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Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles
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We study the linewidth of the surface plasmon resonance in the optical absorption spectrum of metallic
nanoparticles, when the decay into electron-hole pairs is the dominant channel. Within a semiclassical ap-
proach, we find that the electron-hole density-density correlation oscillates as a function of the size of the
particles, leading to oscillations of the linewidth. This result is confirmed numerically for alkali and noble-
metal particles. While the linewidth can increase strongly, the oscillations persist when the particles are
embedded in a matrix.
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. INTRODUCTION asymptotic limit of largeR. Numerical calculatiort§'** and
existing experimenfsi? on free intermediate-size clusters are
The lifetime of collective excitations in finite quantum in good agreement with the values A&fl'(R) yielded by
systems is a fundamental problem spanning from the physidiose calculations. For small clusters the emergence of a
of nuclei to that of metallic clustersGiant resonances, in nonmonotonous size-dependent structure in the line sfiape
the former cas@,and surface plasmon, in the latfedecay — experiment§™° as well as in numerical calcu-
by different mechanisms according to the physical regime ofations®**1¢~1§ has been attributed to shell effe¢tee also
the excitation. Forlarge metallic clusters(with radius R Fig. 10 of Yannouleagt al, Ref. 11a. We provide in this
=10 nm) radiation damping is the main limiting factor to work a detailed theoretical understanding of these effects and
the plasmon lifetimé. At small sizes (0.5R<2 nm) the determine analytically the size-dependence of the plasmon
decay into electron-hole paittandau dampingdominates, lifetime for free and embedded clusters.
while for intermediatesizes both effects compete. Feery Using a semiclassical approach, we explain how a subtle
small clusters R<0.5 nm) a strong temperature depen-consequence of electronic shell effects, namely angular-
dence of the linewidth suggests that the coupling of the momentum-dependent electron-hole density-density correla-
collective excitation to thermal vibrations of the atomic lat- tions, leads to awscillatory size-dependence of the plasmon
tice is an important effect. linewidth due to Landau dampinm small alkaline-metal
Except for the case of very small clusters, where theclusters. This result is confirmed by numerical calculations
atomic arrangements play a crucial role, the theoreticatising the time-dependent local-density approximation
analysis of the surface plasmon is usually based on the jelTDLDA)."**°We show that our results are relevant also for
lium model, where conduction electrons move in a uniformlynoble metals and clusters embedded in matrices. Nanopar-
charged background. Within such a framework, the Landadicles embedded in a matrix are interesting from the experi-
damping occurs when there are particle-hole excitations wittinental point of view since the position of the resonance can
an energy close to that of the collective excitation. Thereforde tuned by changing the dielectric surrounding. They con-
this mechanism is strongly dependent on the density of stategitute a complicated system, where the plasmon lifetime
of the conduction electrons confined in the cluster. strongly depends on the properties of the matrix, an effect
Using a linear-response approach, Kawabata and Kubdhat has been called chemical interface dampfri§The ap-
proposed a total linewidth' =T";+ AT'(R), where the intrin-  plication of the TDLDA, within a simple model of the po-
sic width T'; is given by bulk properties and the size- tential at the surface, confirms that the size oscillation of the
dependent contributiodAT'(R) is proportional to 1R. Such  level width predicted by our analytical method persists even
an R dependence would also result from the identification offor embedded clusters.
the diameter of the particle with the electron mean free path.
However, as stressed in the original work, this identification Il. LANDAU DAMPING IN NANOPARTICLES
is not completely-correct, since the quantized states exist due ] )
to the confinement and cannot be considered to be scattered The nanoparticles we consider are much smaller than the
at the surfacé® On the other hand, for interacting electrons Wavelength of the radiation, and the optical absorption cross
confined in a parabolic potential, Kohn's theofeimplies an ~ Section at frequency is given by
infinitely lived collective excitatiof, such that the linewidth Are?
of the plasmon can be thought of as a measure of the failure _aTew : 2
in separating the collectivieenter-of-massand relative co- o(@)= 3c 2,: Kilzlo)*a Sl @)
ordinates for the electron system.
Further improvements in the linear-response theory bywhere the dipole matrix element is taken between the elec-
Yannouleas and Brogfla and by Barma and Sub- tronic many-body ground stat@) and the excited statég)
rahmanyartf recovered the R dependence afI'(R) inthe  with energyE; (the z axis is chosen parallel to the electric-
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radius of the nanoparticle. Assuming that the confinement
and the interactions lead to hard walls at radRisn the
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08 R
o 4 Etho
. b R AF(R):Cyf TTYES S (2L+1)eLi+1)
o 06 Er LoL=L+1
=
< 04 ‘ |H x(L,0;1,dL" ,0)*E(E—fiwy)
. 4
E/eV xXd (E)d  (E-Tioy), 3
02 . S where (L,0;1,dL’,0) is a Clebsch-Gordan coefficient,
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0.0 one-dimensional density of states.
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Rfap Ill. SEMICLASSICAL THEORY
FIG. 1. LinewidthAT'(R), as a function of the radiu@n units Our approach consists in the evaluation of Ea). by

