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We consideN electrons in a one-dimensional loop enclosing a static magnetic flux. The electronic positions
are described in terms of collective and relative coordinates. The corresponding partition of the Hilbert space
is particularly convenient to investigate the electronic spectrum in the range of large electron-electron inter-
action. The electronic current is determined by the collective motion of the electrons. Thus, in absence of
backscattering by a one-particle potential, the electron-electron interaction does not affect the persistent current
associated with the electronic ground state. This is different when backscattering is present, since then collec-
tive and relative motions are coupled. We present a detailed study of the interplay between potential back-
scattering and electron-electron interaction, which is revealed by the resulting ground-state currents as well as
by the electronic excitation spectra.
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[. INTRODUCTION since it requires the knowledge of the spin configuration in
the electronic ground statsee eg. Refs. 1517

The rapid progress in nanodevice technology has raised a Another intriguing problem is the amplitude of the persis-
large interest in effects revealing the coherence of electronitent currents. The currents observed in metallic loops are by
states in mesoscopic systems. The case of small metalltevo to three orders of magnitude larger than those expected
rings is of particular interest in this context. Already two from the one-electron theory'®!? This discrepancy has
decades ago, Biiker, Imry, and Landauérpredicted that, given rise to intense discussion. Apparently, the one-electron
even in presence of elastic backscattering by a spatially varyapproach overestimates the electron backscattering by impu-
ing one-particle potential, the electronic ground state of amities. Quite interestingly, such a discrepancy is not found for
isolated conducting ring enclosing a magnetic flbxwill  semiconductor ring&t*2
carry a current, which depends periodically on the magnetic It is quite obvious that Coulomb interactions should be
flux with period®,=h/e. Somewhat later, it was shown that taken into account over the small dimensions of the loops.
these persistent currents will survive moderate inelastiScreening of the Coulomb part of the impurity potentials
scattering®™* The existence of persistent currents associateteading to reduced electron backscattering is expected to be
with the electronic ground state has been confirmed experimost effective in metal¥® More specifically, thee-e interac-
mentally by several groups:® Ref. 9 gives a recent review tion has been invoked to explain the large persistent currents
of the experimental and theoretical situation. The comparisoim metallic loops:>~1"19=3Another explanation has been at-
of the experimental results with the theoretical predictions otempted in Refs. 9,24,25, where the dc magnetic response of
Ref. 1 based on the one-electron approach shows that soméordered ring systems is related with the dephasing by in-
experimental features cannot be described within that picternal or external nonthermal equilibrium noise. Here again,
ture. e-e interactions are essential, since they determine the cou-

Persistent currents with the expecteg periodicity have  pling of the electronic system to the fluctuating electromag-
been observed by Chandrasekbtal® and by Maillyet al.”  netic field?* The influence of zero-point fluctuations on the
in single Au and GaAs-AlGaAs loops. Similar oscillations electronic ground state of a mesoscopic normal metal ring
with period®, are found for the magnetoresistance of smallhas been studied by Cedrasetial,?® who found that the
single Au, Al, and Ag Ioop§. Studying the magnetic re- persistent currents at zero temperature are always suppressed
sponse of an ensemble of 1@opper rings, Ley et al® by such a coupling.
found oscillations with periodb/2 rather thand,. Analo- In the present paper we investigate Niwelectron states in
gous results have been obtained most recently for an emne-dimensional loop systems for an arbitrary number of in-
semble of mesoscopic 18 ringst? as well as for 10 GaAs teracting electrons and for arbitrary one-particle potentials.
rings in AlGaAs®® The appearance ab,/2 periods can be We use the continuous real-space representation. This is dif-
attributed to ensemble averagihg’® This explanation is ferent from the usually employed Hubbard models based on
corroborated by the results for ensembles containing only a discrete local representation. Our present approach has the
small number of rings, where both, as well as®y/2 os- advantage that cutoff problems due to a limited range of the
cillations are found®!! one-electron energy spectrum are avoided. We restrict our

Experimentally, the sign of thé,/2 oscillations for the discussion to the case of spinless electrons, the arguments
ensemble-averaged persistent currents in the vicinity of zereemaining essentially the same when the spin is included. A
magnetic field corresponds to diamagnetic response. The thdescription of the general system properties is given in Sec.
oretical prediction of the sign turns out to be rather difficult, Il. In Sec. 1ll we develop the basic ideas for the caseNof
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& V(.. Ot N2, . )=T( ... 0, ..,

N

An€Z, n=1,... N, (oh]
A thus satisfying the periodic boundary conditions. The spatial
wave function has to be antisymmetric with respect to the
permutation of two particles,

\If(...,ﬁk,...,0|,...)=—\If(...,0|,...,t9k,...),

k1. (2

FIG. 1. Geometrical description of the sample system. According to Eq.(1), this implies that

=2 electroqs. Our appr(_)ach, which _is esse_ntially based on V=0 if 6,=6,+\y2m n#EN, NypeZ. (3
the separation of collective and relative motion of the elec-

trons, is then generalized in Sec. IV to VI to arbitralyln ~ The function satisfies the time-independent Sdhrger
Sec. V we show that strorge interactions can be described equation

very efficiently within a harmonic approximation. For con-

stant one-particle potentials, collective and relative motions EV=HV, 4)
evolve independently of each other. Backscattering by a spagith the N-particle Hamiltonian

tially varying one-particle potential leads to coupling be-

tween both types of motion. The resulting interplay between H=Hg+HeetHey. 5)

e-e interaction and potential backscattering is investigated i . o
P g 9 ré'(ljne operatoH, is the free-electron Hamiltoniar.. de-

Sec. VI, where we discuss the persistent currents associat bes the Coulomb int i ts th
with the electronic ground state as well as the Iow-energye'CrI es the Coulomb interaction ahti represents the one-

spectrum. The knowledge of the spectral properties is crucieﬁa_rt'd?_rf’mam'_al t(_arm. Ln the following we use international
to get an access to the dynamical response of loop structur&gts- ThenHo is given by
to time-dependent external fields. Conclusions are drawn in N

Sec. VII. H.= — (D.—eA)?
0 nzl 2m(pn € ) 1
Il. THEORETICAL DESCRIPTION

wherem s the free-electron mass,is the electronic charge,
OF N ELECTRONS IN A LOOP

and

We considem interacting spinless electrons in a circular
one-dimensional loop of radiuR (see Fig. 1. For conve- Pn=—i=0,
nience, we use polar coordinates in the following. External R

magnetic and electric field8 andE are represented by the is the momentum operata, standing fora, . The distance
vector potentialA\(r, #,z) and the scalar one-particle poten- petween two electrons beirdy,, = 2R|sin (6,— 6,)/2]|, the

tials V(r,0,2), Coulomb-repulsion term reads
B=VxA, E=-VV. oo 1 e?
. " . ee _ &, Ameg On—0 |

The electronic positions are determined by the andlgs 1<n<n’<N orlsi ns

eR, n=1,... N. The electrons being confined to the loop, sSi—5

it is judicious to choose a gauge, where the tangential vector ) ) ) o

potential becomes independent of the angle, i.e., The qne-partlcle_potentw(a) |_s_per|od|c |_m9. The_ constant
term in the Fourier decomposition ®( 6) is physically un-

A:A( 0)59=Aée- important and will be omitted in the following. We thus write

The one-particle potential on the loop is given 3¢6). N N o
In order to keep the arguments as simple as possible, we Hev= 21 V(6n)= ZO szl e’"n+c.c.

consider the spin part of the wave function to be symmetric, !
i.e., we will disregard the electron spins. The system beindn polar coordinates, the position operator for one electron
periodic in the angle®,, the appropriate Hilbert space then on a circular loop with radiu® is
is

| r=Re.

H=P(L2([0.2n[7), The velocity operator is given by

where?P is the projector on the subspace of the antisymmet- )
ric functions. The electronic eigenstates of the system may - |
be described by periodic functiont defined overiN,
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The trajectory being circular, it is more convenient to use the{E_ ENWW

angular-momentum operator
L=rx(p—eAe,=R(p—eAe,,

which is normal to the plane of the loop, sineg=eg, x e, .
The total angular-momentum operator férelectrons is

N
|_=n§=}l R(p,—eA).

