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Influence of the electron-electron interaction on electronic spectra
and persistent currents in one-dimensional loops
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We considerN electrons in a one-dimensional loop enclosing a static magnetic flux. The electronic positions
are described in terms of collective and relative coordinates. The corresponding partition of the Hilbert space
is particularly convenient to investigate the electronic spectrum in the range of large electron-electron inter-
action. The electronic current is determined by the collective motion of the electrons. Thus, in absence of
backscattering by a one-particle potential, the electron-electron interaction does not affect the persistent current
associated with the electronic ground state. This is different when backscattering is present, since then collec-
tive and relative motions are coupled. We present a detailed study of the interplay between potential back-
scattering and electron-electron interaction, which is revealed by the resulting ground-state currents as well as
by the electronic excitation spectra.
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I. INTRODUCTION

The rapid progress in nanodevice technology has rais
large interest in effects revealing the coherence of electro
states in mesoscopic systems. The case of small met
rings is of particular interest in this context. Already tw
decades ago, Bu¨ttiker, Imry, and Landauer1 predicted that,
even in presence of elastic backscattering by a spatially v
ing one-particle potential, the electronic ground state of
isolated conducting ring enclosing a magnetic fluxF will
carry a current, which depends periodically on the magn
flux with periodF05h/e. Somewhat later, it was shown th
these persistent currents will survive moderate inela
scattering.2–4 The existence of persistent currents associa
with the electronic ground state has been confirmed exp
mentally by several groups.5–13 Ref. 9 gives a recent review
of the experimental and theoretical situation. The compari
of the experimental results with the theoretical predictions
Ref. 1 based on the one-electron approach shows that s
experimental features cannot be described within that
ture.

Persistent currents with the expectedF0 periodicity have
been observed by Chandrasekharet al.6 and by Maillyet al.7

in single Au and GaAs-AlGaAs loops. Similar oscillation
with periodF0 are found for the magnetoresistance of sm
single Au, Al, and Ag loops.8 Studying the magnetic re
sponse of an ensemble of 107 copper rings, Le´vy et al.5

found oscillations with periodF0/2 rather thanF0. Analo-
gous results have been obtained most recently for an
semble of mesoscopic 105 Ag rings12 as well as for 105 GaAs
rings in AlGaAs.13 The appearance ofF0/2 periods can be
attributed to ensemble averaging.3,4,14 This explanation is
corroborated by the results for ensembles containing on
small number of rings, where bothF0 as well asF0/2 os-
cillations are found.10,11

Experimentally, the sign of theF0/2 oscillations for the
ensemble-averaged persistent currents in the vicinity of z
magnetic field corresponds to diamagnetic response. The
oretical prediction of the sign turns out to be rather difficu
0163-1829/2002/65~15!/155333~22!/$20.00 65 1553
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since it requires the knowledge of the spin configuration
the electronic ground state~see eg. Refs. 15–17!.

Another intriguing problem is the amplitude of the pers
tent currents. The currents observed in metallic loops are
two to three orders of magnitude larger than those expe
from the one-electron theory.5,6,10,12 This discrepancy has
given rise to intense discussion. Apparently, the one-elec
approach overestimates the electron backscattering by im
rities. Quite interestingly, such a discrepancy is not found
semiconductor rings.7,11,13

It is quite obvious that Coulomb interactions should
taken into account over the small dimensions of the loo
Screening of the Coulomb part of the impurity potentia
leading to reduced electron backscattering is expected t
most effective in metals.18 More specifically, thee-e interac-
tion has been invoked to explain the large persistent curr
in metallic loops.15–17,19–23Another explanation has been a
tempted in Refs. 9,24,25, where the dc magnetic respons
disordered ring systems is related with the dephasing by
ternal or external nonthermal equilibrium noise. Here aga
e-e interactions are essential, since they determine the c
pling of the electronic system to the fluctuating electroma
netic field.24 The influence of zero-point fluctuations on th
electronic ground state of a mesoscopic normal metal r
has been studied by Cedraschiet al.,26 who found that the
persistent currents at zero temperature are always suppre
by such a coupling.

In the present paper we investigate theN-electron states in
one-dimensional loop systems for an arbitrary number of
teracting electrons and for arbitrary one-particle potentia
We use the continuous real-space representation. This is
ferent from the usually employed Hubbard models based
a discrete local representation. Our present approach ha
advantage that cutoff problems due to a limited range of
one-electron energy spectrum are avoided. We restrict
discussion to the case of spinless electrons, the argum
remaining essentially the same when the spin is included
description of the general system properties is given in S
II. In Sec. III we develop the basic ideas for the case ofN
©2002 The American Physical Society33-1



o
ec

d
n-
n
p
e-
e
i

ia
rg
ci
tu
n

ar

na
e
n-

p,
ct

, w
ric
in
n

e
a

tial
the

-
al

,

e

ron

GUIDO BURMEISTER AND KLAUS MASCHKE PHYSICAL REVIEW B65 155333
52 electrons. Our approach, which is essentially based
the separation of collective and relative motion of the el
trons, is then generalized in Sec. IV to VI to arbitraryN. In
Sec. V we show that stronge-e interactions can be describe
very efficiently within a harmonic approximation. For co
stant one-particle potentials, collective and relative motio
evolve independently of each other. Backscattering by a s
tially varying one-particle potential leads to coupling b
tween both types of motion. The resulting interplay betwe
e-e interaction and potential backscattering is investigated
Sec. VI, where we discuss the persistent currents assoc
with the electronic ground state as well as the low-ene
spectrum. The knowledge of the spectral properties is cru
to get an access to the dynamical response of loop struc
to time-dependent external fields. Conclusions are draw
Sec. VII.

II. THEORETICAL DESCRIPTION
OF N ELECTRONS IN A LOOP

We considerN interacting spinless electrons in a circul
one-dimensional loop of radiusR ~see Fig. 1!. For conve-
nience, we use polar coordinates in the following. Exter
magnetic and electric fieldsBW andEW are represented by th
vector potentialsAW (r ,u,z) and the scalar one-particle pote
tials V(r ,u,z),

BW 5¹3AW , EW 52¹V.

The electronic positions are determined by the anglesun
PR, n51, . . . ,N. The electrons being confined to the loo
it is judicious to choose a gauge, where the tangential ve
potential becomes independent of the angle, i.e.,

AW 5A~u!eW u5AeW u .

The one-particle potential on the loop is given byV(u).
In order to keep the arguments as simple as possible

consider the spin part of the wave function to be symmet
i.e., we will disregard the electron spins. The system be
periodic in the anglesun , the appropriate Hilbert space the
is

H5P„L2~@0,2p@N!…,

whereP is the projector on the subspace of the antisymm
ric functions. The electronic eigenstates of the system m
be described by periodic functionsC defined overRN,

FIG. 1. Geometrical description of the sample system.
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C~ . . . ,un1ln2p, . . . !5C~ . . . ,un , . . . !,

lnPZ, n51, . . . ,N, ~1!

thus satisfying the periodic boundary conditions. The spa
wave function has to be antisymmetric with respect to
permutation of two particles,

C~ . . . ,uk , . . . ,u l , . . . !52C~ . . . ,u l , . . . ,uk , . . . !,

kÞ l . ~2!

According to Eq.~1!, this implies that

C50 if un5un81lnn82p, nÞn8, lnn8PZ. ~3!

The function satisfies the time-independent Schro¨dinger
equation

EC5HC, ~4!

with the N-particle Hamiltonian

H5H01Hee1HeV . ~5!

The operatorH0 is the free-electron Hamiltonian,Hee de-
scribes the Coulomb interaction andHeV represents the one
particle potential term. In the following we use internation
units. ThenH0 is given by

H05 (
n51

N
1

2m
~pn2eA!2,

wherem is the free-electron mass,e is the electronic charge
and

pn52 i
\

R
]n

is the momentum operator,]n standing for]un
. The distance

between two electrons beingdnn852Rusin@(un2un8)/2#u, the
Coulomb-repulsion term reads

Hee5 (
1<n,n8<N

1

4p«0

e2

2RUsin
un2u

n8
2

U .

The one-particle potentialV(u) is periodic inu. The constant
term in the Fourier decomposition ofV(u) is physically un-
important and will be omitted in the following. We thus writ

HeV5 (
n51

N

V~un!5 (
n.0

Vn (
n51

N

einun1c.c.

In polar coordinates, the position operator for one elect
on a circular loop with radiusR is

rW5ReW r .

The velocity operator is given by

jW5
i

\
@H,rW#5

1

m
~p2eA!eW u .
3-2
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The trajectory being circular, it is more convenient to use
angular-momentum operator

LW 5rW3~p2eA!eW u5R~p2eA!eW y ,

which is normal to the plane of the loop, sinceeW y5eW r3eW u .
The total angular-momentum operator forN electrons is

L5 (
n51

N

R~pn2eA!.