of the Bohr radiusag=0.53 A), for Na nanoparticles containing using the semiclassical expressibn
between 20 and 832 atoms. The dots corresponding to TDLDA

calculations are compared to the result of E). (full line). The #E,L) o S(E,L)
smooth terml’4(R) is given by Eq.(4) (dashed Inset: Logarithm d.(E)= ,ﬁ [1+ 22 cos r( h’ — ] '
of the numerically calculated absorption cross section fofsfNa 2 r=1

showing a pronounced surface plasmon resonance, fitted by
Lorentzian(dotted ling. The excited states are indicated by tick
marks and their oscillation strengths are given by the height of th
vertical lines.

Which decomposed, (E) in its smooth and oscillating com-
ponents. Here,T(E,L)=ﬁ\/p2—L2/E is the period of the
one-dimensional motion,

_ [Z-12_
field direction. The spectrum is dominated by the collective S(E,L)=2A[Vp"~L"~L arccoslL/p)]

surface plasmon excitation which is characterized by an 0Ss the Corresponding action, and the sum runs over all num-
cillation of the center of mass of the electrons with I’eSpeCt thers of repetitions_ |ntegration ovet, Poisson’s summation
the lattice of pOSitive ions. FOllOWing Mie’s classical theéry, rule, and a Stationary phase approximation, lead to the semi-
for a nanoparticle in vacuum one expects the surface plagiassical Berry-Tabor formul#, expressing the density of
mon resonance at the frequeney,=w,/\/3, wherew, is  states of a sphere in terms of classical periodic trajectories.
the bulk plasmon frequency of the material. Taking only into account the smooth part @f(E) in Eq.
When the confinement is not parabolic the surface plas¢3), we recover the well-known ® dependencg,
mon is not an eigenstate of the many-body Hamiltonian and
its coupling to the particle-hole excitations leads to a broad- 3% vg
ening of the corresponding resonance in the spectizee Fo(R)= 739(5), (4)
the inset of Fig. 1
A common approach to the plasmon lifetime consists inwhereé=%wy/Eg, g(£) is a smoothly decreasing function
treating the collective excitation as an external perturbationwith g(0)=1, andv (E) is the Fermi velocity(energy.
which can give rise to the creation of electron-hole Most interestingly, the oscillating part of the density of
excitations: Within this framework, Fermi's golden rule states gives rise to additional features, namely an oscillation
yields the linewidth of AT'(R) aroundI'y(R) as a function of the radius. While
the cross products between the smooth and the oscillating
parts ofd, (E) andd, . (E—%wy) can be neglected after the
energy integration, the product of the two oscillatory compo-
nents, after doing the summation with the aid of Poisson’s
where|p) and |h) are electron and hole states in the self-summation rule, yields
consistent field, respectively, ariy is the dipole field due
to the surface plasmon. More rigorous approaches, like 2y < Pmax P
discrete-matrix random-phase approximatid®PA) would TodR)=— > dPPJ dy > f(y)
lead, after certain approximatiofidp an equivalent separa- mETE S Pmin T2yl
tion of collective and particle-hole states. o e
In the case of spherical symmetry we can work in the X\pZ—y2p 2=y 2x >, >
effective one-dimensional problem of the radial coordinate r=lr——w
for each value(in units of ) of the angular momentum rar! , .,
L<p=R{y2ME/#, E andM being the energy and the effec- (=177 cos{rS(p,y) +1'S(p",y") +2mmy]
tive mass of an electron, respectively, aRddenoting the 5)

