PHYSICAL REVIEW B, VOLUME 65, 155429

Vacuum structure of toroidal carbon nanotubes
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Low-energy excitations in carbon nanotubes can be described by an effective field theory of two-component
spinors. It is pointed out that the chiral anomaly if+ 1 dimensions should be observed in a metallic toroidal
carbon nanotube on a planar geometry with varying magnetic field. We also analyze the vacuum structure of
the metallic toroidal carbon nanotube including the one-dimensional long-range Coulomb interactions and
discuss some effects of external charges on the vacuum.
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[. INTRODUCTION current. Therefore, persistent current is closely connected
with the chiral anomaly in +1 dimensions. The chiral

In recent years carbon nanotubé6NT’s) have attracted anomaly provides a deeper understanding of the persistent
much attention from various points of view. Especially theircurrent as shown in the present paper.
unique mechanical and electrical properties have stimulated In this paper, we examine the anomaly effect in a metallic
many physicist’s interest in the analysis of CNT$.They  nanotorus and discuss how such an effect can be observed
have exceptional strength and stability, and they can exhibigxperimentally. We also clarify the vacuum structure of the
either metallic or semiconducting behavior depending on thé&odel regarding the gauge field as a classical field and dis-
diameter and helicity:® Because of their small size, proper- cuss some effects of external charges situated on a metallic
ties of CNT’s should be governed by the law of quantumtorus.
mechanics. Therefore it is quite important to understand the The organization of this paper is as follows. After review-
quantum behavior of the electrons in CNT's. ing quantum physics of CNT¥, we study the case of a

The bulk electric properties ofsingle-wal) CNT’s are  nhanotorus in Sec. Il. In Sec. lll we point out that low-energy
relatively simple, but the behavior of electrons at the end ofXcitations on a metallic torus at half filling can be modeled
a tube(cap or metal-CNT junction is complicated and its by & quantum field theory of massless fermions with gauge
understanding is necessary for building actual electrical defield and construct the Hamiltonian of this system. In Sec. IV
vices. On the other hand, toroidal CNTBullerence “crop  We discuss the chiral anomaly and show how such an effect
circles””) are clearly simple because of their no-boundarycan be observed experimentally. We examine the Hamil-
shape and they can also have either metal or semiconductiignian including the long-range Coulomb interactions and
properties(hereafter we use “torus” or “nanotorus” instead analyze an effect of the Coulomb interactions on the chiral
of “toroidal carbon nanotube” for simplicity Even in the anomaly in Sec. V. We discuss some effects of external

torus case, a quite important effect—*"chiral anomaﬂ‘y," charges in Sec. VI. A conclusion and discussion are given in
which is of essentially quantum nature—might occur. Sec. VIl. Some formulas which are used in Sec. IV are de-
Low-energy excitations on CNT’s at half filing move rived in the Appendix.
along the tubule axis because the circumference degree of
freedom(an excitation in the compactified directiois fro-
zen by a wide energy gap. Hence this system can be de-
scribed as a (¥ 1)-dimensional system. Furthermore, in the A carbon nanotube can be thought of as a layer of graph-
case of metallic CNT’s, the system describing small fluctuaite sheet folded up into a cylinder. A graphite sheet consists
tions around the Fermi point is equivalent to the masslessf many hexagons whose vertices are occupied by the carbon
fermion in 1+ 1 dimensions. If we include a gauge field, this atoms and each carbon supplies one conducting electron
situation can be modeled by the quantum field theory ofwhich determines the electric properties of the graphite
massless fermions which couples to the gauge field througbheet. The lattice structure of a two-dimensional graphite
minimal coupling. This model realizes the chiral anomalysheet is shown in Fig. 1. It is obvious, however, that this
phenomenor! picture of a CNT as a graphite sheet rolled up to form a
The chiral anomaly is one of the most interesting phe-compact cylinder is somewhat oversimplified. We need to be
nomena in quantum field theory and has had an appreciabtareful of the following facts. First, a conducting electron
influence on the modern development of high-energymakes ther orbitals whose wave function extends into the
physics? and of condensed matter physiésThe effect of  direction: perpendicular to the graphite sheet. Hence, in the
the chiral anomaly on the electrons in a nanotorus appearsase of multiwall CNT's(MWCNT's), the wave functions
directly as a current flow. On the other hand, it is known inwhich belong to different layers may interfere so that there is
solid-state physics that a one-dimensional metallic ringa chance that some electrical properties will dlteis com-
shows “persistent current*®in an appropriate experimen- pared with single-wall CNT's(SWCNT's). Second, we
tal setting. The current originating from the chiral anomalyshould care for the curvature of a cylinder. This cause the
shows the same magnetic field dependence as the persisteniing of o and 7 orbital so that the band structure might
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which defines the relative location of the two sites. The pair
of indices (N,M) describes how the sheet is wrapped to form
the cylinder and determines its electrical propertiéghe
CNT's can be divided into three categories depending on the
pair of integers N,M). A tube is called “zigzag” type if

M =0 and “armchair” in the cas& = —2N. All other tubes

are of the “chiral” type.

