2sink!

3 ln@11z~k!#coskdk, ~9!
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ln h j~L!5s*ln$@11h j 21~L!#@11h j 11~L!#%,

j >2, ~10!

ln h j8~L!5s*ln$@11h j 218 ~L!#@11h j 118 ~L!#%,

j >2, ~11!

lim
n→`

ln hn~L!

n
5

2h

T
, ~12!

lim
n→`

ln hn8~L!

n
5

U22A

T
. ~13!

Here s* f (L)[*2`
` s(L2L8) f (L8)dL8 and k0(k) is de-

fined by

k0~k![22t cosk24tE
2`

`

dLs~L2sink!

3ReA12~L2U8i !2. ~14!

Details of the derivation are given in Refs. 1, 2, 9, and
Noting that ln(11z21)5ln(11z)2ln z in Eq. ~8! and substi-
tuting Eq.~7! we have

ln h1~L!5
s1~L!

T
1s*ln @11h2~L!#

2E
2p

p

s~L2sink!ln@11z~k!#coskdk,

s1~L![22tE
2p

p

cos2ks~L2sink!dk. ~15!

In Ref. 2 this set of equations was solved analytically in
limits T→0, t→0, and U→0 and coincided with known
exact results. In a recent paper Charretet al.7 solved numeri-
cally this set of equations at high temperature and argued
there is a discrepancy from the high-temperature expan
and the numerical results of the Ju¨ttner-Klümper-Suzuki
~JKS! equations.8 We recalculate the same quantities in th
region and find that the results coincide with the hig
temperature expansion and the JKS equations to high a
racy. In Sec. III we review thet expansion for the one
dimensional Hubbard model by the conventional link
16510
.

e

at
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cluster expansion. From thet expansion, we can derive theb
expansion of2gb for the 1D Hubbard model up tob6.
Expansions of the susceptibility and specific heat are
tained. In the Appendix, we can perform at expansion of the
TBA equations. The results coincide with the cluster exp
sion up to second order. We expect that the higher terms
coincide.

II. TRUNCATION OF THE TBA EQUATIONS TO FINITE
UNKNOWN FUNCTIONS

As an approximation we replaces(L) by 1
2 d(L) at j

.nc in Eqs.~10! and~11!. Then we get the difference equa
tions

h j~L!25@11h j 21~L!#@11h j 11~L!#,

h j8~L!25@11h j 218 ~L!#@11h j 118 ~L!#, j .nc .
~16!

This approximation is reasonable because the functi
h j (L) andh j8(L) vary very slowly at sufficiently largej and
*2`

` s(L)dL51/2. General solutions of these differenc
equations are

h j~L!5S sinh@ f ~L!1 j #a

sinha D 2

21,

h j8~L!5S sinh@g~L!1 j #b

sinhb D 2

21, j >nc . ~17!

From the conditions~12! and ~13!, the parametersa and b
must beh/T and (U/22A)/T. Then 11hnc11(L) and 1

1hnc118 (L) are represented by

S cosh
h

T
A11hnc

~L!1A11sinh2
h

T
@11hnc

~L!# D 2

,

S cosh
h8

T A11hnc
8 ~L!1A11sinh2

h8

T
@11hnc

8 ~L!# D 2

,

h8[U/22A. ~18!

Thus integral equations with infinite unknown functions a
approximated by those with 2nc11 unknowns
ln hnc

8 (L), . . . , lnh18(L),ln z(k),ln h1(L), . . . , lnhnc
(L). Then

the equations to be solved are
z15s*ln$~11expz2!@coshu2A11expz11A11sinh2u2~11expz1!#2%, ~19!

zj5s*ln ~11expzj 21!~11expzj 11!, j 52, . . . ,nc21,

znc
5s*ln ~11expznc21!2E

2p

p

s~L2sink!ln~11expznc11!coskdk,

znc115u1k01E
2`

`

dLs~L2sink!lnS 11expznc

11expznc12
D ,
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znc125u1s11s*ln ~11expznc13!2E
2p

p

s~L2sink!ln~11expznc11!coskdk,

zj5s*ln ~11expzj 21!~11expzj 11!, j 5nc13, . . . ,2nc ,

z2nc115s*ln$~11expz2nc
!@coshu3A11expz2nc111A11sinh2u3~11expz2nc11!#2%.
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We introduce three thermodynamic parameters

u1[1/T, u2[~U/22A!/T, u3[h/T.

