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Intramolecular circuits connected to N electrodes using a scattering matrix approach
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The scattering matrix technique is extended to describe the electronic transport characteristics of intramo-
lecular circuits driven in a ballistic or a tunnel transport regime. The circuit is assumed to be connebted by
electrodes. As a working example, the electronic properties Bhade circuit are presented leading to the
design of aror logic gate working in a ballistic regime. In the tunnel regime, only the “node” Kirchhoff law
of circuit remains valid at the nodes of an intramolecular tunnel circuit and the electronic characteristics of the
branches composing the circuit are mutually independent. It results in a difficult design of akagicamo-
lecular gate of high performance and stability, pointing out the urge for new architectures to implement
complex logic functions inside a single molecule.
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I. INTRODUCTION chemistry(ESQQ technique'’ Our final goal is the integra-
tion of the full circuit of a computer inside a single super-
The goal of making a computing machine with mol- molecule without the use of mesoscopic or nanoscopic me-
eculds) has now taken many technological routes from mo-tallic wiring to interconnect the switching molecular group
lecular materidito quantum computingBetween these two Operating in this intramolecular circuit. In the following, the
extreme cases stands molecular electronics in its hybrid giupermolecule is assumed to be connecte eetallic elec-
monomolecular versiohHybrid devices such as molecular trodes, the purpose of which is to feed electrons in and out.
rectifiers have long been propostddolecular switches, When the electronic transport regime in the circuit is a
amplifiers® and transistofs® have now been experimented. tunnel transport regiméthe electronic functionalities of an
This open,s ways for the design of complex hybrid mobcula'jntramolecular circuit can be described by a scattering matrix
circuitsi® 2 where the molecular devices are interconnected® WM they are characterized from the electrodes. Our ex-
by metallic wires ension of ESQC is based on a multichannel scattering ap-

At the opposite, monomolecular electronics uses mono-proaCh’ already applied to mesoscopic devitéSThis ap-

molecular circuits. A monomolecular circuit is an assem-proaCh was proved to be essential to predict the in and out

ballistic current intensity, where the scattering matrix ele-

blage of molecular functional groups covalently bonded O ments depend on the topology of the circuiisear, loops,

gethgr resulting _in a single supermolecule per circuit._ Anodes, on the number of interconne@sand on the mag-
functional group is, for example, a molecular wire or an in-petic or electric field appliedt As for mesoscopic circuits,
tramolecular switch. Compared to a molecular switch operihe S matrix for an intramolecular circuit depends on the
ating ina hybrld molecular CirCUit, an intramolecular switch t0p0|ogy of the circuit. But it also depends on the detailed
is switched “on” and “off” by a signal coming from another chemical structure of its molecular branches and nodes.
part of the supermolecule with no reference to external elec- To simplify the description of our calculation technique,
trodes. The information inside a monomolecular circuit iswe present here a tight-binding version of tiNselectrode
carried outside by a quantum exchange of electrons betweeasxtension of ESQCN-ESQC). This has the advantage of
the different molecular functional groups of the correspond-minimizing the number of electronic states per atom of the
ing supermolecule. Such versions of molecular electronicintramolecular circuit and of the metallic interconnects. Fur-
have also long been proposEd. thermore, a simple adjustment of parameters tunes the trans-

In this intramolecular approach and up to now, only mo-port regime inside the molecular circuit from a ballistic to a
lecular wires have been accessible to experimér@ne rea-  tunneling regime. The generalization HEESQC to the ex-
son is the difficulty of interconnecting a single, large mol-tended Huckel molecular orbitalEHMO) semiempirical
ecule equipped with many interconnecting groups to moreechnique including many orbitals per atom is mathemati-
than two metallic electrodes. The second reason is the algally straightforward but technically more demanding.
sence of rules for the design of an intramolecular circuitin a In Sec. Il, the technique for calculating the scattering ma-
single supermolecuf€. Chemists know how to synthesize trix of a general intramolecular circuit witN interconnects
molecules more complicated than a molecular WiBut the  is presented. Section Ill discusses the properties of a three-
expected intrinsic properties of such molecules remain basegbrt intramolecular node in a ballistic transport regime. Stan-
on the analogy, for example, between the shape of a threelard properties of a waveguide splitter are recovered together
branch molecule and of a three-terminal solid-state devicewith those of a symmetric node for use in complex electronic
No detailed calculations of electron transport phenomenomallistic circuits. These scattering calculations are also ap-
through a fully interconnected multibranched molecule existplied to the design of a monolithior logic gate in a ballistic

To establish intramolecular circuit design rules, we pro-regime, an example that requires a fine adjustment of the
pose here an extension of our elastic-scattering quantumircuit tight-binding structure. Section IV presents a gener-
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FIG. 2. A simplified tight-binding version of th&l-electrodes
circuit presented in Fig. 1. Each atom of the electrodes is described
FIG. 1. Definition of the multiple incoming and outgoing elec- by one orbital and the details of the central circuit are specified in
tronic Bloch wave amplitudes on an intramolecular circuit con-Secs. lll and IV, depending on its functionality.
nected toN metallic electrodes.
electronic interaction energly. Each electrode is described
alization of the results to the tunneling regime of transportoy a half filled conduction band with no gap at the Fermi
for a three-port intramolecular circuit in a star configuration.level e.
In electrical engineering, the description of the electric prop- This central circuit is also described in a tight-binding
erties of such a three-port circuit requires the two “node” approximation by a set df electronic statess’), i e[1,L]
and “mesh” Kirchhoff laws??> We demonstrate that only the with the corresponding state energy, whatever the topol-
“node” law remains valid in the tunneling regime. In Sec. V, ogy of the circuit. This circuit is connected to the electrodes
the extension of this work to the chemical optimization ofvia a simple electronic coupling; per chain.
passive intramolecular circuits is discussed. The total electronic Hamiltonian of the tight-binding sys-
For the N-port circuit presented in Fig. 1, th&=[S;] tem of Fig. 2 is given by
scattering matrix description of its electronic transport prop-