To avoid clumsy prefactors and to simplify the discu
sions, it is convenient to normalize energy and angu
momentum units. Measuring the magnetic fluxF,

F5E BW tdsW 5E AW td lW52pRA,

in units of the flux quantum

F05
2p\

e
5

h

e
54.14 10215 V s,

one gets the normalized magnetic flux

a05
F

F0
.

Expressed in the units\2/(2mR2) for the energy, 2mR2/\
for the time and\ for the angular momentum, the Hami
tonian terms and the angular momentum operator read

H05 (
n51

N

~2 i ]n2a0!2, ~6!

Hee5 (
1<n,n8<N

h2

Usin
un2un8

2 U , ~7!

HeV5 (
n.0

vn (
n51

N

einun1c.c., ~8!

L5 (
n51

N

~2 i ]n2a0!. ~9!

In this energy scale, thee-e interaction parameterh2 is

h25
e2mR

\24p«0

,

and thenth Fourier component of the one-particle potent
becomes

vn5
2mR2

\2
Vn .

Subtracting the Schro¨dinger equations corresponding
two different fluxesa0 anda08 , we get the generalized con
tinuity equation
15533
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~E2E8!C̄C8

52 (
n51

N

~2 i ]un
1a02a08!•$@~2 i ]un

2a0!C#C8

1C̄@~2 i ]un
2a08!C8!#%.

Integration over the angles leads to

~E2E8!^CuC8&

52~a02a08!@^L~a0!CuC8&1^CuL~a08!C8&#. ~10!

For the same fluxa05a08 , the eigenvectorsuC& and uC8&
corresponding to different energies are orthogonal, since t

~E2E8!^CuC8&50.

The eigenvalues of the Hamiltonian given by Eqs.~6!–~8!
will be denoted asEb(a0), whereb51,2, . . . , is theband
index. For two eigenstatesC andC8 belonging to the same
bandEb , E5Eb(a0), andE85Eb(a08), one obtains after di-
vision of Eq.~10! by (a02a08)^CuC8& in the limit a08→a0,

^L&52
1

2

]E

]a0
,

i.e., the slope of the energy bandEb(a0) yields the expecta-
tion value of the angular momentum.

At zero temperature, the electronic system will relax in
its ground state. One may then measure the associated
netic moment, which is directly related with the so-call
‘‘persistent current.’’5–7 In the following we will rather refer
to the ‘‘persistent angular momentum’’ defined asLpers
5^L&ground state.

In Refs. 5,7, loop areasS150.12 mm2 and S2
55.7 mm2 have been investigated. For a typical sample a
S51.2 mm2, which corresponds to a ring radiusR
50.62 mm, the above units are 1027 eV for the energy,
1029 s for the time, and thee-e interaction parameter is
h25104 This already indicates that thee-e interaction is
rather strong and cannot be treated as a perturbation.

III. TWO INTERACTING ELECTRONS

In order to introduce the general idea underlying our a
proach, we first consider the case of two electrons. The
bert space isH5P„L2(@0,2p@2)…. The terms~6!, ~7!, and~8!
of the Hamiltonian~5! become

H05~2 i ]12a0!21~2 i ]22a0!2,

Hee5h2W, W5
1

Usin
u12u2

2 U ,

HeV5 (
n.0

vn~einu11einu2!1c.c.,

and the angular-momentum operator~9! is now given by
3-3
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L5~2 i ]12a0!1~2 i ]22a0!.

The stationary solutions of the Schro¨dinger equation~4! are
periodic

C~u112p,u2!5C~u1 ,u212p!5C~u1 ,u2!,

and antisymmetric with respect to the exchange of
electrons,

C~u2 ,u1!52C~u1 ,u2!.

This implies that the wave function is zero whe
u15u21l2p, i.e.,

C~u,u1l2p!50, lPZ.

The eigenstates of the free-electron HamiltonianH0 satisfy
the Schro¨dinger equation

E(0)c5H0c.

The eigenfunctions form an orthonormal basis inH. They
are given by the Slater determinants

cmn5^u1 ,u2um,n&5
1

A2
~eimu1einu22einu1eimu2!,

with m.nPZ. The corresponding energies and expectat
values of the angular momentum are

Emn
(0)5~m2a0!21~n2a0!2,

^L&m,n5m2a01n2a052
1

2
]a0

Emn
(0) .

This basis inH is appropriate for calculations when thee-e
interaction and the one-particle potential term can be trea
as perturbations. A solution of the stationary Schro¨dinger
equation may be written as

uCab&5 (
m8n8

um8,n8&Fab
m8n8

with FabP l 2
^ l 2. Expressed in this basis, the Schro¨dinger

equation reads

FE5@~M2a0I!
21~N2a0I!

21h2W1V#F,

with the matrix elements

Mmn
m8n85^m,nuM um8,n8&5mdmn

m8n8 ,

Nmn
m8n85^m,nuNum8,n8&5ndmn

m8n8 ,

Wmn
m8n85^m,nuWum8,n8&,

Vmn
m8n85^m,nuHeVum8,n8&.

The energy bands for the two-electron case are give
Figs. 2–4 for thee-e interaction parametersh250,1,103 and
different one-particle potentials.
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To understand the effect of thee-e interaction, which de-
pends only on the distance between the two electrons,
convenient to introduce the collective and relative posit
coordinatesu andc,

u5
u11u2

2
, c5

u12u2

2
. ~11!

The corresponding differential operators become

p15
1

2
~pu1pc!, p25

1

2
~pu2pc!

with pu52 i ]u and pc52 i ]c . The total Hamiltonian may
be written as

H5
1

2
~pu22a0!21H rel1HeV , ~12!

where

FIG. 2. Energy bands for two free electrons (HeV50) and for
different e-e interaction parameters,~a! h250, ~b! h251, and~c!
h25103. There are no energy gaps. Note the different energy s
in ~c!.

FIG. 3. Same as Fig. 2, but for included backscattering b
one-electron potential (v150.5). The energy gaps due to potenti
backscattering decrease with increasinge-e interaction parameter
h2.
3-4
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H rel5
1

2
pc

21h2W

determines the relative motion. The angular moment
operator

L52 i ]u22a0

acts only on the collective-motion coordinate. Thee-e inter-
action, shown in Fig. 5~a!, depends only on the relative dis
tance,

W~c!5
1

usincu
.

It thus has no effect on the persistent angular momentum
long as the collective and relative motions are uncoupled
the ground state, the relative position approachesc5p/2 for
increasinge-e interaction parameterh2. In the limit of infi-
nite interaction one gets

lim
h2→`

c5
p

2
,

i.e., the distance between the electrons reaches its maxim
value.

A one-particle potential term

HeV52(
n.0

~vneinu1 v̄ne2 inu!cos~nc!

introduces backscattering. It leads always to a reduction
the persistent angular momentum^L&. The reduction of̂ L&
depends on thee-e interaction, sinceHeV induces a coupling
between the collective and the relative motions. To elucid
this dependence, we discuss the case of one-particle po
tials with a single non-zero Fourier component.

The situation forvn5v1d1n is depicted in Fig. 5~b!. It is
seen that thee-e interaction confines the wave function in
region where the potential variations are small in the dir
tion of the collective motion. The persistent angular mom

FIG. 4. Same as Fig. 2, but for included backscattering b
one-electron potential (v250.1). The energy gaps due to potent
backscattering slightly increase with increasinge-e interaction
parameterh2.
15533
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tum thus increases with thee-e coupling h2. This case is
representative for one-particle potentials described solely
nonzero Fourier componentsv2m11.

The casevn5v2d2n is presented in Fig. 5~c!. In contrast
with the above, thee-e interaction now confines the wav
function in a region where the potential variations are la
in direction of the collective motion. The resulting persiste
angular momentum thus decreases with increasinge-e cou-
pling h2. This case is representative for one-particle pot
tials described solely by nonzero Fourier componentsv2m .

The above analysis shows that the interaction betw
two electrons tends to suppress the backscattering due to
odd Fourier componentsv2m11 in HeV . In the limit h2

→`, only the even componentsv2m reduce the persisten
angular momentum.

For small e-e interaction parametersh2, the persistent
angular momenta can easily be calculated using the bas
the Slater determinants of plane waves. For largee-e cou-
pling, the number of basis vectors required to ensure a g
accuracy increases rapidly. It is then preferable to use
collective and relative coordinates defined in Eq.~11!.

For small one-particle potential termsHeV , the eigen-
states of the HamiltonianH ~12! for HeV50 provide a con-
venient basis of the Hilbert spaceH. The symmetry proper-
ties of the wave functions can be easily expressed in
coordinatesu andc. The spatial periodicity leads to

C~u1p,c1p!5C~u1p,c2p!5C~u,c!,

and the antisymmetry for the exchange of the electrons
quires

C~u,2c!52C~u,c!.

In particular, we have

C~u,lp!50, lPZ,

and thus we may introduce separate cellsC for the relative
motion. With the choice

cPC5@0,p@ ,

the spatial periodicity and the antisymmetry of the wa
functions lead to the symmetry property

C~u1p,p2c!52C~u,c!. ~13!