For actual numerical calculations we chooseL discrete
points ofk andL as follows:

kj5p~ j 21/2!/L, L j5sinqjA11
U82

cos2qj

,

qj5p~ j 21/2!/~2L !, j 51, . . . ,L. ~20!

Here the functionL5sinqA11(U8/cosq)2 is the inverse
function of *LRe@12(t2U8i )2#21/2dt. We think that this
change of parameters is reasonable because the chan
functions is very slow at largeL. For very bigU8 this func-
tion behaves asU8tanq and for smallU8 it behaves as sinq.
Unknown functions are represented by vectors with lengtL
and integration kernels are represented byL3L matrices.

Usually this kind of nonlinear equation is calculated
successive iterations, which is called Kepler’s method. In
solution of the TBA equations we need to repeat several
or several hundreds times of iterations to get a good con
gence.

So here we propose to use Newton’s method. Cons
coupled nonlinear equations

Xj2F j~X1 ,X2 , . . . ,XN!50, j 51, . . . ,N. ~21!

For approximate vectorsXj
( l ) assume that we have deviation

D j :

Xj
( l )2F j~X1

( l ) ,X2
( l ) , . . . ,XN

( l )!5D j . ~22!

In Kepler’s method the next approximation is

Xj
( l 11)5Xj

( l )1D j . ~23!

In Newton’s method we put

Xj
( l 11)5Xj

( l )1j j , ~24!

wherej j is a solution of the linear equation

(
j

S d i , j2
]Fi~X1

( l ) ,X2
( l ) , . . . ,XN

( l )!

]Xj
D j j5D i . ~25!

This method is much faster than Kepler’s method. But
must solve linear equations with anN3N matrix. In our
TBA problem, N is (2nc11)L. This large matrix is block
tridiagonal. RegardingL3L blocks as a number, we ca
solve this set of linear equations. We need only 5–6 time
16510
of

e
ns
r-

er

e

of

iterations at most to get sufficient convergence( j uD j u
,1028. We can get the thermodynamic potential through E
~2!:

g

T
5S e02

U

2 Du11u22E r0~k!ln@11expznc11~k!#dk

2E s0~L!ln@11expznc12~L!#dL. ~26!

To get the first-order thermodynamic quantities like ma
netization (m), electron density (n), and entropy we need to
calculate](g/T)/]u1 , ](g/T)/]u2, and](g/T)/]u3:

] i

g

T
5S e02

U

2 D d1i1d2i2E r0~k!
] iznc11~k!

11exp@2znc11~k!#
dk

2E s0~L!
] iznc12~L!

11exp@2znc12~L!#
dL. ~27!

The equation for] iza is a linear equation which has the sam
homogeneous term with that in Newton’s method. Inhom
geneous terms are calculated fromza . Therefore we can
calculate these quantities by one operation of linear calc
tion:

e5]1~g/T!1A]2~g/T!,

n5]2~g/T!, m5]3~g/T!,

entropy5u1~e2g!2u3m1~u22Uu1/2!n. ~28!

To calculate the second-order thermodynamic quantities s
as specific heat, susceptibility, and compressibility we n
the 333 tensor] i] j (g/T). As this is a symmetric tensor, w
need to calculate six components. We consider equations

f a
( i j )5] i] j za1

1

11expza
~] iza!~] j za!, i< j . ~29!

The tensor is given by

] i] j

g

T
52E r0~k!

f nc11
( i j ) ~k!