AF<R>=2w% [(ploVIn) |2 8(fiwy—ept €n),  (2)
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with p’=p?— (keR)?¢. The limits of thep integral are
given by pin=maxkeR,keRE) and ppa=keRV1+ €. We
have defined(y’)=y'+1 fory’'=y—1 andf(y’)=y’ in
the casg/’ =y+1 (kg is the Fermi wave vectoprThe domi-
nant terms correspond tm=0, r=—r', andy=y'+1

Ag

=pl(p—p'), yielding >
—
R 2’}’f"max p7/2p/3/2[(p_pr)2_1]5/4 <
Y P
0sf 773/2 Prmin (p_pr)4
1 (keR)2E—2y+1
X —=Cos| 2r — — .
=1 \/F \/pz—y2+\/p’2—y’2

(6)

Sincep is of the order okR, andkgRé>1, the argument

R/ap

of the cosine is close torR (R, and Eq.(6) yields a contri- FIG. 2. The dots represent the numerically obtained surface
buti AT which i oo f 9. - y f th di fplasmon linewidth for the case of silver nanoparticles embedded in
ution to which oscillates as a function of the radius o an argon matrix, as a function of their radigsn units of the Bohr

the napoparticle. It is important to note that.this oscillatory o dius. The dashed and the solid lines repreBg(R) andAT(R),
behavior is due to thengular-momentum restricted electron- respectively, reduced by a global factor of 3 with respect to Efs.
hole density-density correlatiorand therefore more subtle 4nd(6) (see text

than the well-known oscillations of the density of states with

the energy. of the spectrum. The collective excitation can be identified as

Figure 1 shows the result faXT'=T'o +I'osc Which is ob- the main peak of the spectrumote that the logarithm of

tained by numerically evaluating the integral in Eq.(6). . . : . - .
The typical amplitude of the oscillations can be estimated b)}s plotted. The vertical lines are essentially given &ygle

max._. ~ B —x2 5 =3 . - electron-hole excitations, except for the one at the center of
the valueTos; =6v27 "/ (MR"VKeRE®), valid in the limit the surface plasmon resonance, which issheerpositiorof

keR&%2<1. This shows that the oscillating term represents ar?nany such excitations. The surface plasmon linewiith
impqrtant correg’_tion tdo(R) for Small.pa.rticle §izes. represented by thick dots in Fig. 1, is obtained from a

Higher repetitions (> 1) of the periodic orbits are Sup- | grentzian fit to the main peak. We chose an intrinsic width
pressed in Eq(6) because of the prefactor \i, and the ['; larger than the typical distance in the electron-hole spec-
oscillations of the cosine as a function pf Including &  tym and verified thatT'(R) is approximately independent
small intrinsic decoherence rallg accounts for the coupling  of the precise value df;. Confirming our analytical calcu-
to the environment and leads to an additional factoljations, at smalR the numerical results show strong devia-
exp(-IirR/hvg),™ which further reduces the oscillatory ions fromT'(R) (dotted ling and a nonmonotonic behavior
contributions from long trajectories with large repetition 45 5 function of the radius. Similar results are obtained for
numbersr. other alkaline metals. It should be mentioned that the phase

of the semiclassical result from E@) is meaningful up to a
IV. NUMERICAL CALCULATIONS constant shift which was adjusted according to the numerical

