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Intramolecular circuits connected to N electrodes using a scattering matrix approach
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~Received 26 July 2001; revised manuscript received 26 November 2001; published 3 April 2002!

The scattering matrix technique is extended to describe the electronic transport characteristics of intramo-
lecular circuits driven in a ballistic or a tunnel transport regime. The circuit is assumed to be connected byN
electrodes. As a working example, the electronic properties of aT-node circuit are presented leading to the
design of anOR logic gate working in a ballistic regime. In the tunnel regime, only the ‘‘node’’ Kirchhoff law
of circuit remains valid at the nodes of an intramolecular tunnel circuit and the electronic characteristics of the
branches composing the circuit are mutually independent. It results in a difficult design of a logicOR intramo-
lecular gate of high performance and stability, pointing out the urge for new architectures to implement
complex logic functions inside a single molecule.
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I. INTRODUCTION

The goal of making a computing machine with mo
ecule~s! has now taken many technological routes from m
lecular material1 to quantum computing.2 Between these two
extreme cases stands molecular electronics in its hybrid
monomolecular version.3 Hybrid devices such as molecula
rectifiers have long been proposed.4 Molecular switches,5

amplifiers,6 and transistors7–9 have now been experimente
This opens ways for the design of complex hybrid molecu
circuits10–12 where the molecular devices are interconnec
by metallic wires.

At the opposite, monomolecular electronics uses mo
molecular circuits. A monomolecular circuit is an asse
blage of molecular functional groups covalently bonded
gether resulting in a single supermolecule per circuit.
functional group is, for example, a molecular wire or an
tramolecular switch. Compared to a molecular switch op
ating in a hybrid molecular circuit, an intramolecular swit
is switched ‘‘on’’ and ‘‘off’’ by a signal coming from anothe
part of the supermolecule with no reference to external e
trodes. The information inside a monomolecular circuit
carried outside by a quantum exchange of electrons betw
the different molecular functional groups of the correspo
ing supermolecule. Such versions of molecular electron
have also long been proposed.13

In this intramolecular approach and up to now, only m
lecular wires have been accessible to experiments.14 One rea-
son is the difficulty of interconnecting a single, large mo
ecule equipped with many interconnecting groups to m
than two metallic electrodes. The second reason is the
sence of rules for the design of an intramolecular circuit i
single supermolecule.15 Chemists know how to synthesiz
molecules more complicated than a molecular wire.16 But the
expected intrinsic properties of such molecules remain ba
on the analogy, for example, between the shape of a th
branch molecule and of a three-terminal solid-state dev
No detailed calculations of electron transport phenome
through a fully interconnected multibranched molecule ex

To establish intramolecular circuit design rules, we p
pose here an extension of our elastic-scattering quan
0163-1829/2002/65~15!/155419~14!/$20.00 65 1554
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chemistry~ESQC! technique.17 Our final goal is the integra-
tion of the full circuit of a computer inside a single supe
molecule without the use of mesoscopic or nanoscopic
tallic wiring to interconnect the switching molecular grou
operating in this intramolecular circuit. In the following, th
supermolecule is assumed to be connected toN metallic elec-
trodes, the purpose of which is to feed electrons in and o

When the electronic transport regime in the circuit is
tunnel transport regime,3 the electronic functionalities of an
intramolecular circuit can be described by a scattering ma
S when they are characterized from the electrodes. Our
tension of ESQC is based on a multichannel scattering
proach, already applied to mesoscopic devices.18,19 This ap-
proach was proved to be essential to predict the in and
ballistic current intensity, where the scattering matrix e
ments depend on the topology of the circuits~linear, loops,
nodes!, on the number of interconnects20 and on the mag-
netic or electric field applied.21 As for mesoscopic circuits
the S matrix for an intramolecular circuit depends on th
topology of the circuit. But it also depends on the detail
chemical structure of its molecular branches and nodes.

To simplify the description of our calculation techniqu
we present here a tight-binding version of thisN-electrode
extension of ESQC (N-ESQC). This has the advantage
minimizing the number of electronic states per atom of
intramolecular circuit and of the metallic interconnects. F
thermore, a simple adjustment of parameters tunes the tr
port regime inside the molecular circuit from a ballistic to
tunneling regime. The generalization ofN-ESQC to the ex-
tended Huckel molecular orbital~EHMO! semiempirical
technique including many orbitals per atom is mathem
cally straightforward but technically more demanding.

In Sec. II, the technique for calculating the scattering m
trix of a general intramolecular circuit withN interconnects
is presented. Section III discusses the properties of a th
port intramolecular node in a ballistic transport regime. St
dard properties of a waveguide splitter are recovered toge
with those of a symmetric node for use in complex electro
ballistic circuits. These scattering calculations are also
plied to the design of a monolithicOR logic gate in a ballistic
regime, an example that requires a fine adjustment of
circuit tight-binding structure. Section IV presents a gen
©2002 The American Physical Society19-1
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alization of the results to the tunneling regime of transp
for a three-port intramolecular circuit in a star configuratio
In electrical engineering, the description of the electric pro
erties of such a three-port circuit requires the two ‘‘nod
and ‘‘mesh’’ Kirchhoff laws.22 We demonstrate that only th
‘‘node’’ law remains valid in the tunneling regime. In Sec.
the extension of this work to the chemical optimization
passive intramolecular circuits is discussed.

For the N-port circuit presented in Fig. 1, theS5@Si j #
scattering matrix description of its electronic transport pro
erties measured fromN metallic electrodes interconnected
the sources and the sinks is defined by23

F X1

X2

A

XN

G5S S11 S12 ••• S1N

S21 S22 ••• S2N

A A � A

SN1 SN2 ••• SNN

D F X1

X2

A

XN

G , ~1!

where the (Xm,Xm̄) are the respective incoming and outgoi
amplitudes of the Bloch electronic wave used to test the s
tering properties of the central intramolecular circuit~Fig. 1!
from a given electrodem. The transmission coefficient from
electrode m to electrode n is defined by Tmn

5Xn/XmuXj 50, j Þm5iSnmi2 and the reflection coefficient o
electrodem by Rm5Xm/XmuXj 50,j Þm5iSmmi2.

