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Vacuum structure of toroidal carbon nanotubes
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Low-energy excitations in carbon nanotubes can be described by an effective field theory of two-component
spinors. It is pointed out that the chiral anomaly in 111 dimensions should be observed in a metallic toroidal
carbon nanotube on a planar geometry with varying magnetic field. We also analyze the vacuum structure of
the metallic toroidal carbon nanotube including the one-dimensional long-range Coulomb interactions and
discuss some effects of external charges on the vacuum.
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I. INTRODUCTION

In recent years carbon nanotubes1 ~CNT’s! have attracted
much attention from various points of view. Especially th
unique mechanical and electrical properties have stimula
many physicist’s interest in the analysis of CNT’s.2–4 They
have exceptional strength and stability, and they can exh
either metallic or semiconducting behavior depending on
diameter and helicity.5,6 Because of their small size, prope
ties of CNT’s should be governed by the law of quantu
mechanics. Therefore it is quite important to understand
quantum behavior of the electrons in CNT’s.

The bulk electric properties of~single-wall! CNT’s are
relatively simple, but the behavior of electrons at the end
a tube~cap! or metal-CNT junction is complicated and i
understanding is necessary for building actual electrical
vices. On the other hand, toroidal CNT’s~Fullerence ‘‘crop
circles’’7! are clearly simple because of their no-bounda
shape and they can also have either metal or semicondu
properties~hereafter we use ‘‘torus’’ or ‘‘nanotorus’’ instea
of ‘‘toroidal carbon nanotube’’ for simplicity!. Even in the
torus case, a quite important effect—‘‘chiral anomaly,8

which is of essentially quantum nature—might occur.
Low-energy excitations on CNT’s at half filling mov

along the tubule axis because the circumference degre
freedom~an excitation in the compactified direction! is fro-
zen by a wide energy gap. Hence this system can be
scribed as a (111)-dimensional system. Furthermore, in t
case of metallic CNT’s, the system describing small fluct
tions around the Fermi point is equivalent to the mass
fermion in 111 dimensions. If we include a gauge field, th
situation can be modeled by the quantum field theory
massless fermions which couples to the gauge field thro
minimal coupling. This model realizes the chiral anoma
phenomenon.9–11

The chiral anomaly is one of the most interesting ph
nomena in quantum field theory and has had an appreci
influence on the modern development of high-ene
physics12 and of condensed matter physics.13 The effect of
the chiral anomaly on the electrons in a nanotorus app
directly as a current flow. On the other hand, it is known
solid-state physics that a one-dimensional metallic r
shows ‘‘persistent current’’14,15 in an appropriate experimen
tal setting. The current originating from the chiral anoma
shows the same magnetic field dependence as the pers
0163-1829/2002/65~15!/155429~14!/$20.00 65 1554
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current. Therefore, persistent current is closely connec
with the chiral anomaly in 111 dimensions. The chira
anomaly provides a deeper understanding of the persis
current as shown in the present paper.

In this paper, we examine the anomaly effect in a meta
nanotorus and discuss how such an effect can be obse
experimentally. We also clarify the vacuum structure of t
model regarding the gauge field as a classical field and
cuss some effects of external charges situated on a me
torus.

The organization of this paper is as follows. After review
ing quantum physics of CNT’s,16 we study the case of a
nanotorus in Sec. II. In Sec. III we point out that low-ener
excitations on a metallic torus at half filling can be model
by a quantum field theory of massless fermions with gau
field and construct the Hamiltonian of this system. In Sec.
we discuss the chiral anomaly and show how such an ef
can be observed experimentally. We examine the Ham
tonian including the long-range Coulomb interactions a
analyze an effect of the Coulomb interactions on the ch
anomaly in Sec. V. We discuss some effects of exter
charges in Sec. VI. A conclusion and discussion are given
Sec. VII. Some formulas which are used in Sec. IV are
rived in the Appendix.

II. CARBON NANOTORUS

A carbon nanotube can be thought of as a layer of gra
ite sheet folded up into a cylinder. A graphite sheet cons
of many hexagons whose vertices are occupied by the ca
atoms and each carbon supplies one conducting elec
which determines the electric properties of the graph
sheet. The lattice structure of a two-dimensional graph
sheet is shown in Fig. 1. It is obvious, however, that t
picture of a CNT as a graphite sheet rolled up to form
compact cylinder is somewhat oversimplified. We need to
careful of the following facts. First, a conducting electro
makes thep orbitals whose wave function extends into thez
direction: perpendicular to the graphite sheet. Hence, in
case of multiwall CNT’s~MWCNT’s!, the wave functions
which belong to different layers may interfere so that there
a chance that some electrical properties will alter17 as com-
pared with single-wall CNT’s~SWCNT’s!. Second, we
should care for the curvature of a cylinder. This cause
mixing of s and p orbital so that the band structure mig
©2002 The American Physical Society29-1
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K. SASAKI PHYSICAL REVIEW B 65 155429
change. In the present paper, we concentrate on single-
CNT’s with a large diameter. Therefore the effects of int
layer interactions and curvature can safely be neglected18

There are two symmetry translation vectors on the pla
honeycomb lattice,

T15A3aex , T25
A3

2
aex1

3

2
aey . ~1!

Herea denotes the length of the nearest carbon vertex an
given by 0.142@nm#. ex and ey are unit vectors which are
orthogonal to each other (ex•ey50). If we neglect the spin
degrees of freedom, because of these symmetry translat
the Hilbert space is spanned by the following two Blo
basis vectors:

uC •
k&5(

i P•
eikr iai

†u0&, uC +
k&5(

i P+
eikr iai

†u0&, ~2!

where the black (•) and white (+) indices are indicated in
Fig. 1. Herer i labels the vector pointing each sitei, andai

and aj
† are canonical annihilation-creation operators of

electrons of sitei and j that satisfy

$ai ,aj
†%5d i j . ~3!