To avoid clumsy prefactors and to simplify the discus-

N
_nZl (_lagn'i' ao_aé) {[(_lé)en—_ao)\l[]\lfl

+W[(—id, —ap) W]},
Integration over the angles leads to
(E-E")(¥[¥’)

=—(ao—ap)[(L(ag) ¥[¥")+(¥|L(ag)¥")]. (10

sions, it is convenient to normalize energy and angular-

momentum units. Measuring the magnetic flixx

o [ Bag- [ Aar-27RA
in units of the flux quantum

2mh
[ I—

h
=—-=41410" Vs,
e e

one gets the normalized magnetic flux

[
aozao.

Expressed in the units?/(2mR?) for the energy, R/
for the time and for the angular momentum, the Hamil-
tonian terms and the angular momentum operator read

N
Ho= 2, (—idy—ao)?,
n=1

(6)
2
n
Hee= E L (7)
l<sn<n’<N sin n 5 n
N
Hoy= > v, e’tc.c., (8)
>0 n=1
N
L:nE_)l(—ian—ao). )

In this energy scale, the-e interaction parametes? is

, €mR
77 = ’
h24meq
and thewth Fourier component of the one-particle potential
becomes
2mR?
U,,ZT v

Subtracting the Schdinger equations corresponding to
two different fluxesa, andag, we get the generalized con-
tinuity equation

For the same fluag=a;, the eigenvector$¥) and | V')
corresponding to different energies are orthogonal, since then

(E—E')(¥|¥")=0.

The eigenvalues of the Hamiltonian given by E¢()—(8)
will be denoted a€,(ag), whereb=1,2, ..., is theband
index. For two eigenstateB andWV’ belonging to the same
bandEy,, E=E,(ap), andE’ =Ey(a}), one obtains after di-
vision of Eq.(10) by (ag—ag){¥|¥’) in the limit aj— ay,

~10E

- 29day’

(L)

i.e., the slope of the energy bakg(a,) yields the expecta-
tion value of the angular momentum.

At zero temperature, the electronic system will relax into
its ground state. One may then measure the associated mag-
netic moment, which is directly related with the so-called
“persistent current.’=" In the following we will rather refer
to the “persistent angular momentum” defined &ggs
= <L>ground state

In Refs. 5,7, loop areasS;=0.12 um? and S,
=5.7 um? have been investigated. For a typical sample area
S=1.2 um?, which corresponds to a ring radiuR
=0.62 um, the above units are 16 eV for the energy,
10"° s for the time, and the-e interaction parameter is
»?=10* This already indicates that the-e interaction is
rather strong and cannot be treated as a perturbation.

IIl. TWO INTERACTING ELECTRONS

In order to introduce the general idea underlying our ap-
proach, we first consider the case of two electrons. The Hil-
bert space i§1="P(L,([0,27[2)). The termg®6), (7), and(8)
of the Hamiltonian(5) become

Ho=(—idy,—ag)?+ (—idy—ap)?,

) 1
Hee=7"W, W= R
SII’IT

Hoy= >, v,(e"1+€e"%)+c.c.,
>0

v

and the angular-momentum operat®y is now given by
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L:(_iﬁl_a0)+(_ia2_ao).

The stationary solutions of the Schiinger equatior(4) are
periodic

‘lf(01+277,6’2)=‘l’(61,6’2+27T)=\I’(91,92),

and antisymmetric with respect to the exchange of the
electrons,

W(6,,01)=—VY(0,,0,).

This implies that the wave function is zero when
01: 02+)\27T, i.e.,

0
-05 0 05 0 05

V(0,0+N27)=0, A eZ. a, a, a,
The eigenstates of the free-electron Hamiltoniég satisfy FIG. 2. Energy bands for two free electrorid(=0) and for
the Schrdinger equation different e-e interaction parameter§a) »2=0, (b) %=1, and(c)
2 .
7?=1C°. There are no energy gaps. Note the different energy scale
EQy=Hoy. in (0).

The eigenfunctions form an orthonormal basisHn They

are given by the Slater determinants To understand the effect of theee interaction, which de-

pends only on the distance between the two electrons, it is
convenient to introduce the collective and relative position

1 ) ) )
Ymn={61,60,/m,n)= T(e'mﬁle'””z—e'nﬁle'm%), coordinatesu andc,
2
. . . . 0.+ 6 60,—60
with m>ne Z. The corresponding energies and expectation u= 2 -1 72 (11

) Cc=
values of the angular momentum are 2 2

The corresponding differential operators become
EQ=(m—ag)?+(n—ap)?,

1 1
! P1=5(PutPe)s P2=5(Pu—Pc)
<L>m,“:m_a0+n_ao:_E‘gaOEEr?%- i 275 Pu™Pe

] o ] ] with p,=—id, andp.=—id.. The total Hamiltonian may
This basis inH is appropriate for calculations when teee  pe written as

interaction and the one-particle potential term can be treated
as perturbations. A solution of the stationary Sclimger X
equation may be written as H=5(pu—2a0)°+ He+ Hev, (12)

N| -

. n' where
|\Paﬁ>: ,2, |m N >(I)Z]Bn
m' n

with @,z 1?®12. Expressed in this basis, the Sctlirmer
equation reads

PE=[(M—agl)?+(N—agl)?+ ?W+ V],

with the matrix elements
My =(m,n[M|m’.n"y=masp",

N™ M =(m,n|N|m’,n")=nsm ",

W' =(m,n|W|m’,n"),

Vi =(m,n[Heym’,n’).
FIG. 3. Same as Fig. 2, but for included backscattering by a
The energy bands for the two-electron case are given igne-electron potential=0.5). The energy gaps due to potential
Figs. 2—4 for thee-e interaction parameterg®=0,1,1¢ and backscattering decrease with increasag interaction parameter
different one-particle potentials. 7.
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tum thus increases with the-e coupling »°. This case is
representative for one-particle potentials described solely by
nonzero Fourier components, ; ;.

The case ,=v,5,, is presented in Fig.(8). In contrast
with the above, thes-e interaction now confines the wave
function in a region where the potential variations are large
in direction of the collective motion. The resulting persistent
angular momentum thus decreases with increastegcou-
pling #2. This case is representative for one-particle poten-
tials described solely by nonzero Fourier components.

The above analysis shows that the interaction between
0 0 two electrons tends to suppress the backscattering due to the

05 0 05 0 05 -05 0 05 odd Fourier components,, ;1 in Hey. In the limit 7
a, a, a, —o, only the even components,, reduce the persistent
angular momentum.

FIG. 4. Same as Fig. 2, but for included backscattering by a For small e-e interaction parameters;;z, the persistent
one-electron potentialup=0.1). The energy gaps due to potential angular momenta can easily be calculated using the basis of
backscattering slightly increase with increasiege interaction  the Slater determinants of plane waves. For lage cou-
parameter;”. pling, the number of basis vectors required to ensure a good
accuracy increases rapidly. It is then preferable to use the
collective and relative coordinates defined in ELfl).

For small one-particle potential ternid.y, the eigen-

q . h lati . h | states of the HamiltoniaHl (12) for He,=0 provide a con-
etermines the relative motion. The angular momentum,.,ient hasis of the Hilbert spadé. The symmetry proper-

60
()

30

1
H relzz pg+ 772W

operator ties of the wave functions can be easily expressed in the
L=—ig,—2a, coordinatesu andc. The spatial periodicity leads to
acts only on the collective-motion coordinate. Tde inter- Y(u+m,ct+m)=¥(u+m,c—m)=v(u,c),
action, shown in Fig. @), depends only on the relative dis- )
tance, and the antisymmetry for the exchange of the electrons re-
quires
1
W(C)Zw- ¥(u,—c)=—V¥(u,c).