erties measured froMd metallic electrodes interconnected to e N ek . ‘ ek
the sources and the sinks is defined®y Hzgl kzl h(|sa)(Sn+ 1|+ ISn+ 1) {(SaD) +elsp)(syl
w1 1
X_ Sll 812 T SlN X + HCircuit+ HCircuit—eIectrodev (2)
2 e 2 ) . .
X _ S Sz Son || X 1) where the first term describes the electronic structure of the
: : : . : N N electrodes interconnecting the central circuit to external
XN Sy Sw -0 S | XM sources and ground. The second terg;.,ir of EQ. (2)

describes the electronic structure of the central circuit, which
where the Km—,xm) are the respective incoming and outgoing €" be of any t_opolqg_y and structure so long as its number of
amplitudes of the Bloch electronic wave used to test the scaff@tes L remains finite in any direction. The last term
tering properties of the central intramolecular cirglitg. 1)  Hcircuit-electrodeOf Ed. (2) is the Hamiltonian describing the

from a given electroden. The transmission coefficient from €l€ctronic interaction between this circuit and teelec-
electrode m to electrode n is defined by T, trodes. It can simply describe finite tight-binding chains of

the same structure as the electrodes. It can also introduce the
specific band structure & molecular wires, interconnecting

the central circuit to thdN external metallic electrodesee

Sec. V.

Il. CALCULATION OF THE SCATTERING MATRIX The wave functiorj) of the entire circuit of Fig. 2 is a

We consider the complete tight-binding electronic circuitSolution of the eigenvalue problerft| )= E| ) where|)
presented in Fig. 2 consisting bfelectrodes connected to a can be decomposed on the basis{$s),[s’)},
central intramolecular circuit. The electronic structure of N
each electrode is described by a semi-infinite one- 0 Ki Kk
dimensional chain of identical aton’)lls. Each atom of a given |"/’>=Ei difs >+,§0 gl Xn|Sn)-
electrodek is described by a single electronic stass), k
e[1,N], of energye, interacting with the other states of the = The electronic transmission properties of the central cir-
same chain in a nearest-neighbor approximation with armuit viewed from theN electrodes are recovered by substi-

=X"X"|xi o, i+m=Shmll* and the reflection coefficient on
electrodem by R,=X"/X"|xi o +m= | Smnil*.

()
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tuting Eq.(3) in the eigenvalue problem whilk is given by

Eq. (2). As usualt’ projecting this equation on the state sub-

space spanned by tielectrodes statdsﬁ) for n>1 leads
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=E|) is now projected on the Hilbert subspace spanned by
the stategs’)i e[1,L] and|s¥)ke[1,N]. A finite set of
+N) second-order difference equations results, which can be

to a set of second-order difference equations, one subset feeparated into 2 subsets. One subseL @quations deter-

each electrode:

hxk +ex+hxf_,=Exf, n>1, ke[1N]. (4)

For a given electrodk, such a subset of equations can be

rewritten in the transfer-matrix forh

(Xﬁ)
k
Xn+1

K E—e
(Xn—l) T _1
k = =

Xn 1

X,
Pl « for n>1.
0 Xn+1

mines the probability amplitude on the central circuit as a
function of the probability amplitude vectoY'i found at the
end state of a given electrode. It can be rewritten in the
matrix form

P is the so-called spatial propagator along a given tightith

binding chain away from the central tiny circuit. For the full

set of N electrodes and by adopting the more compact nota-

tion
k
Xn
XK= ,
" (XﬁH)
we have
Xy 1 =PX]
: and X¥=P"1x¥ with ke[1N].
Xy =PXY

©)

d
dl &
c| [|+mq|  |=o, ®
: N
d, !
(w,—E) internal
(wy—E) circuit-coupling
€= internal '

circuit-coupling (w0, —E)

In its tight-binding form, the matrixC accounts for the
central circuit electronic structure including the circuit topol-
ogy, atomic level energy, and the interatomic electronic in-
teractionsM (I ,k)=<s,°|H|s‘{> is a (L,N) rectangular matrix
giving the electronic coupling between the end state of each
electrode and the first external frontier state of the central
circuit. Q is a rectangular,2N) matrix. It takes into ac-

For each tight-binding chain, it is known that there arecount the fact that, in the set bfequationgthe internal part
nonpropagative and propagative eigensolutions, characteof the circuif, only the|s‘{> amplitudes have to be consid-
ized, respectively, by the real or the modulus-one complexred. This matrix is defined bY(i,j) =851 With i

eigenvalues of the spatial propagaft’ On a given elec-
trodek and for an incident electron of ener@ychosen such

e[1N] andje[1,2N].
The second subset i equations determines the prob-

that |E—e|<2|h|, the two propagative modes are given by ability amplitude on each of the end electrode stdss,

the two conjugate eigenvalues®fe™'?,e™'? corresponding
to the dispersion relatioe= e+ 2h cosé. Therefore, for a
given electrode’

: (6)

where Xk and X¥ are the amplitudes of the incoming and
outgoing electronic waves on the electrddas defined in
Fig. 1, with

ing

e e—in0

Unnt1= el(n+1)0

e—i(n+1)0

SincePU, ,.1=Up,_1,, then for any electrode

) XK
X1=Uy

k| ()

which depends on the external frontier states of the internal
circuit in the nearest-neighbor approximation. From this sec-
ond subset, thé¢d;] and [X'{] vectors are related by the
simple equation

(e—-E) h 0 01[ A1

0 0 (e—E) hjLa}
dy
dy

+'™ .| =0. 9
d,

Equations(8) and (9) form a homogeneous system of
equations for the unknown vectdrg; ] and[X‘{]. But thed;
are not explicitly required to calculate the electronic trans-