We construct a state vector which is an eigenvector of th
symmetry translations as follows:

uCk&5C•
kuC •

k&1C+
kuC +

k&. ~4!

In order to define the unit cell of wave vectork, we act the
symmetry translation operators on the state vector and ob
the Brillouin zone

2
p

A3
<akx,

p

A3
, 2p<

A3

2
akx1

3

2
aky,p, ~5!

wherekx5k•ex andky5k•ey .
The mapping of the graphite sheet onto a cylindrical s

face is specified by a wrapping vector:

Ch5NT11MT2 , ~6!

FIG. 1. Lattice structure of a two-dimensional graphite sh
@u15aey , u252(A3/2)aex2

1
2 aey ,u35(A3/2)aex2

1
2 aey#.
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which defines the relative location of the two sites. The p
of indices (N,M ) describes how the sheet is wrapped to fo
the cylinder and determines its electrical properties.5,6 The
CNT’s can be divided into three categories depending on
pair of integers (N,M ). A tube is called ‘‘zigzag’’ type if
M50 and ‘‘armchair’’ in the caseM522N. All other tubes
are of the ‘‘chiral’’ type.

To study the electronic properties of a nanotorus quan
mechanically, first we compactify the graphite sheet into
cylinder by imposing a periodic boundary condition on t
state vector. In general, we may consider the followi
boundary condition:

Ĝ~Ch!uCk&5uCk&. ~7!

Ĝ denotes a symmetry translation operator, from which
obtain

A3

2
~2N1M !akx1

3

2
Maky52pn, ~8!

where n is an integer. Next, in order to make a torus, w
compactify the tube into a torus by imposing a bounda
condition to the tubule axis direction. For example, we m
consider a ‘‘zigzag torus’’ which has the following bounda
conditions:

Ĝ~NT1!uCk&5uCk&,

Ĝ„M ~2T22T1!…uCk&5uCk&. ~9!

The former condition makes a sheet into a zigzag tube,
the latter forces the tube into a zigzag torus.

It is clear that there are many possibilities for the shape
a torus and each shape has its own boundary condition
some of them have different properties from the one in E
~9!. Especially we can image a torus in which some twi
exist along the tubule axis direction.19 This system has the
following boundary conditions:

Ĝ~NT1!uCk&5uCk&,

Ĝ„M ~2T22T1!…uCk&5Ĝ~ÑT1!uCk&, ~10!

whereÑ is decided by the twist at the junction of tube en
see Fig. 2. These boundary conditions yield the discr
wave vectors

akx5
2p

A3

n

N
, aky5

2p

3M
S m1

Ñ

N
D , ~11!

wheren andm take an integer value which satisfies Eq.~5!.
So far we have constructed the Hilbert space of the c

ducting electrons. The Hilbert space is spanned by the Bl
basis vectors with the discrete wave vectors~11!. Now, we
consider the Hamiltonian which governs the time evoluti
of a state vector. Each carbon atom has an electron w
makes thep orbital. The electron can transfer from any si
to the nearest three sites through the quantum mecha
tunneling or thermal hopping in finite temperature. Therefo

t

9-2
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VACUUM STRUCTURE OF TOROIDAL CARBON NANOTUBES PHYSICAL REVIEW B65 155429
there is the probability amplitude for this process. In th
case, the tight-binding Hamiltonian is most suitable,

H5E0(
i

ai
†ai1g(

^ i , j &
ai

†aj , ~12!

where the sum̂i , j & is over pairs of nearest-neighbor carb
atomsi , j on the lattice.g (;2.5 eV) is the transition am
plitude from one site to the nearest sites, andE0 is the one
from a site to the same site. This parameterE0 only fixes the
origin of the energy and is irrelevant. Hereafter we setE0
50.

It is an easy task to find the energy eigenstates and ei
values of this Hamiltonian. In the matrix representation,
energy eigenvalue equation is

S 0 g(
i

eikui

g(
i

e2 ikui 0
D S C•

k

C+
kD 5EkS C•

k

C+
k ,
D ~13!

where

uC •
k&5S 1

0D , uC +
k&5S 0

1D , ~14!

and the vectorui is a triad of vectors pointing, respectivel
in the direction of the nearest neighbors of a black point~Fig.
1!. The energy eigenvalues and eigenvectors are as follo

Ek56D~k!, ~15!

S C•
k

C+
kD 5

1

A2D~k! S g(
i

eikui

6D~k!
D , ~16!

FIG. 2. Twisted zigzag torus: We impose the periodic bound
condition in thex direction and attach the pointB in the lower end
to the pointC in the upper end to obtain a twisted nanotorus. Th

areÑ hexagons between pointsA andB.
15542
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e
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where

D~k!5gA114 cos
A3

2
akx cos

3

2
aky14 cos2

A3

2
akx.

~17!

The structure of this energy band has striking proper
when considered at half filling. This is the situation which
physically interesting. Since each level of the band may
commodate two states due to the spin degeneracy, the F
level turns out to be at midpoint of the band (Ek50). The
Fermi points in the Brillouin zone are located at

ak̃1,25~akx ,aky!5S 6
2p

3A3
,7

2p

3 D . ~18!

Hence, if N in Eq. ~11! is a multiple of 3, then the zigzag
torus shows metallic properties.

In order to understand the electric properties we sho
take into account a small perturbation around the Fe
points. So we takek5 k̃11dk as a small fluctuation.20 Per-
turbation around the pointk̃2 can be analyzed in the sam
way as around the pointk̃1. So we may only consider one o
the pairs. In this case the Hamiltonian which describes
small fluctuation is given by

2
3ga

2
s•dk52

3ga

2 S 0 dkx2 idky

dkx1 idky 0 D . ~19!