The Hilbert space is

H5P„L2~@0,2p@3@0,p@!…

with the scalar product

^ f ug&5
1

2pE0

2p

du
2

pE0

p

dc f̄~u,c!g~u,c!.

In particular, the eigenstates of the Hamiltonian~12! for free
and noninteracting electrons (h250 andHeV50) are

ckn~u,c!5eikusin~nc!, k,n with same parity,

a

3-5
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FIG. 5. One-particle potential termHeV and e-e interaction potentialHee ~left and central column! for two electrons, and the corre
sponding persistent angular momenta~right column!. The left column shows a schematic plot of the superimposed potentialsHeV andHee

in the (u1 ,u2) plane for ~a! HeV50, ~b! v1Þ0, and ~c! v2Þ0. The central column contains the summed potentialsHeV1Hee. The
corresponding persistent angular momenta are shown in the right column for~a! HeV50, ~b! v150.5,~c! v250.1, and for thee-e interaction
parametersh250 ~dotted line!, h251 ~dashed line!, andh25103 ~full line!. In absence of the one-particle potential termHeV50 @see~a!#,
the persistent angular momentum is independent of thee-e interaction parameterh2. For v1Þ0 @see~b!#, the persistent angular momentu
rises with increasingh2. For v2Þ0 @see~c!#, the persistent angular momentum decreases with increasingh2.
d
ym-
Ekn5
1

2
~k22a0!21

1

2
n2, kPZ, 1<nPN.

More generally, for interacting electrons (h2Þ0 and HeV
50), one gets

ckn~u,c!5eikuwn~c!, kPZ, nPN,
15533
Enwn5H relwn , ~14!

Ekn5
1

2
~k22a0!21En ,

where the indicesk andn associated with the collective an
the relative motion, respectively, are related through the s
metry property~13!. Each moden of the relative motion is
3-6
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associated with an infinite set of parabolic energy band
a0P@21/2,1/2@ ~Figs. 2–4!. We note that the functions
ckn(u,c) are the exact solutions including electronic cor
lation.

For largee-e couplingh2, the lowest energy levelsEn for
the relative motion may be calculated using the harmo
approximation of thee-e potential near its minimum in the
cell C at c5p/2,

W~c!5
1

sinc
'11

1

2 S c2
p

2 D 2

.

The constant term is irrelevant and can be omitted. With
shift q5c2p/2PQ5@2p/2,p/2@ , which corresponds to
the choice of the origin at the center of the cellC, the relative
motion is described by the Hamiltonian of the harmonic
cillator

H rel5
1

2
~2]q

21h2q2!.

Provided that the relevant eigenfunctionswn of the har-
monic oscillator are sufficiently localized within the ce
Q, one may replace the Hilbert spaceH5P„L2(@0,2p@
3@2p/2,p/2@)… by

H5P„L2~@0,2p@3R!…

with the scalar product

^ f ug&5
1

2pE0

2p

duE
2`

`

dq f̄~u,q!g~u,q!.

Setting the ground-state energy to zero, the eigenvalues
eigenstates ofH rel are ~see Appendix A!

En5nh, nPN,

wn~q!5
h1/4

A2nn!Ap
Hn~qAh!e2q2h2/2, ~15!

whereHn(z) is thenth Hermite polynomial. For reasons o
simplicity we use the same symbolw in the above equation
and for the functionw in Eq. ~14!, although both differ due
to the shift of the origin. The high accuracy of the harmon
approximation is shown in Fig. 6, where we compare
exact energiesEn obtained by numerical solution of Eq.~14!
with the corresponding values from the harmonic approxim
tion.

With the new choice of the origin the symmetry prope
~13! becomes

C~u1p,2q!52C~u,q!.

A convenient basis ofH is then provided by the eigenstate
of H01Hee in the harmonic approximation~15!

ckn~u,q!5eikuwn~q!, k,n with opposite parity, ~16!

Ekn
(0)5

1

2
~k22a0!21nh, kPZ, nPN.
15533
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The opposite parity ofk andn follows from the symmetry of
the Hermite polynomials.

With the coordinatesu and c, the one-particle potentia
term reads

HeV52(
n.0

~vneinu1 v̄ne2 inu!cosFnS q1
p

2 D G .
Expressing the matrix elementsVkn

k8n8 of HeV in the basis
given by Eq.~16!, we obtain the eigenstates of the Ham
tonian ~12! from the solutions of the eigenvalue equation

FE5@E(0)1V#F.

These solutions are exact for stronge-e interaction, since
correlation effects are fully accounted for by the basis fu
tions Eq.~16!.

IV. N INTERACTING ELECTRONS

The normalizede-e interaction parameterh2 being of the
order of 104 for typical sample sizes~see Sec. II!, we have to
deal with strong electronic correlations. Thus, it is quite o
vious that the basis formed by the eigenstates of the Ha
tonian for noninteracting electrons is not well suited to d
scribe the influence of thee-e interaction on the eigenstate
of the Hamiltonian~5!. In the following we generalize the
approach of the previous section introducing again collec
and relative coordinates, but now forN electrons.

The N electron positions are described by the vectoruW
PRN. The Hamiltonian given by Eqs.~6!–~8! acts in the
Hilbert spaceH5P„L2(@0,2p@N)…. In analogy with the de-
scription of phonon modes in a one-dimensional ring of
oms, it is convenient to introduce the real cosine-Four
transform of the coordinates. We define theN vectors fWn
PRN21, n51, . . . ,N, by their N21 components j
51, . . . ,N21,

~ fWn! j5
A2

AN
cosS jnb01

p

4 D , b05
2p

N
.

FIG. 6. EnergiesEn associated with the relative motion as
function of thee-e interaction parameterh2. Results obtained using
the free-electron basis~solid lines!; Results obtained in the har
monic approximation~dashed lines!. The ground-state energy is se
to zero.
3-7



a

y

al
ive

-

te
n

s

ns

uta-

GUIDO BURMEISTER AND KLAUS MASCHKE PHYSICAL REVIEW B65 155333
These vectors are linearly dependent, since(n51
N fWn50W . The

collective coordinateuPR and the relative coordinatescW
PRN21 are then expressed as

u5
1

N (
n

un , cW5(
n

unfWn . ~17!

The position coordinates of the electrons can be written
~see Appendix B!

un5u1 fWn
t cW , n51, . . . ,N. ~18!

Expressed in terms of the new coordinatesu and cW , the
Hamiltonian for free electrons reads~Appendix B!

H05
1

N
~2 i ]u2Na0!22DN21 ,

where DN215( j 51
N21]cj

2 is the Laplacian inRN21. The e-e

interaction term becomes

Hee5 (
1<n,n8<N

h2

UsinF1

2
~ fWn

t 2 fWn8
t

!cW GU ,

and the one-electron potential term is now given by

HeV5 (
n.0

vneinu(
n51

N

ein fWn
t cW1c.c.

The total angular momentum

L52 i ]u2Na0 ~19!

depends only on the collective motion of the electrons.
The condition~3!, which follows from the antisymmetry

of the wave functions, now reads

C50 if
1

2
~ fWn

t 2 fWn8
t

!cW5lnn8p, nÞn8, lnn8PZ. ~20!

As expected, the collective coordinateu does not enter this
condition.

The circular symmetry of the loop~1! as well as the an-
tisymmetry condition~2! give rise to characteristic symmetr
properties of theN-electron wave functions inRN. In the
directions orthogonal tou, the antisymmetry imposes nod
planes of the wave functions. These planes, which are g
by Eq. ~20!, delimit separate cellsC in RN21 ~see examples
in Appendix D!. The spaceRN is thus subdivided into iden
tical prisms directed in theu direction, the cellsC forming
the bases. The function values in different cells being rela
by symmetry, it is sufficient to determine the wave functio
within a single cell.

In the following we consider the particular cellC

0,
1

2
~ fWn

t 2 fWn8
t

!cW5
1

2
~un2un8!,p, 1<n,n8<N.

This choice corresponds to the specific ordering
15533
s

n

d
s

u122p,uN,•••,u2,u1,uN12p. ~21!

Choosing the N21 linearly independent vector
$ fWn%n51, . . . ,N21 as a basis ofRN21, one gets for a pointcW
inside the cell~21!

cW5 (
n51

N

~un2uN! fWn .

With s i.0, i 51, . . . ,N and 0,sN21,•••,s11•••

1sN21,s11•••1sN51, we may also write

un2uN52p~sn1•••1sN21!, n51, . . . ,N21.

Thus,cW is given by

cW5(
i 51

N

s iSW i with s i.0 and (
i 51

N

s i51, ~22!

where

SW 152p fW1 ,

SW 252p~ fW11 fW2!,

A

SW N2152p~ fW11•••1 fWN21!,

SW N52p~ fW11•••1 fWN211 fWN!50W ,

are the summits of the cellC,RN21 with the center

VW 5
1

N (
i 51

N

SW i5 (
n51

N

VnfWn , Vn5
2p

N
~N2n!.