11exp@2znc11~k!#
dk

2E s0~L!
f nc12

( i j ) ~L!

11exp@2znc12~L!#
dL. ~30!

The inhomogeneous terms are calculated fromza and] iza .
So we can calculate thermodynamic quantities from
4-3
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quantitiesg/T and its derivatives for a given temperatur
magnetic field, and chemical potential after several times
linear equation solving. The specific heatc in constantn and
m, susceptibilityx in constantn and temperature, compres
ibility k in constant temperature, andm/n are given by

c5u1
2S D111

D13
2 D221D12

2 D3322D12D13D23

D23
2 2D22D33

D , ~31!

x5u1S D332
D23

2

D22
D ,
16510
,
f k5u1FD222

~nD131mD22!D23

nD331mD13
G ,

Di j [] i] j~g/T!.

If we want to calculate thermodynamic quantities at fix
electron density, we can use Newton’s method again. Us
the compressibility we reach the target density after f
times of iterations.
III. t EXPANSION AND b „Ä1ÕT… EXPANSION

The t expansion of thermodynamic potential up tot4 has been done for the single-band Hubbard model by Kubo11 and
Liu.12 For the one-dimensional model their expansion becomes

2gb5 log@j#1~bt !2
2

j2 G11~bt !4S 2

j2 G21
2

j3 G32
6

j4 G1
2D1O„~bt !6

…, ~32!

where

j[112 cosh~bh!ebA1eb(2A2U),

G15cosh~bh!ebA~11eb(2A2U)!1
2e2bA

bU
~12e2bU!,

G25
1

12
cosh~bh!ebA~11eb(2A2U)!1

4e2bA

~bU !2
~11e2bU!2

8e2bA

~bU !3
~12e2bU!,

G35
1

6
jebAcosh~bh!~11eb(2A2U)!1

3e2bA

bU
@11eb(2A2U)22 cosh~bh!eb(A2U)#1

2e2bA

~bU !2
@2 cosh~bh!ebA~122e2bU!

2~22e2bU!~11eb(2A2U)!#1
2je2bA

~bU !3
~12e2bU!. ~33!

G1 term is the second-order term of thet expansion.G2 , G3, and G1
2 terms are fourth order. It is expected that2gb is

expanded bybt,bh,bh8,bu8, where we puth8[U/22A, u8[U/4:

2gb5 (
n1 ,n2 ,n3 ,n4>0

An1 ,n2 ,n3 ,n4
~bt !n1~bh!n2~bh8!n3~bu8!n4. ~34!

From Eqs.~32! and ~33! we can calculate all coefficientsAn1 ,n2 ,n3 ,n4
at n1,6. On the other hand, we have

2gb5 ln 41
~bt !2

2
2

~bt !4

16
1

~bt !6

144
2O„~bt !8

…, ~35!

when U5h5h850. Then we haveA6,0,0,051/144 andA7,0,0,050. In this way, we can determineAn1 ,n2 ,n3 ,n4
at n11n2

1n31n4<7 and obtain theb expansion of the grand potential:
4-4
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g52
ln 4

b
1~h82u8!2

b

4
~2t212u821h21h82!2

b2

4
~h22h82!u81

b3

96
~6t4112t2~h21h82!132t2u8218u841h4

16h2h821h84!1
b4

24
u8~h22h82!~6t212u821h21h82!2

b5

1440
$10t61t4@306u82190~h21h82!#1t2@288u84

160u82~h21h82!130~h416h2h821h84!#132u86245u82~h422h2h821h84!1h61h86115~h4h821h2h84!%

2
b6

2880
u8~h22h82!$540t41t2@720u821300~h21h82!#196u84140~h21h82!u82117~h41h84!162h2h82%1O~b7!,

~36!

FIG. 1. Specific heat atU54, h50, and
U/22A50. Points are our results of TBA calcu
lations and the dashed line is the calculation
Charret et al. The solid line is the high-
temperature expansion.

