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Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles
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We study the linewidth of the surface plasmon resonance in the optical absorption spectrum of metallic
nanoparticles, when the decay into electron-hole pairs is the dominant channel. Within a semiclassical ap-
proach, we find that the electron-hole density-density correlation oscillates as a function of the size of the
particles, leading to oscillations of the linewidth. This result is confirmed numerically for alkali and noble-
metal particles. While the linewidth can increase strongly, the oscillations persist when the particles are
embedded in a matrix.
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I. INTRODUCTION

The lifetime of collective excitations in finite quantum
systems is a fundamental problem spanning from the phy
of nuclei to that of metallic clusters.1 Giant resonances, in
the former case,2 and surface plasmon, in the latter,3 decay
by different mechanisms according to the physical regime
the excitation. Forlarge metallic clusters~with radius R
*10 nm) radiation damping is the main limiting factor
the plasmon lifetime.4 At small sizes (0.5&R&2 nm) the
decay into electron-hole pairs~Landau damping! dominates,
while for intermediatesizes both effects compete. Forvery
small clusters (R&0.5 nm) a strong temperature depe
dence of the linewidth5 suggests that the coupling of th
collective excitation to thermal vibrations of the atomic la
tice is an important effect.

Except for the case of very small clusters, where
atomic arrangements play a crucial role, the theoret
analysis of the surface plasmon is usually based on the
lium model, where conduction electrons move in a uniform
charged background. Within such a framework, the Lan
damping occurs when there are particle-hole excitations w
an energy close to that of the collective excitation. Theref
this mechanism is strongly dependent on the density of st
of the conduction electrons confined in the cluster.

Using a linear-response approach, Kawabata and Ku6

proposed a total linewidthG5G i1DG(R), where the intrin-
sic width G i is given by bulk properties and the siz
dependent contributionDG(R) is proportional to 1/R. Such
anR dependence would also result from the identification
the diameter of the particle with the electron mean free p
However, as stressed in the original work, this identificat
is not completely-correct, since the quantized states exist
to the confinement and cannot be considered to be scat
at the surface.1,6 On the other hand, for interacting electro
confined in a parabolic potential, Kohn’s theorem7 implies an
infinitely lived collective excitation,8 such that the linewidth
of the plasmon can be thought of as a measure of the fa
in separating the collective~center-of-mass! and relative co-
ordinates for the electron system.

Further improvements in the linear-response theory
Yannouleas and Broglia9 and by Barma and Sub
rahmanyam10 recovered the 1/R dependence ofDG(R) in the
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asymptotic limit of largeR. Numerical calculations10,11 and
existing experiments4,12 on free intermediate-size clusters a
in good agreement with the values ofDG(R) yielded by
those calculations. For small clusters the emergence o
nonmonotonous size-dependent structure in the line shap~in
experiments13–15 as well as in numerical calcu
lations10,11,16–18! has been attributed to shell effects~see also
Fig. 10 of Yannouleaset al., Ref. 11a!. We provide in this
work a detailed theoretical understanding of these effects
determine analytically the size-dependence of the plasm
lifetime for free and embedded clusters.

Using a semiclassical approach, we explain how a su
consequence of electronic shell effects, namely angu
momentum-dependent electron-hole density-density corr
tions, leads to anoscillatory size-dependence of the plasm
linewidth due to Landau dampingin small alkaline-metal
clusters. This result is confirmed by numerical calculatio
using the time-dependent local-density approximat
~TDLDA !.11,19We show that our results are relevant also
noble metals and clusters embedded in matrices. Nano
ticles embedded in a matrix are interesting from the exp
mental point of view since the position of the resonance
be tuned by changing the dielectric surrounding. They c
stitute a complicated system, where the plasmon lifeti
strongly depends on the properties of the matrix, an eff
that has been called chemical interface damping.12,20The ap-
plication of the TDLDA, within a simple model of the po
tential at the surface, confirms that the size oscillation of
level width predicted by our analytical method persists ev
for embedded clusters.