To study the electronic properties of a nanotorus quantum
mechanically, first we compactify the graphite sheet into a
cylinder by imposing a periodic boundary condition on the
state vector. In general, we may consider the following
boundary condition:

FIG. 1. Lattice structure ?f a two-dimensional 1graphite sheet G(Cp)| ¥k =|wk). (7)
[ui=ae,, u,=—(\3/2)ae~7ae, us=(\3/2)ae~ 338 ] G denotes a symmetry translation operator, from which we
change. In the present paper, we concentrate on single-waﬂptam
CNT’s with a large diameter. Therefore the effects of inter- J3 3
layer interactions and curvature can safely be negleéted. — (2N+M)ak,+ 5 Mak,=2mn, (8)
There are two symmetry translation vectors on the planar 2 2
honeycomb lattice, wheren is an integer. Next, in order to make a torus, we
compactify the tube into a torus by imposing a boundary
T, 3a - :Ea . §a 2 condition to the tubule axis direction. For example, we may
! S 2= a&T 588 consider a “zigzag torus” which has the following boundary

conditions:

Herea denotes the length of the nearest carbon vertex and is

given by 0.142[nm]. e, ande, are unit vectors which are G(NT,)| WX =|w"),

orthogonal to each othee(-e,=0). If we neglect the spin

degrees of freedom, because of these symmetry translations, G(M(ZTZ—Tl))|\Pk>= |q,k>_ (9)

the Hilbert space is spanned by the following two Bloch

basis vectors: The former condition makes a sheet into a zigzag tube, and

the latter forces the tube into a zigzag torus.
. . It is clear that there are many possibilities for the shape of
|‘I'l-(>:i26. e"iaf|0), |q’5>:i260 eal10), (@ 4 torus and each shape has it)é Fszn boundary conditic?n. So
some of them have different properties from the one in Egs.
where the black (+) and whiteo) indices are indicated in (9). Especially we can image a torus in which some twists
Fig. 1. Herer; labels the vector pointing each siteanda;  exist along the tubule axis directioR.This system has the
anda/ are canonical annihilation-creation operators of thefollowing boundary conditions:

electrons of sité andj that satisfy . Ay = [
G(NTY W )=|¥"),

{a.af}=4;. (3) ) .
. _ G(M(2T,=T)| ¥ )=G(NT)[ "), (10
We construct a state vector which is an eigenvector of these
symmetry translations as follows: whereN is decided by the twist at the junction of tube end;
see Fig. 2. These boundary conditions yield the discrete
| WKy =CK Wk + CHwky. (4 wave vectors
In order to define the unit cell of wave vectkrwe act the 27N 2 N
tsrz/gngﬁltgﬁit:lagosrl]aetlon operators on the state vector and obtain ak,= \/§ N’ ak,= 3M (m N) , (11
wheren andm take an integer value which satisfies Eg).
T _ ™ \/§ 3 So far we have constructed the Hilbert space of the con-
- —==<ak<—, —w=<-—_ak+tzak<m, (5 . : :
J3 J3 2 2 ducting electrons. The Hilbert space is spanned by the Bloch
basis vectors with the discrete wave vect(t$). Now, we
wherek,=k-e, andk,=k-e, . consider the Hamiltonian which governs the time evolution
The mapping of the graphite sheet onto a cylindrical sur-of a state vector. Each carbon atom has an electron which
face is specified by a wrapping vector: makes ther orbital. The electron can transfer from any site
to the nearest three sites through the quantum mechanical
Ch=NT,;+MT,, (6)  tunneling or thermal hopping in finite temperature. Therefore
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y A where

Graphite Sheet 3 3 3
Ak)=y\/1+4 cos?akxcosiaky+4 co§7akx.
(17)

The structure of this energy band has striking properties
A Identify when considered at half filling. This is the situation which is

! physically interesting. Since each level of the band may ac-
i - commodate two states due to the spin degeneracy, the Fermi
I / X level turns out to be at midpoint of the banB,&0). The

i Fermi points in the Brillouin zone are located at

o= (ake,ak 2T 2T 18

— = [ N —

a 1,2 (a' X!a y) —3\/§!+ 3 . ( )

- Hence, ifN in Eq. (11) is a multiple of 3, then the zigzag
A B torus shows metallic properties.

. . ) o In order to understand the electric properties we should

condition in thex direction and attach the poitin the lower end . o~ .
to the pointC in the upper end to obtain a twisted nanotorus. Therepomts_' So we také= kl—i&k as a small ﬂucwét'om Per-
turbation around the poirk, can be analyzed in the same

areN hexagons between poinfsand B. )
way as around the poit;. So we may only consider one of
there is the probability amplitude for this process. In thisthe pairs. In this case the Hamiltonian which describes the

B A B T oy

\
Y

case, the tight-binding Hamiltonian is most suitable, small fluctuation is given by
3ya 3ya 0 ok, —1i 6k,
= Ta fa. L s k==
H EoZi ala;+ ’y(iE’D ala, (12) 50 Ok 2 | ot ok, 0 . (19

where the suni,j) is over pairs of nearest-neighbor carbon This implies that low-energy excitations of metallic CNT’s at
atomsi,j on the lattice.y (~2.5 eV) is the transition am- half filling are described by an effective theory of two-
plitude from one site to the nearest sites, &nyis the one  component spinors obeying the Weyl equation. In coordinate
from a site to the same site. This paramdfgonly fixes the ~ space, the Hamiltonian is given by:(o- p) wherep is the
origin of the energy and is irrelevant. Hereafter we Bgt ~momentum operatop=i#V ando; are the Pauli matrices.
-0. Here we introduce the Fermi velocity-=3ya/2%.?! Thus

It is an easy task to find the energy eigenstates and eige#?€ Schrdinger equation beco
values of this Hamiltonian. In the matrix representation, the

. . . J
ener eigenvalue equation is 1h — = .
gy eig q ih—w=ve(o-p)y. (20)

0 y>, elkui ‘ ‘ In the following section, we consider metallic and semicon-
i C. C. ducting zigzag tori that have smal and largeM values
. ck =Ex ck (13 (M/N=10?). In this case, the transitions between different
y>, e ki 0 ’ o k, are very small because of their energy costy/N) as
! compared to that of, (~y/M). Therefore, the only surviv-
where ing degree is a motion in the tubule axis direction; i.e., this
system is a (¥ 1)-dimensional system effectively.