FIG. 2. Specific heat atU58, h50, and
U/22A50.
165104-5
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FIG. 3. Magnetic susceptibility atU54, h
50, andU/22A50.
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This expansion up tob4 is equivalent to the one obtaine
by Charretet al. Moreover, we could get two more term
higher than theirs in the high-temperature expansion of
grand potential. From this expansion we get the specific h
and magnetic susceptibility per site in the half-filled a
zero-field cases:

c5~ t21u82!b22S 3t4

4
14t2u821u84Db4

1S 5t6

24
1

51t4u82

8
16t2u841

2u86

3 Db61O~b8!,

~37!

x5
b

2
1

u8b2

2
2

t2b3

4
2

1

6
~3t21u82!u8b4

1
1

24
~3t212u82!t2b51S 3t4u8

8
1

t2u83

2
1

u85

15 Db6

1O~b7!. ~38!

In Fig. 1 we plot our numerical results of the TBA equatio
of the specific heat atU54, h50, andA5U/2. They agree
very well with the high-temperature expansion whenb
,0.1. The dashed line is the numerical calculation of
TBA equations by Charretet al. Figure 2 is the specific hea
at U58. Figure 3 is the susceptibility atU54, h50, and
A5U/2.

IV. DISCUSSION AND CONCLUSION

In this paper, we show that the TBA equations and QT
formulations by Ju¨ttner et al. give completely the same nu
merical results and coincide also with the high-temperat
expansion. The numerical calculation of Charretet al. for the
16510
e
at

e

e

TBA equations is not correct. Probably the convergence c
dition is too generous. Our numerical calculation is done
use ofMATHEMATICA 4.1. The source file is available from
http://www.issp.u-tokyo.ac.jp/labs/theory/mtaka/index.htm

The calculations of Kawakamiet al. and Ju¨ttneret al. are
based on Kepler’s method. The TBA equations show a v
slow convergence in Kepler’s method. One needs sev
tens or several hundreds of iterations if one takesnc56. The
QTM equation of Ju¨ttner et al. is a bit faster but one need
several tens of iterations. The method of Charretet al.seems
to be based on Kepler’s method as they reported that
TBA equations converged after 2–3 times iterations. This
too short and not reliable. We conclude that the discrepa
between the TBA equations with the QTM equations or hig
temperature expansion comes from their inappropriate c
vergence conditions.

We get very fast convergence if we adopt Newton
method. After 5–6 times of iterations we get sufficient co
vergence. Moreover, in Newton’s method the error decrea
with acceleration.

We made numerical programs for the TBA and QT
equations. In Table I, we observe the dependence of the
merical results onnc . As nc increases they converge to th
high-temperature expansion and the QTM calculation of J¨tt-
neret al.Both equations give completely the same numeri
results. Especially for the grand potential the values coinc
within five digits accuracy. We can conclude that both eq
tions are equivalent, although the mathematical equivale
is not yet proved.

About the SO~4! symmetry Ref. 2 did not treat explicitly
But in Ref. 1 the symmetry is treated carefully and the sa
equations are derived. The thermodynamics may not be
sitive to the SO~4! symmetry. In conclusion we can use th
TBA equations for thermodynamic quantities of the 1D Hu
bard model. But one needs some numerical technique sh
in this paper.

For theXXZ model it is known that the TBA equation
4-6
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TABLE I. Numerical results of the TBA equations for the grand potential, energy, entropy, specific
and susceptibility atb50.1, U54, andh5U/22A50 for various values ofnc . We putL564 and com-
pare with the high-temperature expansion~36! and the QTM equations of Ju¨ttneret al.We find thatnc56 is
practically sufficient.