It thus has no effect on the persistent angular momentum d& particular, we have

long as the collective and relative motions are uncoupled. In

the ground state, the relative position approaatvesr/2 for W(u,Am)=0, AeZ,
increasinge-e interaction parametes?. In the limit of infi-

L . and thus we may introduce separate c€@lfor the relative
nite interaction one gets

motion. With the choice

o
lim c=5, ceC=[0,m(,
2*)0() . . . . .
. ) K . _ the spatial periodicity and the antisymmetry of the wave
i.e., the distance between the electrons reaches its maximufinctions lead to the symmetry property

value.
A one-particle potential term Y(u+m,m—c)=—"¥(u,c). (13

HeVZZE (vveiV”+v_Ve“V”)coe( ve) The Hilbert space is
>0

_ _ _ H="P(L([0,2] X[0,7))
introduces backscattering. It leads always to a reduction of

the persistent angular momentyin). The reduction of L)  with the scalar product

depends on the-e interaction, sincéd,, induces a coupling

between the collective and the relative motions. To elucidate 1 (2m 2 (7 —

this dependence, we discuss the case of one-particle poten- (flg)= EJO d“;JO def(u,c)g(u,c).
tials with a single non-zero Fourier component.

The situation forw ,=v 1681, Is depicted in Fig. B). Itis  In particular, the eigenstates of the Hamiltoni{a®) for free
seen that the-e interaction confines the wave function in a and noninteracting electrong;f=0 andH.,=0) are
region where the potential variations are small in the direc- A
tion of the collective motion. The persistent angular momen- n(u,c)=e*Ysin(nc), k,n with same parity,
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21'[',

X 74 N /4
7. ’ot/,j/// /

V ’ 5
b 7 /4 ‘0’Q e
1 &

0.5

0 a 0.5

FIG. 5. One-particle potential terid .y and e-e interaction potentiaH,. (left and central columnfor two electrons, and the corre-
sponding persistent angular momeftight column. The left column shows a schematic plot of the superimposed potehtigleandH.
in the (0,,6,) plane for(a) Hey=0, (b) v,#0, and(c) v,#0. The central column contains the summed potentiilg+H... The
corresponding persistent angular momenta are shown in the right colura Fbg,=0, (b) v,=0.5,(c) v,=0.1, and for thee-e interaction
parameters;®=0 (dotted lind, 7°=1 (dashed ling and »?=10® (full line). In absence of the one-particle potential tdfiz,=0 [see(a)],
the persistent angular momentum is independent oéthénteraction parametey?. Forv,+ 0 [see(b)], the persistent angular momentum
rises with increasing;?. Forv,#0 [see(c)], the persistent angular momentum decreases with increaging

! 1 En¢n=Hiei@n. 14
EanE(k—2ao)2+§n2, keZ 1<neN. n®n= Frel®n (14)

1
. . Eknzf(k_zao)z"_gn,
More generally, for interacting electrong){#0 and H.y 2

=0), one gets where the indice& andn associated with the collective and
_ the relative motion, respectively, are related through the sym-
bin(u,c)=€e* e (c), keZ, neN, metry property(13). Each moden of the relative motion is
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associated with an infinite set of parabolic energy bands in 1000

age[—1/2,1/2 (Figs. 2—4. We note that the functions

Yn(u,c) are the exact solutions including electronic corre- c

lation. w
For largee-e coupling 72, the lowest energy level§, for

the relative motion may be calculated using the harmonic 500

approximation of thee-e potential near its minimum in the
cell Catc=/2,

W ! 1+ ! ulk
©=gne~t*3l¢3) 0
The constant term is irrelevant and can be omitted. With the

shift q=c—#/2e Q=[—w/2,7#/2[, which corresponds to FIG. 6. Energiest, associated with the relative motion as a
the choice of the origin at the center of the aglithe relative  function of thee-e interaction parametey?. Results obtained using

motion is described by the Hamiltonian of the harmonic os-the free-electron basiésolid lineg; Results obtained in the har-

0 5000 1’]2 10000

cillator monic approximatior{dashed lines The ground-state energy is set
to zero.
1 2, 2.2
Hrel_i(_ﬂcﬁ' 7°9°%). The opposite parity ok andn follows from the symmetry of
) . ] the Hermite polynomials.
Provided that the relevant eigenfunctiogs, of the har- With the coordinatesi and ¢, the one-particle potential

monic oscillator are sufficiently localized within the cell {grm reads
Q, one may replace the Hilbert spadé="P(L,([0,27[

X[—ml2,712[)) by S T
Hoy=2>, (v,€"+v,e ""cos v| q+ 5) .

H:P(Lz([O,ZW[XR)) v>0

with the scalar product Expressing the matrix elemen\éj;”' of Hey in the basis
12 given by Eq.(16), we obtain the eigenstates of the Hamil-

(flg)= Efo duf_ dgf(u,a)g(u,q). tonian(12) from the solutions of the eigenvalue equation
_ _ OE=[EO+V]D.
Setting the ground-state energy to zero, the eigenvalues and
eigenstates ofl ¢ are (see Appendix A These solutions are exact for stroeee interaction, since
correlation effects are fully accounted for by the basis func-

E,=nn, neN, tions Eq.(16).

1a 15 IV. N INTERACTING ELECTRONS

2 2
on(0)= ———=Hq(qVn)e T 772,
2"nt\m The normalizedk-e interaction parameten? being of the

whereH,(2) is thenth Hermite polynomial. For reasons of 0rder of 10 for typical sample sizegsee Sec. }i we have to
simplicity we use the same symbelin the above equation d_eal with strong el_ectronlc correlatlo_ns. Thus, it is quite ob_-
and for the functiony in Eq. (14), although both differ due Vi0US that the _baS|s fqrmed by the (_9|genstates of the Hamil-
to the shift of the origin. The high accuracy of the harmonictonian for noninteracting electrons is not well suited to de-
approximation is shown in Fig. 6, where we compare thescribe the influence of the-e interaction on the eigenstates

exact energies, obtained by numerical solution of Eqt4) ~ ©f the Hamiltonian(5). In the following we generalize the
with the corresponding values from the harmonic approxima@PProach of the previous section introducing again collective
and relative coordinates, but now fidrelectrons.

tion.
With the new choice of the origin the symmetry property The N electron positions are described by the veadtor
(13) becomes e RN. The Hamiltonian given by Eqg6)—(8) acts in the
Hilbert spaceH=P(L,([0,27[")). In analogy with the de-
V(u+m,—q)=—Y(u,q). scription of phonon modes in a one-dimensional ring of at-

oms, it is convenient to introduce the real cosine-Fourier

transform of the coordinates. We define tNevectors Fn
eRN"1 n=1,...N, by their N—1 components j

Uin(U,0)=¢€"¢.(q), k,n with opposite parity, (16) =1,... N—1,

A convenient basis of is then provided by the eigenstates
of Hy+Hge in the harmonic approximatio(i5)

_277
PN

E<°>—3(k—2a )2+n7y, keZ, neN (F)-=£co jng +
kn_2 0 77, € 4, €. n’j \/N 0 4
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These vectors are linearly dependent, siide,f,=0. The 0,—2T< O< - - - < 0,< 0,< O+ 27T (21)

collective coordinateue R and the relative coordinates Choosing the N—1 linearly independent vectors

N—1 -
sR™"" are then expressed as {fatn=1 . n-1 as a basis oRN"2, one gets for a poin¢
1 inside the cell(21)
u=1g 2 0,, c:; 0.f,. (17)

N
. . . c=2, (6,— ) f,.
The position coordinates of the electrons can be written as nzl (60— 0Nt

(see Appendix B ] )
With ¢;>0,i=1,...N and OKoy_1<---<o1t---

0,=u+fc, n=1,...N. (18  Ton-1<oit---+oy=1, we may also write

Expressed in terms of the new coordinatesand c, the Oh—On=27(ont - +on-1), n=1,...N-L

Hamiltonian for free electrons read&ppendix B Thus. ¢ is given by

N

1
Ho=~(—id,—Nag)?—Ay_1, I
N N c=> 0§ witho;>0 and D o=1, (22
i=1 =1
whereAN,1=2}\‘:’ll&§j is the Laplacian inRN"1. The e-e

interaction term becomes where

2 S, =2x«f
Yi 1 1
”ee E 1

&, T Q
1=n<n’=N sw{z(f},—ﬁ],)c

and the one-electron potential term is now given by

N
. e
Hev=2, v, e"n°+c.c.
0 n=1

v>

Sv-1=2m(fy+ - +fy_0),

Sy=2m(fi+ - +fy_1+fy) =0,
The total angular momentum n=2m(fy N-1t )

are the summits of the ceBC RN~ with the center

L=—id,—Nay (19
N N
depends only on the collective motion of the electrons. = i 2 §1: 2 o.f Q :Z—W(N—n)'
The condition(3), which follows from the antisymmetry NE T & "N

of the wave functions, now reads . ,
Due to the circular symmetry of the loop, the wave functions