II. CALCULATION OF THE SCATTERING MATRIX

We consider the complete tight-binding electronic circ
presented in Fig. 2 consisting ofN electrodes connected to
central intramolecular circuit. The electronic structure
each electrode is described by a semi-infinite o
dimensional chain of identical atoms. Each atom of a giv
electrodek is described by a single electronic stateusn

k&, k
P@1,N#, of energye, interacting with the other states of th
same chain in a nearest-neighbor approximation with

FIG. 1. Definition of the multiple incoming and outgoing ele
tronic Bloch wave amplitudes on an intramolecular circuit co
nected toN metallic electrodes.
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electronic interaction energyh. Each electrode is describe
by a half filled conduction band with no gap at the Fer
level e.

This central circuit is also described in a tight-bindin
approximation by a set ofL electronic statesusi

0&, i P@1,L#
with the corresponding state energyv i , whatever the topol-
ogy of the circuit. This circuit is connected to the electrod
via a simple electronic couplinga i per chain.

The total electronic Hamiltonian of the tight-binding sy
tem of Fig. 2 is given by

H5 (
n51

1`

(
k51

N

h~ usn
k&^sn11

k u1usn11
k &^sn

ku!1eusn
k&^sn

ku

1HCircuit1HCircuit-electrode, ~2!

where the first term describes the electronic structure of
N electrodes interconnecting the central circuit to exter
sources and ground. The second termHCircuit of Eq. ~2!
describes the electronic structure of the central circuit, wh
can be of any topology and structure so long as its numbe
states L remains finite in any direction. The last term
HCircuit-electrodeof Eq. ~2! is the Hamiltonian describing the
electronic interaction between this circuit and theN elec-
trodes. It can simply describe finite tight-binding chains
the same structure as the electrodes. It can also introduc
specific band structure ofN molecular wires, interconnecting
the central circuit to theN external metallic electrodes~see
Sec. IV!.

The wave functionuc& of the entire circuit of Fig. 2 is a
solution of the eigenvalue problem:Huc&5Euc& whereuc&
can be decomposed on the basis set$usn

k&,usi
0&%,

uc&5(
i

di usi
0&1 (

n.0
(
k51

N

xn
kusn

k&. ~3!

The electronic transmission properties of the central
cuit viewed from theN electrodes are recovered by subs

-

FIG. 2. A simplified tight-binding version of theN-electrodes
circuit presented in Fig. 1. Each atom of the electrodes is descr
by one orbital and the details of the central circuit are specified
Secs. III and IV, depending on its functionality.
9-2
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INTRAMOLECULAR CIRCUITS CONNECTED TON . . . PHYSICAL REVIEW B65 155419
tuting Eq.~3! in the eigenvalue problem whileH is given by
Eq. ~2!. As usual,17 projecting this equation on the state su
space spanned by theN electrodes statesusn

k& for n.1 leads
to a set of second-order difference equations, one subse
each electrode:

hxn11
k 1exn

k1hxn21
k 5Exn

k , n.1, kP@1,N#. ~4!

For a given electrodek, such a subset of equations can
rewritten in the transfer-matrix form17

S xn21
k

xn
k D 5F E2e

h
21

1 0
G S xn

k

xn11
k D 5PS xn

k

xn11
k D for n.1.

P is the so-called spatial propagator along a given tig
binding chain away from the central tiny circuit. For the fu
set ofN electrodes and by adopting the more compact no
tion

X n
k5S xn

k

xn11
k D ,

we have

H X n21
1 5PX n

1

A

X n21
N 5PX n

N

and X 1
k5Pn21X n

k with kP@1,N#.

~5!

For each tight-binding chain, it is known that there a
nonpropagative and propagative eigensolutions, chara
ized, respectively, by the real or the modulus-one comp
eigenvalues of the spatial propagatorP.17 On a given elec-
trodek and for an incident electron of energyE chosen such
that uE2eu,2uhu, the two propagative modes are given
the two conjugate eigenvalues ofP: e1 iu,e2 iu corresponding
to the dispersion relationE5e12h cosu. Therefore, for a
given electrodek17

X n
k5Un,n11FXk

XkG , ~6!

where Xk and Xk are the amplitudes of the incoming an
outgoing electronic waves on the electrodek as defined in
Fig. 1, with

Un,n115F einu e2 inu

ei (n11)u e2 i (n11)uG .
SincePUn,n115Un21,n , then for any electrode

X 1
k5U1,2FXk

XkG . ~7!

After using the propagator technique to describe the tra
mission properties of a given electrode, the interactions
tween all these electrodes through the central circuit are
considered. For this purpose, the eigenvalue problemHuc&
15541
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5Euc& is now projected on the Hilbert subspace spanned
the statesusi

0& i P@1,L# and us1
k&kP@1,N#. A finite set of (L

1N) second-order difference equations results, which can
separated into 2 subsets. One subset ofL equations deter-
mines the probability amplitudesdl on the central circuit as a
function of the probability amplitude vectorX 1

k found at the
end state of a given electrode. It can be rewritten in
matrix form

CF d1

d2

A

dl

G1MQF X 1
1

A

X 1
N
G50, ~8!

with

C5F ~v12E! internal

~v22E! circuit-coupling

internal �

circuit-coupling ~v l2E!

G .

In its tight-binding form, the matrixC accounts for the
central circuit electronic structure including the circuit topo
ogy, atomic level energy, and the interatomic electronic
teractions.M ( l ,k)5^sl

0uHus1
k& is a (L,N) rectangular matrix

giving the electronic coupling between the end state of e
electrode and the first external frontier state of the cen
circuit. Q is a rectangular (N,2N) matrix. It takes into ac-
count the fact that, in the set ofL equations~the internal part
of the circuit!, only the us1

k& amplitudes have to be consid
ered. This matrix is defined byQ( i , j )5d j ,2i 21 with i
P@1,N# and j P@1,2N#.