2g e Entropy C x

nc56 14.96245182 0.801931104 1.37643829 0.01943355 0.054598
nc512 14.96247427 0.801886862 1.37643611 0.01943778 0.054659
nc524 14.96247646 0.801882551 1.37643590 0.01943818 0.054678
nc548 14.96247660 0.801882261 1.37643588 0.01943821 0.054683
nc596 14.96247662 0.801882219 1.37643588 0.01943821 0.054685
b expt. 14.96246886 0.801890167 1.37643590 0.01943825 0.054686
JKS 14.96246887 0.801890163 1.37643590 0.01943818 0.054686
ult
-
or

ot

b

s
A

and the QTM method give completely the same res
numerically.13–17 Recently, it is shown that the TBA equa
tions can be derived from the quantum transfer matrix f
mulations for this model.18,19An intriguing simple equation,
which has only one unknown function, was also derived b
from the TBA and the QTM.20 In the future, we hope to
show the equivalence of the two formulations for the Hu
bard model.

ACKNOWLEDGMENTS

We acknowlege K. Kubo, N. Kawakami, A. Klu¨mper, V.
Korepin, T. Deguchi, and A. Ogata for stimulating discu
sions. This research was supported in part by Grant-in-
for Scientific Research~B! No. 11440103 from the Ministry
of Education, Science and Culture, Japan.

APPENDIX: t EXPANSION FOR THE TBA EQUATIONS

First, we expande0 as a power series ofU854t/U:

e0524F S 1

2D 2

ln 2U8212S 133

234D 2 z~3!

3 S 12
1

22D
3U8231•••G . ~A1!

Then we have thet expansion of the constant term of2gb:

~A2e0!b5bA1
4 ln 2

bU
~bt !22

9z~3!

~bU !3 ~bt !41O~bt !6.

~A2!

We putL5U8x. s0 , r0 , k0, ands1 are written as follows:

s0~L!5
t

U
sech

p

2
xF11

p2t2

U2 S 2112 tanh2
p

2
xD1O~ t4!G ,

r0~k!5
1

2p
1

2t ln 2

pU
cosk1O~ t3!,

k0~k!522t cosk2
U

2
2

4t2ln 2

U
1O~ t3!, ~A3!
16510
s
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h

-

-
id

s1~L!52
2pt2

U
sech

px

2
1O~ t3!.

The integral*2`
` dLs(L2sink)••• becomes

E
2`

`

dxs̄~x!F11
2pt

U
sink tanh

p

2
x1S 2pt

U
sinkD 2

3S 2
1

2
1tanh2

p

2
xD1O~ t3!G ,

where

s̄~x![
1

4
sech

p

2
x.

The TBA equations are

ln z~k!5bS 2
U

2
22t cosk2

4t2ln 2

U D1E
2`

`

dxs̄~x!

3F11
2pt

U
sink tanh

p

2
x1S 2pt

U
sinkD 2

3S 2
1

2
1tanh2

p

2
xD G ln11h18~x!

11h1~x!
,

ln h1~x!52
8pbt2

U
s̄~x!2

4t

U E
2p

p

s̄~x!S 11
2pt

U

3sink tanh
p

2
xD ln@11z~k!#coskdk

1 s̄*ln @11h2~x!#,

ln h18~x!52
4t

U E
2p

p

s̄~x!S 11
2pt

U
sink tanh

p

2
xD

3 ln@11z~k!#coskdk1 s̄*ln @11h28~x!#,

ln h j~x!5 s̄*ln$@11h j 21~x!#@11h j 11~x!#%,

ln h j8~x!5 s̄*ln$@11h j 218 ~x!#@11h j 118 ~x!#%. ~A4!
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2gb is given by

2gb5bA1
4 ln 2

bU
~bt !21E

2p

p S 1

2p
1

2 ln 2t

pU
coskD

3 ln@11z~k!#dk1E
2`

`

s̄~x!F11
p2t2

U2 S 21

12 tanh
p

2
xD G ln@11h1~x!#dx. ~A5!