R S must be periodic with respect to the translatiofis— 6,
W=0if S(fa=f)c=Appm n#n", Aoy eZ (200 4\ 27 \,eZ Expressed in the new coordinatesind
defined in Eq(17), these translations become

As expected, the collective coordinatedoes not enter this
condition. 2

The circular symmetry of the loofl) as well as the an- U—u+A
tisymmetry conditior(2) give rise to characteristic symmetry
properties of theN-electron wave functions iN. In the
directions orthogonal tal, the antisymmetry imposes nodal
planes of the wave functions. These planes, which are giveaccordingly, the periodicity conditionil) for the wave func-
by Eq.(20), delimit separate cell€ in RN"! (see examples tions now reads
in Appendix D. The spaceiN is thus subdivided into iden-

C—>C+ )\nZWFn .

tical prisms directed in the direction, the cellsC forming - 2T . -
the bases. The function values in different cells being related W(u,c)=W|uthy.CtAp2mfy |,
by symmetry, it is sufficient to determine the wave functions

within a single cell. ApeZ, n=1,... N.

In the following we consider the particular céll
The exchange of two electrons corresponds to the commuta-

1. -1 tion (6x,6,)—(6,,6,),k#1. Expressed in the coordinates
0<5(fa=fy)c=5(0n= ) <m, l=n<n’<N. andc, this operation is given by
This choice corresponds to the specific ordering u—u,
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N N
6=n§l 0nf‘n~>n§l Onfat (6,— 6 (F—T)

=c—[(fi—felfi—f,
which follows directly from Eqs(17) and (18). Since||f,
- ﬂ||2=2 (see Appendix B this corresponds to a reflection
with respect to the hyperplane perpendicular fig-f;,

which is generated by thBl—2 independent vectorf;n,n
#k#1+#n. The antisymmetry conditiof2) reads

FIG. 7. Distortions of an electron lattice associated with differ-
ent normal modeg for N=50 electrons.

~ S .
Puo)==ruc-l(f=felth—f), k#l. with u'=u+2x/N, c=c©, andc’'=c™). This defines the
The conditions of periodicity and antisymmetry impose asymmetry property of the wave function within the cell.
symmetry property on the wave function inside the &IA The result(23) can also be obtained directly from the cell
permutation of two electrong, and 6, permutesf, andf, in  definition (21). The cyclic permutatiodP; of the N electrons
Eqg. (17). A cyclic permutationP,, of the electrons corre- replaces electron—1 by electrom, and the new position of

sponds to the cyclic permutation electronn becomed),,_;. To restore the ordering of the elec-
R R R o ) trons(21), one has then to move electron 1@+ 2. Thus
(CETIIN V) L | ETIFTRNIN (VI EININ ) the new positiory;, of electronn after these operations is
transformingf, into f,, ,. The indices are taken modul 0= 01+ 2750 (24)

A summit S of the cell C is thus transformed int
—§p. The cellC is transformed into an identical cell, but With the new collective and relative coordinate’s and ¢’
translated by—S, and with cyclically permuted summits. 9iven by Eq.(17), we obtain again Eq23).

Accordingly, a poinﬁ(o)e C given by Eq.(22) transforms as For convenience, we put the origin at the cerfdeof the
cell C. The new relative position
N

- =0y - - oL

C(O)HCE)—; TiSip— S, g=c—0QeQCRN 1 (25)

since={ o =1. Translating the cell back If,, we obtain IS & point in the shifted celQ. In particular, the origing

the initial cell but, due to the cyclic permutation of the sum- =0 describes the configuration, where tNeelectrons are

mits, the resulting transformation of® is equally distributed on the ring. In this case the electrons form
a lattice with the spacing,=27/N. Using the relation

N
EOEP =048 = 5§, ,, N
=1 fla="> Q;fj==(N+1-2n),
. =1 N
with
N which follows directly from the properties of the vect(frrg
>0, 2, oi=1. we obtain for the position of electram[Eq. (18)],
=1
N—-1

As there areN cyclic permutationsP,, p=1,... N, this
operation relates the wave functions at tigoints c® in

the cell. A cyclic permutatiorP, of N electrons can be de-

composed intgp(N—1) permutations of two electrons. This The .relative coordinatqj_defines the _ampllitude of a distor-
leads to the multiplication of the wave function by tion j of the electron lattice. These distortions are illustrated

(—1)P™N-1), While the permutations do not modify the col- for N=50 andj2=31,Nf—hl,2N—2,f3N/2_ in Eig- 7. The sym-
lective position u, the translationS,=2m(f;+ - +f) metry property(23) of the wave function becomes

leads to the transformation

0—+WN+12+22 iBo+—
n=u+ n) N & OBt )i

W(u',q")=(—1)N"*W(u,q). (26)

2
U@y =y 4+ PN Considering the pairs

because of the periodicity of the wave functiondp. For _ B £y _ _ 2 _
p=1, the conditions of periodicity and antisymmetry lead to qJ_zn: (n = Qn)(Fn);, quj—En: (6= Qn)(Fn)n—

w(u',c)=(—-1)N" W (u,c), (23) forj=1,...[(N—=1)/2], and the identities
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- 2
(fn+1)j:\/£NC0<j(n+l):80+

=codj Bo)(Fr);—sin(j Bo) (Fn-j

\/%COE( —j(n+1)Bo+
=sin(j Bo) (fo);+codj Bo) (Fun-i

we get under the transformati@@4)

( q; ): cogj Bo) —sin(jﬂo)>< q ) o
q{\jfj sin(jBo)  cogjBo) )\ On-—j .

This describes a rotation with angjg, in the (@;,dn-;)
plane. For eveimN one has also

>

(frrn-j=

1

an2= \/N

—-1)"
and

Ani2= — dnrz-
The Hilbert space is
H="P(Lo([0,27[ X Q)),

and the Hamiltonian terms are

_iﬁu_Nao)Z_AN—ly

Hoy= > v, i@+ icc, (28)
>0 n=1

whereAy_ ;=315 g, is the Laplacian ikN~1. The angu-
lar momenturrL is given by Eq.(19).

V. ELECTRON-ELECTRON INTERACTION; HARMONIC
APPROXIMATION

The e-e interaction potentiaH .= »°W may be seen as a
potential acting within the cel§C RN~ 1 . It is determined by
the e-e interaction strengthy? and

1

- —.
sir{;f;—f*;,)(mq)

>

1<n<n’<N

W=

With the notation

1. -
ann,=§(f;—f*;,)9= (n’—n)
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FIG. 8. Plasma frequencies; for N=11 electrons ¢) and for
N=20 electrons Q).

and the second-order approximation

1+coga

1 1 5
2sirfa

sina+h)

Ccosa

- h+
sirfa

sina
we have
W%WO'F W1+W2 .