After using the propagator technique to describe the transmission properties of the central circuit and so, as in the
mission properties of a given electrode, the interactions beeffective Hamiltonian technique used in ES&Qhe d; am-
tween all these electrodes through the central circuit are noplitudes are eliminated from Eq&3) and (9) leading to the

considered. For this purpose, the eigenvalue prolst¢m)

following equation:
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(e—E) h o .- . 0 Thel;, (i,j) e [1,N]? are the effective electronic couplings
0 between two given electrodes through the central circuit.
They depend on th€ matrix elements. The; are the effec-
: : . 0 tive energy levels of the end states of the chains defined by
0 ... ... 0 (e—E) h their interaction with the central circuit. From Ed.1), alge-
braic manipulation gives directly tigscattering matrix, i.e.,
the relation betweefiX?, ... XM and{X?*, ... XN}

_t -1 : =
MC™*MQ - 0. (10 IIl. SIMPLE CIRCUIT IN THE BALLISTIC
a0 TRANSPORT REGIME

As a first example, we consider the three-port circuit pre-
sented in Fig. 3 consisting of three wirAsB, andC feeding
a central circuit composed of a simple single stafé. This
central state is coupled to one chain by an electronic inter-

Substituting Eq(7) in Eq. (10) for each interconnection,
we obtain N relations between the N2 amplitudes
(XL XL, o xm XM

e ~E h T 0 e T 0 actioné and to the two other chains by the interactionand
! 12 N . The electronic couplingg was added to include a direct
'y 0 e-E h ..o Ty O interaction between electrode® and C without passing

through the central state. Because there is no electronic gap
in the band structure of the tight-binding chain describing the

wires, this circuit is the tight-binding version of three-port

A metallic circuits often considered in mesoscopic physics.
1 The difference between those and our tight-binding descrip-
[Uy,] 0 X tion is that the interaction between each chain can be tuned
L X2 independently. Furthermore, the central electronic state en-
[Ug] ergy o can be shifted to compensate for a variation of those

2| _ ) ; . L -
X1 =0. (11 interactions in order to tune all the transmission or reflection
coefficients of this three-port circuit.

0 [Usol W Using Eq.(11), and after some algebraic manipulations,
the general analytic expression for the scattering m&(t)
i XN_ of this simple circuit is given by
GA_E+hei0 FAB FAC -1 &'A_E“l‘hei“9 FAB FAC
S(E)=—exp(—2i6)] Tas eg—E+he’ Tgc Tap eg—E+he '’ T'sc .
]'—‘AC FBC EC_E+hei0 FAC FBC €C_E+he_i0
(12
|
Sis energy dependent but satisfies the uS@=1 iden- X e Ve
tity with E=e+2h cosé. The effective energiesy(E) with B
X=A, B, or C and the effective interactionEyy(E) with S=| Ve a b ' (13
X,Y=A, B, or C appearing in Eq(12) are specified in the Je b a

following, depending on the exact function performed by the

circuit of Fig. 3. They are calculated using the energy- ith Je=261(2+8%), a=-8%(2+ &), b=2/(2+ &),
dependent effective Hamiltonian technique as used in thg,q,— —(a+b). This is exactly the same as the scattering
ESQC technique and already applied to simple tight-bindingnatrix of the three-port circuit used by ButtiRérwith
two electrode systents. For example, with8=0, a=y T, (E=e)=T.(E=€)=s. It describes the electronic scat-
=h, andw=e¢, the effective interactions are given directly tering properties of a mesoscopic metallic loop accessible in
by T'gc(E)=h?(E—e), Tas(E)=Tac(E)=6h/(E—€) a ballistic transport regime via & node using a single me-
and the effective energies by,(E)=e+ 6%/(E—e) and tallic wire playing the role of a single entrance p&tBut for
eg(E)=e€c(E)=e+h?/(E—e). In this case and foE=e, E+#e, the S(E) matrix elements are complex valued and the
all the matrix elements ofS(E) are real valued and the simple expressiorf13) no longer holds as already demon-
S(E=e€) matrix becomes, using E¢12), strated in Ref. 25.
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tion of the energy of the incident electron and of the value of the
. ~ coupling parameter defining the node %= a=B=7y in eV. The

) o . ) energy scale is relative te and the resonant integral along the
FIG. 3. The tight-binding implementation of a three-po+ike electrodes ihi=1 eV.

circuit including one central electronic stg&) and three connec-
tions represented by three semi-infinite cha®, andC.

(15

Tas ( FAB)Z(e_ E)A+h?+ A2
Lac

This simple example illustrates how our genesahatrix Tac (e—E)B+h2+B2’
approach can handle well known and simple examples of
ballistic circuits already considered in the literature throughwith A=E+TscI'gc/Tag—€c and B=E+T xgl'gc/
the Green's-function approac¢h For our purpose, to calcu- [ pc—€g.
late large intramolecular circuits using a quantum chemistry
approach, th& matrix is preferable as already demonstrated
in our EHMO-ESQC approach in the case of two
electrodes’ The parameters, w, a, 8, y controlling the scat- Setting A as the input electrode, a simple splitter is ob-
tering properties of the circuifFig. 3) can be optimized for tained by choosing=h and w=e. The conditions=h in-
two different purposes. The first is the realization of a Blochtroduces a coupling betweek and the two output chains,
waveguide splitter. In this case, and choosing electdélr  which respects the periodic structures of the chains fhom
the input electrode of the splitter, the controlling parameter$ and fromA to C. The conditionw =e suppresses the pos-
are chosen for the transmission coefficiehjg andTac to  sibility of a reflection along, which is always introduced by
be equal. Furthermore, a full splitter is obtained wien  a nonresonant staté With such a parameter choice, we have
=0. in Eq. (12), l'ag=a, I'pc=7, 'gc=B, and ex=eg=¢€¢

The second function that the three-port circuit of Fig. 3=e. In this case and for8==*h or a==*vy, the ratio
can perform is to be a generic symmetric node for its use iMag/Tac IS equal to unity and a good symmetric splitter
complex and monolithic ballistic circuits made of many oth- results fora= 8= y. The transmitted Bloch wave is divided
ers nodes of the same type. In this case, all the transmissidonto two equal amplitudes. But this parameter adjustment
coefficients and all the reflection coefficients must be respeadoes not provide a perfect splitter because the reflection co-
tively equal whatever the electrodes for the input and theefficient R, is not zero on electrod@. Furthermore, the
output. These two functions are discussed in the followingoptimum value of the coupling parameters to reach the mini-
sections using a general property of the scattering matrixnum possible value 1/9 fdR, (see belowvaries as a func-