Due to the circular symmetry of the loop, the wave functio
must be periodic with respect to the translationsun°un

1ln2p, lnPZ. Expressed in the new coordinatesu andcW
defined in Eq.~17!, these translations become

u°u1ln

2p

N
,

cW°cW1ln2p fWn .

Accordingly, the periodicity condition~1! for the wave func-
tions now reads

C~u,cW !5CS u1ln

2p

N
,cW1ln2p fWnD ,

lnPZ, n51, . . . ,N.

The exchange of two electrons corresponds to the comm
tion (uk ,u l)°(u l ,uk),kÞ l . Expressed in the coordinatesu

andcW , this operation is given by

u°u,
3-8
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cW5 (
n51

N

unfWn° (
n51

N

unfWn1~u l2uk!~ fWk2 fW l !

5cW2@~ fWk
t 2 fW l

t!cW #~ fWk2 fW l !,

which follows directly from Eqs.~17! and ~18!. Since uu fWk

2 fW l uu252 ~see Appendix B!, this corresponds to a reflectio
with respect to the hyperplane perpendicular tofWk2 fW l ,
which is generated by theN22 independent vectorsfWn ,n
ÞkÞ lÞn. The antisymmetry condition~2! reads

C~u,cW !52C„u,cW2@~ fWk
t 2 fW l

t!cW #~ fWk2 fW l !…, kÞ l .

The conditions of periodicity and antisymmetry impose
symmetry property on the wave function inside the cellC. A
permutation of two electronsuk andu l permutesfWk and fW l in
Eq. ~17!. A cyclic permutationPp of the electrons corre
sponds to the cyclic permutation

~ fW1 , . . . ,fWN!°~ fW11p , . . . ,fWN , fW1 , . . . ,fWp!

transformingfWn into fWn1p . The indices are taken moduloN.
A summit SW i of the cell C is thus transformed intoSW i 1p

2SW p . The cell C is transformed into an identical cell, bu
translated by2SW p and with cyclically permuted summits
Accordingly, a pointcW (0)PC given by Eq.~22! transforms as

cW (0)°cW p
(0)5(

i 51

N

s iSW i 1p2SW p ,

since( i 51
N s i51. Translating the cell back bySW p , we obtain

the initial cell but, due to the cyclic permutation of the sum
mits, the resulting transformation ofcW (0) is

cW (0)°cW (p)5cW p
(0)1SW p5(

i 51

N

s iSW i 1p ,

with

s i.0, (
i 51

N

s i51.

As there areN cyclic permutationsPp , p51, . . . ,N, this
operation relates the wave functions at theN points cW (p) in
the cell. A cyclic permutationPp of N electrons can be de
composed intop(N21) permutations of two electrons. Th
leads to the multiplication of the wave function b
(21)p(N21). While the permutations do not modify the co
lective position u, the translationSW p52p( fW11•••1 fWp)
leads to the transformation

u(0)°u(p)5u(0)1p
2p

N

because of the periodicity of the wave function inun . For
p51, the conditions of periodicity and antisymmetry lead

C~u8,cW8!5~21!N21C~u,cW !, ~23!
15533
-

with u85u12p/N, cW5cW (0), andcW85cW (1). This defines the
symmetry property of the wave function within the cell.

The result~23! can also be obtained directly from the ce
definition ~21!. The cyclic permutationP1 of theN electrons
replaces electronn21 by electronn, and the new position of
electronn becomesun21. To restore the ordering of the elec
trons~21!, one has then to move electron 1 touN12p. Thus
the new positionun8 of electronn after these operations is

un85un2112pdn1 . ~24!

With the new collective and relative coordinatesu8 and cW8
given by Eq.~17!, we obtain again Eq.~23!.

For convenience, we put the origin at the centerVW of the
cell C. The new relative position

qW 5cW2VW PQ,RN21 ~25!

is a point in the shifted cellQ. In particular, the originqW

50W describes the configuration, where theN electrons are
equally distributed on the ring. In this case the electrons fo
a lattice with the spacingb052p/N. Using the relation

fWn
t VW 5 fWn

t (
j 51

N

V j fW j5
p

N
~N1122n!,

which follows directly from the properties of the vectorsfWn ,
we obtain for the position of electronn @Eq. ~18!#,

un5u1
p

N
~N1122n!1

A2

AN
(
j 51

N21

cosS n jb01
p

4 Dqj .

The relative coordinateqj defines the amplitude of a distor
tion j of the electron lattice. These distortions are illustrat
for N550 andj 51,N21,2,N22,3,N/2 in Fig. 7. The sym-
metry property~23! of the wave function becomes

C~u8,qW 8!5~21!N21C~u,qW !. ~26!

Considering the pairs

qj5(
n

~un2Vn!~ fWn! j , qN2 j5(
n

~un2Vn!~ fWn!N2 j

for j 51, . . . ,@(N21)/2#, and the identities

FIG. 7. Distortions of an electron lattice associated with diffe
ent normal modesj for N550 electrons.
3-9
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~ fWn11! j5
A2

AN
cosS j ~n11!b01

p

4 D
5cos~ j b0!~ fWn! j2sin~ j b0!~ fWn!N2 j ,

~ fWn11!N2 j5
A2

AN
cosS 2 j ~n11!b01

p

4 D
5sin~ j b0!~ fWn! j1cos~ j b0!~ fWn!N2 j ,

we get under the transformation~24!

S qj8

qN2 j8
D 5S cos~ j b0! 2sin~ j b0!

sin~ j b0! cos~ j b0!
D S qj

qN2 j
D . ~27!

This describes a rotation with anglej b0 in the (qj ,qN2 j )
plane. For evenN one has also

qN/25
1

AN
(

n
~un2Vn!~21!n

and

qN/28 52qN/2 .

The Hilbert space is

H5P„L2~@0,2p@3Q!…,

and the Hamiltonian terms are

H05
1

N
~2 i ]u2Na0!22DN21 ,

Hee5 (
1<n,n8<N

h2

UsinF1

2
~ fWn

t 2 fWn8
t

!~VW 1qW !GU ,

HeV5 (
n.0

vneinu(
n51

N

ein fWn
t (VW 1qW )1c.c., ~28!

whereDN215( j 51
N21]qj

2 is the Laplacian inRN21. The angu-

lar momentumL is given by Eq.~19!.

V. ELECTRON-ELECTRON INTERACTION; HARMONIC
APPROXIMATION

Thee-e interaction potentialHee5h2W may be seen as
potential acting within the cellQ,RN21. It is determined by
the e-e interaction strengthh2 and

W5 (
1<n,n8<N

1

sinF1

2
~ fWn

t 2 fWn8
t

!~VW 1qW !G .

With the notation

ann85
1

2
~ fWn

t 2 fWn8
t

!VW 5
p

N
~n82n!
15533
and the second-order approximation

1

sin~a1h!
'

1

sina
2

cosa

sin2a
h1

11cos2a

2sin3a
h2,

we have

W'W01W11W2 .

The constant term

W05 (
1<n,n8<N

1

sinann8

may be set to zero for an appropriate choice of the zero
energy. The first-order term

W152
1

2 (
1<n,n8<N

cosann8

sin2ann8

~ fWn
t 2 fWn8

t
!qW 50

vanishes~Appendix C!. A strong e-e interactionHee may
therefore be approximated by a parabolic potential with
minimum on the center of the cellQ. The second-order term
becomes~Appendix C!

W25 (
1<n,n8<N

11cos2ann8

2sin3ann8
S 1

2
~ fWn

t 2 fWn8
t

!qW D 2

5 (
j 51

N21

v j
2qj

2 ,

which corresponds to a sum of harmonic potentials. T
plasma frequenciesv j are given by

v j
25 (

n51

N21 11cos2
np

N

4sin3
np

N

sin2
j np

N
, j 51, . . . ,N21.

The frequenciesv j5vN2 j , j 51, . . . ,@(N21)/2# are de-
generate except for evenN, where the frequencyvN/2 is
nondegenerate. Figure 8 shows the vibration frequencies
N511 and N520. The lowest plasma frequency may b
approximated for largeN ~Appendix C! by

FIG. 8. Plasma frequenciesv j for N511 electrons (1) and for
N520 electrons (s).
3-10
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v1
25vN21

2 '
N

p
ln

4N

pAexp~1!
.

The comparison with the numerical results shows that
N.500 this approximation differs by less than two perce
from the exact result. The case of two electrons has alre
been discussed in Sec. III. The present general approa
illustrated in Appendix D for two, three, and four electron

With the harmonic approximation for thee-e interaction,
it becomes possible to study the dynamics of an arbitr
numberN of electrons in a static magnetic field. For suf
ciently small one-particle potentials, a convenient basis
the Hilbert space

H5P„L2~@0,2p@3RN21!…

is given by the eigenstates of the Hamiltonian

H01Hee5
1

N
~2 i ]u2Na0!21H rel .