|\I’5>: ( O) ) |\I’5>: ( 1), (14 Ill. EFFECTIVE FIELD THEORY OF CARBON

NANOTUBES
and the vectou; is a triad of vectors pointing, respectively, . . . .
in the direction of the nearest neighbors of a black péfig. In this section we would like to focus on the zigzag torus

1). The energy eigenvalues and eigenvectors are as follow .hi‘.:h h‘."‘S the boundary .cgnditiorﬁg) and construc_t an ef-'
ective field theory describing the low-energy excitations in

Ex=*+A(k), (15)  the torus. More general boundary conditiofi€) are dis-
cussed in Sec. IV. The zigzag torus can exhibit either metal-
lic or semiconducting properties depending on the value of

CX 1 y>, ek N. If N is a multiple of 3, then the torus shows metallic
ck :—\/EA(k) ! ' (16) properties. In order to analyze the semiconducting case
° +A(k) equally, we seN=*=3s+t, wheresis a positive integer and
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te{0,+1,+2}. To examine the low-energy excitations, we
should consider the following wave vectors and energy:

ksl 1 K, 2T, ok, (21)
ake=*————, ak=F—+a
x 3.3 t 3
1+—
3s
P A 3k, 22)
= a
k k 3\/— 1+
~3s

Considering the small perturbatioa gk, <2/9) in the zig-
zag nanotorus with large diamete={3), the excitation en-

ergy can be approximated by
Ex~*vpVmg+ps, (23)
wherep, =1 ok, and
2wt It| (24
0 [33sa 3’

Consequently, we obtain a linear dispersion relation for me-
tallic case {=0). This is to be contrasted with the dispersion
relation for semiconducting casé40). We may regard the
low-energy electrons in metallic nanotubes as “massless
fermions because of their linear dispersion.

Here we comment on the excitations between differen
Ky .
the energy to the following region:

a
IEKI<%, (25)
whered (=N+/3a/7) denotes the diameter of a tube. Even
at room temperaturd =300 [K], thermal excitation be-
tween differentk, cannot occur for nanotubes with~ 10a
because of the Boltzmann suppression factor

e ’Ya/kBTdNe_ 10(H/d’ (26)

where kg is the Boltzmann constant. So the transition be-

tween differentk, can be ignored. Accordingly, the Hamil-

a
In order to neglect these excitations, we have to restricg

PHYSICAL REVIEW B 65 155429

In the remainder of this paper we focus on the metallic
case (p=0). One can obtain the quantum field theory by
promoting the wave functiopy= (¢ ,¥g)'] to the field op-
erator[ V= (¥ ,¥R)!] obeying the anticommutation rela-
tion. Because the Schiimger equation(28) is the Dirac
equation in two dimensions, it is appropriate to adopt the
following Lagrangian density:

L=VDWV, (29)

where\I_f=\Iny° andD is the Feynman notation defined as

D= > D, D,=iho,— A 30
(o1 ", p=Ind, cwe (30)
HereA,=(Aq,A1)=(A;,vgAy) are the gauge fields and we

adopt the following relat|V|st|c notation:x*= (x° x%)
E(t,y/l}p),ﬁ’u:(ao,&l) ﬁ/&XM

Y=oy, y'=ia,, ¥*=—9"y'=0,. (3D)
The Dirac matricesy* obey {y*,y"}=2g*" and y*vy°
= eM”y, with the metricg#”=diag(1,-1) and the antisym-
metric tensore*”, €%'= ey =1. An electromagnetic interac-
tion is introduced according to the minimal coupling. The
gauge fields propagate in four-dimensional space-time so
that the Coulomb potential is given by the standard long-
range interactior{34).
We gquantize the fermion field in each configuration of the
uge field choosing Weyl gauge conditidp=0. The total
amiltonian density is given by

5:

H=H+Hc. (32

The Hamiltonian density consists of the kinetic term and the
Coulomb term. The kinetic term is given by

tonian which describes the low-energy excitations near the

Fermi point is given by

0
im0+ipy

(27)

Ur

The sign () in front of my comes from thek; andk,
points. The sign can be removed by an appropriate unitar

He=¥The ¥
_ e
Iﬁﬁy— EAy 0
=¥Tye o P,
o fina-2a,
(33
The Coulomb interaction term is
f JO(y) %y’ ) 4 34
C 7
87)  |y-y'|

wheree is the electron charge arell® stands for the charge

density. It should be noted that besides the long-range Cou-
lomb interaction, backscattering and umklapp processes may
wppear in the dynamics of electrons as is shown in Ref. 23.

transformation of the state vector. Therefore we may choos®@/e neglect these interactions provided that their couplings
the minus sign without loss of generality. Using the unitaryare weak enough.

transformationU = e~ '("4x  the Schrdinger equation be-
comes
) lp’.