This implies that low-energy excitations of metallic CNT’s
half filling are described by an effective theory of two
component spinors obeying the Weyl equation. In coordin
space, the Hamiltonian is given byvF(s•p) wherep is the
momentum operatorp5 i\¹ and s i are the Pauli matrices
Here we introduce the Fermi velocityvF53ga/2\.21 Thus
the Schro¨dinger equation becomes22

i\
]

]t
c5vF~s•p!c. ~20!

In the following section, we consider metallic and semico
ducting zigzag tori that have smallN and largeM values
(M /N>102). In this case, the transitions between differe
kx are very small because of their energy cost (;g/N) as
compared to that ofky (;g/M ). Therefore, the only surviv-
ing degree is a motion in the tubule axis direction; i.e., t
system is a (111)-dimensional system effectively.

III. EFFECTIVE FIELD THEORY OF CARBON
NANOTUBES

In this section we would like to focus on the zigzag tor
which has the boundary conditions~9! and construct an ef-
fective field theory describing the low-energy excitations
the torus. More general boundary conditions~10! are dis-
cussed in Sec. IV. The zigzag torus can exhibit either me
lic or semiconducting properties depending on the value
N. If N is a multiple of 3, then the torus shows metall
properties. In order to analyze the semiconducting c
equally, we setN563s1t, wheres is a positive integer and

y

e
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K. SASAKI PHYSICAL REVIEW B 65 155429
tP$0,61,62%. To examine the low-energy excitations, w
should consider the following wave vectors and energy:

akx56
2p

3A3

1

16
t

3s

, aky57
2p

3
1adky , ~21!

Ek5EkS 6
2p

3A3

1

16
t

3s

,7
2p

3
1adkyD . ~22!

Considering the small perturbation (adky,2p/9) in the zig-
zag nanotorus with large diameter (s>3), the excitation en-
ergy can be approximated by

Ek;6vFAm0
21py

2, ~23!

wherepy5\dky and

m05
2p\

A33sa

utu
3

. ~24!

Consequently, we obtain a linear dispersion relation for m
tallic case (t50). This is to be contrasted with the dispersi
relation for semiconducting case (tÞ0). We may regard the
low-energy electrons in metallic nanotubes as ‘‘massle
fermions because of their linear dispersion.

Here we comment on the excitations between differ
kx . In order to neglect these excitations, we have to res
the energy to the following region:

uEku,
ga

d
, ~25!

whered (5NA3a/p) denotes the diameter of a tube. Ev
at room temperatureT5300 @K#, thermal excitation be-
tween differentkx cannot occur for nanotubes withd;10a
because of the Boltzmann suppression factor

e2ga/kBTd;e2100a/d, ~26!

where kB is the Boltzmann constant. So the transition b
tween differentkx can be ignored. Accordingly, the Hami
tonian which describes the low-energy excitations near
Fermi point is given by

vFS 0 6m02 ipy

6m01 ipy 0 D . ~27!

The sign (6) in front of m0 comes from thek̃1 and k̃2
points. The sign can be removed by an appropriate uni
transformation of the state vector. Therefore we may cho
the minus sign without loss of generality. Using the unita
transformationU5e2 i (p/4)sx, the Schro¨dinger equation be-
comes

i\
]

]t
c5vFS py 2m0

2m0 2py
Dc. ~28!
15542
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In the remainder of this paper we focus on the meta
case (m050). One can obtain the quantum field theory
promoting the wave function@c5(cL ,cR) t# to the field op-
erator @C5(CL ,CR) t# obeying the anticommutation rela
tion. Because the Schro¨dinger equation~28! is the Dirac
equation in two dimensions, it is appropriate to adopt
following Lagrangian density:

L5C̄D” C, ~29!

whereC̄5C†g0 andD” is the Feynman notation defined a

D” 5 (
m50,1

Dmgm, Dm5 i\]m2
e

c
Am . ~30!

HereAm5(A0 ,A1)[(At ,vFAy) are the gauge fields and w
adopt the following relativistic notation:xm5(x0,x1)
[(t,y/vF),]m5(]0 ,]1)[]/]xm,

g05sx , g15 isy , g552g0g15sz . ~31!

The Dirac matricesgm obey $gm,gn%52gmn and gmg5

5emngn with the metricgmn5diag(1,21) and the antisym-
metric tensoremn, e015e0151. An electromagnetic interac
tion is introduced according to the minimal coupling. Th
gauge fields propagate in four-dimensional space-time
that the Coulomb potential is given by the standard lon
range interaction~34!.

We quantize the fermion field in each configuration of t
gauge field choosing Weyl gauge conditionAt50. The total
Hamiltonian density is given by

H5HF1HC . ~32!

The Hamiltonian density consists of the kinetic term and
Coulomb term. The kinetic term is given by

HF5C†hFC

5C†vFS i\]y2
e

c
Ay 0

0 2S i\]y2
e

c
AyD D C.

~33!

The Coulomb interaction term is

HC5
e2

8pE J0~y!J0~y8!

uy2y8u
dy8, ~34!

wheree is the electron charge andeJ0 stands for the charge
density. It should be noted that besides the long-range C
lomb interaction, backscattering and umklapp processes
appear in the dynamics of electrons as is shown in Ref.
We neglect these interactions provided that their coupli
are weak enough.

IV. CHIRAL ANOMALY IN A METALLIC NANOTORUS

We have obtained the Hamiltonian density which d
scribes the low-energy excitations in the zigzag torus. T
Hamiltonian consists of two parts: one is the kinetic term a
9-4
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VACUUM STRUCTURE OF TOROIDAL CARBON NANOTUBES PHYSICAL REVIEW B65 155429
the other is the one-dimensional long-range Coulomb in
action. In this section we discuss the quantum mechan
vacuum structure of the kinetic Hamiltonian:HF(5rHF).
The effects of the Coulomb interaction will be considered
later sections. Hereafter let us usex instead ofy as a label of
the coordinate of a tubule axis direction. In the remain
part of the paper we have only one spatial coordinate, so
confusion would arise about it.