The Hamiltonian of the relative motion

H rel52DN211 (
j 51

N21

h2v j
2qj

2

describesN21 independent harmonic oscillators. Since c
lective and relative motions are uncoupled, the Hamilton
is separable, and its eigenstates can be written

c~u,qW !5eikuw~qW !,

where

H relw5Ew. ~29!

With an appropriate choice of the energy origin, the eig
valuesE are

E5 (
j 51

N21

2hnjv j , njPN.

The eigenfunctionsw(qW ) are given by the product ofN21
one-oscillator eigenfunctions. They satisfy the symme
condition ~26!,

eik(2p/N)w~qW 8!5~21!N21w~qW !, ~30!

which relates the symmetry ofw(qW ) describing the relative
motion with that of the collective motion labeled byk. This
relation will be derived in the following.

Due to the degeneracyv j5vN2 j , the HamiltonianH rel ,
restricted to the plane (qj ,qN2 j ), j 51, . . . ,@(N21)/2#, de-
scribes an isotropic two-dimensional harmonic oscillat
This suggests to use polar coordinates

qj5r jcosb j , qN2 j5r jsinb j . ~31!

The symmetry operations~27! correspond to a rotation in
this plane, so that

~r j8 ,b j8!5~r j ,b j1 j b0!, j 51, . . . ,@~N21!/2#, ~32!
15533
r
t
dy

is

y

f

-
n

-

y

r.

qN/28 52qN/2 if N is even.

The ground state of the relative motion~29! is given by~see
Appendix A!

E050,

w0~qW !5@w0
(N/2)~qN/2!#

pN )
j 51

[(N21)/2]

w00
( j )~r j ,b j !

5F S hvN/2

p D 1/4

e2qN/2
2 hvN/2/2G pN

)
j 51

[(N21)/2] S hv j

p D 1/2

e2r j
2hv j /2,

wherepN denotes the parity ofN,

pN5H 1 if N is even,

0 if N is odd.

Clearly, the ground state of the relative motion is invaria
under the symmetry operations~32!,

w0~qW 8!5w0~qW !.

Thus the possiblek values are given byeik(2p/N)

5(21)N21, i.e.,

k05H mN if N is odd

S m1
1

2DN if N is even
mPZ.

A first single-oscillator excitation has the energy

E 1
( j )52hv j5E1

(N2 j ) .

Due to the twofold degeneracy forj 51, . . . ,@(N21)/2#, the
eigenfunctions are~see Appendix A!

w1
( j )~qW !5Ahv je

ib j r jw0~qW !,

w1
(N2 j )~qW !5Ahv je

2 ib j r jw0~qW !.

For evenN we have

w1
(N/2)~qW !5AhvN/2qN/2w0~qW !.

With the symmetry of the wave function~30! and the trans-
formation ~32!, the k values are given byeik(2p/N)ei ( j 2p/N)

5(21)N21, j 51, . . . ,N21, i.e.,

kj5H mN2 j if N is odd

S m1
1

2DN2 j if N is even
mPZ.

More generally, the excited relative modes have the ener

E52hvN/2nN/2pN1 (
j 51

[(N21)/2]

2hv j~2mj1u l j u!

and the eigenfunctions are
3-11
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w~qW !5@wnN/2~qN/2!#
pN )

j 51

[(N21)/2]
1

A2p
eil jb jRmj l j

~r j !.

According to the symmetry property~30! and the transfor-
mation ~32!, the admissible values fork are given by

k1 (
j 51

[(N21)/2]

j l j1
N

2
nN/2pN5S m1

1

2
pNDN, mPZ.

~33!

In the description of one-dimensional harmonic oscillator

mj5min~nj ,nN2 j !, l j5nj2nN2 j ,

this becomes

k1 (
j 51

N21

jn j5S m1
1

2
pNDN, mPZ.

Resuming the indices describing a relative excitation by
index %, the orthonormal basis$uk%&% of H reads

^u,qW uk%&5eikuw%~qW !,

Ek%
(0)uk%&5~H01Hee!uk%&,

Ek%
(0)5

1

N
~k2Na0!21E% . ~34!

VI. INFLUENCE OF THE ONE-PARTICLE
POTENTIAL H eV

In the basis developed in the previous section, the eig
states of the total Hamiltonian including the one-particle p
tential termHeVÞ0 become

uC&5 (
k8%8

uk8%8&Fk8%8 .

They are the solutions of the Schro¨dinger equation

FE5~E(0)1V!F,

with the matrix elements

E(0)
k%
k8%85Ek%

(0)dk%
k8%8 ,

Vk%
k8%85^k%uHeVuk8%8&.

The Fourier decomposition of the one-particle potential te
~28! can be written as

HeV5 (
n.0

vneinuI n~qW !1v2ne2 inuI 2n~qW !

with v2n5 v̄n , and
15533
e

n-
-

I n~qW !5 (
n51

N

expF in
p

N
~N1122n!GexpF in

A2

AN
(
j 51

N21

r jsinS b j

1
p

4
2n jb0D G , ~35!

where the relative positionsqW are expressed in polar coord
nates@see Eq.~31!#. Thus, thenth Fourier component of the
matrix V is obtained from

Vk%
k8%8~n!5vndk

k81n^%uI nu%8&1v2ndk
k82n^%uI 2nu%8&.

The above expression shows that a componentvn leads to a
coupling between the collective statesk andk8 only when

uk2k8u5n. ~36!

In the following, our discussion will be restricted to od
electron numbersN, which implies thatpN50. The exten-
sion to evenN is straightforward, the difference betwee
systems withN and N11 electrons being essentially de
scribed by a shifta0°a011/2 for all physical quantities.27

The products

u%&5 ^ j 51
(N21)/2umjl j&5 ^ j 51

(N21)/2uml& j ,

which describe the eigenstatesumjl j&, mjPN, l jPZ of the
(N21)/2 two-dimensional harmonic oscillators~Appendix
A!, form a basis in the Hilbert space associated with
relative motion. The relative states, their energies and
possible values corresponding to the collective statesk are
given in Table I for the eight lowest energies of the relati
motion. The symbolss, v, x, andh in the last column
in Table I identify the minima of the energy bands forN
511 electrons shown in Fig. 9. Due to the degeneracy of
relative energies, minima ata0 and2a0 have the same en
ergy.

The matrix elementŝ%uI nu%8& ~Appendix E! lead to a
coupling between the relative states for

n1 (
j 51

(N21)/2

~ l j2 l j8! j 5mN, mPZ.

This is consistent with the coupling condition~36! and the
relation ~33! between the collective and the relative states

In presence of a weak one-particle potential, the grou
state of theN-electron system is well described in the ba
of the low-energy eigenstates ofH01Hee. According to
condition~36!, only Fourier componentsv1 , v2 , v3 , v4, and
vN couple in first order between the first eight relative sta
~Appendix E!. In the following, we choose a one-partic
potential with nonzero componentsv1 andvN ,

vn50, nÞ1,N.

With this restriction, the matrix elements ofV are

Vk%
k8%8~1!5v1dk

k811^%uI 1u%8& 1v21dk
k821^%uI 21u%8&,

~37!
3-12
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TABLE I. Lowest excitation energies of the relative motion and correspondingk values. We use the

notation l̄ 52 l , and u0& j >35 ^ j 53
(N21)/2u00& j denotes the ground state of the harmonic oscillatorsj

53, . . . ,(N21)/2.

Excitation Energy State Values fork

Ground state E050 u0&5u00&1u00&2u0& j >3 k5mN (s)

First excitation E 1
(1)52hv1 u111&5u01&1u00&2u0& j >3 k115mN (v)

u121&5u01̄&1u00&2u0& j >3
k215mN (x)

E 1
(2)52hv2 u112&5u00&1u01&2u0& j >3 k125mN (v)

u122&5u00&1u01̄&2u0& j >3
k225mN (x)

Second excitation E 2
(1)54hv1 u211&5u02&1u00&2u0& j >3 k125mN (v)

u20&5u10&1u00&2u0& j >3 k5mN (h)

u221&5u02̄&1u00&2u0& j >3
k225mN (x)
s

rm
e

tw
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s
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e
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I

Vk%
k8%8~N!5vNdk

k81N^%uI Nu%8&1v2Ndk
k82N^%uI 2Nu%8&.

~38!

They are given in Appendix E.
The influence of the one-particle potential termHeV and

of the e-e interaction potentialHee on the energy band
^H&(a0) and on the persistent angular momentumLpers(a0)
is shown in Figs. 10 and 11 forN51001. In accordance with
Table I, the energy bands for the same relative excitationE%

are almost degenerate for largeN.
The coupling induced by the one-electron potential te

HeV between two states decreases with their distance in
ergy. The strongest coupling occurs at the crossing of
energy bands~34! E(a0)5E8(a0), which is situated at

a05
k22k821NE%2NE%8

2N~k2k8!
, ua0u<

1

2
.