The second subset ofN equations determines the prob
ability amplitude on each of the end electrode statesus1

k&,
which depends on the external frontier states of the inte
circuit in the nearest-neighbor approximation. From this s
ond subset, the@di # and @X 1

k# vectors are related by th
simple equation

F ~e2E! h 0 ••• ••• 0

A A � � A A

0 ••• ••• 0 ~e2E! h
GF X 1

1

A

X 1
N
G

1 tMF d1

d2

A

dl

G50. ~9!

Equations~8! and ~9! form a homogeneous system o
equations for the unknown vectors@di # and@X 1

k#. But thedi

are not explicitly required to calculate the electronic tran
mission properties of the central circuit and so, as in
effective Hamiltonian technique used in ESQC,15 the di am-
plitudes are eliminated from Eqs.~8! and ~9! leading to the
following equation:
9-3
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S F ~e2E! h 0 ••• ••• 0

0 A � � A A

A A � � A 0

0 ••• ••• 0 ~e2E! h

G
2 tMC21MQD F X 1

1

A

X 1
N
G50. ~10!

Substituting Eq.~7! in Eq. ~10! for each interconnection
we obtain N relations between the 2N amplitudes
$X1,X1, . . . ,Xm,Xm%:

F e12E h G12 0 ••• G1N 0

G12 0 e22E h ••• G2N 0

A A � � � A A

G1N 0 ••• GN21N 0 eN2E h

G
3F @U1,2# 0

@U1,2#

�

0 @U1,2#

G 3
X1

X1

X2

X2

A

XN

XN

4 50. ~11!
h
y
th
in

ly

e

15541
TheG i j , (i , j )P@1,N#2 are the effective electronic coupling
between two given electrodes through the central circ
They depend on theC matrix elements. Thee i are the effec-
tive energy levels of the end states of the chains defined
their interaction with the central circuit. From Eq.~11!, alge-
braic manipulation gives directly theSscattering matrix, i.e.,
the relation between$X1, . . . ,XN% and$X1, . . . ,XN%.

III. SIMPLE CIRCUIT IN THE BALLISTIC
TRANSPORT REGIME

As a first example, we consider the three-port circuit p
sented in Fig. 3 consisting of three wiresA, B, andC feeding
a central circuit composed of a simple single stateus1

0&. This
central state is coupled to one chain by an electronic in
actiond and to the two other chains by the interactionsg and
a. The electronic couplingb was added to include a direc
interaction between electrodesB and C without passing
through the central state. Because there is no electronic
in the band structure of the tight-binding chain describing
wires, this circuit is the tight-binding version of three-po
metallic circuits often considered in mesoscopic physic23

The difference between those and our tight-binding desc
tion is that the interaction between each chain can be tu
independently. Furthermore, the central electronic state
ergy v can be shifted to compensate for a variation of tho
interactions in order to tune all the transmission or reflect
coefficients of this three-port circuit.

Using Eq.~11!, and after some algebraic manipulation
the general analytic expression for the scattering matrixS(E)
of this simple circuit is given by
S~E!52exp~22iu!F eA2E1heiu GAB GAC

GAB eB2E1heiu GBC

GAC GBC eC2E1heiu
G21F eA2E1he2 iu GAB GAC

GAB eB2E1he2 iu GBC

GAC GBC eC2E1he2 iu
G .

~12!
ng

t-
e in
-

he
n-
S is energy dependent but satisfies the usualSS†5I iden-
tity with E5e12h cosu. The effective energieseX(E) with
X5A, B, or C and the effective interactionsGXY(E) with
X,Y5A, B, or C appearing in Eq.~12! are specified in the
following, depending on the exact function performed by t
circuit of Fig. 3. They are calculated using the energ
dependent effective Hamiltonian technique as used in
ESQC technique and already applied to simple tight-bind
two electrode systems.17 For example, withb50, a5g
5h, andv5e, the effective interactions are given direct
by GBC(E)5h2/(E2e), GAB(E)5GAC(E)5dh/(E2e)
and the effective energies byeA(E)5e1d2/(E2e) and
eB(E)5eC(E)5e1h2/(E2e). In this case and forE5e,
all the matrix elements ofS(E) are real valued and th
S(E5e) matrix becomes, using Eq.~12!,
e
-
e
g

S5S x A« A«

A« a b

A« b a
D , ~13!

with A«52d/(21d2), a52d2/(21d2), b52/(21d2),
andx52(a1b). This is exactly the same as the scatteri
matrix of the three-port circuit used by Buttiker24 with
TAB(E5e)5TAC(E5e)5«. It describes the electronic sca
tering properties of a mesoscopic metallic loop accessibl
a ballistic transport regime via aT node using a single me
tallic wire playing the role of a single entrance port.24 But for
EÞe, theS(E) matrix elements are complex valued and t
simple expression~13! no longer holds as already demo
strated in Ref. 25.
9-4
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This simple example illustrates how our generalS-matrix
approach can handle well known and simple examples
ballistic circuits already considered in the literature throu
the Green’s-function approach.19 For our purpose, to calcu
late large intramolecular circuits using a quantum chemis
approach, theS matrix is preferable as already demonstra
in our EHMO-ESQC approach in the case of tw
electrodes.34 The parametersd,v,a,b,g controlling the scat-
tering properties of the circuit~Fig. 3! can be optimized for
two different purposes. The first is the realization of a Blo
waveguide splitter. In this case, and choosing electrodeA for
the input electrode of the splitter, the controlling paramet
are chosen for the transmission coefficientsTAB andTAC to
be equal. Furthermore, a full splitter is obtained whenRA
50.

The second function that the three-port circuit of Fig.
can perform is to be a generic symmetric node for its use
complex and monolithic ballistic circuits made of many ot
ers nodes of the same type. In this case, all the transmis
coefficients and all the reflection coefficients must be resp
tively equal whatever the electrodes for the input and
output. These two functions are discussed in the follow
sections using a general property of the scattering ma
~12!:

S2,1

S3,1
5

EGAB1GACGBC2eAGAB2hGABexp~2 iu!

EGAC1GABGBC2eBGAC2hGACexp~2 iu!
.

~14!