The energy eigenvectors of the kinetic Hamiltonian a
given by

hFcnS 1

0D 5encnS 1

0D , hFcnS 0

1D 52encnS 0

1D ,

cn~x!5
1

AL
expS 2 i

e

\cE0

x

Ax~x8!dx82 i
en

\vF
xD , ~35!

whereen is the energy eigenvalues andL is the circumferen-
tial length of the zigzag torusL53auM u. We expand the
fermion field using the left- and right-moving waves as

C~x,t !5CL~x,t !1CR~x,t !5 (
nPZ

Fancn~x!e2 i (en /\)tS 1

0D
1bncn~x!e1 i (en /\)tS 0

1D G , ~36!

wherean ,bn are independent fermionic annihilation oper
tors satisfying the anticommutators,

$an ,am
† %5$bn ,bm

† %5dnm . ~37!

All of the other anticommutators vanish.
In order to get the energy spectrumen , we have to im-

pose a boundary condition to the eigenfunctions. We take
~10! as a general boundary condition. The boundary con
tion of the zigzag torus in the tubule axis direction becom
the following:

Ĝ„M ~2T22T1!…uCk&5e6 i (2p/3)ÑuCk&, ~38!

where the plus~minus! in exponent has its origin in the
Fermi pointk̃1 ( k̃2). Hence we should impose the followin
boundary conditions on the fermion energy eigenfunction

cn~x1L !5e6 i (2p/3)Ñcn~x!; ~39!

then, the energy eigenvalues are given by

en5
2p\vF

L Fn6
Ñ

3
2

e

2p\c R
0

L

AxdxG . ~40!

The gauge fieldAx is experimentally controllable by th
experimental setup shown in Fig. 3. On a planar geom
we set a nanotorus and put some magnetic field inside
torus perpendicular to the plane. In this case the gauge
that expresses this magnetic field is given by, in vector no
tion, A5(NFfD/2p) ¹u, whereu is an angle of two points
on the torus. Therefore we get a component
15542
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Ax5
NFfD

L
, ~41!

wherefD52p\c/e is the flux quantum. This vector poten
tial expresses theNF flux inside the torus and by tuning th
magnetic field,NF can be taken as a real number.

The dynamics of the massless fermion field is govern
by the Lagrangian density~29!, which has two conserved
currents that are electric currentJm and chiral currentJ5

m :

Jm~x!5C̄~x!gmC~x!, ~42!

J5
m~x!5C̄~x!gmg5C~x!5emnJn~x!. ~43!

Therefore, the following two charges conserve in the tim
evolution of the system:

Q5 R J0~x!dx, Q55 R J5
0~x!dx. ~44!

Conservation of the electric current]mJm50 (]05] t ,]1
5vF]x) is due to the gauge symmetry and the chiral curr
conservation]mJ5

m50 is due to the global chiral symmetr

C→eig5aC. For an unquantized fermion field the chiral in
variance ensures conservation of the unquantized chiral
rent. However, after the second quantization the chiral c
rent ceases to be conserved even though the interac
appears to be chirally invariant, because—different fro
classical mechanics—in the world of quantum mechan
chiral symmetry is broken8 by the vacuum. This effect is
called the chiral anomaly, which is similar to the spontaneo
symmetry breaking in the sense that in both phenom
physical asymmetry is attributed to the vacuum state and
to the dynamics.

In order to find what is happening, we need to analyze
vacuum structureuvac;NL ,NR&5uvac;NL& ^ uvac;NR&, where

uvac;NL&5 )
n52`

NL21

an
†u0&, uvac;NR&5 )

NR

n5`

bn
†u0&. ~45!

We defineuvac;NL&(uvac;NR&) such that the levels with en
ergy lower thaneNL

(2eNR21) are filled and the others ar
empty. On this vacuum the charge expectation values and
energy become10,11

^Q&5NL2NR , ~46!

FIG. 3. A toroidal carbon nanotube on a planar geometry wit
magnetic field.
9-5
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FIG. 4. Adiabatic change of the fermionic en

ergy of k̃1 point. The energy value is labeled i
units of 2p\vF /L.
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^Q5&5NL1NR22NF216
2

3
Ñ, ~47!

^HF&5
2p\vF

L S ^Q&21^Q5&
2

4
2

1

12D . ~48!

To obtain the above results, we have regularized the
vergent eigenvalues on the vacuum byz-function regulariza-
tion. For example, the gauge charge is regularized as
lows:

Q5 lim
s→0

S (
nPZ

an
†an

1

ulenus
1 (

nPZ
bn

†bn

1

u2lenusD , ~49!

where l is an arbitrary constant with dimension of leng
which is necessary to makelen dimensionless. This regular
ization respects gauge invariance because the energy of
level is a gauge invariant quantity. Derivation of the abo
formulas~46!–~48! is given in the Appendix.

The gauge chargêQ& remains a constant if no electro
flows into the system. We now haveNL5NR for an isolated
nanotorus. From the above equation~47!, it can be seen tha
if NL and NR are conserved, then by varying the magne
field NF , the chiral charge also changes. Therefore it is no
conserved quantity. We thus see that the vacuum is res
sible for nonconservation of chirality even though the d
namics is chirally invariant. From Eq.~43! we see that the
chiral current @J5

0# is proportional to the electric curren
(evFJ1(x)) in the tubule axis direction; then, we have a
average value of the electric currentJ as

J[
evF

L R J1~x!dx52
evF

L R J5
0~x!dx52

evF

L
Q5 .

~50!
15542
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Hence, in order to observe the anomaly, we should obse
the electrical current in the torus.

Due to the existence of the two Fermi points, the to
current in the torus is given by the sum of two curren
^Q5& k̃1

and ^Q5& k̃2
. We should care for the sign (6) in the

chiral charge~47!. We define

^Q5& k̃1
5NL1NR22NF211

2

3
Ñ, ~51!