As can be seen in Fig. 10~a!, such a band crossing does n
occur foruk2k8u51 in the considered energy region. This
due to the fact that excitation energies of the relative mot
E% are rather large for the considered stronge-e interaction.
The Fourier componentsv1 thus only lead to a weak cou
pling. Band crossings are found foruk2k8u5N, where the

FIG. 9. Energy bands forN511 interacting electrons in absenc
of a one-particle potential term (HeV50). Thee-e interaction pa-
rameter ish25102. The symbolss, v, x, and h identify the
minima of the bands corresponding to the states given in Table
15533
n-
o

n

Fourier componentsvN then lead to a strong coupling. Thi
is the case forE%5E%8 at the band edgesa056 1

2 . In par-
ticular, the ground state (k50, E50) couples to the first
bands (k56N, E50). As seen in Fig. 10~b!, a gap opens a
the crossings. Correspondingly, the persistent angular
mentumLpersshown in Fig. 11 is reduced with respect to th
angular momentum forHeV50. Following the same argu
ments, one finds again weak coupling for any Fourier co
ponentsvn ,nÞN,2N, . . . . Only the Fourier component
vmN , mPN, give rise to a strong coupling.

In the limit of infinite e-e interaction (h2→`), all states
with finite energies are associated with the ground state
the relative motionu0&, i.e., the ground state ofN21 har-
monic oscillators. The relative motion is completely loca
ized at the center of the cellqW 50W defined in Eq.~25!. This
corresponds to an even distribution of theN electrons on the
circle,

un2un115
2p

N
, n51, . . . ,N21.

According to Eq. ~35!, the contributionsvn to the one-
particle potential are suppressed for nonintegern/N, as

FIG. 10. Energy bands forN51001 interacting electrons. Th
e-e interaction parameter ish25103. The results are given for~a!
HeV50 and ~b! vN51. The indicatedk values identify the bands
corresponding to the states given in Table I. ForvN51, gaps are
opened between energy bandsk andk8 whenk2k85N..
3-13
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lim
h2→`

^0uI nu0&5I n~0W !5 (
n51

N

ein(2p/N)n5Ndn
mN , mPN.

Only the Fourier-componentsvmN , mPN, influence the col-
lective positionu and the angular momentum. This gener
izes the result given for two electrons in Sec. III. In th
limit, the N-electron system is described by the one-parti
Hamiltonian for the collective motion

H5
1

N
~2 i ]u2Na0!21N (

m.0
vmNeimNu~21!m(N11)1c.c.

The relative ground state being the most symmetric, it f
lows from the periodicity and the antisymmetry~26! that the
solutions to the Schro¨dinger equation must satisfy

CS u1
2p

N D5~21!N21C~u!,

and that they are superpositions of functions of the type

ck~u!5eiku, k5H mN if N is odd

S m1
1

2DN if N is even
mPZ.

VII. CONCLUSIONS

We have investigated the electronic spectrum for a o
dimensional mesoscopic loop in a time-independent m
netic flux, admitting for an arbitrary numberN of interacting
electrons as well as for the presence of a one-particle po
tial.

Our approach for interacting electrons relies on the cho
of an adequate basis of antisymmetricN-electron functions.
Basis functions separable with respect to the collective
the relative motions are particularly convenient to treat
e-e interaction, since the latter depends only on the intere
tronic distances. The best functions are the eigenfunction
the HamiltonianH5H01Hee for a zero one-particle poten
tial, since they account already for thee-e interaction. For
large e-e interaction parametersh2, the interaction can be
adequately treated in the harmonic approximation, where

FIG. 11. Persistent angular momentum forN51001 interacting
electrons (h25103) for HeV50 ~dashed line! and forvN51 ~solid
line!.
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relative motion of the electrons is described byN21 har-
monic oscillators. The excitation energies associated with
relative motion are proportional toh. The total-energy spec
trum is obtained by summing the collective and the relat
contributions. Following this approach, we have obtaine
concise and transparent description of the ground state
well as of the first excited levels. The presented solutio
become exact for stronge-e interaction.

Furthermore, we have investigated the interplay betw
the e-e interaction and the backscattering by a one-parti
potential. The influence of both types of interaction on t
persistent angular momentum~or persistent current!, which
is fully determined by the collective electronic motion in th
ground state, has been discussed in detail. In agreement
Refs. 1,2, we find that the persistent angular momentum
well as the ground-state energy are both periodic in the m
netic flux with periodF05h/e. In absence of a one-particl
potential termHeV , the collective and relative motions ar
not coupled, and the persistent angular momentum rem
equal to the free-electron value. The situation becomes
ferent in presence of backscattering by a one-particle po
tial termHeV , since the latter introduces a coupling betwe
the relative and the collective electronic motions. The nu
ber of basis states needed to describe theN-electron states
with lowest energies remains comfortably small for moder
one-particle potentials. We have shown that only the fi
Fourier componentsvn of HeV , for example,n51,2,3, and
theNth componentvN can be expected to lead to noteworth
coupling between the low-energy basis states. In agreem
with the general findings of Ref. 20, we have further fou
that the e-e interaction tends to suppress th
backscattering.28 Our present analysis shows, however, th
the suppression concerns only Fourier components with n
integern/N. Thus, in the limith2→`, only the Fourier com-
ponentsvmN , mPN, affect the collective motion and ma
reduce the persistent angular momentum with respect to
free-electron case. Considering the fact that the impurity
tentials leading to backscattering have a limited range in
reciprocal space~or the n space!, we believe that this may
explain that unexpected large persistent currents are fo
only for metallic loop structures, whereN is large,5,6 whereas
the currents found in semiconductor ring systems appea
be of the expected order of magnitude.7

We have restricted our discussion to spinless electro
The theoretical description can be extended to include s
wave functions. The energy spectra remain the same bes
a shift in the magnetic flux by a multiple ofF0 /N, depend-
ing on the symmetry of the spin function~see Ref. 29!. Thus,
admitting that the spin function changes to minimize t
ground-state energy, we obtain oscillations of the grou
state energy and the persistent angular momentum with
riod F0 /N. This type of behavior is also found in descrip
tions based on the Hubbard model, see, e.g., Ref. 17.

In this work we have concentrated on the discussion
the ground-state properties, which are manifest in the per
tent angular momenta. We did not fully exploit the achiev
knowledge about the excited electronic states. In particu
the low-energy excitations, which are well within the sco
of the presented approach, are important for the underst
3-14
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ing of the dynamical response properties of the conside
ring system with respect to external time-dependent fie
The investigation of these features is presently underwa
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APPENDIX A: HARMONIC OSCILLATOR

The Hamiltonian for a particle in a one-dimensional pa
bolic potential is

H52
\2

2m
]x

21
mv2

2
x2.

Its eigenvalues and eigenfunctions are

En5\vS n1
1

2D , nPN,

wn~x!5
1

Ax0
A2nn!Ap

Hn~x/x0!e2x2/2x0
2
, x05A \

mv
,

whereHn(z) is the nth Hermite polynomial. For\52 and
m52 we get the normalized Hamiltonian

H52]x
21v2x2

with the eigenvalues and eigenfunctions

En52vS n1
1

2D , nPN,

wn~x!5
v1/4

A2nn!Ap
Hn~xAv!e2x2v/2. ~A1!

Accordingly, the Hamiltonian of the anisotropic harmon
oscillator inD dimensions is

H52DD1(
j 51

D

v j
2qj

2

with the eigenvalues and eigenfunctions

En1 , . . . ,nD
5(

j 51

D

Enj
,

Enj
52v j S nj1

1

2D njPN,

wn1 , . . . ,nD
~qW !5)

j 51

D

wnj
~qj !,
15533
d
s.

e
-

-

wnj
~qj !5

v j
1/4

A2njnj !Ap
Hnj

~qjAv!e2qj
2v j /2.

For a particle in a two-dimensional isotropic parabolic p
tential V(r )5v2r 2, the Hamiltonian of the harmonic oscil
lator expressed in polar coordinates reads

H52D1v2r 2, D5] r
21

1

r
] r1

1

r 2
]b

2 .

The eigenstates are obtained from

Hw~r ,b!5Ew~r ,b!

with the boundary conditions

w~r ,b!5w~r ,b12p!,

lim
r→`

w~r ,b!50,

lim
r→0

w~r ,b!,`.

Separating the variables, we write

w~r ,b!5R~r !g~b!,

where

gl9~b!52 l 2gl~b!, gl~b!5
1

A2p
eil b, l PZ,

and

2R92
1

r
R81

l 2

r 2
R1v2r 2R5ER,

with the boundary conditions limr→`R(r )50 and
limr→0R(r ),`. Using the transformationR(r )5r 21/2f (r ),
we get finally the normalized solution30

Eml52v~2m1u l u11!, mPN, l PZ,

wml~r ,b!5Rml~r !gl~b!, ~A2!

gl~b!5
1

A2p
eil b,

Rml~r !5A2vS m!