As a function of the electron incident energyE defined in the
A electrode, this ratio measures the electronic transpare
equilibration between the chainA andB and betweenA and
C when the central node is connectingA to B andC. It holds
also for the ratio of the other matrix elements@Si j # after a
circular permutation of the input and the output branch
The ratio ~14! is easily converted to the transmission ra
TAB /TAC between theA-B and theA-C branches:

FIG. 3. The tight-binding implementation of a three-portT-like
circuit including one central electronic stateusi

0& and three connec
tions represented by three semi-infinite chainsA, B, andC.
15541
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TAB

TAC
5S GAB

GAC
D 2 ~e2E!A1h21A 2

~e2E!B1h21B 2
, ~15!

with A5E1GACGBC /GAB2eC and B5E1GABGBC /
GAC2eB .

A. The waveguide splitter

SettingA as the input electrode, a simple splitter is o
tained by choosingd5h andv5e. The conditiond5h in-
troduces a coupling betweenA and the two output chains
which respects the periodic structures of the chains fromA to
B and fromA to C. The conditionv5e suppresses the pos
sibility of a reflection alongA, which is always introduced by
a nonresonant state.17 With such a parameter choice, we ha
in Eq. ~12!, GAB5a, GAC5g, GBC5b, and eA5eB5eC
5e. In this case and forb56h or a56g, the ratio
TAB /TAC is equal to unity and a good symmetric splitt
results fora5b5g. The transmitted Bloch wave is divide
into two equal amplitudes. But this parameter adjustm
does not provide a perfect splitter because the reflection
efficient RA is not zero on electrodeA. Furthermore, the
optimum value of the coupling parameters to reach the m
mum possible value 1/9 forRA ~see below! varies as a func-
tion of the incident electron energy as indicated in Fig. 4

With the circuit of Fig. 3, a full splitter is obtained onl
when b50 because, viewed from the input electrodeA, a
bÞ0 coupling destroys the regularity of the electronic stru
ture fromA to B and fromA to C. This regularity breakdown
cannot be compensated by a fine adjustment ofa and g.
When b50, the TAB /TAC ratio is simply given from Eq.
~15! by

TAB

TAC
5S a

g D 2

. ~16!

Furthermore, the necessary and sufficient condition
RA50 is given by the equation

FIG. 4. Reflection coefficient on the input electrodeA as a func-
tion of the energy of the incident electron and of the value of
coupling parameter defining the node forX5a5b5g in eV. The
energy scale is relative toe and the resonant integral along th
electrodes ish51 eV.
9-5
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~E2v!@e2E1h exp~2 iu!#@e2E1h exp~1 iu!#

1d2@e2E1h exp~2 iu!#

1~g21a2!@e2E1h exp~1 iu!#50 with d,a,gÞ0,

~17!

which leads for v5e to the solution a56h/A2, g5
6h/A2 and d5h for all E5e12h cosu. In Fig. 5 we
present the variation ofRA as a function of E for different
values ofa andg in the symmetric case. Depending on t
sign chosen fora andg, the two outputs of the splitter ca
be in phase or out of phase. The differences between the
bÞ0 ~Fig. 4! andb50 ~Fig. 5! is that forb50, there exists
a valuea5g value of whichRA50 independently of the
incident energy of the electron~Fig. 5!. When bÞ0, the
minimum RA valley is not parallel to the energy axis a
shown in Fig. 4.

B. The symmetric node for a ballistic circuit

It is more difficult to optimize the circuit parameters
Fig. 3 to obtain a generic symmetric node to be used in
design of ballistic circuits. Keeping the architecture of t
circuit in Fig. 3, one solution is to choose againb50 and
v5e with a5d5g. In this case, and for all theE values, all
the TAB /TAC , TBA /TBC , and TCA /TCB are equal to unity.
Whatever the input electrode, the general expression for
reflection coefficientR from any input electrode is given b

R5
C1a4@2~E2e!21h2#

C19a4h2
, ~18!

with C5h2(E2v)@h2(E2v)23a2(E2e)#.
As presented in Fig. 6, the minimum value of Eq.~18!,

R51/9, is obtained fora5A2/3 for all energies of the band
of the electrodes.

In the case of a multiple node interconnectingN elec-
trodes instead of three and with these electrodes couple
gether in the center with the same electronic interaction
straightforward generalization of the preceding result sho
that the optimized coupling to get a minimum reflection

FIG. 5. Reflection coefficient on input electrodeA as a function
of the energy of the incident electron and of the value of the c
pling parameter forX5a5g in eV andb50. The energy is rela-
tive to e andh51 eV.
15541
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the node isa5A2(E2v)/N(E2e). In this case, the tota
reflection on the input electrode becomesR5(122/N)2. As
a consequence, we recover the well-know property in mic
wave circuits that the efficiency of aN node in its ability to
transmit a wave from the input electrode to all the oth
decreases rapidly with the increase in the numberN of the
connected electrodes to which the input wave has to be
tributed.

As presented in Fig. 7, to build a more efficient three-p
node circuit, one may consider using a triangular circuit
the center made of three intermediate states instead o
states. Unfortunately, in the ballistic regime of transpo
such a triangular circuit introduces a phase shift between
two paths of a Bloch wave passing from one electrode
another via the triangle. One path through the triangle
defined using one state of this central triangle and the o
path using two states. This triangular circuit is therefore
interferometer with the phase shift per path defined by
values of thev i and ofa, b, andg.

The scattering characteristics of this triangular interfero
eter were calculated using the scattering matrix~12! with the

-
FIG. 6. Reflection coefficient on the input electrodeA as a func-

tion of the energy of the incident electron relative toe and of the
value of the coupling parameter forX5a5d5g in eV and h
51 eV.