The constant term

1
WO =

1=n<n’=N SiNaun

may be set to zero for an appropriate choice of the zero of
energy. The first-order term

1 COSa

(fi—f,)a=0

1<n<n’<N Sinzann'

vanishes(Appendix Q. A strong e-e interactionH., may
therefore be approximated by a parabolic potential with its
minimum on the center of the cel). The second-order term
becomeqAppendix Q

1+co<a,
W,= Ittt LU

1<n<n’<N 23|rr°’ann,
N—-1

=2, ojdj,
2

which corresponds to a sum of harmonic potentials. The
plasma frequencies; are given by

vir
N—-1 1+COS"W v
2=y §iP—— R j=1,...N—1.
o 4S|r?—

The frequenciesw;=wy_j,j=1,...[(N—1)/2] are de-
generate except for eveN, where the frequencyy,, is
nondegenerate. Figure 8 shows the vibration frequencies for
N=11 andN=20. The lowest plasma frequency may be
approximated for larg& (Appendix Q by
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. 4N dne=—0ne if N iseven.
wlsz,lw—ln—. . . . .
T ayexp(l) The ground state of the relative moti¢20) is given by(see
The comparison with the numerical results shows that foprpend'XA)
N>500 this approximation differs by less than two percent £=0
from the exact result. The case of two electrons has already o
been discussed in Sec. lll. The present general approach is [(N=1)/2]
illustrated in Appendix D for two, three, and four electrons. (po(a):[(pgN/z)(quz)]pN H @8’0(& By

With the harmonic approximation for thee interaction, j=1
it becomes possible to study the dynamics of an arbitrary
numberN of electrons in a static magnetic field. For suffi-
ciently small one-particle potentials, a convenient basis of=
the Hilbert space

H=P(L,([0,27] x RN~ 1))

py [(N-1)72] ( o

[]

1/4 5
) e_qN/zﬂwN/Z/2
=1

( NwN/2

wherepy denotes the parity dofl,

is given by the eigenstates of the Hamiltonian e if N iseven,
L PNTlo if N is odd.
i 2
H°+H99_N( 19y=Nag)"+Her. Clearly, the ground state of the relative motion is invariant

o ) ] under the symmetry operatiof32),
The Hamiltonian of the relative motion

N-1 ¢o(d")=¢o(a).
H=—An_1+ 2 7P02q? - - ik(27/N)
rel N-1 “ i Thus the possiblek values are given bye
=(-1)N e,
describedN—1 independent harmonic oscillators. Since col-
lective and relative motions are uncoupled, the Hamiltonian uN if N isodd
is separable, and its eigenstates can be written _
ko= 1 . . ner.
- - ,u+§ N if N iseven
¥(u,q)=e*e(q),
where A first single-oscillator excitation has the energy
Hieo=CEe. (29 g(lj)zzﬂ’]wi:g(lNij)'
With an appropriate choice of the energy origin, the eigenDue to the twofold degeneracy fpe=1, ... [(N—1)/2], the
values¢ are eigenfunctions arésee Appendix A
N—-1

D)=/ nw. e'Bir- q
E= 2 27]njw] , nj e N, ¢1 (q) 770’19 JrJ(PO(Q),
=1

) (N=1)(q) = Vrw.e  Bir on(q).
The eigenfunctionsp(q) are given by the product dfi—1 e (@)= vne, jo(d)
one-oscillator eigenfunctions. They satisfy the symmetryFor evenN we have

condition (26), ) )
_ R - o) = Vnontneo(a).
e CMNe(q")=(-1)"N"te(q), (30)

R With the symmetry of the wave functiaf30) and the trans-
which relates the symmetry af(q) describing the relative formation (32), the k values are given by'*(27/N)gi(i27/N)
motion with that of the collective motion labeled by This =(—1)N"% j=1,... N-1, ie.,
relation will be derived in the following.

Due to the degeneraay;= wy_;, the HamiltoniarH ¢, MUN—] if N isodd
restricted to the planeqgf,qn-j), j=1,... [(N—1)/2], de- k= pel.

scribes an isotropic two-dimensional harmonic oscillator.
This suggests to use polar coordinates

N—j if N iseven

s
sy

More generally, the excited relative modes have the energies

qj=rjcosBj, dn-j=r;sing;. (31
The symmetry operation&7) correspond to a rotation in [(N_1)/2]
this plane, so that E=2nwNNNgPNT 121 2nwi(2m;+|1j])

(r{,B)=(rj,Bi+iBo), i=1,...[(N=1)/2], (32  and the eigenfunctions are
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[(N-1)/2] _ N - 2N
() =[ ennza(dnp) 1PN 11:[1 \/——Trelljﬁijj”(rJ‘)- |V(Q):nzl eXF{iVN(NJrl—Zn) exr{iv\/—ﬁ & riSin(ﬁi

According to the symmetry propert{80) and the transfor-

71— .
mation (32), the admissible values fdcare given by T nlﬂo) , (35

[(N=1)/2] 1

k+ 2 j|j+§nN/2pN:(M+§pN>N1 mel.
i1

where the relative positior& are expressed in polar coordi-
nateg/see Eq(31)]. Thus, thevth Fourier component of the
(33) matrix V is obtained from

In the description of one-dimensional harmonic oscillators VE,Q,(V)IU 5E'+v<ell lo")+v 55—»@“ lo’)
Q 14 14 -V -V N

my=min(n;,ny-j), j=nj—nyN-;, The above expression shows that a compopgrieads to a

i coupling between the collective statesndk’ only when
this becomes

lk—K'|= 7. (36)

N—-1
1
k+ 21 jan(,u,-i- SPnIN, pel. In the following, our discussion will be restricted to odd
“

electron numberd, which implies thatpy=0. The exten-

Resuming the indices describing a relative excitation by thelon to evenN is straightforward, the difference between

: : systems withN and N+ 1 electrons being essentially de-
index e, the orthonormal basifike)} of # reads scribed by a shifag—ag+ 1/2 for all physical quantitie$’

- A - The products
(u.lke)=e""e,(q),
i @)=V Ami )= o NV mi);,
E[ko)=(Ho+Heo ko), . . .
which describe the eigenstatgs;l;), m;eN, |;eZ of the
1 (N—1)/2 two-dimensional harmonic oscillatoféppendix
E(k0)=—(k—Na0)2+€ . (34) A), form a basis in the Hilbert space associated with the
¢ N e . , . . :
relative motion. The relative states, their energies and the
possible values corresponding to the collective statese
VI. INFLUENCE OF THE ONE-PARTICLE give_n in Table | for the eight lowest en_ergies of the relative
POTENTIAL H.y motion. The symbol©, <, >, and in the last column
_ _ _ _ _in Table | identify the minima of the energy bands far
In the basis developed in the previous section, the eigen=11 electrons shown in Fig. 9. Due to the degeneracy of the
states of the total Hamiltonian including the one-particle poe|ative energies, minima at, and —a, have the same en-

tential termH.,# 0 become ergy.
The matrix elementgo|l,|e’) (Appendix B lead to a
., coupling between the relative states for
[Wy=3 k') Py Ping
k'e (N—1)/2
They are the solutions of the Sckinger equation v+ ]241 (i=1))j=uN, ue.
PE=(EQ+V)d, This is consistent with the coupling conditi¢@6) and the

relation (33) between the collective and the relative states.
In presence of a weak one-particle potential, the ground
state of theN-electron system is well described in the basis

with the matrix elements

EORS =EQ a2, of the low-energy eigenstates fo+Hee. According to
condition(36), only Fourier components; , v,, vs, v4, and
Ko’ vy couple in first order between the first eight relative states
Vi =(kelHedk'0"). NN J

(Appendix B. In the following, we choose a one-particle

The Fourier decomposition of the one-particle potential ternfPotential with nonzero components andoy,
28) can be written as
28 v,=0, v#1N.

Hoy= D v,e™1(4)+o_e ™ (g With this restriction, the matrix elements wfare
>0

_ VL (1)=0,68f "Hellile’) +v_188 Hell_4le"),
withv_,=v,, and (3
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TABLE |. Lowest excitation energies of the relative motion and corresponkinglues. We use the

notation | =—1, and |0);=3=®{N5"400); denotes the ground state of the harmonic oscillatprs

=3,...,N—1)/2.

Excitation Energy State Values fér

Ground state &=0 [0)=00)1]00),|0);~3 k=uN (O)

First excitation EM=27nw, |171)=101)4|00),|0);~3 k+1=puN (<)
|17%)=[01)4]00),|0);~3 k=1=uN (=)

£¥=2n0, |1%2)=]00)1]02)2/0);=3 k+2=uN (<)
|172)=]00)1/01)5|0);=5 k=2=uN ™)

Second excitation EN=4nw, |271)=102),|00),|0);~3 k+2=uN (<)
12%)=10)1/00),/0);-5 k=pN (D)
|271)=102)4/00),|0);=5 k=2=uN (>)

ko' k' k'~ [ ing. Thi
Vkeg (N) =0 +N<Q||N|Q/>+07N5k N<Q|LN|Q,>_ Fourier componentsy then lead to a strong coupling. This

(39) is the case fo€, =&, at the band edgea,= +1.In par-
ticular, the ground statekE&0, £=0) couples to the first
They are given in Appendix E. bands k= =N, £=0). As seen in Fig. 1®), a gap opens at

The influence of the one-particle potential tebgy and  the crossings. Correspondingly, the persistent angular mo-
of the e-e interaction potentiaH.. on the energy bands mentumL ,e,sshown in Fig. 11 is reduced with respect to the
(H)(ap) and on the persistent angular momentupg{ao)  angular momentum fokH,,=0. Following the same argu-
is shown in FIgS 10 and 11 fdd=1001. In accordance with ments, one finds again weak coupling for any Fourier com-
Table I, the energy bands for the same relative excitafjpn ponentsv,,»#N,2N, .... Only the Fourier components
are almost degenerate for lartje v,n, melN, give rise to a strong coupling.