A. The waveguide splitter

(12): tion of the incident electron energy as indicated in Fig. 4.
With the circuit of Fig. 3, a full splitter is obtained only
S21_ Elagtlacl'sc— €al'ag— Il ageXp(—i6) when 8=0 because, viewed from the input electrofiea
Ss1 Elac+Taslsc—e€slac—hlacexp—i6) B# 0 coupling destroys the regularity of the electronic struc-

(14)  ture fromAto B and fromA to C. This regularity breakdown

As a function of the electron incident energydefined in the Sshnenr?tlgb:eocihmep?nsil_}_ed tr)gtis :;nzir?]c;lll;sg:\]/izufi?r? Eq
A electrode, this ratio measures the electronic transparency g "y ’ ABTTAC '

equilibration between the chai andB and betweer and
C when the central node is connectiAgo B andC. It holds

2
also for the ratio of the other matrix element;] after a E: f) ) (16)
circular permutation of the input and the output branches. Tac \v
The ratio (14) is easily converted to the transmission ratio  Furthermore, the necessary and sufficient condition for
Tag/Tac between theA-B and theA-C branches: R,=0 is given by the equation
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FIG. 5. Reflection coefficient on input electrodeas a function FIG. 6. Reflection coefficient on the input electrodlas a func-
of the energy of the incident electron and of the value of the coudtion of the energy of the incident electron relativee@nd of the
pling parameter foX=a= 1y in eV and8=0. The energy is rela- value of the coupling parameter fot=a=46=7y in eV andh

tive toeandh=1 eV. =1 eV.
_ _ i _ ; the node isa=\2(E— w)/N(E—e). In this case, the total
E e—E+hexp —if)][e—E+hexp +ié
(E-oll n M X )] reflection on the input electrode beconies (1—2/N)2. As
+ 5 e—E+hexp —i6)] a consequence, we recover the well-know property in micro-

5 o . . wave circuits that the efficiency of ld node in its ability to
+(y"+ta)le-E+hexpg+i0)]=0 with 5,a,7#0,  {ransmit a wave from the input electrode to all the others
(17) decreases rapidly with the increase in the nunibef the
connected electrodes to which the input wave has to be dis-
which leads foro=e to the solutiona==+h/\2, y=  yibuted.
+h/\2 and s=h for all E=e+2hcosé. In Fig. 5 we As presented in Fig. 7, to build a more efficient three-port
present the variation dR, as a function of E for different node circuit, one may consider using a triangular circuit in
values ofa andy in the symmetric case. Depending on thethe center made of three intermediate states instead of no
sign chosen for and y, the two outputs of the splitter can states. Unfortunately, in the ballistic regime of transport,
be in phase or out of phase. The differences between the casgch a triangular circuit introduces a phase shift between the
B#0 (Fig. 4 andB=0 (Fig. 5 is that for3=0, there exists two paths of a Bloch wave passing from one electrode to
a valuea=y value of whichR,=0 independently of the another via the triangle. One path through the triangle is
incident energy of the electro(Fig. 5. When B+#0, the  defined using one state of this central triangle and the other
minimum R, valley is not parallel to the energy axis as path using two states. This triangular circuit is therefore an

shown in Fig. 4. interferometer with the phase shift per path defined by the
values of thew; and of«, B, andy.
B. The symmetric node for a ballistic circuit The scattering characteristics of this triangular interferom-

. er .. . eter were calculated using the scattering mdatt® with the
It is more difficult to optimize the circuit parameters of g g mAtRy

Fig. 3 to obtain a generic symmetric node to be used in the

design of ballistic circuits. Keeping the architecture of the : A
circuit in Fig. 3, one solution is to choose aggs0 and h
w=e with a= §=v. In this case, and for all thé values, all a2| e
the Tag/Tac, Tea/Tge, and Tca/Tcp are equal to unity. h
Whatever the input electrode, the general expression for the a1|
reflection coefficienR from any input electrode is given by he
do
C+ a[2(E—e)%+h?] e
R= 4p2 ’ (18 o2 > ol
C+9a”h Az a1
with C=h2(E— w)[ h3(E— w) — 3a2(E—€)]. Y, &
As presented in Fig. 6, the minimum value of E48), ﬁ% v o3 Bkdﬁ
R=1/9, is obtained for= \/2/3 for all energies of the bands C Cl/ obl B
of the electrodes. o W ¢ L ™)
In the case of a multiple node interconnectiNgelec- h/e %h

trodes instead of three and with these electrodes coupled to-

gether in the center with the same electronic interaction, a

straightforward generalization of the preceding result shows FIG. 7. A tight-binding design of a triangular three-port node
that the optimized coupling to get a minimum reflection onmade of three electronic states.
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that such a design is normally restricted to electronic circuits
working in a diffusive transport regime. Our circuit uses two
tunnel rectifiers interconnected via finite length tight-binding
chains to a central three-port node. The coupling coefficients
v between the node and those chains have been chosen to
conform to the optimization discussed in Secs. lllAand Il B
There is no defect along those chains and they have the same
electronic structure as the chains representing the electrodes
A, B, andC. This circuit can be considered as a simple model
of a Y-shaped single wall carbon nanotube ballistic logic
gate?’ In such aY macromolecule, a single kink made of
pentagonal and heptagonal defects in one branch will act as
an intramolecular tunnel rectifié?.