FIG. 7. A tight-binding design of a triangular three-port no
made of three electronic states.
9-6
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effective couplings and energies calculated using the ef
tive Hamiltonian technique as described previously in t
paper. The expression for those couplings and energies
no longer analytic because the corresponding discrimin
for the inversion of the central Hamiltonian matrix is now
order 6. As presented in Fig. 8, a minimum of reflection
obtained for specific values of the incident energy and c
pling parameters. But unlike the simple preceding three-p
node, this is not valid for the entire energy range. On
RA(X,E) plot ~Fig. 8!, the valley of minimumRA no longer
exists unlike the case of Figs. 4, 5, 6 because forE50, the
tight-binding circuit~Fig. 7! presents a total reflection. Fu
thermore, for the Fig. 7 circuit to be a symmetric node,
conditionsa5b5g must be respected, which preclude a
finetuning of the corresponding reflection coefficients ev
by changing thev i .

C. An OR logic gate in the ballistic regime

To show the ability of ourN-electrodes scattering ap
proach to deal with more complex central circuits than
three-port node, we have designed anOR logic gate operating
in a ballistic transport regime. The circuit presented in Fig
is based on a resistance diode logic~RDL! design.26 Notice

FIG. 8. Reflection coefficient on the input electrodeA as a func-
tion of the energy of the incident electron relative toe and of the
value of the coupling parameters forX5a5b5g in eV, h
51 eV andv15v25v35e.
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that such a design is normally restricted to electronic circu
working in a diffusive transport regime. Our circuit uses tw
tunnel rectifiers interconnected via finite length tight-bindi
chains to a central three-port node. The coupling coefficie
g between the node and those chains have been chos
conform to the optimization discussed in Secs. III A and III
There is no defect along those chains and they have the s
electronic structure as the chains representing the electr
A, B, andC. This circuit can be considered as a simple mo
of a Y-shaped single wall carbon nanotube ballistic log
gate.27 In such aY macromolecule, a single kink made o
pentagonal and heptagonal defects in one branch will ac
an intramolecular tunnel rectifier.28

In Fig. 9, each rectifier is made by simply shifting a
atomic level out of resonance in theA or theB chains. Intro-
duced in a single tight-binding chain, such a shift produc
the required asymmetricI -V characteristic of a rectifier29 as
presented in Fig. 9~c!. The currents coming from the two
rectifying branches are added at the central node of the
cuit presented in Fig. 9. The logic levels of theA and B
inputs are defined by the voltage applied relative to grou
A 2 V bias provides the ‘‘1’’ logic level and a grounded inpu
the ‘‘0’’ logic level. The output logic levels are defined by th
intensityI C of the tunneling current measured in electrodeC
using a standard amperemeter.I C50 provides the ‘‘0’’ and
I CÞ0 the ‘‘1’’ logic level. The amperemeter is assumed to
interconnected far from the node in theC electrode. In this
case,I C can be calculated using the generalized Buttik
Landauer formula30

I n5
e2

p\E2`

1`S @12iSnn~E!i2# f n~E!

2(
j Þn

iSjn~E!i2f j~E! DdE, ~19!

where f l(E)51/11exp@(E2ml) /kT# is the Fermi-Dirac dis-
tribution and m l the chemical potential of the electrodel
given by (e2qVl).

The logic behavior of this circuit is presented in Fig. 1
The ‘‘0’’ output logic level is very well defined. But there ar
-

e
h
-

FIG. 9. Design of a ‘‘mono-
molecular’’ logic OR gate in a bal-
listic regime. ~a! The standard
RDL layout of an OR gate with
two diodes and one Ohmic resis
tance R. ~b! A ballistic circuit
implementation of thisOR gate
based on two branches with on
level out of resonance per branc
plus a ballistic three-ports wave
guide splitter in the center.~c! The
calculatedI -V rectifying charac-
teristic of one branchA or B of the
circuit.
9-7
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FIG. 10. The logic response toVA andVB input voltage on the logicOR gate~Fig. 9!. To reach a largemA output current intensity,a
50.1, b50.1, andg51/A2 with «1521 eV and«2521 eV. ~a! was calculated with the same number of states per finite len
interconnecting chains and~b! with one chain longer by five states than the other one. There are two values of the output current for t
logic level in ~a! and three values in~b!.
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two values ofI C corresponding to the ‘‘1’’ logic level. When
the electrodesA andB are biased at 2 V, the output curre
intensity is twice the value obtained when only one electro
(A or B) is at 2 V and the other is grounded. The usu
solution to this problem adopted by the RDL designers w
to add an output resistanceR in the circuit@Fig. 9~a!#. Intro-
ducing such a resistance after the electrodeC in the circuit of
Fig. 9~b! restores a single ‘‘1’’ output logic level. With suc
an external resistance, the circuit becomes a hybrid cir
with the resistance in one part and the ballistic three-p
node in the other part. One can also emulate this resista
inside the ballistic part by changing, for example, one el
tronic coupling along theC tight-binding chain~see Sec.
IV B !. But there is no voltage drop defined alongC or be-
tween theA and theB branches and the central node~see
Sec. IV!. This voltage drop is at the basis of a RDL desi
usingR. It is, therefore, not possible in a nonhybrid design
stabilize the sameI C for the three states of theA or B inputs
leading to the same ‘‘1’’ output logic state.

The logic response of this circuit is maintained by elo
gating symmetrically the two chains interconnecting the r
tifiers to the central node. But any asymmetric deviation
the electronic structure between these two chains in len
coupling, or energy-level shift will modify the logic respons
of this circuit. We meet here the well-known sensibility of
ballistic circuit to internal details in composition or dime
sion already known in microwaves,31 photonics,32 and meso-
scopic ballistic electron devices.33 According to the wave-
length in use in the ballistic circuit, a precise and very lo
design is always necessary to avoid, for example, destruc
interference effects, which will modify the electrical chara
teristics of the entire circuit.