In order to study the relevance of the oscillatory behaviordata
in more general situations, we performed quantum numerical
calculations within a spherically symmetric jellium model, B. Noble metals and embedded clusters

sing the linear response TDLDA?* The diagonalization - .
using I b 'ag zal Noble metals are more difficult to describe, due to band-

of the Hamiltonian in the space of particle-hole excitations . . :
amounts to use the random-phase-approximation in the sefpiructure effects and the fact that the comparison with experi-
consistent field with a local exchange potential. Further re/nents has to 'Fake into account the conf|nemer_1t of the par-
finements of the numerical approagike the self-interaction t|cles.|n a matrix. In our numerical apprqach we mcIuQed the
correctior?®) do not provide substantial changes in the eﬁectscontnbunonsd of thed electrons to the dielectric function of
in which we are interested. Because of the spherical symmér'he met*’%' particles, as wgll as the d|e_lectr|c ponsta,nbf

try of the model, we considered nanoparticle sizes correthe matrix. For the resulting residual interaction we used a

sponding to magic numbers of atoms where our numerica’l“UItip_Olar ex_pansiqn as in REf' 27. We have checked that
approach is expected to work the bt including an interstitial spacin¢he so-called 3¢ modef®)
' does not change significantly our results.

In Fig. 2 we show the numerical resulthick dotg for
silver nanoparticles embedded in an inert matrix

A typical spectrum of the photo absorption cross sectionAr, €,~1.75), exhibiting pronounced oscillations of
[Eqg. ()] is shown in the inset of Fig. 1 for the example of a AI'(R) with the particle size, much like in the case of alka-
sodium cluster, where a nonzelp smears the singularities line metals. The smooth part of the linewidihy(R) [Eqg.

A. Alkaline metals
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(4)], and our semiclassical result fby(R) [Eq.(6)] are an  classical approach. We obtain a quantitative agreement be-
overall factor of 3 larger than the numerical results. Thistween analytical and numericllDLDA) results for free al-
discrepancy is not surprising given the stringent approximakaline metallic clusters, and a qualitative agreement for more
tions involved complicated cases.
in both results, which are expected to be less applicable A systematic experimental investigation of the linewidth
for embedded noble-metal clusters, than for free alkalingscillations extending the results for specific situations re-
metals. Nevertheless, the analytically calculatBgl{R)  Ported in Refs. 13-15 would provide an important step
exhibits oscillations with the correct period, and its relativetowards the understanding of the rich physics involved
size [with respect tol'o(R)] agrees with the numerical in the collective excitations of finite systems. A small
results. inhomogeneous broadening will not kill the effect if the
Reactive(noniner} matrices like glass are often studied size dispersion of the nanopatrticles is smaller than the period
experimentally2 but still more difficult to analyze. By tak- Of the oscillations[approximately kr£)~*, according to
ing into account a high-energy conduction band in theEd. (6)]. Moreover, recent experimental developments
insulator’® we extended our numerical calculations to thismake it possible to study the homogeneous broadening
case® These electronic states provide additional decay charef the surface plasmon also in electrically uncharged
nels for the surface plasmon and its lifetime is considerablglustersi*? In the case of clusters embedded in a matrix,
reduced. Our results for the Landau damping contribution téhe oscillations of the width of the plasmon can be seen
the linewidth of Ag nanoparticles embedded in Si@nount  not only as a function of the size but also as a function of
to about one half of the experimental linewidth, but still the dielectric constant of the environment. Changing

show strong size-dependent oscillations, as in the previousn shifts the position of the plasmon, without considerably
cases. modifying the single-particle part of the spectrum. Therefore

the plasmon linewidth varies according to the position of
V. CONCLUSIONS the resonance with respect to the particle-hole excitation
spectrum.
In conclusion, we have found a mechanism leading to an
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