II. LANDAU DAMPING IN NANOPARTICLES

The nanoparticles we consider are much smaller than
wavelength of the radiation, and the optical absorption cr
section at frequencyv is given by

s~v!5
4pe2v

3c (
j

u^ j uzu0&u2d~Ej2\v!, ~1!

where the dipole matrix element is taken between the e
tronic many-body ground stateu0& and the excited statesu j &
with energyEj ~the z axis is chosen parallel to the electric
©2002 The American Physical Society27-1
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field direction!. The spectrum is dominated by the collecti
surface plasmon excitation which is characterized by an
cillation of the center of mass of the electrons with respec
the lattice of positive ions. Following Mie’s classical theory3

for a nanoparticle in vacuum one expects the surface p
mon resonance at the frequencyvM5vp /A3, wherevp is
the bulk plasmon frequency of the material.

When the confinement is not parabolic the surface p
mon is not an eigenstate of the many-body Hamiltonian
its coupling to the particle-hole excitations leads to a bro
ening of the corresponding resonance in the spectrum~see
the inset of Fig. 1!.

A common approach to the plasmon lifetime consists
treating the collective excitation as an external perturba
which can give rise to the creation of electron-ho
excitations.1 Within this framework, Fermi’s golden rule
yields the linewidth

DG~R!52p(
ph

u^pudVuh&u2 d~\vM2ep1eh!, ~2!

where up& and uh& are electron and hole states in the se
consistent field, respectively, anddV is the dipole field due
to the surface plasmon. More rigorous approaches,
discrete-matrix random-phase approximation~RPA! would
lead, after certain approximations,9 to an equivalent separa
tion of collective and particle-hole states.

In the case of spherical symmetry we can work in t
effective one-dimensional problem of the radial coordin
for each value~in units of \) of the angular momentum
L,r5RA2ME/\, E andM being the energy and the effec
tive mass of an electron, respectively, andR denoting the

FIG. 1. LinewidthDG(R), as a function of the radius~in units
of the Bohr radiusaB50.53 Å), for Na nanoparticles containin
between 20 and 832 atoms. The dots corresponding to TDL
calculations are compared to the result of Eq.~6! ~full line!. The
smooth termG0(R) is given by Eq.~4! ~dashed!. Inset: Logarithm
of the numerically calculated absorption cross section for Na138,
showing a pronounced surface plasmon resonance, fitted b
Lorentzian ~dotted line!. The excited states are indicated by tic
marks and their oscillation strengths are given by the height of
vertical lines.
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radius of the nanoparticle. Assuming that the confinem
and the interactions lead to hard walls at radiusR in the
self-consistent field, and integrating over the electron-h
states, one obtains9

DG~R!5CgE
EF

EF1\vM
dE(

L
(

L85L61
~2L11!~2L811!

3^L,0;1,0uL8,0&2E~E2\vM!

3dL~E!dL8~E2\vM!, ~3!

where ^L,0;1,0uL8,0& is a Clebsch-Gordan coefficien
g5(2p\3)/(3NM2vMR4), C54MR2/\2, anddL(E) is the
one-dimensional density of states.

III. SEMICLASSICAL THEORY

Our approach consists in the evaluation of Eq.~3! by
using the semiclassical expression21

dL~E!5
t~E,L !

2p\ H 112(
r 51

`

cosF r S S~E,L !

\
2p D G J ,

which decomposesdL(E) in its smooth and oscillating com
ponents. Here,t(E,L)5\Ar22L2/E is the period of the
one-dimensional motion,

S~E,L !52\@Ar22L22L arccos~L/r!#

is the corresponding action, and the sum runs over all nu
bers of repetitionsr. Integration overL, Poisson’s summation
rule, and a stationary phase approximation, lead to the se
classical Berry-Tabor formula,22 expressing the density o
states of a sphere in terms of classical periodic trajector
Taking only into account the smooth part ofdL(E) in Eq.
~3!, we recover the well-known 1/R dependence,9

G0~R!5
3\

4

vF

R
g~j!, ~4!

wherej5\vM /EF , g(j) is a smoothly decreasing functio
with g(0)51, andvF (EF) is the Fermi velocity~energy!.