^Q5& k̃2
5NL1NR22NF212

2

3
Ñ, ~52!

and treat them separately.
It is clear from the above equations that there are t

origins of the usual current flow in the torus. One is theNL
1NR term which can be induced in thermal bath or by
sudden change of the magnetic field. On the other han
magnetic field can change the quantum vacuum structure
lead to the anomaly. In order to avoid unexpected change
NL (5NR), the magnetic field must be changed adiabatica
at low temperature (,2p\vF /L). However, in the adiabatic
process, when the strength of the magnetic field reaches
specific points, thenNL (5NR) also has to change. For sim
plicity, we setÑ51 and focus on thêQ5& k̃1

. When increas-

ing NF starting from the pointNF50,NL50, the energy is
going up as in Eq.~48!. At NF5 1

3 , the spectrum meets an
other line of spectrumNL51 as in Fig. 4. Therefore the
circular current fork̃1 in the ring,

J~ k̃1!5
evF

L F2~NF2NL!1
1

3G , ~53!

follows the line shown in Fig. 5.
The same analysis can be applied to thek̃2 Fermi point.
9-6
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FIG. 5. Magnetic field dependence of the in

duced current in the twisted zigzag torusJ( k̃1).
We plot the current in units ofevF/L.
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J~ k̃2!5
evF

L F2~NF2NL!1
5

3G . ~54!

Adiabatic changes of energy and induced current are sh
in Figs. 6 and 7.

Total current on the torus is given by a sum of two cu
rents~53! and ~54!:

J5J~ k̃1!1J~ k̃2!. ~55!

The magnetic field dependence of the total current is sho
in Fig. 8. The dotted line in Fig. 8 indicates the current in t
untwisted Ñ50 torus. This current for an untwisted toru
shows the same magnetic field dependence to the persi
current in Ref. 15. Our results~55! are in agreement with the
results of other papers.
15542
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At each Fermi point, there are two spin degrees of fr
dom. Therefore the actual current is twice theJ. Hence the
amplitude of this total current including the spin degrees

4evF

L
. ~56!

A numerical value of this amplitude is about 0.5@mA# for a
nanotorus withL51 @mm#. Let us explain how to measur
the current briefly. Some methods could be considered
order to detect the current in the torus. As an example,
current generates a magnetic field around torus; then,
can observe the current via a magnetic field which is gen
ated by the current. However, current could not be obser
by the standard electrical contact because the electrical
turbation cannot affect the current~86!. This means that we
cannot measure the current by an electrical contact.
-

n

FIG. 6. Adiabatic change of the fermionic en

ergy of k̃2 point. The energy value is labeled i
units of 2p\vF /L.
9-7
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FIG. 7. Magnetic field dependence of the in

duced current in the twisted zigzag torusJ( k̃2).
We plot the current in units ofevF /L.
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V. VACUUM STRUCTURE OF A CARBON NANOTORUS

In this section we consider the vacuum structure of
total Hamiltonian:

H5 R H5HF1HC ,

HC5
e2

8p R J0~x!J0~x8!

ux2x8u
dxdx8. ~57!

In the previous section we have solved the kinetic part of
total Hamiltonian. We clarified its vacuum state and obtain
the regularized eigenvalues of the physical quantities.
saw that the vacuum has the chiral charge so that it lead
the chiral anomaly. What we are interested in at this poin
whether the previous results change or not by the inclus
of the Coulomb interaction in our analysis.11 Furthermore,
we hope to make clear the effects of the ‘‘external’’ char
15542
e

e
d
e
to
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n

e

on the chiral anomaly in Sec. VI. Their understandings
also the first step for studying more physically interesti
situations such as impurity effects and junctions of a C
and a metal or a superconductor. It should be noted tha
the remainder of the paper we only consider the one ferm
degree which belongs to, for example, thek̃1 Fermi point.
We neglect other types of interactions23 such as backscatter
ing and umklapp processes provided that their coupling
weak enough.

The Coulomb interaction consists of a product of t
charge density. Therefore it is very convenient to rewrite
kinetic termHF using the current operators. For this purpo
it is useful to introduce the left and right currents as follow

J0~x!5JL~x!1JR~x!, ~58!

where JL(x)5CL
†(x)CL(x) and JR(x)5CR

†(x)CR(x). We
expand these currents by the Fourier modes,
al
FIG. 8. Magnetic field dependence of the tot

current on the torusJ5J( k̃1)1J( k̃2).
9-8
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JL~x!5 (
nPZ

j L
n

L
e2 i2pnx/L, JR~x!5 (

nPZ

j R
n

L
e1 i2pnx/L,

~59!

where the Fourier components are the bosonic operators

j L
n5 (

mPZ
am

† am1n , j R
n5 (

mPZ
bm1n

† bm , ~60!

which satisfy the following commutation relations on fe
mion Fock space:

@ j L
n ,~ j L

m!†#5ndnm , ~61!

@ j R
n ,~ j R

m!†#5ndnm . ~62!

It is well known that the following Hamiltonian has the sam
matrix element as the original fermion Hamiltonian:

HF5
2p\vF

L H S Q21Q5
2

4
2

1

12D 1 (
n.0

@~ j L
n!† j L

n1~ j R
n !† j R

n #J ,

~63!

where

Q5 j L
01 j R

0 , Q55 j L
02 j R

0 . ~64!

This Hamiltonian has a new term which is not shown in E
~48!. This term has a vanishing value on the previo
vacuum state because

j L
nuvac;NL&50, j R

n uvac;NR&50, ~65!

for positiven.
The Coulomb interaction can be rewritten using t

bosonic current operators

HC5
e2

4pL (
n>0

V~n!@~ j L
n!†1 j R

n #@ j L
n1~ j R

n !†#. ~66!