The coupling induced by the one-electron potential term " | the limit of infinite e-e interaction ¢;°— ), all states
Hev between two states decreases with their distance in eRgith finite energies are associated with the ground state of
ergy. The strongest coupling occurs at the crossing of tw@he relative motior|0), i.e., the ground state di—1 har-
energy band$34) E(ag) =E’(ap), which is situated at monic oscillators. The relative motion is completely local-

e K24 NE. — NE 1 ized at the center of the (_:aﬁl_=5 _defined in Eq.(25). This
ap= e e’  lagl<=. corresponds to an even distribution of tdeslectrons on the
2N(k—k") 2 circle,

As can be seen in Fig. 18, such a band crossing does not
occur for|[k—k’|=1 in the considered energy region. This is On— Opi1=
due to the fact that excitation energies of the relative motion

&, are rather large for the considered strang interaction.  According to Eq.(35), the contributionsv, to the one-

The Fourier components; thus only lead to a weak cou- particle potential are suppressed for noninteg/dt, as
pling. Band crossings are found fok—k’|=N, where the

a
W,n=1,...,N—1.

100 Asooo
T
A v
T
< 2000
(b)
50
1000
0 \/
0 05 0, 05
-05 0 05 )
a4

FIG. 10. Energy bands fdl=1001 interacting electrons. The
FIG. 9. Energy bands fdd= 11 interacting electrons in absence e-e interaction parameter ig?=10°. The results are given fdg)
of a one-particle potential termHi,=0). Thee-e interaction pa- H.y=0 and(b) vy=1. The indicateck values identify the bands
rameter isn?=10%. The symbolsO, <, I>, and identify the  corresponding to the states given in Table I. bge=1, gaps are
minima of the bands corresponding to the states given in Table |. opened between energy baridandk’ whenk—k’=N.
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500 < relative motion of the electrons is described Ky-1 har-
monic oscillators. The excitation energies associated with the
relative motion are proportional tg. The total-energy spec-
_ trum is obtained by summing the collective and the relative
contributions. Following this approach, we have obtained a
0 concise and transparent description of the ground state as
well as of the first excited levels. The presented solutions
become exact for strongre interaction.
Furthermore, we have investigated the interplay between
X the e-e interaction and the backscattering by a one-particle
potential. The influence of both types of interaction on the
persistent angular momentufar persistent curreptwhich
is fully determined by the collective electronic motion in the
FIG. 11. Persistent angular momentum for 1001 interacting  ground state, has been discussed in detail. In agreement with
electrons (= 10°) for Hey=0 (dashed lingand forvy=1 (solid  Refs. 1,2, we find that the persistent angular momentum as
line). well as the ground-state energy are both periodic in the mag-
netic flux with period®y=h/e. In absence of a one-particle
- . potential termHy, the collective and relative motions are
lim (0[1,/0)=1,(0)= 3, e*@™Nn=Ng:N, neN. not coupled, and the persistent angular momentum remains
Uit =t equal to the free-electron value. The situation becomes dif-
Only the Fourier-components,y, s € N, influence the col- ~ ferent in presence of backscattering by a one-particle poten-
lective positionu and the angular momentum. This general-tial termHey, since the latter introduces a coupling between

pers

-500 :
-05 0 a 0.5

N

izes the result given for two electrons in Sec. Ill. In this the relative and the collective electronic motions. The num-
limit, the N-electron system is described by the one-particleber of basis states needed to describe Nkelectron states
Hamiltonian for the collective motion with lowest energies remains comfortably small for moderate

one-particle potentials. We have shown that only the first
Fourier components,, of H,,, for example,y=1,2,3, and
theNth component can be expected to lead to noteworthy
coupling between the low-energy basis states. In agreement
The relative ground state being the most symmetric, it fol-with the general findings of Ref. 20, we have further found
lows from the periodicity and the antisymmet36) that the  that the e-e interaction tends to suppress the

1 .
H=—(—id,—Nag)?+N X v,ne"NY(—1)sN Dicc,
N wu>0

solutions to the Schdinger equation must satisfy backscattering® Our present analysis shows, however, that
the suppression concerns only Fourier components with non-
V| u+ 2_7’ =(— N1 (), integerv/N. Thus, in the limity>— o, only the Fourier com-
N ponentsv ,n, e N, affect the collective motion and may

reduce the persistent angular momentum with respect to the

and that they are superpositions of functions of the type free-electron case. Considering the fact that the impurity po-

uN if N isodd tentials leading to backscattering have a limited range in the
" reciprocal spacéor the v space, we believe that this may
P(u)=ek, k= 1 . . WE L. explain that unexpected large istent t found
wt =N if N iseven p nexp ge persisten curr5e6n s are foun
only for metallic loop structures, wheblis large;” whereas

the currents found in semiconductor ring systems appear to
VIl. CONCLUSIONS be of the expecte_d order of r_nagnit_u7de. _
We have restricted our discussion to spinless electrons.
We have investigated the electronic spectrum for a oneThe theoretical description can be extended to include spin
dimensional mesoscopic loop in a time-independent magwave functions. The energy spectra remain the same besides
netic flux, admitting for an arbitrary numbérof interacting  a shift in the magnetic flux by a multiple d,/N, depend-
electrons as well as for the presence of a one-particle poteing on the symmetry of the spin functigeee Ref. 22 Thus,
tial. admitting that the spin function changes to minimize the
Our approach for interacting electrons relies on the choicground-state energy, we obtain oscillations of the ground-
of an adequate basis of antisymmetNeelectron functions. state energy and the persistent angular momentum with pe-
Basis functions separable with respect to the collective anéiod ®,/N. This type of behavior is also found in descrip-
the relative motions are particularly convenient to treat thetions based on the Hubbard model, see, e.g., Ref. 17.
e-e interaction, since the latter depends only on the interelec- In this work we have concentrated on the discussion of
tronic distances. The best functions are the eigenfunctions ahe ground-state properties, which are manifest in the persis-
the HamiltonianH=Hg+ H,, for a zero one-particle poten- tent angular momenta. We did not fully exploit the achieved
tial, since they account already for tleee interaction. For  knowledge about the excited electronic states. In particular
large e-e interaction parameterg?, the interaction can be the low-energy excitations, which are well within the scope
adequately treated in the harmonic approximation, where thef the presented approach, are important for the understand-
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ing of the dynamical response properties of the considered 1/4

ring system with respect to external time-dependent fields.
The investigation of these features is presently underway.
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APPENDIX A: HARMONIC OSCILLATOR

20-52183.97 and 20-

1.1
H=—A+o%? A=+ -0+ =d5.
r r?

The eigenstates are obtained from

The Hamiltonian for a particle in a one-dimensional para-

bolic potential is

Its eigenvalues and eigenfunctions are

1
5n=ﬁw(n+ E)' neN,

(X) —1 H,(x/x )e*XZ’Z"S X \/—ﬁ
®n = n 0 ’ 0~ ’
\/XO V \ T Mo

2"n!

whereH,(z) is the nth Hermite polynomial. Fo=2 and
m=2 we get the normalized Hamiltonian

H=—d+ w?x?
with the eigenvalues and eigenfunctions

1
5n=2w n+§ ,

nel,

w1/4

op(X)=——
V2o

X2wl2

Ha(xVw)e™

(A1)