Most interestingly, the oscillating part of the density
states gives rise to additional features, namely an oscilla
of DG(R) aroundG0(R) as a function of the radius. While
the cross products between the smooth and the oscilla
parts ofdL(E) anddL8(E2\vM) can be neglected after th
energy integration, the product of the two oscillatory comp
nents, after doing theL summation with the aid of Poisson’
summation rule, yields

Gosc~R!5
2g

p2 (
m52`

` E
rmin

rmax
dr rE

21/2

r

dy (
y85y61

f ~y8!

3Ar22y2Ar822y823(
r 51

`

(
r 852`

`

~21!r 1r 8cos@rS~r,y!1r 8S~r8,y8!12pmy#

~5!
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with r85Ar22(kFR)2j. The limits of ther integral are
given by rmin5max(kFR,kFRj) and rmax5kFRA11j. We
have definedf (y8)5y811 for y85y21 and f (y8)5y8 in
the casey85y11 (kF is the Fermi wave vector!. The domi-
nant terms correspond tom50, r 52r 8, and ȳ5 ȳ811
5r/(r2r8), yielding

Gosc~R!5
2g

p3/2Ermin

rmax
dr

r7/2r83/2@~r2r8!221#5/4

~r2r8!4

3(
r 51

`
1

Ar
cosF2r S ~kFR!2j22ȳ11

Ar22 ȳ21Ar822 ȳ82D G .

~6!

Sincer is of the order ofkFR, andkFRj@1, the argument
of the cosine is close to 2rkFRj, and Eq.~6! yields a contri-
bution toDG which oscillates as a function of the radius
the nanoparticle. It is important to note that this oscillato
behavior is due to theangular-momentum restricted electron
hole density-density correlation, and therefore more subtl
than the well-known oscillations of the density of states w
the energy.

Figure 1 shows the result forDG5G01Gosc which is ob-
tained by numerically evaluating ther integral in Eq.~6!.
The typical amplitude of the oscillations can be estimated
the valueGosc

max56A2p\2/(MR2AkFRj3), valid in the limit
kFRj2!1. This shows that the oscillating term represents
important correction toG0(R) for small particle sizes.

Higher repetitions (r .1) of the periodic orbits are sup
pressed in Eq.~6! because of the prefactor 1/Ar , and the
oscillations of the cosine as a function ofr. Including a
small intrinsic decoherence rateG i accounts for the coupling
to the environment and leads to an additional fac
exp(2GirR/hvF),

23 which further reduces the oscillator
contributions from long trajectories with large repetitio
numbersr.

IV. NUMERICAL CALCULATIONS

In order to study the relevance of the oscillatory behav
in more general situations, we performed quantum numer
calculations within a spherically symmetric jellium mode
using the linear response TDLDA.19,24 The diagonalization
of the Hamiltonian in the space of particle-hole excitatio
amounts to use the random-phase-approximation in the
consistent field with a local exchange potential. Further
finements of the numerical approach~like the self-interaction
correction25! do not provide substantial changes in the effe
in which we are interested. Because of the spherical sym
try of the model, we considered nanoparticle sizes co
sponding to magic numbers of atoms where our numer
approach is expected to work the best.26

A. Alkaline metals

A typical spectrum of the photo absorption cross sect
@Eq. ~1!# is shown in the inset of Fig. 1 for the example of
sodium cluster, where a nonzeroG i smears the singularitie
15542
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of the spectrum. The collective excitation can be identified
the main peak of the spectrum~note that the logarithm ofs
is plotted!. The vertical lines are essentially given bysingle
electron-hole excitations, except for the one at the cente
the surface plasmon resonance, which is thesuperpositionof
many such excitations. The surface plasmon linewidthG,
represented by thick dots in Fig. 1, is obtained from
Lorentzian fit to the main peak. We chose an intrinsic wid
G i larger than the typical distance in the electron-hole sp
trum and verified thatDG(R) is approximately independen
of the precise value ofG i . Confirming our analytical calcu-
lations, at smallR the numerical results show strong devi
tions fromG0(R) ~dotted line! and a nonmonotonic behavio
as a function of the radius. Similar results are obtained
other alkaline metals. It should be mentioned that the ph
of the semiclassical result from Eq.~6! is meaningful up to a
constant shift which was adjusted according to the numer
data.