IV. THE THREE-PORT CIRCUIT IN A TUNNELING
REGIME OF TRANSPORT

To avoid the difficulties met within the ballistic regime o
transport in building a monomolecular circuit, the latter c
be driven in a tunneling regime. In this case, the electrons
transferred between the electrodes through the circuit.
the average number of electrons exchanged per second
tween a given couple of electrodes that gives the tunne
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current intensityI measured by an amperemeter inserted
the macroscopic circuit feeding those two electrodes. Ins
the tunnel barrier where the circuit is implanted, the adv
tage of working in the tunneling regime is that there is
stationary phase defined for a given electron in transit. T
results in a simplification of the law of association of m
lecular branches in parallel with no destructive interferen
effect in the circuit.15 The disadvantage of this tunneling re
gime is that the tunneling current intensity through a mole
lar circuit decreases exponentially with an increase in
size of the molecular circuit.34

To reach a tunneling regime of transport through a m
lecular wire, the bias voltage applied to this wire has to
much lower than its highest occupied molecular orbita
lowest unoccupied molecular orbital~HOMO-LUMO! gap.4

To reproduce this condition in the simple three-port circuit
Fig. 3, partsa, b, andc of each of theA, B, andC electrodes
have been replaced by finite tight-binding chains with
alternate electronic structure. The tunneling regime in e
of thea, b, andc chains is reached for an incident energy
the electrons taken within the HOMO-LUMO gap of the
chains. In this simple alternating chain model, the electro
gap width is controlled by the difference 2uh12h2u between
the two alternating electronic couplingsh1 andh2 along the
chain.35 Our final tunnel circuit is made of three chainsa, b,
and c of 24 states, each interconnecting theA, B, and C
electrodes to the central three-port node~Fig. 11!.

The full scattering matrix of the circuit presented in Fi
11 was computed by calculating first the effective energy
the frontier states and the effective coupling through the
three-port node anda, b, andc chains from one of the elec
trode to the others. Secondly, these energy and coupl
wereincluded in Eq.~12! to compute theS matrix elements.
The scattering matrix cannot be given analytically for th
tunnel circuit because of the complexity of theC matrix in
Eq. ~8!, which is now of order 75.

Figure 12 presents the transmission coefficient fromA to
B through the full circuit of Fig. 11 as a function of th
energy and of the node electronic coupling whena5b5g.
The position of the future band structures for thea, b, andc
finite chains are clearly visible together with the HOMO
9-8
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INTRAMOLECULAR CIRCUITS CONNECTED TON . . . PHYSICAL REVIEW B65 155419
LUMO gap. The transmission coefficient in the center of t
gap is very small and length dependent.

A. The three-port tunnel node

As in the ballistic transport regime discussed in Sec.
one can search for optimal values of the parameters (a,b,g)
in the circuit of Fig. 11 for which the tunnel current is split
two parts directly inside the tunnel barrier without any acc
to an intermediate electrode. This tunnel splitter will not
perfect since the reflection coefficient on the input of t
circuit will not be zero owing to the choice of a tunnel tran
port regime. Let us selectA for the input port of this splitter.
The nonzero value of the reflection coefficientRA has an
important consequence: by changinga, b, andg, the coef-

FIG. 11. The tight-binding implementation of a three-port d
vice in tunnel transport regime. The electronic structure of theA, B,
andC electrodes is similar to the one in Fig. 3. The finite length
states chainsa, b, andc link the electrodesA, B, andC to the three
central statesd1 , d2, andd3 of the circuit. Each one of thea, b, and
c chains is maintained in a tunneling regime.
15541
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ficientsTAB andTAC can be changed independently becau
RA will absorb those changes according to the relationRA
1TAB1TAC51. This property is different from that of a
waveguide splitter in a ballistic transport regime because
this case and whenRA reaches zero,TAB andTAC are related
by the conditionTAB 1 TAC 51. In a ballistic regime, the
two branches of a waveguide splitter are interdependent
cause of the conservation of probability. Therefore, in
tunneling regime, the three-port circuit of Fig. 11 cannot
considered as a splitter. This is a ‘‘superposer’’ of tunneli
currents. Deep in the tunnel regime, each new branch c
nected to the central node of Fig. 11 will decreaseRA with-
out changing the transmission properties of the branches
ready connected on condition that the overall transmiss
coefficient fromA to all the other branches is much lowe
than one.

To illustrate this unique property of a three-port node
the tunnel regime, we have first used our scattering ma
technique to computeRA , TAB , and TAC of the circuit of
Fig. 11, calculating successivelyRA andTAB with g50, RA
and TAC with a50, and finallyRA , TAB , andTAC with a
5gÞ0 while b50 for smalla values. As presented in Fig
13~a!, the superposition of the contributions ofTAB andTAC

-

FIG. 12. Transmission coefficientTAB betweenA andB through
the a and b tunnel chain and the central node as a function ofX
5a5b5g in eV for h151 eV andh251.2 eV. Thea and b
bandwidth and the central HOMO-LUMO gap depend on the va
of X.
FIG. 13. Transmission and reflection coefficient of the Fig. 11 circuit withb50, e50, h151 eV, andh251.2 eV. ~a! Solid curve:
12RA with a5g51 eV. Dashed curve:TAB (g50)1TAC (a50). Dash-dotted curve:TAB (g50,a51 eV) and TAC (a50,g
51 eV). ~b! Solid and dashed curves:TAB andTAC as a function ofa with g51 eV andE50. Dash-dotted curve:RA as a function ofa
with g51 eV andE50.
9-9
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FIG. 14. ~a! (12RA) plot as a function of the numberN of identical output branches in the modified node~Fig. 11! with b50, e
50, h151 eV, h251.2 eV, and the electronic coupling linking each electrode to the central level taken to 15 eV.~b! Variation of the
transmission coefficient betweenA andB for the circuit of Fig. 11 as a function ofb, with a51 eV, e50, h151 eV, andh251.2 eV.
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occurs with a decrease ofRA while TAB andTAC remain the
same as if computed independently. For largea, RA is so
small thatTAB increases and saturates. In this regime,TAB
andTAC will remain independent ifTAC1TAC is very small
compared to one. If not,TAB andTAC will be interdependent
and the three-port node be almost out of the tunnel reg
@Fig. 13~b!#.