Accordingly, the Hamiltonian of the anisotropic harmonic

oscillator inD dimensions is

D

with the eigenvalues and eigenfunctions

D
gnl ..... nD:jgl gnjv
1
gn ij(nj‘f'z njEN,
D
(@)= H en,(d)),

Ho(r,B)=E¢(r,B)

with the boundary conditions
e(r,B)=o(r,p+2m),
lim ¢(r,8)=0,

r—o

limoe(r,B)<<oe.

r—0

Separating the variables, we write

e(r.f)=R(r)g(B),

where
6B =—129(B), 9(B)= —=e'¥,lcZ
| 1 277 l L]
and
1 12
—R’'— —R'+ =R+ 0’r’R=¢R,
r r2
with the boundary conditions lim,.R(r)=0 and

lim,_oR(r)<oe. Using the transformatioR(r)=r~Y2f(r),
we get finally the normalized solutidh

5m|=2w(2m+|||+1), meN, |l eZ,

emi(r,B)=Rmi(r)agi(B), (A2)

_ 1 s
9i(B)= \/Ee ,
1/2 ,
ml(r) \/_ (m+|||)|) (\/Zr)ll‘LE]L”)(wrz)e—wr /2’

where Lﬁﬁ)(z) is the generalized Laguerre polynomial. We
have

2 e
leso(x,y)lzdxdy:f dﬁf drrle(r,p)?=
R 0 0

For a particle in eD-dimensional parabolic potential and
evenD, the potential may be described by a sum of two-
dimensional isotropic parabolic potentials. Thus, the wave
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function for the harmonic oscillator can be written as a tensor 1\ o,

product of solutions of typ€A2). Accordingly, for odd di-
mensiondD, the solution for the harmonic oscillator is given
by a tensor product dil—1 solutions of typgA2) and one 1 N

solution of type(Al).

APPENDIX B: ORTHOGONAL TRANSFORMATION
IN REAL SPACE

The matrixP of the orthogonal transformation is given by

uy IN - IN - 1IN
_|=Pé, P=| . R .
c fl fl"l fN

From the direct calculatiorPP'=D=diag(1N,1,...,1),
one getsD "Y?PPID~1?=], i.e., the matrixU=D "Y?P is

unitary. ThusUU'=U'U=P'D " 1P=]. It follows

(Fn_Fnl)' ]?nn=0, I’Hﬁn"i n,,
(Fn_Fn’)'Fnzly n#n’,

I|(f,—fo)]|2=2, n#n’.

From the inverse relation

6=p~* li)
Cc

it follows that each electron position can be written as

0,=u+fc, n=1,...N.

Forn=1, ... N, the derivatives transform as
dy
N—1 dpu\’ de,
In=0nUdy+ X, 0nCide=| _ - ,
=1 ) dnC :
aCN—l

and formally as

é]LI
J
1 t ac1
o
N
&CN—l

It follows

and

% g=| | =2aeea
= N7uT N
IN In

AN_1=2]N;11a§j being the Laplacian iN 1.
APPENDIX C: HARMONIC APPROXIMATION
The e-e interaction potential is written as
Hee= 772W,
with

1

w= > il .
=N sin o (fL - )@ +a)
In second-order approximation we have
W=~Wo+W;+W,.

The constant term is

1
WO:

1=<n<n'<N SiM8yp

The first-order term cancels, since

1 COSAnn = o -
Wy=—> 2 = (fi—f)a
2 nSwensirfa,, "
v
lN—l COSW N—v . . R
:_E = v nZl (fn_fn+v)q
SIF\ZW
v
:_E ElCOSN Ev(f*t_f*t )
41 ;=1 .n2V7Tn=1 noontw
SN
%
N-1 COS——

y
-> > (fi=fin-w | d

a=1 . S MT A=1
SiP——
N
v

N—-1 COS———
N

1
N Z v=1 . v
SIHZW
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< Cell —>

Elu‘ ﬁ+»—§)ﬁt fiin_,) |a=0. s Do c® fis,h

L 1 |
L) LN 1
—»—reflexion —w———

— & translation —-4———

The second-order term may be written as
FIG. 12. N=2. Cell and symmetries iR.

W,=q'Mq,
with the symmetric bilinear form iN~* 2 1 Nf”‘(W’ZN) dx 1 «
' U2\ 7y sinx . 2°92N
1+cofa,y . . -
M= > o nn (fn—fnr)(f;—f»;,). N| AN
1< "<N Siita, ~n .
. N 7 Jexp(l)

The matrix elements dfl are

APPENDIX D: EXAMPLES
1+cofa,,y - - -

Mij= . fa=fa)i(Fa—fnr);. (1) N=2. The collective and relative positions are
1=sn<n’=N 83|r13ann,

| = 1
Forj=1,... N—1 one has U:§(91+02), NP
I J2 _ - _ _
(fn_fn’)jz\/ﬁ C0<Jnﬁo+z _CO{Jn,BO—’—_ with
1 1
:2\/5_ viBo  mJBo 1 Vi ) %

—sin——cos——,
N2 2 . _
The particular cellCCR (Fig. 12 has the edges and the
with v=n"—n, and w=n’+n having same parity. The center
double sum transforms as

— 27, $=0, Q=-__,

1 - 2N
p) 5 2 3 V2
, T2 A = . . . .
I=n=n’=N With the shift of the origin to the centdl, the symmetry of
where=(") extends ovep values having the same parity as the wave function(26) becomes
v. Moreover, the identit ;o
y V(u',q)=-¥(uq),

N wiBo  miBo N where

E (ofe}5 C0S =0,

w=l 2 2 2 u'=u+m, q'=-q.
the sum=’ extending over either odd or even values, leadsrorH,,=0, the wave function is separable and the condition
finally to the diagonal form (30) gives

Mij= w3, e“Te(q") =~ (q).
with The energies of the stationary states are
v — E _ 2 g
N-11+cof— . E_Z(k 2ap)°+&,, kelZ.
2= N i oq N—1
@i~ =1 v T sl N’ =4 ’ For the discussed cases of e interaction, the energies,
45'”3W of the relative motion can be given explicit{gee also Fig.
2).
The smallest frequencies are given by No interactionz?=0:
1 1 7 n?
w0l =wi= > Z - §Cmm 5n=7, n=1, n same parity ask.
sin—
N 2_1

Harmonic approximatiory?>1: wf=w =7,

For large(but, because of the divergence of lisiat x=0
andx= 7, not too large N, the sum may be approximated by
an integral, (2) N=3. The collective and relative positions are

E=2nnw=n7y, n=0, n opposite parity ak.
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8*10,,
o> C
@r‘\eﬁ
I:ra.nslauon
R

FIG. 13. N=3. Cell and symmetries iRR?.

1 - - - -
u=§(01+ 02+ 03)1 0201f1+62f2+03f3

with
FIG. 14. N=4. Cell and symmetries it>.
R V3 ¢ _ ~1+43
2
1= 2=
2\/— l+\/— \/— -1- \/_ gnl n,— (n +nln2+n2) ng,n=1,
f}zi(l) k=3u+2n,+n;.
V3l1 This is the spectrum of the vibrating membrane on an equi-
The particular celCCR? (Fig. 13 has the edges lateral triangle.
5
Harmonic approximation?>1: w’= wi= w?=——,
§1:_ -1-3 .7 _2) < s pp m 1= W3 43
—1+3) -2)’ ’
V3 V3 V3 &nyn,=2mw(Ng+ny), Np,N=0,
and the center
k=3,u—n1—2n2.
. w [—3-43
0= \/— _3+3) (3) N=4. The collective and relative positions are

< 1 - - - - -
With the shift of the origin to the centép, the symmetry of U=—(0,+ 0+ 05+ 0,), c=0:F1+0,F,+ 05554 0,1,
the wave function(26) becomes 4

- . with
Y(u',q")=¥(u,q),
, -1 -1
with ? 1 1 7 1 1
) 1_5 ’ 2_5 ’
s 2T (ql) R(zw)(ql) 1 ~1
u'=u+— =R| &
3’ ! 3 '
4z 4z 1 1
where the matrixR(B) defines a rotation of anglg. For 3 :l -1 i :1 1
H.y=0, the wave function is separable and the condition 372 C A2
(30) gives -1 1
, . . The particular celCCR3 (Fig. 14 has the edges
e C™¥o(q") = e(q).
-1 -2
The energy of the stationary state is R R
S;=w| —1]|, S;==| 0 |,
1 1 0
= E(|<—2a0)2+ &n, iy
-1
For the discussed cases of the interaction we obtain the - .
following energy values. S;=m| —1|, $=0,
No interactionz?=0: -1

155333-18



INFLUENCE OF THE ELECTRON-ELECTRON . ..