J
ﬁﬁlﬁ:UF( —p, (28

_mo

IV. CHIRAL ANOMALY IN A METALLIC NANOTORUS

We have obtained the Hamiltonian density which de-
scribes the low-energy excitations in the zigzag torus. The
Hamiltonian consists of two parts: one is the kinetic term and
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the other is the one-dimensional long-range Coulomb inter- Magnetic Flux
action. In this section we discuss the quantum mechanical ﬂ/
vacuum structure of the kinetic Hamiltoniahkt:(=$H;).
The effects of the Coulomb interaction will be considered in
later sections. Hereafter let us usastead ofy as a label of ”
the coordinate of a tubule axis direction. In the remaining -
part of the paper we have only one spatial coordinate, so no L \
confusion would arise about it. u )
The energy eigenvectors of the kinetic Hamiltonian are Toroidal CNT
given by FIG. 3. Atoroidal carbon nanotube on a planar geometry with a
magnetic field.
1 1 0 0
hF¢n(0):En¢n(o)a hF'pn(l):_enwn(l)v N dp
A=—T— (41)

1 e (x €
Pn(X)= TGXF< =i h_cf Ay(x")dx’ —i #X> , (35  wheregp=_2wfcle is the flux quantum. This vector poten-
L 0 F tial expresses thblg flux inside the torus and by tuning the
wheree, is the energy eigenvalues ahds the circumferen- magnetic fieldNg can be taken as a real number.
tial length of the zigzag torus =3a|M|. We expand the The dynamics of the massless fermion field is governed

fermion field using the left- and right-moving waves as Py the Lagrangian densit{29), which has two conserved
currents that are electric curredt and chiral currendf :

V6D =W+ PR = 2, ant/fn(X)e“E"””‘(o) I4(x) =T (x) YW (x), (42)

ne

+bn¢n(x)e+i<enm>t(m’ (36) JE(X) =T (X) Y ¥V (X) = €473,(X). 43

Therefore, the following two charges conserve in the time
wherea,,b, are independent fermionic annihilation opera- evolution of the system:
tors satisfying the anticommutators,

{a,,alt={b,,bl}=6m. (37) Q= 3€J°(x)dx, Qs= jﬁJg(x)dx. (44)

All of the other anticommutators vanish. Conservation of the electric currem,J*=0 (do=d;,d;

In order to get the energy spectruep, we have to im-  _ - ;
pose a boundary condition to the eigenfunctions. We take E%O%Fsi"r)\/;igfﬁe 32 t:hg ?Saggi ?gr?:e] Et%lfgldcmfaf?rarﬁg{:em
(10) as a general boundary condition. The boundary condi- #e5 9 y y

5 . . . . .
tion of the zigzag torus in the tubule axis direction becomes¥ —€'” “¥. For an unquantized fermion field the chiral in-

the following: variance ensures conservation of the unquantized chiral cur-
rent. However, after the second quantization the chiral cur-
G(M(ZTZ_Tl))lq,k):eii(27r/3)N|q,k> (39) rent ceases to be conserved even though the interaction

appears to be chirally invariant, because—different from
where the plus(minus in exponent has its origin in the classical mechanics—in the world of quantum mechanics,
Fermi pointk, (k,). Hence we should impose the following chiral symmetry is brokéhby the vacuum. This effect is

boundary conditions on the fermion energy eigenfunctions: called the chiral anomaly, which is similar to the spontaneous
symmetry breaking in the sense that in both phenomena

G x+L) =1 TNy, (x): (39  Physical asymmetry is attributed to the vacuum state and not
to the dynamics.
then, the energy eigenvalues are given by In order to find what is happening, we need to analyze the

vacuum structurévac;N, ,Ng)=|vac;N )® |vac,Ng), where
27TﬁU|:

L

. (40 N -1 n=x
vacN )= [ afl0), |vacNg)=II b}[0). (45
n Ng

=—

+N e #;'—Ad
€n n_§ 2z@he J, X

The gauge fieldA, is experimentally controllable by the
experimental setup shown in Fig. 3. On a planar geometryVe definglvacN,)(|vacNg)) such that the levels with en-
we set a nanotorus and put some magnetic field inside th@rgy lower thaney (— ey, -1) are filled and the others are
torus perpendicular to the plane. In this case the gauge fieldmpty. On this vacuum the charge expectation values and the
that expresses this magnetic field is given by, in vector notaenergy becom@?!!
tion, A=(Ng ¢p/27) V6, whered is an angle of two points
on the torus. Therefore we get a component (Q)=N_—Ng, (46)
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FIG. 4. Adiabatic change of the fermionic en-

ergy ofk; point. The energy value is labeled in
units of 2mhve /L.

2. Hence, in order to observe the anomaly, we should observe
(Qs)=NL+Ng=2Ng—1==N, (47)  the electrical current in the torus.
Due to the existence of the two Fermi points, the total
current in the torus is given by the sum of two currents

(Hey= 27-rhv|:<<Q>2+<Q5>2 1 (48) (Qs)k, and(Qs)y,,. We should care for the sign+() in the
F L 4 12)° chiral charge(47). We define
To obtain the above results, we have regularized the di- B 2.
vergent eigenvalues on the vacuumgiunction regulariza- (Qs)k, =NL+Ng—2Ng— 1+3N, (51)
tion. For example, the gauge charge is regularized as fol-
lows: 2
<Q5>RZZNL+NR_2N®_1—§N, (52)