FIG. 8. Reflection coefficient on the input electrolas a func- In Fig. 9, each rectifier is made by simply shifting an
tion of the energy of the incident electron relativee@nd of the  gtomic level out of resonance in tiAeor theB chains. Intro-
value of the coupling parameters f&t=a=pg=y in eV, h  duced in a single tight-binding chain, such a shift produces
=1 eVando,;=w;=wz=¢e. the required asymmetricV characteristic of a rectifiét as

presented in Fig. @). The currents coming from the two
effective couplings and energies calculated using the effeGectifying branches are added at the central node of the cir-
tive Hamiltonian technique as described previously in thisgyit presented in Fig. 9. The logic levels of teand B
paper. The expression for those couplings and energies ajigputs are defined by the voltage applied relative to ground.
no longer analytic because the corresponding discriminang 2 v bias provides the “1” logic level and a grounded input
for the inversion of the central Hamiltonian matrix is now of the “Q” logic level. The output logic levels are defined by the
order 6. As presented in Fig. 8, a minimum of reflection isintensity| . of the tunneling current measured in electr@le
obtained for specific values of the incident energy and COUysing a standard amperemete=0 provides the “0” and
pling parameters. But unlike the simple preceding three-porf . 0 the “1” logic level. The amperemeter is assumed to be
node, this is not valid for the entire energy range. On th@nterconnected far from the node in tigelectrode. In this

Ra(X,E) plot (Fig. 8), the valley of minimumR, no longer  case, | can be calculated using the generalized Buttiker-
exists unlike the case of Figs. 4, 5, 6 becauseHet0, the | 3ndauer formul®

tight-binding circuit(Fig. 7) presents a total reflection. Fur-
thermore, for the Fig. 7 circuit to be a symmetric node, the @2 [+
conditionsa= 8=y must be respected, which preclude any |n:_J' ([1_Snn(E)”2]fn(E)
finetuning of the corresponding reflection coefficients even mh )

by changing thew; .

ARG 19
C. An oR logic gate in the ballistic regime !

To show the ability of ourN-electrodes scattering ap- wheref,(E)=1/1+exd (E— ) /KT] is the Fermi-Dirac dis-
proach to deal with more complex central circuits than atribution and x, the chemical potential of the electrode
three-port node, we have designedamiogic gate operating given by €—qV)).
in a ballistic transport regime. The circuit presented in Fig. 9 The logic behavior of this circuit is presented in Fig. 10.
is based on a resistance diode logRDL) design®® Notice ~ The “0” output logic level is very well defined. But there are

A Al B
h h
B C b2 e a2|e FIG. 9. Design of a “mono-
h h molecular” logic or gate in a bal-
b1 |e al | e IuA) listic regime. (a) The standard
@) e wole 3 RDL layout of anor gate with
|B ’q two diodes and one Ohmic resis-
= d7 | e2 dl | el 5] tance R. (b) A ballistic circuit
B o implementation of thisor gate
a6 |he @ |he L based on two branches with one
a5 | a4 | a3 level out of resonance per branch
T 0 plus a ballistic three-ports wave-
ol e guide splitter in the centefc) The
1 calculatedl-V rectifying charac-
c2 \ e (b} 06 04 02 0 02 04 06 08 10 12 teristic of one branch or B of the
Bias voltage (V) circuit.
L° ©
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Ic(uA)

5

FIG. 10. The logic response ¥, and Vg input voltage on the logior gate(Fig. 9). To reach a largeA output current intensityg
=0.1, B=0.1, andy=1/\2 with e;=—1 eV ande,=—1 eV. (a) was calculated with the same number of states per finite length
interconnecting chains arl) with one chain longer by five states than the other one. There are two values of the output current for the high
logic level in(a) and three values itb).

two values ofl ¢ corresponding to the “1” logic level. When current intensityl measured by an amperemeter inserted in
the electrode#\ and B are biased at 2 V, the output current the macroscopic circuit feeding those two electrodes. Inside
intensity is twice the value obtained when only one electrodehe tunnel barrier where the circuit is implanted, the advan-
(A or B) is at 2 V and the other is grounded. The usualtage of working in the tunneling regime is that there is no
solution to this problem adopted by the RDL designers wassitationary phase defined for a given electron in transit. This
to add an output resistanéin the circuit[Fig. Aa)]. Intro-  results in a simplification of the law of association of mo-
ducing such a resistance after the electr@de the circuit of  |ecylar branches in parallel with no destructive interference
Fig. 9(b) restores a single “1" output logic level. With such effect in the circuit® The disadvantage of this tunneling re-
an external resistance, the circuit becomes a hybrid cwcugme is that the tunneling current intensity through a molecu-

with the resistance in one part and the ballistic three-porfy circit decreases exponentially with an increase in the
node in the other part. One can also emulate this resistanc®, o ¢ the molecular circu

inside the ballistic part by changing, for example, one elec-
tronic coupling along theC tight-binding chain(see Sec.
IVB). But there is no voltage drop defined alo@gor be-
tween theA and theB branches and the central notkee
Sec. IV). This voltage drop is at the basis of a RDL design
usingR. It is, therefore, not possible in a nonhybrid design to

stabilize the samé. for the three states of theor Binputs 19+ 3, partsa, b, andc of each of theA, B, andC electrodes
leading to the same “1” output logic state. have been replaced by finite tight-binding chains with an

The logic response of this circuit is maintained by elon-alternate electronic structure. The tunneling regime in each
gating symmetrically the two chains interconnecting the recof thea, b, andc chains is reached for an incident energy of
tifiers to the central node. But any asymmetric deviation inthe electrons taken within the HOMO-LUMO gap of these
the electronic structure between these two chains in lengttghains. In this simple alternating chain model, the electronic
coupling, or energy-level shift will modify the logic response 9ap width is controlled by the differencetel —h2| between
of this circuit. We meet here the well-known sensibility of a the two alternating electronic coupling4d andh2 along the
ballistic circuit to internal details in composition or dimen- chain®> Our final tunnel circuit is made of three chaiasb,
sion already known in microwavé$photonics:? and meso- and ¢ of 24 states, each interconnecting the B, and C
scopic ballistic electron devicéd.According to the wave- €lectrodes to the central three-port ndéfeg. 11).
length in use in the ballistic circuit, a precise and very local The full scattering matrix of the circuit presented in Fig.
design is always necessary to avoid, for example, destructivkl was computed by calculating first the effective energy of

interference effects, which will modify the electrical charac-the frontier states and the effective coupling through the full
teristics of the entire circuit. three-port node and, b, andc chains from one of the elec-

trode to the others. Secondly, these energy and couplings
wereincluded in Eq(12) to compute theS matrix elements.
The scattering matrix cannot be given analytically for this
tunnel circuit because of the complexity of t@ematrix in