Here, we introduce the Fourier component of the Coulo
potential:

V~n!52pE
0

1

dx
cos~2pnx!

Asin2~px!1S R

L
D 2

, ~67!

whereR (5pd) is the circumference of the tubule.
Some comments are in order. When we write the C

lomb interaction in Eq.~57!, it has an ultraviolet divergenc
in the limit of x→x8. Therefore we need to introduce som
cutoff length. It is appropriate to set it the diameter of a tu
because when two electrons on a nanotube come from o
site sides of the tubule axis direction, they repeal and p
each other. At the moment they approach most, there is
a distance about the diameter of a nanotube to decreas
energy of such event. This explains the (R/L)2 term in the
denominator. Besides, the form of a torus is not a line bu
ring on a plane so that we should use the direct length
tweenx andx8 in the Coulomb interaction. This is the origi
of the sin2(pz) term in the denominator.
15542
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We combine the kinetic term and the Coulomb term
follows:

H5H02
2p\vF

12L
1 (

n.0
Hn , ~68!

where

H05
2p\vF

L

Q5
21Q2

4
1

2p\c

L

a

4p
V~0! ~69!

and

Hn5
2p\vF

L
$~ j L

n!† j L
n1 j R

n~ j R
n !†2n%1

e2V~n!

4pL
@~ j L

n!†1 j R
n #

3@ j L
n1~ j R

n !†#. ~70!

Here we use the fine structure constanta (5e2/4p\c).
We diagonalize the HamiltonianHn(nÞ0) using the Bo-

goliubov transformation

S j̃ L
n

~ j̃ R
n !†D 5S coshtn sinhtn

sinhtn coshtn
D S j L

n

~ j R
n !†D , ~71!

where

sinh 2tn5
1

En

e2V~n!

4pL
, ~72!

cosh 2tn5
1

En
S 2p\vF

L
1

e2V~n!

4pL D , ~73!

En5
2p\vF

L
A11

a

p

c

vF
V~n!. ~74!

After some calculations we derive

Hn5En@~ j̃ L
n!† j̃ L

n1~ j̃ R
n !† j̃ R

n1n#2
2p\vF

L
n. ~75!

The energyEn differs from 2p\vF /L. The difference is due
to the Coulomb interaction; see Fig. 9.

The generators of the Bogoliubov transformation a
given by

Un5expS 2
tn

A2n
$~ j̃ L

n!†~ j̃ R
n !†2 j̃ L

n j̃ R
n% D . ~76!

Hence, we obtain the vacuum state as follows:

uvac̃&5S )
n.0

UnD uvac;NL ,NR&, ~77!

whereNL5NR . The previous vacuum state changes into
new vacuum by the Coulomb interaction. We should estim
the gauge charge and chiral charge on this new vacu
Because the operators (Un) commute with the charge opera
tors Q and Q5, the eigenvalues of these charges do n
change, that is,
9-9
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FIG. 9. Energy spectra are corrected by t
Coulomb interaction. The energy value is label
in units of 2p\vF /L. Here we setL/R5102 in
Eq. ~67!.
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Quvac̃&50, ~78!

Q5uvac̃&5S 2~NL2NF!216
Ñ

3
D uvac̃&. ~79!

Hence, the chiral anomaly which we have investigated in
previous section still exists when we include the on
dimensional long-range Coulomb interaction in the analy

VI. EFFECTS OF EXTERNAL CHARGES

We have so far considered the long range Coulomb in
action between the internal charges. However, a more im
tant problem may be the following: when we put extern
charges on a nanotorus, how does the vacuum struc
change? A fixed external charge may correspond to an e
trical contact or an impurity on a torus. In this section we p
external charges on a torus and study the vacuum struc
Especially we analyze an effect of external charges on
current: the potential behavior between a pair of exter
charges and the charge screening.

We set two unit external charges on a torus. One ha
unit chargee placed atx1 and the other has an opposi
charge2e at x2 :

Jex
0 ~x!5d~x2x1!2d~x2x2!5

1

L (
nPZ

j ex
n e2 i2pnx/L,

~80!

where

j ex
n 5ei2pnx1 /L2ei2pnx2 /L. ~81!

We consider the Coulomb interaction with the followin
charge density which is a sum of the internal charges and
external charges:

J0~x!1Jex
0 ~x!5 (

nPZ
@~ j L

n!†1 j R
n1~ j ex

n !* #
1

L
e1 i2pnx/L.

~82!
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After some calculations we get the diagonalized Hamilton
in the presence of the external charges:

Hn~Jex![En$@~ j̃ L
n!†1gn~ j ex

n !* #~ j̃ L
n1gnj ex

n !

1@~ j̃ R
n !†1gnj ex

n #@ j̃ R
n1gn~ j ex

n !* #1n%

2
2p\vF

L
n1

bn

En
2 S 2p\vF

L D 2

~ j ex
n !* j ex

n , ~83!

wheregn5sinh 2tn(coshtn2sinhtn) andbn5(e2/4pL)V(n).
The conditions of the vacuum in the presence of exter
charges can be read from the above Hamiltonian as follo

~ j̃ L
n1gnj ex

n !uvac̃;Jex
0 &50, ~84!

„ j̃ R
n1gn~ j ex

n !* …uvac̃;Jex
0 &50, ~85!

for positive n. First we can easily show that the electric
current on this new vacuum does not change even in
presence of external charges,

^vac̃;Jex
0 uJ5~x!uvac̃;Jex

0 &5
^Q5&

L
. ~86!

So the current by the chiral anomaly is not affected by
charged impurities. Second, we estimate the energy cha
due to the presence of the external charges:

E~x12x2!5^vac̃;Jex
0 uH~Jex

0 !uvac̃;Jex
0 &2^vac̃uHuvac̃&

5 (
n.0

bn

En
2 S 2p\vF

L D 2

~ j ex
n !* j ex

n

5
2p\vF

L (
n.0

a

p

c

vF
V~n!