Notice that for smalla values,TAB is proportional to the
square of the electronic couplinga, a standard result of the
perturbation theory of tunneling.36 In this case, this coupling
a does not compensate for the small effective electronic c
pling betweenA and B through the long alternatea and b
chains in series, making this theory applicable to the cas
a long chain with a small electronic coupling in its cent
For largea values, this small effective coupling is compe
sated andTAB starts to saturate as a function ofa @Fig.
13~b!#. Second, we have calculatedRA while increasing the
number of identical branches in the node.RA decreases as
function of the numberN of new branches until it saturate
as presented in Fig. 14~a!. At this point, the overall transmis
sion fromA to all the output branches is maximum and a
new branch added to the node will modify the transmiss
coefficient of all the branches already interconnected.

Deep in the tunnel regime, another consequence of
independence of the branches is thatTAB andTAC are inde-
pendent ofb. Therefore and as presented in Fig. 14~b!, any
change ofTBC using b as a tunable parameter will no
modify TAB andTAC provided thatb is not large enough to
saturateTBC to unity. This ‘‘rejection’’ property of a three-
port node in a tunnel regime opens the way to the desig
an intramolecular transistor.

B. The Kirchhoff laws in the tunnel regime

In the simple electrical circuit of Fig. 15~a!, the analytical
expression forI B and I C are normally obtained using bot
the well-known ‘‘node’’ and ‘‘mesh’’ Kirchhoff laws. When
replacing the Ohmic resistances by tunnel resistances as
sented in Fig. 15~c!, the analytical expressions forI B and I C
remain valid. According to the Landauer formula,37 the dis-
sipation occurs in the electrodes, which means that
electrode-molecular wire-electrode tunnel junction is equi
lent to an Ohmic resistance. Here, a tunnel resistance is
15541
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ply represented by an alternating electronic tight-bind
chain of finite length with a central electronic couplingd
whose value can be tuned as presented in Fig. 15~b! and
where the bias voltage must be lower than the electronic
of the chain. For example, the low-voltage Landauer re
tance of this tunnel resistance varies by almost two order
magnitude from 263 kV to 25 MV when changingd from
h1 to 0.1h1, respectively, withh151 eV.

Instead of substituting only the Ohmic resistances of F
15~a! by tunnel resistances, the complete circuit of Fig. 15~a!
including the central three-port node and the wires can
made to work in a tunneling transport regime as propose
Fig. 15~d!. The tight-binding implementation of such a thre
port circuit is presented in Fig. 16. This is a simple mon
electronic representation of many of the intramolecular c
cuits made of a single molecule proposed in t
literature.13,16,38 The interconnection between the thre
chains is ensured by a three-port symmetric node as
cussed in Sec. IV A without passing through a metallic no
working, for example, in a diffusive transport regime. Th
total tunneling current intensityI A in this circuit can be cal-
culated using the scattering matrix procedure presente
Sec. II with now 75 electronic states composing its tun
part. The variations ofI A as a function ofGB ~with GA
5GC for simplification! are presented in Fig. 17~a! where
I A0

denotes the reference current obtained forGA5GB

5GC . The values ofGA , GB , andGC are given in refer-
ence to two electrodes as defined in Fig. 15~b! to make the
comparison possible between the Fig. 15~c! and Fig. 15~d!
circuits. Inside the tunnel circuit Fig. 15~d!, the role of a
finite tight-binding chain likeGA , GB , or GC is to control
the electronic effective coupling between two tunnel wire
WhenGB goes to zero,I A50.5I A0

. Let us now consider each

GA , GB , andGC as true tunnel conductances with a we
defined Ohmic conductance when interconnected by s
dard diffusive metallic wires@Fig. 15~c!#. In this case,I A can
also be calculated using standard electrical circuit ru
whenGB goes to zero, the standard Kirchhoff laws giveI A
50.75I A0

.
To understand this difference between the tunnel node

Fig. 15~d! and the diffusive metallic node of Fig. 15~c!, we
have first computed with our scattering matrix technique
9-10
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FIG. 15. The same electrical circuit made of one node and three branches with conductance in~a! a diffusive,~c! a tunneling regime of
transport, and~d! with the full circuit in a tunnel regime including the node.~b! provides the schematic and the corresponding tight-bind
implementation of a tunnel conductance likeGA , GB , andGC when they are each connected to two electrodes. In~d!, the wire and the
conductance are considered in a tunneling regime, meaning that the ‘‘conductance’’ of a given finite length chain is measured by the
electronic coupling between the two tunnel wires introduced by this chain. It may be better called the ‘‘transference’’ of the chain
w

el

re
dif-
I B andI C current intensity in the tunnel circuit of Fig. 16~d!.
I C is found to be independent ofGB while I B is normally
controlled byGB , as presented in Fig. 17~b!. In the tunneling
regime, this is a consequence of the independence ofTAC(E)
to a variation of the tunnel parameters controlling theb chain
electronic properties as discussed in Sec. IV A. Second,
have verified that the equivalent conductanceG of two con-
ductancesG1 and G2 interconnected in series in a tunn
circuit is G5(p\/e2)G1G2 ~Ref. 15! and not G
15541
e

5G1G2 /(G11G2) as in the standard Ohmic regime, whe
the two conductances are interconnected in series via a
fusive metallic wire. As a consequence, the variations ofI B
andI C as a function ofGB presented in Fig. 17~b! are quan-
titatively reproduced by the analytical formula

H I B5~p\/e2!2gGAGBV,

I C5~p\/e2!2gGAGCV,
~20!
.

FIG. 16. The detail of the
tight-binding version of the Fig.
15~d! circuit with three tunneling
chains containing 24 states each
9-11
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FIG. 17. ~a! Comparison of the current intensityI A as a function of the control resistanceRB in the Boltzmann~dashed curve! and the
tunneling~solid curve! regime of transport. The crosses represent the current intensityI A given by Eq.~21!, with g50.2 mS for the node
conductance~Fig. 16!. The current intensities are normalized toI A0

obtained forRB5RC ~or GB5GC). ~b! A representation of the
independence in the tunnel regime of thec branch conductance whileGB is modified. Continuous curve forI B and dash-dotted curve forI C .
For clarity,GB is represented byRB . The intensities here are normalized for theGB5GC case.
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where the conductanceg corresponds to the central nod
tunnel conductance of this three-port tunnel circuit. As p
sented in Fig. 17~a!, it turns out that the total currentI A can
also be fitted by a simple superposition of the two analyti
expression forI B and I C in Eq. ~20!:

I A5I B1I C5S p\

e2 D 2

~gGAGB1gGAGC!V. ~21!