To avoid the difficulties met within the ballistic regime of Eg. (8), which is now of order 75.
transport in building a monomolecular circuit, the latter can  Figure 12 presents the transmission coefficient frdno
be driven in a tunneling regime. In this case, the electrons arB through the full circuit of Fig. 11 as a function of the
transferred between the electrodes through the circuit. It ignergy and of the node electronic coupling when 8= v.
the average number of electrons exchanged per second bEke position of the future band structures for e, andc
tween a given couple of electrodes that gives the tunnelindinite chains are clearly visible together with the HOMO-

To reach a tunneling regime of transport through a mo-
lecular wire, the bias voltage applied to this wire has to be
much lower than its highest occupied molecular orbital—
lowest unoccupied molecular orbitdHOMO-LUMO) gap?

To reproduce this condition in the simple three-port circuit of

IV. THE THREE-PORT CIRCUIT IN A TUNNELING
REGIME OF TRANSPORT
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FIG. 12. Transmission coefficiefityg betweenA andB through
the a and b tunnel chain and the central node as a functiorXof
=a=B=v in eV for hj=1 eV andh,=1.2 eV. Thea andb
bandwidth and the central HOMO-LUMO gap depend on the value
of X.

ficientsT g and T, can be changed independently because

FIG. 11. The tight-binding implementation of a three-port de- R will absorb thos.e changes faccc.)rdmg to the relafon
vice in tunnel transport regime. The electronic structure ofXhB, +Tag*Tac=1. This property is different from that of a
andC electrodes is similar to the one in Fig. 3. The finite length 24Waveguide splitter in a ballistic transport regime because in
states chaina, b, andc link the electrodes\, B, andC to the three  this case and wheR, reaches zerdl 5g and T are related

central states;, d,, anddj of the circuit. Each one of the, b, and Dy the conditionT,g + Tac =1. In a ballistic regime, the
¢ chains is maintained in a tunneling regime. two branches of a waveguide splitter are interdependent be-

cause of the conservation of probability. Therefore, in the
LUMO gap. The transmission coefficient in the center of thistunneling regime, the three-port circuit of Fig. 11 cannot be

gap is very small and length dependent. considered as a splitter. This is a “superposer” of tunneling
currents. Deep in the tunnel regime, each new branch con-

nected to the central node of Fig. 11 will decre&sewith-

out changing the transmission properties of the branches al-
As in the ballistic transport regime discussed in Sec. lll,ready connected on condition that the overall transmission

one can search for optimal values of the parameterg(y) coefficient fromA to all the other branches is much lower

in the circuit of Fig. 11 for which the tunnel current is splitin than one.

two parts directly inside the tunnel barrier without any access To illustrate this unique property of a three-port node in

to an intermediate electrode. This tunnel splitter will not bethe tunnel regime, we have first used our scattering matrix

perfect since the reflection coefficient on the input of thetechnique to comput®,, Tag, and T, of the circuit of

circuit will not be zero owing to the choice of a tunnel trans- Fig. 11, calculating successivel, and T g With y=0, Ry

port regime. Let us seleét for the input port of this splitter. andTac with =0, and finallyRs, Tag, andTac with «

The nonzero value of the reflection coefficigRt has an = y+#0 while 3=0 for small« values. As presented in Fig.

important consequence: by changing 8, andy, the coef-  13(a), the superposition of the contributions Bfg andTac

A. The three-port tunnel node

0

1510 =S=sek
1310 .
- -
o=
38 11.104 4
| &) o~
g 9.107 | [\_'505 2 l
= —
E 7107 —
5107 3 =
4 =
3.10 . N
-1 0 1 2
Energy (eV) log(o/y)
(a) (b)

FIG. 13. Transmission and reflection coefficient of the Fig. 11 circuit ithO, e=0, h;=1 eV, andh,=1.2 eV.(a) Solid curve:
1-Rp with a=y=1 eV. Dashed curveT g (y=0)+Tac («=0). Dash-dotted curveT,g (y=0,0=1 eV) and Tac (a=0,y
=1 eV).(b) Solid and dashed curve§,g and T, as a function ofx with y=1 eV andE=0. Dash-dotted curveR, as a function ok
with y=1 eV andE=0.
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FIG. 14. (8) (1—R,) plot as a function of the numbeN of identical output branches in the modified nogeg. 11) with =0, e
=0, hy=1 eV, h,=1.2 eV, and the electronic coupling linking each electrode to the central level taken to 15) &driation of the
transmission coefficient betweénandB for the circuit of Fig. 11 as a function @8, with a=1 eV, e=0, h;=1 eV, andh,=1.2 eV.

occurs with a decrease B while T,g andT,c remain the  ply represented by an alternating electronic tight-binding
same as if computed independently. For largeR, is so  chain of finite length with a central electronic couplidy
small thatT 55 increases and saturates. In this regifigg ~ whose value can be tuned as presented in Figb)1&nd
andTc will remain independent iT o+ Tac is very small  where the bias voltage must be lower than the electronic gap
compared to one. If nof g andT ¢ Will be interdependent  of the chain. For example, the low-voltage Landauer resis-
and the three-port node be almost out of the tunnel regimé&nce of this tunnel resistance varies by almost two orders of

[Fig. 13b)]. magnitude from 263 ® to 25 M(Q when changing from
Notice that for smallx values,T,g is proportional to the h; to 0.1hy, respectively, withh;=1 eV.
square of the electronic coupling, a standard result of the Instead of substituting only the Ohmic resistances of Fig.