TABLE II. Values for AT\ (2).

PHYSICAL REVIEW B5 155333

ATz (00 (0-1) 0.9 (0-2) (1,0
(010) 1 4 —-Z 2_2 22
V2
O~z 1E EEA s
2
©.1 z z 1-7 % —2(1-72) z(—2+2%)
(0-2) z A2+ z 2-422+74  ZA(-2+7)
| V2 V2 N 2 2
(1,0 2 -1-2) 2(1-22) ZZ(‘?f) -z 224D
2
0.2 z z 2(-2+72) z 2(-2+2%)  2-472+7°
2 2 2 2 2

and the center
-2
> a
=—| —1
0 2
0

Harmonic approximation »°>1: w?=

»_3\2

W=

5n1'n2'n3: 27](w1n1+ w2n2+ (l)3n3),

With the shift of the origin to the centdl, the symmetry of

the wave function(26) becomes

V(u',q")=—W¥(u,q),

k=4

L
)

with ny,n,,n;=0.

where
, APPENDIX E: MATRIX ELEMENTS FOR THE N-
u,:u+; (q}):R(g)(ql), T— ELECTRON CASE
s 9s We have to determine the matrix elements
ForH.,=0, the wave function is separable and the condition N
(30) gives

ek ™o (q")=—¢(q).

The energy of the stationary state is

1 2
E= 5 (k—280)"+ &, n, ny:

For the discussed cases of th® interaction we obtain the

following energy values.
No interactionz?=0:

&n

RUPRLEI

+(Ny+n3)2+(ny+ny+ng)?],

k:4/.L+3n3+ 2n2+ nl,

with nqy,n,,nz=1.

1
Z[n§+ n3+n3+(n;+ny)?

(el Je) =3 exdive(N+1—2n)
n=1 N

(N=1)12

V2
X ]_]:[1 (ml|exp<|v\/—ﬁrsm(,8+an)

with a,=m/4—njB, for all j. The transformationsp= B

+ a, andx=nor yield

V2
<ml|ex;{|v\/—ﬁrsm(ﬁ+an)

1 2w

— d,Bf dr rR ()R (r)e' =18
0

:27To

V2
“expl iv—=rsin(B+ «a;)
{iv s
=1 Y — 2 e
:el(| 1") ng ZVAm” (Zy),
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TABLE lIl. Fourier component oH., coupling the statefo).

v |0) 11°%) 1174 172) 117%) 2°%) 2°) 127%)
(0] =N 1 -1 2 -2 2 +N -2
1%y -1 +N -2 1 -3 1 -1 -3
17y 1 2 +N 3 -1 3 1 -1
(1%? -2 -1 -3 +N —4 +N -2 —4
(172 2 3 1 4 +N 4 2 +N
2%y -2 -1 -3 +N —4 +N -2 —4
(29 +N 1 -1 2 -2 2 +N -2
(274 2 3 1 4 =N 4 2 +N

wherez,=z,;=v/\2Nno; and

"

r (2)

2

e “ AL
m!m’! )1/2

(m+[I)t(m"+]1"])!

-fo dx2x 11713, 2z LI ALY D(x?)e

The values fomm}/'(z) are given in Table Il. Including the
indexj, we get

N
(ell,le")= 21 ex iV%(N-Fl—Zn))

(N-1)/2 R
. ’ —z22 ml
x ]1:[1 ellj=1hanje, JA0 1z,

— g I(N+1)7/N] §
14

N
X >, exp{—i v+ 2 (=10 n,BO]
n=1 i’
(N-1)2 .
x [] eti-NEmam iz, )
i=1 mjlj V)
where
(N=1)72 2 (N-1)/2
2 v 1
J,= [l e Zi=expg — =— —.
=1 2N7 =1 o

Evaluating the sum ovem, which determines the coupling
due to the Fourier component,, we get finally

4 (N-1)/2
i v[(N+1)7/N] i =1y (mia) g1 .
Ne'” mNlg, 11;[1 et Am;,j'(zvj)
(N-1)/2
(elje=y . _
v if v+ 2 (Ij’_lj’r)]/:/”\L
j'=1
L 0 otherwise.

The Fourier components, leading to coupling between
states|o) are resumed in Table IlI.

As already pointed out before, each relative excitatign
corresponds to a set of parabolic energy bandagirwith
minima at energy, . Figure 15 shows the lowest excitation
energiest, of the relative motion as a function of the num-
ber of electrons\.

For N=11, the four lowest excitations are

Eo=0<EM=27w <P =2nw,<ES=4nw,,

where the superscrig}) denotes the oscillator, and the sub-
scriptn its excitation level. Indeed, for large one has

3 T
, , 23cosm+5003ﬁ 28N
0<4wi—w5=7 3 ~ng
Zsmm

Moreover, we have obvioushESN<&M+£(?) and also
EM <P =270, since

ooz o N[ AN 122
oz~ 4o~ 7= | 5 I |.
AT\ P e 15

The distances{®)— £ increases faster witiN than £
—5(12). A good choice is thus to consider only the relative
ground statefy and the three first relative excitatioss b,
£, and&M in the numerical calculations.

4
8(1)

3
8(1)

2
5

1
el

20

30

FIG. 15. Excitation energie$, associated with the relative mo-
tion as a function of the number of electroNs single-mode exci-
tation energie§(1” of the oscillator modeg, and lowest double-
excitation energiest) and £{M+£(?. The lines are drawn as
guides to the eye.
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The nonzero matrix elemen{®|l,|¢’) for v=*=N and
v==*1 are given below:

(O[1 .n[0) =Ny,
(L1 27 = NINAG T Znn) = NIN(1 = ZRy),
(17117 h= NJNAgjii(le): NJN(l_ZIZ\u),
(L21n[172) = NINAG A Zn2) = NIN(1—ZRy),

(1721172 = NINAS - 1(Zn2) =NIn(1—Z5),
(2 1 \2Thy= NJNAgé(ZNl): NJN%(2_4Z§1+Zﬁ1),
(291 |29 = NJNAig(ZNl): NJN(l_Zr%u)Z,
<2*1|IiN|2*1>=NJNA81:3<le>=NJN%<2—42§1+2‘&1>,

(01 2% = NJNAé:&ZNl) =Nz,
(2%1on|0) =NINAT Zn1) =N InZs
(172127 = NJNeii(WM)Agjg( * ZNl)Agjg( *2Zy2)

1

==xe "IN =201 2n2,

N

(271 |12y = NJNei(ﬂm)Ag:g( * ZNl)Agj(l)( *2Zy2)

. 1
=7 e'(”/“)NJNEzﬁlzNz,

PHYSICAL REVIEW B5 155333
(17127 = NI DA 2 (+ 28 AG2 1 (* 2yp)
— Li(wl4) 1,

=+e N‘]NEZNlZNZ’
(27 1enl172)=NIye " TIAGY (£ 2y1) A H(E 2np)
a4 1.,
=*e NJNEZleNZa
Of11 ™ =(1%H1_4|0)=e'"N""INJ, 7,4,
(17H14]0y=(0[I 4|1~ 1y=€'"N""INJ, 7,
<1+1||1|1+2>:<1+2||71|1+1>:ei(7T/N)N312112121
(LHH1g2 =21 417
) 1
= _el(W/N_ﬂm)NJlEle(_ 2+75y),
<20||1|1+1>:<1+1||71|20>:_ei(W/N_WM)NJlle(l_2%1)’
(172117 =11 4|17 %) =e'""N Iy 249245,
(171429 =201 4171y =— "N "IN 24(1- 25,
71T h =@ 27

. 1
=— e'(“’N‘”"‘)NJlEzll( —2+17})).
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