11
a

p

c

vF
V~n!

3S 12cos
2pn~x12x2!

L D , ~87!
9-10
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FIG. 10. Distance dependence of the ener
caused by two fixed external charges. The ene
value is labeled in units of 2p\vF /L. The dis-
tance between two external charges is scaled
the circumference of the tubuleR. Here we take
L5102R andR5p @nm# in Eq. ~67!.
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whereH(Jex
0 ) is the Hamiltonian with the external charge

Jex
0 . Figure 10 shows the potential energy~87! as a function

of the distance between the two external charges.
We see that the effect of the ‘‘charge screening’’ on t

external charge cannot be ignored in a metallic nanoto
because the potential energy is now shown to be s
ranged. This means that some internal charges are influe
by the external charges and external charges are screene
confirm this, we also compute the induced internal char
distribution,

^vac̃;Jex
0 uJ0~x!uvac̃;Jex

0 &5 f ~x;x1!2 f ~x;x2!, ~88!

where

f ~x;x1!52
2

L (
n.0

a

p

c

vF
V~n!

11
a

p

c

vF
V~n!

cos
2pn~x2x1!

L
.

~89!

This function is displayed in Fig. 11.
We should stress here that the above analysis of the ch

ing energy~87! and screening~89! is not complete becaus
the charge densityJ0(x) in the Coulomb interaction consist
of one massless fermion in our analysis. A CNT has fo
independent fermions due to the two Fermi points~18! and
15542
s,
rt
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r

spin degrees of freedom. However, straightforward extens
of our analysis shows that the conclusions in this pa
hardly changes.24

VII. CONCLUSION AND DISCUSSION

In this paper we analyzed low-energy excitations in t
carbon nanotorus and discussed the quantum mecha
vacuum structure of them. The significance of our pres
work is put as follows.

We used the quantum field theory to analyze the vacu
structure of a metallic nanotorus. We pointed out that
chiral anomaly in 111 dimensions should be observed in t
form of a specific magnetic field dependence on the curr
This current is the same as the persistent current. It is cer
that the persistent current can be understood in the ligh
the chiral anomaly in 111 dimensions. We also clarified th
vacuum state including the Coulomb interaction and d
cussed the effect of ‘‘charge screening’’ on the exter
charges. It was found that the chiral anomaly is not affec
by the charged impurities and the charge screening ef
actually occurs.

We would like to mention the relationship between o
results and the previously published literature on persis
current in toroidal CNT’s and in metallic rings. All the re
sults in Sec. IV which are derived from the chiral anoma
a-
FIG. 11. The internal charge density modul
tion around a unit chargee placed at origin:
f (x;0) in units of nm21. The coordinate label is
scaled by the circumference of the tubuleR. Here
we takeL5102R andR5p @nm# in Eq. ~67!.
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points of view are consistent with the results in publish
papers.

Lin and Chuu15 analyzed persistent current by the tigh
binding model. They claimed that the characteristic jum
structure of the current at special flux point—for examp
whenNF is an integer~untwisted case!—is attributed to the
metal-semiconductor transition. However, this is not
case. The energy gap cannot be generated only by var
the magnetic field because each energy level has the s
magnetic field dependence~40!. Hence the level spacing i
always constant. The reason why there are jumps in the
rent is the electron transfer from left mover to the rig
mover (NL :0→1 at NF50).

Odintsovet al.15 evaluated the persistent current of inte
acting electrons using bosonization formalism. The symm
tries of the original fermion system should be maintained
the process of bosonization. Because of that, the resu
bosonic Hamiltonian has the same conserved quantitie
should be noted that without the notion of the chiral symm
try being broken by the vacuum, one never obtains the
rent within the model or by following the dynamics. In ord
to get the current they need an extra assumption that is
definition of the persistent current. Because of that, the
portant fact that the ‘‘symmetry of the system~Hamiltonian!
is broken by the quantum mechanical state~vacuum!’’ is not
recognized.

Cheunget al.14 derived the persistent current for noninte
acting electrons in metallic rings using only elementa
quantum mechanics. They included the whole band struc
of the system and discussed finite-temperature effects. L
energy excitations in metallic rings are described by tw
component fields. Hence the persistent current in meta
rings can be similarly analyzed from the chiral anoma
point of view.13

Although we have analyzed a nanotorus in the pres
paper, we can regard the torus as a tube locally provided
circumferential length of the torus is large. Hence, we m
apply the results obtained in the analysis of the torus to
study of a carbon nanotube. To take an example, it is rea
able to suppose that the screening effect is also present
tube like in a nanotorus.

What we do not consider in this paper are effects of
backscattering and the sublattice-dependent part of the
ward scattering process~Odintsov et al.15! and finite tem-
perature (.2p\vF /L) on the chiral anomaly and screenin
of external charges. In finite temperature, in addition to
electron field, the phonon field would come into play.25 This
phonon field may be vital to understand the electrical beh
ior of the carbon nanotube at finite temperature. We wo
like to make a quantitative analysis of these effects in a
ture report.
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APPENDIX

Here we derive the vacuum expectation values of char
and the kinetic Hamiltonian@Eqs.~46!–~48!#.11 It is straight-
forward to get the kinetic Hamiltonian in terms of the ferm
onic creation-annihilation operators by integrating the spa
variable of the kinetic Hamiltonian density as follows:

HF5E
D
HFdx5 (

nPZ
enan

†an1 (
nPZ

~2en!bn
†bn , ~A1!

whereen are the energy eigenvalues~40! given by

en5DFn6
Ñ

3
2NFG . ~A2!

Here we set the level separationD([2p\vF L) for simplic-
ity. The kinetic Hamiltonian is decomposed into left an
right sectorsHF[HL1HR where

HL[ (
nPZ

enan
†an , HR[ (

nPZ
2enbn

†bn . ~A3!