We expand the functions by a power series ofbt:

ln@11h j~x!#5 ln
a j

a j21
1~bt ! f j

(1)~x!1~bt !2f j
(2)~x!1•••,

ln@11h j8~x!#5 ln
a j8

a j821
1~bt ! f j8

(1)~x!1~bt !2f j8
(2)~x!

1•••,

ln@11z~k!#5 ln
z0

z021
1~bt !z(1)~k!1~bt !2z(2)~k!1•••

~A6!

We get

ln h j~x!5 ln
1

a j21
1~bt !a j f j

(1)~x!1~bt !2Fa j f j
(2)~x!

1
1

2
~a j2a j

2!@ f j
(1)~x!#2G1 . . . ,

ln h j8~x!5 ln
1

a j821
1~bt !a j8 f j8

(1)~x!1~bt !2Fa j8 f j8
(2)~x!

1
1

2
~a j82a j8

2!@ f j8
(1)~x!#2G1•••,

ln z~k!5 ln
1

z021
1~bt !z0z(1)~k!1~bt !2Fz0z(2)~k!

1
1

2
~z02z0

2!@z(1)~k!#2G1•••, ~A7!

where

a j5
@ j 11#2

@ j #@ j 12#
, a j85

@ j 11#82

@ j #8@ j 12#8
, z0511ebU/2

@2#

@2#8
~A8!

and @j# and @ j #8 areq integers defined by

@ j #[
sinh j bh

sinhbh
, @ j #8[

sinh j b~U/22A!

sinhb~U/22A!
. ~A9!

We have

f j
(1)~x!5 f j8

(1)~x!50, z(1)~k!522z0
21cosk.

~A10!
16510
The equations forf j
(1)(x), f j8

(1)(x), andz(2)(k) are

a1f 1
(2)~x!52

8p

bU
~12z0

21!s̄~x!1 s̄* f 2
(2)~x!,

a18 f 18
(2)~x!5

8p

bU
z0

21s̄~x!1 s̄* f 28
(2)~x!,

a j f j
(2)~x!5 s̄* @ f j 21

(2) ~x!1 f j 11
(2) ~x!#,

a j8 f j8
(2)~x!5 s̄* @ f j 218(2)~x!1 f j 118(2)~x!#,

z0z(2)~k!52~12z0
21!cos2k2

4 ln 2

bU

1E
2`

`

dxs̄~x!@ f 18
(2)~x!2 f 1

(2)~x!#. ~A11!

The same kind of equation has appeared in the hi
temperature expansion of theXXX model. See pp. 124–12
of Ref. 1 or 13. The solutions of these equations are

f j
(2)~x!52

8p

bU

~12z0
21!

@2#@ j 11#
$@ j 12#ā j~x!2@ j #ā j 12~x!%,

f j8
(2)~x!5

8p

bU

z0
21

@2#8@ j 11#8
$@ j 12#8ā j~x!2@ j #8ā j 12~x!%,

z(2)~k!5
2~z021!

z0
2 Fcos2k2

1

bU@2#2 S 11
@2#

@2#8
e2bU/2D G ,

ā j~x![
j

p~x21 j 2!
. ~A12!

Substituting Eqs.~A10! and ~A12! into Eqs.~A6! and ~A5!
we get

2gb5bA2 ln~12z0
21!1 ln~2 coshbh!1~bt !2

3H 4 ln2

bU
1

1

2pE2p

p Fz(2)~k!1
4 ln 2

bU
coskz(1)~k!Gdk

1E
2`

`

s̄~x!F f (2)~x!1 ln
a1

a121

p2t2

b2U2

3S 2112 tanh2
p

2
xD GdxJ

5 ln j1
2~bt !2

j2 Fcosh~bh!ebA~11eb(2A2U)!

1
2

bU
e2bA~12e2bU!G , ~A13!

wherej is defined in Eq.~33!. This coincides with Eq.~32!
up to second order. Thus we have proved that the TBA eq
tions give the correctt expansion of2gb up to (tb)2.
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