S al 1 S bt 1
“=, ananp\e |s+nEZ bnbn|_)\6 E G and treat them separately.
i " It is clear from the above equations that there are two
where N is an arbitrary constant with dimension of length origins of the l_JsuaI curren_t flow in _the torus. One is e
which is necessary to makee,, dimensionless. This regular- +Ng term which can be mduged_ in thermal bath or by a
ization respects gauge invariance because the energy of ea%lﬁdden_ch.ange of the magnetic field. On the other hand, a
level is a gauge invariant quantity. Derivation of the abovenagnetic field can change the quan.tum vacuum structure and
formulas (46)—(48) is given in the Appendix. lead to the anomaly. In order to avoid unexpected changes of
The gauge chargéQ) remains a constant if no electron Ni (=Ng), the magnetic field must be Chaf.‘ged adlqbatlgally
flows into the system. We now hawg = Ng for an isolated at low temperature< 2afivg/L). However, In the adiabatic
nanotorus. From the above equati@7), it can be seen that POc€ss, w.hen the sirength of the magnetic field reachgs the
if N_ and Ng are conserved, then by varying the magneticSpeclflc pomts: them, (=Ng) also has to change. For sim-
field Ng , the chiral charge also changes. Therefore it is not &licity, we setN=1 and focus on th¢Qs)i,. When increas-
conserved quantity. We thus see that the vacuum is respoimg Ny, starting from the poiniNg,=0,N, =0, the energy is
sible for nonconservation of chirality even though the dy-going up as in Eq(48). At N, =3, the spectrum meets an-
namics is chirally invariant. From Ed43) we see that the other line of spectrunN, =1 as in Fig. 4. Therefore the
chiral current[Jg] is proportional to the electric current cjrcular current fork, in the ring,
(eveJdY(x)) in the tubule axis direction; then, we have an

Q=Ilim

s—0

average value of the electric currehtis _ eve 1
I(ka)= | 2(Np =N + 31, (53)
. (SIS 1 (S04 0 eUE
J=—1— P I (x¥dx=——— P I5(x)dx=———Qs. follows the line shown in Fig. 5.
(50 The same analysis can be applied to khd=ermi point.
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1

(7
Jk)

. FIG. 5. Magnetic field dependence of the in-

duced current in the twisted zigzag tordigk,).
We plot the current in units ofv /L.

05} ! ! ..

-1 -0.5 0 05 1

No

At each Fermi point, there are two spin degrees of free-
. (54 dom. Therefore the actual current is twice theHence the
amplitude of this total current including the spin degrees is

~ el)F
J(kz)ZT

5
2(N<D_NL)+§

Adiabatic changes of energy and induced current are shown

in Figs. 6 and 7. 4eve (56
Total current on the torus is given by a sum of two cur- L -

rents(53) and (54):

A numerical value of this amplitude is about O[A] for a
~ ~ nanotorus withL=1 [um]. Let us explain how to measure
J=J(ky) + (k). (59 the current briefly. Some methods could be considered in
order to detect the current in the torus. As an example, the
The magnetic field dependence of the total current is showgurrent generates a magnetic field around torus; then, one
in Flg 8. The dotted line in Flg 8 indicates the current in thecan observe the current via a magnetic field which is gener-
untwistedN=0 torus. This current for an untwisted torus ated by the current. However, current could not be observed
shows the same magnetic field dependence to the persistamt the standard electrical contact because the electrical per-
current in Ref. 15. Our result§5) are in agreement with the turbation cannot affect the curre(@6). This means that we
results of other papers. cannot measure the current by an electrical contact.

FIG. 6. Adiabatic change of the fermionic en-

ergy ofk, point. The energy value is labeled in
units of 2mhve /L.
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05

P~
J(kZ) L A e B T e - FIG. 7. Magnetic field dependence of the in-
duced current in the twisted zigzag tordig,).

We plot the current in units ofvg /L.

-0.5

V. VACUUM STRUCTURE OF A CARBON NANOTORUS on the chiral anomaly in Sec. VI. Their understandings are
. . . also the first step for studying more physically interesting
tot;’r :;Smift?)ﬁilzg:' we consider the vacuum structure of thesituations such as impurity effects and junctions of a CNT

: and a metal or a superconductor. It should be noted that in

the remainder of the paper we only consider the one fermion

H= jg H=Hg+Hc, degree which belongs to, for example, tke Fermi point.
We neglect other types of interactiGAsuch as backscatter-
e [ I°x)3%x") ing and umklapp processes provided that their coupling are
He=g—- ¢ ——— —dxdx. (57  weak enough.
87 Ix—x'| The Coulomb interaction consists of a product of the

In the previous section we have solved the kinetic part of th&harge density. Therefore it is very convenient to rewrite the
total Hamiltonian. We clarified its vacuum state and obtained<inetic termHg using the current operators. For this purpose,
the regularized eigenvalues of the physical quantities. W& iS useful to introduce the left and right currents as follows:
saw that the vacuum has the chiral charge so that it leads to

the chiral anomaly. What we are interested in at this point is JO(x)=JL(X)+Ir(X), (58
whether the previous results change or not by the inclusion

of the Coulomb interaction in our analysisFurthermore, whereJ,_(x)=\If[(x)\If|_(x) and JR(x)=\I’E{(x)\PR(x). We

we hope to make clear the effects of the “external” chargeexpand these currents by the Fourier modes,

/ FIG. 8. Magnetic field dependence of the total
ol - current on the torug=J(k,) + J(k,).
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it iR We combine the kinetic term and the Coulomb term as
)= e 2L ge(x) = D) etizmmit follows:
neZ L neZ L
9 He H— 2Tvr > H 68
where the Fourier components are the bosonic operators, 0 12 +n>0 n (68)

where
ii=2 alanin, jg= 2 blibm, (60
mez mez 2mhug Q§+Q2 2mhe «
which satisfy the following commutation relations on fer- ] 4 L 4m (0) (69
mion Fock space:

and
2 (i) 1=N30m, (61) . i)
_ TRUE . 4:n, :n,:n T e n st :n
[jg,(jg)‘r]:n&]m_ (62) H, L GO I +iR(R) =N+ ypy (D) +igrl
It is well known that the following Hamiltonian has the same X[+ (1. (70)
matrix element as the original fermion Hamiltonian:
, Here we use the fine structure constant=e?/4xfic).
2mhve [[Q%+QE 1 L We diagonalize the Hamiltoniad ,(n+0) using the Bo-
S { 7 12 +n§>:O [GOTT+URTIRIT goliubov transformation
63 ~ , .
] ©3 iv cosht, sinht,\[ j[ o
where =
5 sinht, cosht,/\ (jR)'/’ 7D
10, :0 [0_ 0
=i +ir, =j—Ir- 64
Q=jLtir, Qs=jL— IR (64) where
This Hamiltonian has a new term which is not shown in Eqg.