Besides these Hamiltonians, it is important to consid
conserved quantities of the system. A global symmetry
volves the existence of a conserved current and then a ch
is defined by the spatial integration of the time componen
the current. The system is invariant under the following tw
independent global transformations of fermion fields,

CL→eiuLCL , CR→eiuRCR . ~A4!

At the unquantized~classical! level, these symmetry transla
tions guarantee conserved currents,

F ]

]t
2vF

]

]xGJL50, ~A5!

F ]

]t
1vF

]

]xGJR50, ~A6!

where the left current and right current are defined as
lows:

JL5CL
†CL , JR5CR

†CR . ~A7!

Spatial integration of both currents gives ‘‘left charge’’ an
‘‘right charge’’ in terms of the fermionic creation
annihilation operators, respectively:

QL5 (
nPZ

an
†an , QR5 (

nPZ
bn

†bn . ~A8!

We define the second-quantized vacuum by filling t
negative-energy modes, leaving the positive-energy mo
empty. To start with, we analyze the left sector and the
charge. We define ‘‘NL vacuum (uvac;NL&)’’ such that the
levels with energy lower thaneNL

are filled and the others ar
empty:
9-12
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uvac;NL&5 )
n52`

NL21

an
†u0&, ~A9!

where u0& is the nothing state. We shall calculate vacuu
expectation values of the left charge and the Hamiltoni
They have divergent eigenvalues on theNL vacuum. So in
order to get a physically reasonable value, we should re
malize them. Here we employ thez-function renormaliza-
tion; in this case, the left charge is renormalized as follow

QL5 lim
s→0

(
nPZ

an
†an

1

ulenus
, ~A10!

where l is an arbitrary constant with dimension of leng
which is necessary to makelen dimensionless. This renor
malization respects gauge invariance because the energ
each level is a gauge-invariant quantity. Using this renorm
ization scheme, we obtain expectation values of the
charge and the Hamiltonian,

^QL&5 lim
s→0

(
n52`

NL21
1

Un6
Ñ

3
2NFUs

5 lim
s→0

zS s,2S NL6
Ñ

3
2NFD D

5NL2
1

2
6

Ñ

3
2NF , ~A11!

^HL&5 lim
s→0

(
n52`

NL21
en

ulenus

52D lim
s→0

(
n52`

NL21
1

Un6
Ñ

3
2NFUs21

5DS ^QL&2

2
2

1

24D , ~A12!

where we use thez function

z~s,a!5 (
n50

`
1

~a1n!s
~A13!

and several limiting formulas

lim
s→0

z~s,a!5
1

2
2a, ~A14!

lim
s→0

z~s21,a!5
1

24
2

S 1

2
2aD 2

2
. ~A15!

Here and hereafter we use the simple bra and ket notation
the vacuum as follows:̂QL&5^vac;NLuQLuvac;NL&.
15542
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We proceed to consider the right sector in the same w
We define the ‘‘NR vacuum (uvac;NR&)’’ such that the levels
with energy lower than2eNR21 are filled and the others ar
empty:

uvac;NR&5 )
NR

n5`

bn
†u0&. ~A16!

We obtain an expectation value of the right charge and
Hamiltonian on theNR vacuum:

^QR&52NR1
1

2
7

Ñ

3
1NF , ~A17!

^HR&5DS ^QR&2

2
2

1

24D . ~A18!

Combining the left and right sectors of the Hamiltonia
we get the following expression for the kinetic Hamiltonia

^HF&5DS ^QL&21^QR&2

2
2

1

12D , ~A19!

where the vacuum is defined by the the direct product of
NL andNR vacua,

uvac;NL ,NR&[uvac;NL& ^ uvac;NR&. ~A20!

The left and right charges can be written in terms of mo
the physically intuitive quantities ofU(1) electric charge~Q!
and chiral charge (Q5). These are defined as follows:

Q[QL1QR , Q5[QL2QR . ~A21!

These are also conserving quantities at the unquantized
because summeation of Eqs.~A5! and ~A6! gives us a stan-
dard conservation law of electrical current:

]

]t
~JL1JR!2vF

]

]x
~JL2JR!50, ~A22!

where JL1JR @5J0(x)# is the charge density andvF(JL
2JR) is the current density. This current conservation la
results in the conservation ofU(1) charge:

Q5E
D

J0~x!dx5QL1QR . ~A23!

On the other hand, subtraction of Eq.~A5! from Eq. ~A6!
gives

]

]t
~JL2JR!2vF

]

]x
~JL1JR!50. ~A24!

It immediately follows that the chiral charge

Q55E
D
„JL~x!2JR~x!…dx5QL2QR ~A25!

is conserved. The physical meaning of the chiral charge
spatial integration of the electric current density in a nan
torus. This charge measures the left-right asymmetry of
vacuum and is defined by the difference of the left cha
and the right charge on the vacuum. By combini
9-13
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Eqs. ~A11!, ~A12!, ~A17!, and ~A18!, we finally get the
vacuum expectation values of the physical quantities use
the text:

^Q&5NL2NR , ~A26!

^Q5&5NL1NR22NF216
2

3
Ñ, ~A27!

^HF&5DS ^Q&21^Q5&
2

4
2

1

12D . ~A28!
,

d

s

15542
in
The vacuum expectation value of the chiral charge depe
on the magnetic fieldNF . Therefore it is no longer conserv
ing quantity. So the unquantized~classical! current conserva-
tion law ~A24! should be modified at the quantum level a
follows:12

]mJ5
m5

1

vFfD
emnFmn, ~A29!

whereFmn5]mAn2]nAm is the field strength. Note also tha
the vacuum energy in Eq.~A28! is nonvanishing, which is
due to the finite-size effect of a nanotorus.
zed
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