perturbation theory of tunnelini.In this case, this coupling 15(@) by tunnel resistances, the complete circuit of Figal5

« does not compensate for the small effective electronic councluding the central three-port node and the wires can be
pling betweenA and B through the long alternata andb  made to work in a tunneling transport regime as proposed in
chains in series, making this theory applicable to the case dfig. 15d). The tight-binding implementation of such a three-
a long chain with a small electronic coupling in its center.port circuit is presented in Fig. 16. This is a simple mono-
For largea values, this small effective coupling is compen- electronic representation of many of the intramolecular cir-
sated andT,g starts to saturate as a function af [Fig.  cuits made of a single molecule proposed in the
13(b)]. Second, we have calculat®), while increasing the literature™®*®3® The interconnection between the three
number of identical branches in the no, decreases as a chains is ensured by a three-port symmetric node as dis-
function of the numbeN of new branches until it saturates cussed in Sec. IV A without passing through a metallic node
as presented in Fig. 1. At this point, the overall transmis- working, for example, in a diffusive transport regime. The
sion fromA to all the output branches is maximum and anytotal tunneling current intensitly, in this circuit can be cal-
new branch added to the node will modify the transmissiorculated using the scattering matrix procedure presented in

coefficient of all the branches already interconnected. Sec. Il with now 75 electronic states composing its tunnel
Deep in the tunnel regime, another consequence of thipart. The variations of , as a function ofGg (with G,
independence of the branches is tfiat and Tc are inde-  =G¢ for simplification are presented in Fig. 1@ where

pendent ofg. Therefore and as presented in Fig(4any |, denotes the reference current obtained @g=Gg
change ofTgc using B as a tunable parameter will not =G.. The values 0iG,, Gg, andG¢ are given in refer-
modify Tag and T ¢ provided thatg is not large enough to ence to two electrodes as defined in Fig(l50 make the
saturateTgc to unity. This “rejection” property of a three- comparison possible between the Fig(d%and Fig. 15d)
port node in a tunnel regime opens the way to the design dfircuits. Inside the tunnel circuit Fig. &, the role of a

an intramolecular transistor. finite tight-binding chain likeG,, Gg, or G¢ is to control
the electronic effective coupling between two tunnel wires.
B. The Kirchhoff laws in the tunnel regime WhenGg goes to zerol ,=0.9 A, Letus now consider each

In the simple electrical circuit of Fig. 18), the analytical Ga. Gg. andGc¢ as true tunnel conductances with a well-
expression foll g and I are normally obtained using both defined Ohmic conductance when interconnected by stan-
the well-known “node” and “mesh” Kirchhoff laws. When dard diffusive metallic wire§Fig. 15c)]. In this casel, can
replacing the Ohmic resistances by tunnel resistances as pr@lSo be calculated using standard electrical circuit rules:
sented in Fig. 1&), the analytical expressions fog andl. ~ WhenGg goes to zero, the standard Kirchhoff laws give
remain valid. According to the Landauer formdlathe dis-  =0-79 4,
sipation occurs in the electrodes, which means that an To understand this difference between the tunnel node of
electrode-molecular wire-electrode tunnel junction is equivafig. 15d) and the diffusive metallic node of Fig. (&, we
lent to an Ohmic resistance. Here, a tunnel resistance is sinirave first computed with our scattering matrix technique the
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FIG. 15. The same electrical circuit made of one node and three branches with conduct@he@ediifusive,(c) a tunneling regime of
transport, andd) with the full circuit in a tunnel regime including the nodé) provides the schematic and the corresponding tight-binding
implementation of a tunnel conductance ligg , Gg, andG¢ when they are each connected to two electrodesd)nthe wire and the

conductance are considered in a tunneling regime, meaning that the “conductance” of a given finite length chain is measured by the effective

electronic coupling between the two tunnel wires introduced by this chain. It may be better called the “transference” of the chain.

I g andl ¢ current intensity in the tunnel circuit of Fig. (.
Ic is found to be independent @z while 1z is normally
controlled byGg, as presented in Fig. 13). In the tunneling
regime, this is a consequence of the independendg g(fE)
to a variation of the tunnel parameters controlling brehain

=G;G,/(G;+G,) as in the standard Ohmic regime, where
the two conductances are interconnected in series via a dif-
fusive metallic wire. As a consequence, the variationsgof
andl: as a function ofGg presented in Fig. 1B) are quan-
titatively reproduced by the analytical formula

electronic properties as discussed in Sec. IV A. Second, we

have verified that the equivalent conducta&ef two con-

ductancesG,; and G, interconnected in series in a tunnel

circuit is G=(whl/e?)G,G, (Ref. 19 and not G

lg=(7h/€?)?gGaGgV,

lc=(mhle?)2gGaGV, 20

g
=
&
>
hl
x12 . T ‘ a
\ s
dl-l—-e FIG. 16. The detail of the
Y o tight-binding version of the Fig.
X6 e \d3 B N2 6 15(d) circuit with three tunneling
h2™, h2 chains containing 24 states each.
AN ’
/h /. hl ' P
s —(§)—h_
A N
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FIG. 17. (a) Comparison of the current intensity as a function of the control resistanBg in the Boltzmann(dashed curjeand the
tunneling(solid curve regime of transport. The crosses represent the current intdpsgiiven by Eq.(21), with g=0.2 xS for the node

conductance(Fig. 16. The current intensities are normalized ItQ,

obtained forRg=R (or Gg=G¢). (b) A representation of the

independence in the tunnel regime of thieranch conductance whitgg is modified. Continuous curve fog and dash-dotted curve fog .
For clarity, Gg is represented bRz . The intensities here are normalized for thg= G case.

where the conductancg corresponds to the central node

tunnel conductance of this three-port tunnel circuit. As pre-

sented in Fig. 1(&), it turns out that the total curremg can

C. An OR logic gate in the tunneling regime

As a consequence of the independence of the branches in
a circuit driven in a full tunneling regime, the design of an

also be fitted by a simple superposition of the two analyticaintramolecular logic gate with an RDL architecture will lead

expression foit g andl ¢ in Eq. (20):

2
Th
IA:|B+|C: g) (gGAGB+gGAGC)V (21)

This apparent independence of the two branches of a tu
nel circuit whenGg goes to zero explains the division by two
of I, in the tunnel circuit of Fig. 1&l) as compared to the
factor 3/4 in the case of the standard electronic circuit of Fig
15(a).