(48). This term has a vanishing value on the previous inh 2 _i e’V(n) 72
vacuum state because sin "E, 4mL ’ (72)
jE|VaC;NL>:0, jg|VaC;NR>:O, (65) 1 27TfLU|: eZV(n)
for positiven. cosh Zn_E_n L 4L ) (73

The Coulomb interaction can be rewritten using the
bosonic current operators 27hug a C
= 1+——V(n). (74)
2 L T UE
Ho=p > VIGDT+HIRIGE+GRT. (66) i i
CTanL & IO T IRIULTUR After some calculations we derive
Here, we introduce the Fourier component of the Coulomb TR L N 2mhug
potential: Ho=E[(J0) I+ (JR)TrRTN]= n. (79
1 cog2wnx) The energyE,, differs from 277iv /L. The difference is due
V(n)=27-rf dx = (67)  to the Coulomb interaction; see Fig. 9.
0 ir2 R The generators of the Bogoliubov transformation are
whereR (= md) is the circumference of the tubule. th o~ .
Some comments are in order. When we write the Cou- Up=expg — E{(JE)T(JR)T_JLJE : (76)

lomb interaction in Eq(57), it has an ultraviolet divergence
in the limit of x—x’. Therefore we need to introduce some Hence, we obtain the vacuum state as follows:
cutoff length. It is appropriate to set it the diameter of a tube

because when two electrons on a nanotube come from oppo-

site sides of the tubule axis direction, they repeal and pass WE’C)Z
each other. At the moment they approach most, there is still

a distance about the diameter of a nanotube to decrease tiviere N, =Ng. The previous vacuum state changes into a
energy of such event. This explains the/[)? term in the  new vacuum by the Coulomb interaction. We should estimate
denominator. Besides, the form of a torus is not a line but dhe gauge charge and chiral charge on this new vacuum.
ring on a plane so that we should use the direct length beBecause the operatorsl{) commute with the charge opera-
tweenx andx’ in the Coulomb interaction. This is the origin tors Q and Qs, the eigenvalues of these charges do not
of the sirf(#z) term in the denominator. change, that is,

HO Un) |vacN, ,Ng), (77)
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4 T T T T T T T T

- L/R =100

35} b

E a5l ", i FIG. 9. Energy spectra are corrected by the
n +++++ Coulomb interaction. The energy value is labeled
e, in units of 2rhve/L. Here we set./R=1C in
oL "’++++++ ] Eq (67)
Fhy, "
tor M“MHM
! 0 1I0 2I0 3I0 4I0 5I0 GIO 7I0 BIO 9I0 100
n
— After some calculations we get the diagonalized Hamiltonian
vag =0, 78 .
Qlvag 78 in the presence of the external charges:
N
Qslvac = 2(N|_—N¢)—1i§) vag). (79 Hn(Jed =En{[ (D) T+ ¥a(i00* 17+ ¥ni gy
~nyt ‘n s n N\ %
Hence, the chiral anomaly which we have investigated in the LR+ Mledlirt yn(Jex) I+n}
previous section still exists when we include the one-
) . - o ; 2whvg  Bn(27h v,:
dimensional long-range Coulomb interaction in the analysis. n+— ( y*jn., (83
L E2 Jex ex’
n
VI. EFFECTS OF EXTERNAL CHARGES wherey,= sinh 2,(cosht,—sinht,) and 8,= (e?/4wL)V(n).

The conditions of the vacuum in the presence of external

We have so far considered the long range Coulomb interz charges can be read from the above Hamiltonian as follows:

action between the internal charges. However, a more impor-

tant problem may be the following: when we put external (T2 + vaia)IvagJey =0, (84)
charges on a nanotorus, how does the vacuum structure
change? A fixed external charge may correspond to an elec- (Tg+ Ya(iod™) Vanngo, (85)

trical contact or an impurity on a torus. In this section we put

external charges on a torus and study the vacuum structurfor positive n. First we can easily show that the electrical
Especially we analyze an effect of external charges on theurrent on this new vacuum does not change even in the
current: the potential behavior between a pair of externapresence of external charges,

charges and the charge screening.

We set two unit external charges on a torus. One has a @J |J5(X)F/EE;J = <Q5> (86)
unit chargee placed atx, and the other has an opposite ex €
charge—e atx_: So the current by the chiral anomaly is not affected by the

charged impurities. Second, we estimate the energy change
due to the presence of the external charges:

80) E(x, —x_)={vagJg,/H(JIgJvac I3,y — (vadH]vac

where :Bn(ZWﬁUF)Z(-n %30
L JEX Jex

ng() O(X—X,)— O(X—X_ E Jex I27Tnx/L

Jn :ei27TnXJr /L_ei27Tn>(, /L (81) n>0 Eﬁ
ex b
We consider the Coulomb interaction with the following EiV(n)
charge density which is a sum of the internal charges and the _ 2mhue ™ UF
external charges: L & ac
1+ ——V(n)
1 T UE
F00+3500= 2 LGN+ iR+ (Jo0* Ipe 2L, 4 27-rn(x+—x)) .
(82 cosT ) @7
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70

FIG. 10. Distance dependence of the energy
caused by two fixed external charges. The energy
value is labeled in units of 2hvg /L. The dis-
tance between two external charges is scaled by
30 . the circumference of the tubulR Here we take
L=10’R andR=# [nm] in Eq. (67).