~m1u l u!! D
1/2

~Avr ! u l uLm
(u l u)~vr 2!e2vr 2/2,

where Lm
(a)(z) is the generalized Laguerre polynomial. W

have

E
R2

uw~x,y!u2dx dy5E
0

2p

dbE
0

`

dr r uw~r ,b!u251.

For a particle in aD-dimensional parabolic potential an
even D, the potential may be described by a sum of tw
dimensional isotropic parabolic potentials. Thus, the wa
3-15
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function for the harmonic oscillator can be written as a ten
product of solutions of type~A2!. Accordingly, for odd di-
mensionsD, the solution for the harmonic oscillator is give
by a tensor product ofN21 solutions of type~A2! and one
solution of type~A1!.

APPENDIX B: ORTHOGONAL TRANSFORMATION
IN REAL SPACE

The matrixP of the orthogonal transformation is given b

S u

cW
D 5PuW , P5S 1/N ••• 1/N ••• 1/N

fW1 ••• fWn ••• fWN
D .

From the direct calculationPPt5D5diag(1/N,1, . . . ,1),
one getsD21/2PPtD21/25I, i.e., the matrixU5D21/2P is
unitary. ThusUUt5UtU5PtD21P5I. It follows

fWn• fWn81
1

N
5dn

n8 ,

(
n51

N

fWn50W ,

~ fWn2 fWn8!• fWn950, nÞn9Þn8,

~ fWn2 fWn8!• fWn51, nÞn8,

uu~ fWn2 fWn8!uu
252, nÞn8.

From the inverse relation

uW 5P21S u

cW
D ,

it follows that each electron position can be written as

un5u1 fWn
t cW , n51, . . . ,N.

For n51, . . . ,N, the derivatives transform as

]n5]nu]u1 (
j 51

N21

]ncj]cj
5S ]nu

]ncW
D tS ]u

]c1

A

]cN21

D
and formally as

S ]1

A

]N

D 5PtS ]u

]c1

A

]cN21

D .

It follows
15533
r

(
n51

N

]n5S 1

A

1
D tS ]1

A

]N

D 5]u

and

(
n51

N

]n
25S ]1

A

]N

D tS ]1

A

]N

D 5
1

N
]u

21DN21 ,

DN215( j 51
N21]cj

2 being the Laplacian inRN21.

APPENDIX C: HARMONIC APPROXIMATION

The e-e interaction potential is written as

Hee5h2W,

with

W5 (
1<n,n8<N

1

sinF1

2
~ fWn

t 2 fWn8
t

!~VW 1qW !G .

In second-order approximation we have

W'W01W11W2 .

The constant term is

W05 (
1<n,n8<N

1

sinann8

.

The first-order term cancels, since

W152
1

2 (
1<n,n8<N

cosann8

sin2ann8

~ fWn
t 2 fWn8

t
!qW

52
1

2 (
n51

N21 cos
np

N

sin2
np

N

(
n51

N2n

~ fWn
t 2 fWn1n

t !qW

52
1

4S (
n51

N21 cos
np

N

sin2
np

N

(
n51

N2n

~ fWn
t 2 fWn1n

t !

2 (
m51

N21 cos
mp

N

sin2
mp

N

(
n51

m

~ fWn
t 2 fWn1N2m

t !D qW

52
1

4 (
n51

N21 cos
np

N

sin2
np

N

3-16
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3S (
n51

N2n

~ fWn
t 2 fWn1n

t !2 (
n51

n

~ fWn
t 2 fWn1N2n

t !D qW 50.

The second-order term may be written as

W25qW tMqW ,

with the symmetric bilinear form inRN21

M5 (
1<n,n8<N

11cos2ann8

8sin3ann8

~ fWn2 fWn8!~ fWn
t 2 fWn8

t
!.

The matrix elements ofM are

Mi j 5 (
1<n,n8<N

11cos2ann8

8sin3ann8

~ fWn2 fWn8! i~ fWn2 fWn8! j .

For j 51, . . . ,N21 one has

~ fWn2 fWn8! j5
A2

AN
FcosS jnb01

p

4 D2cosS jn8b01
p

4 D G
52

A2

AN
sin

n j b0

2
cos

m j b0

2
,

with n5n82n, and m5n81n having same parity. The
double sum transforms as

(
1<n,n8<N

•••5
1

2 (
n51

N21

(
m51

2N

(n) . . . ,

where( (n) extends overm values having the same parity a
n. Moreover, the identity

( 8
m51

2N

cos
m ib0

2
cos

m j b0

2
5

N

2
d i j ,

the sum(8 extending over either odd or even values, lea
finally to the diagonal form

Mi j 5v j
2d i j ,

with

v j
25 (

n51

N21 11cos2
np

N

4sin3
np

N

sin2
j np

N
, j 51, . . . ,N21.

The smallest frequencies are given by

vN21
2 5v1

25
1

2 S (
n51

N21
1

sin
np

N

2
1

2
cot

p

2ND .

For large~but, because of the divergence of 1/sinx at x50
andx5p, not too large! N, the sum may be approximated b
an integral,
15533
s

v1
2'

1

2 S N

pEp/2N

p2(p/2N) dx

sinx
2

1

2
cot

p

2ND
'

N

p
ln

4N

pAexp~1!
.

APPENDIX D: EXAMPLES

~1! N52. The collective and relative positions are

u5
1

2
~u11u2!, c5u1f 11u2f 2 ,

with

f 152
1

A2
, f 25

1

A2
.

The particular cellC,R ~Fig. 12! has the edges and th
center

S152A2p, S250, V52
p

A2
.

With the shift of the origin to the centerV, the symmetry of
the wave function~26! becomes

C~u8,q8!52C~u,q!,

where

u85u1p, q852q.

For HeV50, the wave function is separable and the condit
~30! gives

eikpw~q8!52w~q!.

The energies of the stationary states are

E5
1

2
~k22a0!21En , kPZ.

For the discussed cases of thee-e interaction, the energiesEn
of the relative motion can be given explicitly~see also Fig.
2!.

No interactionh250:

En5
n2

2
, n>1, n same parity ask.

Harmonic approximationh2@1: v1
25v25 1

4 ,

En52hnv5nh, n>0, n opposite parity ask.

~2! N53. The collective and relative positions are

FIG. 12. N52. Cell and symmetries inR.
3-17
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u5
1

3
~u11u21u3!, cW5u1fW11u2fW21u3fW3

with

fW15
1

2A3
S 212A3

211A3
D , fW25

1

2A3
S 211A3

212A3
D ,

fW35
1

A3
S 1

1D .

The particular cellC,R2 ~Fig. 13! has the edges

SW 15
p

A3
S 212A3

211A3
D , SW 25

p

A3
S 22

22D , SW 350W ,

and the center

VW 5
p

3A3
S 232A3

231A3
D .

With the shift of the origin to the centerVW , the symmetry of
the wave function~26! becomes

C~u8,qW 8!5C~u,qW !,

with

u85u1
2p

3
, S q18

q28
D 5RS 2p

3 D S q1

q2
D ,

where the matrixR(b) defines a rotation of angleb. For
HeV50, the wave function is separable and the condit
~30! gives

eik(2p/3)w~qW 8!5w~qW !.

The energy of the stationary state is

E5
1

2
~k22a0!21En1 ,n2

.

For the discussed cases of thee-e interaction we obtain the
following energy values.

No interactionh250:

FIG. 13. N53. Cell and symmetries inR2.
15533
n

En1 ,n2
5

2

3
~n1

21n1n21n2
2!, n1 ,n2>1,

k53m12n21n1 .

This is the spectrum of the vibrating membrane on an eq
lateral triangle.

Harmonic approximationh2@1: v1
25v2

25v25
5

4A3
,

En1 ,n2
52hv~n11n2!, n1 ,n2>0,

k53m2n122n2 .

~3! N54. The collective and relative positions are

u5
1

4
~u11u21u31u4!, cW5u1fW11u2fW21u3fW31u4fW4

with

fW15
1

2 S 21

21

1
D , fW25

1

2 S 21

1

21
D ,

fW35
1

2 S 1

21

21
D , fW45

1

2 S 1

1

1
D .

The particular cellC,R3 ~Fig. 14! has the edges

SW 15pS 21

21

1
D , SW 25pS 22

0

0
D ,

SW 35pS 21

21

21
D , SW 450W ,

FIG. 14. N54. Cell and symmetries inR3.
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TABLE II. Values for Aml
m8 l 8(z).

Aml
m8 l 8(z) ~0,0! (0,21) ~0,1! (0,22) ~1,0! ~0,2!

~0,0! 1 z 2z z2

A2
z2 z2

A2

(0,21) 2z 12z2 z2
2

z~221z2!

A2
z(12z2) 2

z3

A2

~0,1! z z2 12z2 z3

A2
2z~12z2!

z~221z2!