This apparent independence of the two branches of a
nel circuit whenGB goes to zero explains the division by tw
of I A in the tunnel circuit of Fig. 15~d! as compared to the
factor 3/4 in the case of the standard electronic circuit of F
15~a!.

One way to recover intuitively Eq.~21! is to return to the
conventional electric circuit ‘‘mesh’’ and ‘‘node’’ Kirchhoff
laws. In this case,I A in the Fig. 15~a! circuit can be decom-
posed in three terms:

I A5
1

RA1RB
V1

1

RA1RC
V2F RA

~RA1RB!RC

1
RA

~RA1RC!RB
GVnode. ~22!

The first two terms in Eq.~22! correspond exactly to the tw
terms giving I B and I C in Eq. ~21!. They result from the
conservation of the electric charge on the central three-
node at the origin of the Kirchhoff node law. The third ter
in Eq. ~22! corresponds to the voltage dropVnode occurring
at the central node of the circuit in Fig. 15~a!. It results from
the potential neutrality of a mesh in an electrical circuit a
gives rise to the Kirchhoff ‘‘mesh’’ law. In the circuit of Fig
15~a!, Vnode is a function of the resistancesRA , RB , and
RC . This is the well-known origin of the interdependence
I B and I C on bothRB andRC . In the tunnel circuit of Fig.
15~d!, Vnode is not physically defined. As a consequence,I B
and I C are independent. It turns out that this independe
reflects in Eq.~22! by simply takingVnode50. In a tunnel
circuit, only the ‘‘node’’ Kirchhoff law applies.
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C. An OR logic gate in the tunneling regime

As a consequence of the independence of the branche
a circuit driven in a full tunneling regime, the design of a
intramolecular logic gate with an RDL architecture will lea
to two different output current intensities for the same out
high logic level ‘‘1’’ as in the ballistic regime. Furthermore
in the tunnel regime, it is very difficult to stabilize along
tunnel wire an asymmetric resonating state, which will
duce a rectification effect in that branch. The reason is t
when one level is shifted along an alternating tight-bindi
chain, this shift has the effect of separating the finite ch
into two new shorter chains and the transport regime w
remain tunneling. Therefore, those two chains play the r
of two effective tunneling barriers for this asymmetric res
nant level relative to the electrodes. As a consequence,
for long chains, this resonance will be very sharp and w
have no impact on the low voltageI -V characteristic of the
full chain. Furthermore, this level must be positioned in t
middle of the chain because in the tunnel regime any as
metry in coupling will sharply attenuate the amplitude of th
resonance.

To design our full tunnelOR logic gate, we have chosen t
do the reverse: to expel one level from the electronic str
ture of an alternating finite chain. In this way, a reasona
width is kept for the rectifying resonance and an asymme
I -V curve is obtained in a chain. We have assembled
such tunnel rectifiers together with aT node, also maintained
in a tunnel transport regime as presented in Fig. 18. The
scattering matrix was calculated as indicated in Sec. II fo
circuit composed of 143 states in this three-port tunnel
barrier. The bias voltage of the input branches was ma
tained below the HOMO-LUMO gap of the finite chains
drive this gate in a full tunnel regime. The logic levels we
defined as in the ballistic case. The logic output current
tensity responseI C is presented in Fig. 18~b!. As discussed,
the ‘‘1’’ logic state of the gate is not well defined. A goo
point is that the transitions between the ‘‘0’’ and ‘‘1’’ logic
state are better defined than in the ballistic case. But
RDL design of an intramolecular logic gate is also mu
more sensitive to any change or defect in its electronic str
ture than a ballistic gate.
9-12
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FIG. 18. ~a! The tight-binding implementation and~b! the logic response of anOR logic gate working in a full tunnel regime of transpor
Input and output logic levels are defined as in Fig. 10 witha5g51 eV to keep the alternance,h1 andh2 values chosen as in Fig. 12. Th
asymmetric rectifying level arev1 andv2 with v15v256 eV relative toe. I C was calculated with Eq.~19! after the calculation of the
scattering matrix on the full circuit. The input bias voltagesVA andVB are maintained well below the 0.4 eV HOMO-LUMO gap of th
tunnel chains. As a consequence, the output tunneling current intensity is in the nanoampere range.
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This very sensitivity points out the need for new archite
ture concepts in pursuit of the goal of embedding a full lo
circuit inside a single molecule as often proposed as the
timate version of molecular electronics.3,38 Those new con-
cepts will have to take into account the very fast decreas
the tunnel current intensity in a tunnel circuit with the spat
extension of this circuit.

V. CONCLUSIONS

We have presented a scattering matrix technique for
design of intramolecular circuits connected toN electrodes.
This was applied to the study of the electronic transmiss
and reflection properties of three-port circuits driven in t
ballistic or the tunneling transport regime. In particular, w
have shown the difficulties of designing a simpleOR logic
gate in the ballistic regime and demonstrate that only
‘‘node’’ Kirchhoff law remains valid in the tunneling regim
for such a circuit. Our formalism can be used for the desc
tion of more complex circuits consisting of a combination
nodes and branches implanted inside the same mole
This is of importance for the design of complex monom
S

C
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lecular circuits. Of course, the number of circuits that can
designed starting from a combination of single three-p
nodes grows rapidly with the number of electrodes interc
necting the circuit to external sources and sinks. Theref
we have preferred here to present in detail only the proper
of the three-port node and its consequences on the desig
real circuits. Armed with a tight-binding circuit builder, an
circuit topology can be studied using our scattering a
proach. Furthermore, even through it is restricted to a tig
binding model, our approach provides the background to
logical and physical properties of any passive circu
embedded inside a single molecule. A more precise calc
tion of the current intensity in and out of such a circuit r
quires a detailed molecular-orbital description of each p
of the circuit depending on its chemical composition a
topology.
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