50

E(x)

&

20 |

: ' - ' - XIR

0 2 4 6 8 10

whereH(J9)) is the Hamiltonian with the external charges spin degrees of freedom. However, straightforward extension
J?.. Figure 10 shows the potential ener@y) as a function of our analysis shows that the conclusions in this paper
of the distance between the two external charges. hardly change$'

We see that the effect of the “charge screening” on the
external charge cannot be ignored in a metallic nanotorus,
because the potential energy is now shown to be short VII. CONCLUSION AND DISCUSSION
ranged. This means that some internal charges are influenced
by the external charges and external charges are screened. Toln this paper we analyzed low-energy excitations in the
confirm this, we also compute the induced internal charge§arbon nanotorus and discussed the gquantum mechanical

distribution, vacuum structure of them. The significance of our present
work is put as follows.

‘(VéE;JgX|JO(X)‘|T,‘5E;JgX>:f(x;x+)_f(x;x_), (88) We used the quantum field theory to analyze the vacuum
structure of a metallic nanotorus. We pointed out that the

where chiral anomaly in #1 dimensions should be observed in the
form of a specific magnetic field dependence on the current.
a iV(n) This current is the same as the persistent current. It is certain

T UE 2mN(X—Xy) that the persistent current can be understood in the light of

foxixs)=—r nZO Z G cos L : the chiral anomaly in 1 dimensions. We also clarified the

1+;;V(n) vacuum state including the Coulomb interaction and dis-

(89) cussed the effect of “charge screening” on the external
charges. It was found that the chiral anomaly is not affected
This function is displayed in Fig. 11. by the charged impurities and the charge screening effect
We should stress here that the above analysis of the chargetually occurs.
ing energy(87) and screening89) is not complete because ~ We would like to mention the relationship between our
the charge density°(x) in the Coulomb interaction consists results and the previously published literature on persistent
of one massless fermion in our analysis. A CNT has fourcurrent in toroidal CNT’s and in metallic rings. All the re-
independent fermions due to the two Fermi poifit8) and  sults in Sec. IV which are derived from the chiral anomaly

0.05 T T T T T

0

-0.05 - B
0.1k B

018 ] FIG. 11. The internal charge density modula-

. 02} - tion around a unit charge placed at origin:
f(X, 0) ) f(x;0) in units of nm . The coordinate label is
scaled by the circumference of the tub&eHere
03 1 we takeL=10°R andR= = [nm] in Eq. (67).

-0.35 - 1

0.25 - 1

04l 1

-0.45 4

05 _'4 y L L "t .X/ R
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points of view are consistent with the results in published APPENDIX

Papers. Here we derive the vacuum expectation values of charges
Lin and Chud® analyzed persistent current by the tight- b g

= "9 and the kinetic HamiltoniafEqgs. (46)—(48)].1! It is straight-

i . Pforward to get the kinetic Hamiltonian in terms of the fermi-
structure of the current at special flux point—for example,qic creation-annihilation operators by integrating the spatial
whenN,, is an integeruntwisted case—is attributed to the arjaple of the kinetic Hamiltonian density as follows:
metal-semiconductor transition. However, this is not the

case. The energy gap cannot be generated only by varying N .
the magnetic field because each energy level has the same HrF= JDHFdX: nZZ €ndnan+ nZZ (—en)bpbn, (A1)
magnetic field dependendd0). Hence the level spacing is - -
always constant. The reason why there are jumps in the cuwheree, are the energy eigenvalué$0) given by
rent is the electron transfer from left mover to the right
mover (N, :0—1 atNg=0).
Odintsovet all® evaluated the persistent current of inter- en=A
acting electrons using bosonization formalism. The symme-
tries of the original fermion system should be maintained inHere we set the level separatidf=2m#vg L) for simplic-
the process of bosonization. Because of that, the resultiny. The kinetic Hamiltonian is decomposed into left and
bosonic Hamiltonian has the same conserved quantities. fight sectorsHg=H, +Hg where
should be noted that without the notion of the chiral symme-
try being broken by the vacuum, one never obtains the cur- _ + _ ot
rent within the model or by following the dynamics. In order HL_EZ €nndn,  He= E €nPrbp - (A3)
to get the current they need an extra assumption that is the
definition of the persistent current. Because of that, the im- Besides these Hamiltonians, it is important to consider
portant fact that the “symmetry of the systdidamiltonian conserved quantities of the system. A global symmetry in-
is broken by the quantum mechanical statecuum” is not  Vvolves the existence of a conserved current and then a charge
recoghized. is defined by the spatial integration of the time component of
Cheungat a|_l4 derived the persistent current for noninter- the current. The System is invariant under the fOIIOWing two
acting electrons in metallic rings using only e|ememaryindependent global transformations of fermion fields,
guantum mechanics. They included the whole band structure
of the system and discussed finite-temperature effects. Low-
energy excitations in metallic rings are described by two-pt the unquantizedclassical level, these symmetry transla-
component fields. Hence the persistent current in metalliggng guarantee conserved currents,
rings can be similarly analyzed from the chiral anomaly

N
nt—=—Ngp

*3 . (A2)

ne

’\IIL_)ei(’L\IfL, \PRHeioR\IjR. (A4)

point of view®® P P
Although we have analyzed a nanotorus in the present 51 TUF o [IL=0 (A5)
paper, we can regard the torus as a tube locally provided the
circumferential length of the torus is large. Hence, we may
. . : J J
apply the results obtained in the analysis of the torus to the —+vg—|Jr=0, (AB)
study of a carbon nanotube. To take an example, it is reason- at IX

able to suppose that the screening effect is also present "NyGhere the left current and right current are defined as fol-
tube like in a nanotorus. lows:

What we do not consider in this paper are effects of the
backscattering and the sublattice-dependent part of the for-
ward scattering proces®dintsov et al!®) and finite tem-
perature &27five /L) on the chiral anomaly and screening spatial integration of both currents gives “left charge” and
of external charges. In finite temperature, in addition to theight charge” in terms of the fermionic creation-
electron field, the phonon field would come into pfathis  annihilation operators, respectively:
phonon field may be vital to understand the electrical behav-
ior of the carbon nanotube at finite temperature. We would
like to make a quantitative analysis of these effects in a fu- QL:nEZ afay, QR:nEZ baby . (A8)
ture report. < <

‘]L:\IIE\I,L’ JR:\IITR\I’R (A?)

We define the second-quantized vacuum by filling the
negative-energy modes, leaving the positive-energy modes
empty. To start with, we analyze the left sector and the left

The author would like to thank M. Hashimoto for various charge. We define N, vacuum (vaciN,))" such that the
discussions on the subject. This work is supported by théevels with energy lower thagy, are filled and the others are
Japan Society of the Promotion of Science. empty:
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N -1

We proceed to consider the right sector in the same way.
vacNy) = I1 ajl0),
n=-—wx

We define the N vacuum (vacNg))” such that the levels
with energy lower than- N1 are filled and the others are
where |0) is the nothing state. We shall calculate vacuumempty:
expectation values of the left charge and the Hamiltonian.
They have divergent eigenvalues on kg vacuum. So in

order to get a physically reasonable value, we should renor-

malize them. Here we employ th&function renormaliza- . . .
tion; in this case, the left charge is renormalized as follows Ve o_btal_n an expectation value of the right charge and the
Hamiltonian on theNg vacuum:

(A9)

n=o

lvacNg) = 1;[ bl|0). (A16)
R

1 ~
=lim > a'a , A10 1_N
i 2 asan (A10) (Qu)=—Net 575 +Na, (A17)
where \ is an arbitrary constant with dimension of length (Qr? 1
which is necessary to makee,, dimensionless. This renor- Hoy=A A (A18)
malization respects gauge invariance because the energy of

each level is a gauge-invariant quantity. Using this renormal-

Combining the left and right sectors of the Hamiltonian,

ization scheme, we obtain expectation values of the leffyq got the following expression for the kinetic Hamiltonian:

charge and the Hamiltonian,

2 2
N1 . (HF>=A(<QL> +(Qr) _i), (A19)
Q=lm ¥ —=r 2 12
s—0 =77 n+ﬂ ~N where the vacuum is defined by the the direct product of the
-3 ¢ N, andNg vacua,

N
=lim {(S,—(NLtg—N(p)

[vacN_ ,Ngy=|vacN )®|vac,Ng). (A20)

s—0 The left and right charges can be written in terms of more
- the physically intuitive quantities df (1) electric chargéQ)
1 N . . :
—N - Eiﬁ_ N | (A11) and chiral charge@s). These are defined as follows:
Q=Q.+Qr, Qs=Q_ —Qk. (A21)
_ N1 €n These are also conserving quantities at the unquantized level
(Hp)=lim Z < because summeation of Eq#&5) and (A6) gives us a stan-
=0 1= [\ éy| dard conservation law of electrical current:
Nt 1 d 3
=—Alim = — — —vp—J —JR)=
0 n;m N T SOt IR —ve - (JL—Jr) =0, (A22)
Nt —Ng 0 . ,
3 where J, +Jg [=J7(X)] is the charge density andg(J,
Q) 1 —Jg) is the current density. This current conservation law
=A( 2L - ﬂ) (A12)  results in the conservation &f(1) charge:
where we use thé function Q= JDJO(x)dx= Q.+ Qk. (A23)
. On the other hand, subtraction of E&5) from Eq. (A6
(sa)=3 —— (A13) Ha) from Eq.(A8)
n=0 (a+n) gives
and several limiting formulas 4 d
J SR e (L HI=0. (A24)
1
lim{(s,a)= 578 (A14) Itimmediately follows that the chiral charge
s—0
1 2 Qs= fD(JL(X)_JR(X))dX:QL_QR (A25)
~—a
limZ(s—1a)= i_ 2 (A15) is conserved. The physical meaning of the chiral charge is
<m0 ' 24 2 ' spatial integration of the electric current density in a nano-

torus. This charge measures the left-right asymmetry of the

Here and hereafter we use the simple bra and ket notation faracuum and is defined by the difference of the left charge

the vacuum as follows(Q, ) =(vac;N_ |Q_|vac;N, ).

and the right charge on the vacuum. By combining
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Egs. (All), (A12), (A17), and (A18), we finally get the

PHYSICAL REVIEW B 65 155429

The vacuum expectation value of the chiral charge depends

vacuum expectation values of the physical quantities used inn the magnetic fieltNy, . Therefore it is no longer conserv-

the text:

(Q)=Ni—Ng, (A26)

<Q5>:NL+NR_2N¢_1i§N, (A27)
2 2

(He)=A (Q+(Qg)° 1 (A28)

4 12)°

ing quantity. So the unquantizédassical current conserva-
tion law (A24) should be modified at the quantum level as
follows:2

(A29)

whereF ,,=d,A,—d,A,, is the field strength. Note also that
the vacuum energy in EGA28) is nonvanishing, which is
due to the finite-size effect of a nanotorus.
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