B. Noble metals and embedded clusters

Noble metals are more difficult to describe, due to ban
structure effects and the fact that the comparison with exp
ments has to take into account the confinement of the
ticles in a matrix. In our numerical approach we included t
contributioned of thed electrons to the dielectric function o
the metal particles, as well as the dielectric constantem of
the matrix. For the resulting residual interaction we use
multipolar expansion as in Ref. 27. We have checked t
including an interstitial spacing~the so-called 3-e model28!
does not change significantly our results.

In Fig. 2 we show the numerical results~thick dots! for
silver nanoparticles embedded in an inert mat
~Ar, em'1.75), exhibiting pronounced oscillations o
DG(R) with the particle size, much like in the case of alk
line metals. The smooth part of the linewidthG0(R) @Eq.

FIG. 2. The dots represent the numerically obtained surf
plasmon linewidth for the case of silver nanoparticles embedde
an argon matrix, as a function of their radiusR in units of the Bohr
radius. The dashed and the solid lines representG0(R) andDG(R),
respectively, reduced by a global factor of 3 with respect to Eqs.~4!
and ~6! ~see text!.
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~4!#, and our semiclassical result forGosc(R) @Eq. ~6!# are an
overall factor of 3 larger than the numerical results. T
discrepancy is not surprising given the stringent approxim
tions involved
in both results, which are expected to be less applica
for embedded noble-metal clusters, than for free alka
metals. Nevertheless, the analytically calculatedGosc(R)
exhibits oscillations with the correct period, and its relati
size @with respect toG0(R)# agrees with the numerica
results.

Reactive~noninert! matrices like glass are often studie
experimentally,12 but still more difficult to analyze. By tak-
ing into account a high-energy conduction band in
insulator,29 we extended our numerical calculations to th
case.30 These electronic states provide additional decay ch
nels for the surface plasmon and its lifetime is considera
reduced. Our results for the Landau damping contribution
the linewidth of Ag nanoparticles embedded in SiO2 amount
to about one half of the experimental linewidth, but s
show strong size-dependent oscillations, as in the prev
cases.

V. CONCLUSIONS

In conclusion, we have found a mechanism leading to
important oscillatory contribution to the Landau dampi
linewidth of the collective surface plasmon excitation
small metallic nanoparticles. The oscillations of the lin
width as a function of the particle size arise from the os
lations of the angular-momentum restricted electron-h
density-density correlations, that we calculate within a se
d

nd

r

l.
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classical approach. We obtain a quantitative agreement
tween analytical and numerical~TDLDA ! results for free al-
kaline metallic clusters, and a qualitative agreement for m
complicated cases.

A systematic experimental investigation of the linewid
oscillations extending the results for specific situations
ported in Refs. 13–15 would provide an important st
towards the understanding of the rich physics involv
in the collective excitations of finite systems. A sma
inhomogeneous broadening will not kill the effect if th
size dispersion of the nanoparticles is smaller than the pe
of the oscillations@approximately (kFj)21, according to
Eq. ~6!#. Moreover, recent experimental developmen
make it possible to study the homogeneous broaden
of the surface plasmon also in electrically uncharg
clusters.31,32 In the case of clusters embedded in a matr
the oscillations of the width of the plasmon can be se
not only as a function of the size but also as a function
the dielectric constant of the environment. Changi
em shifts the position of the plasmon, without considerab
modifying the single-particle part of the spectrum. Therefo
the plasmon linewidth varies according to the position
the resonance with respect to the particle-hole excita
spectrum.
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