A2

(0,22)
z2

A2

z~221z2!

A2
2

z3

A2

224z21z4

2

z2~221z2!

A2

z4

2

~1,0! z2 2z(12z2) z(12z2)
z2~221z2!

A2
~12z2!2 z2~221z2!

A2

~0,2!
z2

A2

z3

A2
2

z~221z2!

A2

z4

2

z2~221z2!

A2

224z21z4

2

io
and the center

VW 5
p

2 S 22

21

0
D .

With the shift of the origin to the centerVW , the symmetry of
the wave function~26! becomes

C~u8,qW 8!52C~u,qW !,

where

u85u1
p

2
, S q18

q38
D 5RS p

2 D S q1

q3
D , q2852q2 .

For HeV50, the wave function is separable and the condit
~30! gives

eik(p/2)w~qW 8!52w~qW !.

The energy of the stationary state is

E5
1

2
~k22a0!21En1 ,n2 ,n3

.

For the discussed cases of thee-e interaction we obtain the
following energy values.

No interactionh250:

En1 ,n2 ,n3
5

1

4
@n1

21n2
21n3

21~n11n2!2

1~n21n3!21~n11n21n3!2#,

k54m13n312n21n1 ,

with n1 ,n2 ,n3>1.
15533
n

Harmonic approximation h2@1: v1
25v3

25
3A211

4
,

v2
25

3A2
2

,

En1 ,n2 ,n3
52h~v1n11v2n21v3n3!,

k54S m1
1

2D2n122n223n3 ,

with n1 ,n2 ,n3>0.

APPENDIX E: MATRIX ELEMENTS FOR THE N-
ELECTRON CASE

We have to determine the matrix elements

^%uI nu%8&5 (
n51

N

expS in
p

N
~N1122n! D

3 )
j 51

(N21)/2

^mluexpS in
A2

AN
rsin~b1an!D um8l 8& j ,

with an5p/42n jb0 for all j. The transformationsf5b
1an andx5Ahvr yield

^mluexpS in
A2

AN
rsin~b1an!D um8l 8&

5
1

2pE0

2p

dbE
0

`

dr rRml~r !Rm8 l 8~r !ei ( l 2 l 8)b

3expS in
A2

AN
rsin~b1an!D

5ei ( l 2 l 8)ane2zn
2
Aml

m8 l 8~zn!,
3-19
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TABLE III. Fourier component ofHeV coupling the statesu%&.

n u0& u111& u121& u112& u122& u211& u20& u221&

^0u 6N 1 21 2 22 2 6N 22
^111u 21 6N 22 1 23 1 21 23
^121u 1 2 6N 3 21 3 1 21
^112u 22 21 23 6N 24 6N 22 24
^122u 2 3 1 4 6N 4 2 6N

^211u 22 21 23 6N 24 6N 22 24
^20u 6N 1 21 2 22 2 6N 22
^221u 2 3 1 4 6N 4 2 6N
g

n
-

b-

ve

-

wherezn5zn j5n/A2Nhv j and

e2z2
Aml

m8 l 8~z!

5S m!m8!

~m1u l u!! ~m81u l 8u!!
D 1/2

•E
0

`

dx2xu l u1u l 8u11Jl 2 l 8~2zx!Lm
(u l u)~x2!Lm8

(u l 8u)
~x2!e2x2

.

The values forAml
m8l 8(z) are given in Table II. Including the

index j, we get

^%uI nu%8&5 (
n51

N

expS in
p

N
~N1122n! D

3 )
j 51

(N21)/2

ei @~ l j 2 l j8!an jev j
2z2

#A
mj l j

mj8 l j8~zn j !

5ein[(N11)p/N]Jn

3 (
n51

N

expH 2 i Fn1(
j 8

~ l j 82 l j 8
8 ! j 8Gnb0J

3 )
j 51

(N21)/2

ei ( l j 2 l j8)(p/4)A
mj l j

mj8 l j8~zn j !

where

Jn5 )
j 51

(N21)/2

e2zn j
2

5expS 2
n2

2Nh (
j 51

(N21)/2
1

v j
D .

Evaluating the sum overn, which determines the couplin
due to the Fourier componentvn , we get finally

^%uInu%8&55
Nein[(N11)p/N]Jn )

j 51

(N21)/2

ei ( l j 2 l j8)(p/4)A
mj l j

mj8 l j8~zn j !

if n1 (
j 851

(N21)/2

~ l j 82 l j 8
8 ! j 85mN,

0 otherwise.

The Fourier componentsvn leading to coupling between
statesu%& are resumed in Table III.
15533
As already pointed out before, each relative excitationE%

corresponds to a set of parabolic energy bands ina0 with
minima at energyE% . Figure 15 shows the lowest excitatio
energiesE% of the relative motion as a function of the num
ber of electronsN.

For N>11, the four lowest excitations are

E050,E 1
(1)52hv1,E 1

(2)52hv2,E 2
(1)54hv1 ,

where the superscript~j! denotes the oscillator, and the su
script n its excitation level. Indeed, for largeN one has

0,4v1
22v2

25h2

3 cos
3p

2N
15 cos

p

2N

2 sin
3p

2N

'h2
8N

3p
.

Moreover, we have obviouslyE 2
(1),E 1

(1)1E 1
(2) and also

E 2
(1),E 1

(3)52hv3, since

0,v3
224v1

2'h2
N

p S 5 ln
4N

pAexp~1!
2

122

15 D .

The distanceE 1
(3)2E 2

(1) increases faster withN than E 2
(1)

2E 1
(2) . A good choice is thus to consider only the relati

ground stateE0 and the three first relative excitationsE 1
(1) ,

E 1
(2) , andE 2

(1) in the numerical calculations.

FIG. 15. Excitation energiesE% associated with the relative mo
tion as a function of the number of electronsN: single-mode exci-
tation energiesE 1

( j ) of the oscillator modesj, and lowest double-
excitation energiesE 2

(1) and E 1
(1)1E 1

(2) . The lines are drawn as
guides to the eye.
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The nonzero matrix elements^%uI nu%8& for n56N and
n561 are given below:

^0uI 6Nu0&5NJN ,

^111uI 6Nu111&5NJNA0,1
0,1~zN1!5NJN~12zN1

2 !,

^121uI 6Nu121&5NJNA0,21
0,21~zN1!5NJN~12zN1

2 !,

^112uI 6Nu112&5NJNA0,1
0,1~zN2!5NJN~12zN2

2 !,

^122uI 6Nu122&5NJNA0,21
0,21~zN2!5NJN~12zN2

2 !,

^211uI 6Nu211&5NJNA0,2
0,2~zN1!5NJN

1

2
~224zN1

2 1zN1
4 !,

^20uI 6Nu20&5NJNA1,0
1,0~zN1!5NJN~12zN1

2 !2,

^221uI 6Nu221&5NJNA0,22
0,22~zN1!5NJN

1

2
~224zN1

2 1zN1
4 !,

^0uI 6Nu20&5NJNA0,0
1,0~zN1!5NJNzN1

2 ,

^20uI 6Nu0&5NJNA1,0
0,0~zN1!5NJNzN1

2 ,

^112uI 6Nu211&5NJNe2 i (p/4)A0,0
0,2~6zN1!A0,1

0,0~6zN2!

56e2 i (p/4)NJN

1

A2
zN1

2 zN2 ,

^211uI 6Nu112&5NJNei (p/4)A0,2
0,0~6zN1!A0,0

0,1~6zN2!

57ei (p/4)NJN

1

A2
zN1

2 zN2 ,
. B

v

.J
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,

b

oi
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^122uI 6Nu221&5NJNei (p/4)A0,0
0,22~6zN1!A0,21

0,0 ~6zN2!

57ei (p/4)NJN

1

A2
zN1

2 zN2 ,

^221uI 6Nu122&5NJNe2 i (p/4)A0,22
0,0 ~6zN1!A0,0

0,21~6zN2!

56e2 i (p/4)NJN

1

A2
zN1

2 zN2 ,

^0uI 1u111&5^111uI 21u0&5ei (p/N2p/4)NJ1z11,

^121uI 1u0&5^0uI 21u121&5ei (p/N2p/4)NJ1z11,

^111uI 1u112&5^112uI 21u111&5ei (p/N)NJ1z11z12,

^111uI 1u211&5^211uI 21u111&

52ei (p/N2p/4)NJ1

1

A2
z11~221z11

2 !,

^20uI 1u111&5^111uI 21u20&52ei (p/N2p/4)NJ1z11~12z11
2 !,

^122uI 1u121&5^121uI 21u122&5eip/NNJ1z11z12,

^121uI 1u20&5^20uI 21u121&52ei (p/N2p/4)NJ1z11~12z11
2 !,

^221uI 1u121&5^121uI 21u221&

52ei (p/N2p/4)NJ1

1

A2
z11~221z11

2 !.
y,

y,

p.
.
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