One way to recover intuitively Eq21) is to return to the
conventional electric circuit “mesh” and “node” Kirchhoff
laws. In this casel,, in the Fig. 1%a) circuit can be decom-
posed in three terms:

S RV Sy Ra
ATRp+Rg Rat+Rc (Ra+Rp)Re
R 22
+ (RA+ RC)RB node- ( )

The first two terms in Eq(22) correspond exactly to the two
terms givinglg and I in Eq. (21). They result from the
conservation of the electric charge on the central three-po
node at the origin of the Kirchhoff node law. The third term
in Eq. (22) corresponds to the voltage drdfy,q4e OCCUrring

at the central node of the circuit in Fig. @. It results from

to two different output current intensities for the same output
high logic level “1” as in the ballistic regime. Furthermore,
in the tunnel regime, it is very difficult to stabilize along a
tunnel wire an asymmetric resonating state, which will in-
duce a rectification effect in that branch. The reason is that

|¥yhen one level is shifted along an alternating tight-binding

chain, this shift has the effect of separating the finite chain
into two new shorter chains and the transport regime will
remain tunneling. Therefore, those two chains play the role
of two effective tunneling barriers for this asymmetric reso-
nant level relative to the electrodes. As a consequence, and
for long chains, this resonance will be very sharp and will
have no impact on the low voltadeV characteristic of the
full chain. Furthermore, this level must be positioned in the
middle of the chain because in the tunnel regime any asym-
metry in coupling will sharply attenuate the amplitude of this
resonance.

To design our full tunnebr logic gate, we have chosen to
do the reverse: to expel one level from the electronic struc-
ture of an alternating finite chain. In this way, a reasonable
width is kept for the rectifying resonance and an asymmetric
|-V curve is obtained in a chain. We have assembled two
such tunnel rectifiers together withTanode, also maintained
in a tunnel transport regime as presented in Fig. 18. The full
Bcattering matrix was calculated as indicated in Sec. Il for a
circuit composed of 143 states in this three-port tunneling
barrier. The bias voltage of the input branches was main-
tained below the HOMO-LUMO gap of the finite chains to

the potential neutrality of a mesh in an electrical circuit anddrive this gate in a full tunnel regime. The logic levels were

gives rise to the Kirchhoff “mesh” law. In the circuit of Fig.
15(a), Vpode is @ function of the resistancd®,, Rg, and

defined as in the ballistic case. The logic output current in-
tensity responsé. is presented in Fig. 18). As discussed,

Rc. This is the well-known origin of the interdependence ofthe “1” logic state of the gate is not well defined. A good

Ig andl: on bothRg andRc. In the tunnel circuit of Fig.
15(d), V,04eis Not physically defined. As a consequenige,

point is that the transitions between the “0” and “1” logic
state are better defined than in the ballistic case. But this

andlc are independent. It turns out that this independenc&®DL design of an intramolecular logic gate is also much

reflects in Eq.(22) by simply takingV,,4e=0. In a tunnel
circuit, only the “node” Kirchhoff law applies.

more sensitive to any change or defect in its electronic struc-
ture than a ballistic gate.
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FIG. 18. (a) The tight-binding implementation aritd) the logic response of apr logic gate working in a full tunnel regime of transport.
Input and output logic levels are defined as in Fig. 10 withy=1 eV to keep the alternanck; andh, values chosen as in Fig. 12. The
asymmetric rectifying level are; and w, with w;=w,=6 €V relative toe. | was calculated with Eq19) after the calculation of the
scattering matrix on the full circuit. The input bias voltagés and Vg are maintained well below the 0.4 eV HOMO-LUMO gap of the
tunnel chains. As a consequence, the output tunneling current intensity is in the nanoampere range.

This very sensitivity points out the need for new architec-lecular circuits. Of course, the number of circuits that can be
ture concepts in pursuit of the goal of embedding a full logicdesigned starting from a combination of single three-port
circuit inside a single molecule as often proposed as the ulrodes grows rapidly with the number of electrodes intercon-
timate version of molecular electronits® Those new con- necting the circuit to external sources and sinks. Therefore,
cepts will have to take into account the very fast decrease ofve have preferred here to present in detail only the properties
the tunnel current intensity in a tunnel circuit with the spatialof the three-port node and its consequences on the design of

extension of this circuit. real circuits. Armed with a tight-binding circuit builder, any
circuit topology can be studied using our scattering ap-
V. CONCLUSIONS proach. Furthermore, even through it is restricted to a tight-

) ) ) binding model, our approach provides the background topo-

We have presented a scattering matrix technique for thgygical and physical properties of any passive circuits
design of intramolecular circuits connectedNcelectrodes.  empedded inside a single molecule. A more precise calcula-
This was applied to the study of the electronic transmissioiion of the current intensity in and out of such a circuit re-
and reflection properties of three-port circuits driven in theqyjres a detailed molecular-orbital description of each part
ballistic or the tunneling transport regime. In particular, weof the circuit depending on its chemical composition and
have shown the difficulties of designing a simge logic  tgpology.
gate in the ballistic regime and demonstrate that only the
“node” Kirchhoff law remains valid in the tunneling regime ACKNOWLEDGMENTS
for such a circuit. Our formalism can be used for the descrip-
tion of more complex circuits consisting of a combination of  This work was supported by IST-FET “Bottom-Up Nano-
nodes and branches implanted inside the same moleculmachines(BUN)” project and the European Commission.
This is of importance for the design of complex monomo-We thank P. Hawkes for a careful reading of our manuscript.
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