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Optical dispersion relations for crystalline and microcrystalline silicon

H. Touir* and P. Roca i Cabarrocas
Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 CNRS), Ecole Polytechnique,

91 128 Palaiseau, Cedex, France
~Received 2 August 2001; revised manuscript received 26 November 2001; published 11 April 2002!

A different method is presented to model the optical functions of crystalline and microcrystalline semicon-
ductors. This model incorporates the full electronic band structure and the lifetime broadening, and is appli-
cable at the energies below and above the lowest gap. With the examples of crystalline and microcrystalline
silicon, we demonstrate the good agreement between the simulation and the optical spectra~i.e., dielectric
function! and both the realistic electronic band structure and the realistic lifetime broadening. It is shown that
the general change in the optical functions in microcrystalline silicon materials compared to their homologue
crystalline materials is due to the effects of the limited crystallite size and of the medium structural disorder
~i.e., ‘‘random’’ distribution of the texture—size, shape, and crystallographic orientation—of crystallites!,
which yields to the change in shape of the electronic conduction bands and the decrease of the lifetime of the
excited states.
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I. INTRODUCTION

The interpretation of the optical measurements on crys
line and microcrystalline semiconductors, at the energies
low and above the lowest gap, requires a detailed knowle
of both the electronic band structure and the wave functi
in relation with the intrinsic structural properties. For cry
talline semiconductors, where the electronic states are
scribed with the well-known Bloch functions, there are ma
sophisticated methods for calculating the electronic b
structures.1 As for the case of microcrystalline semicondu
tors, where the translation periodicity of the lattice is brok
and therefore the electronic wave functions are not descr
by simple Bloch functions, the calculation of the electron
band structure and the wave functions require more sop
ticated methods.2,3 These methods are not only complicat
but also are not adequate for the parametrization of the
tical functions of crystalline and microcrystalline semico
ductors. These parametrizations are indeed useful to inte
the optical functions of thin films. This is particularly true
the case of the spectroscopic ellipsometry measureme
where one measures the functions of the Fresnel coefficie
which then must be related to the film parameters such
thickness, surface roughness, and dielectric function.

The fundamental electronic excitation spectrum of a s
stance is generally described in terms of the ener
dependent complex electronic dielectric function«(E). Ei-
ther the real part«1(E) or the imaginary part«2(E) contain
all the desired response information, since causality a
ments relate«1(E) and«2(E) via the well-known Kramers-
Kronig relation:

«1~E!511
2

p
PE

0

1` E8«2~E8!

E822E2 dE8,

~1!

«2~E!52
2

p
PE

0

1` E8„«1~E8!21…

E822E2 dE8,

whereP denotes the principal part of the integral.
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During the last few years microcrystalline silicon (mc-Si)
films have appeared as a promising material for thin-fil
devices such as solar cells, sensors, and thin-film transis
At present the optical characterization of the films, whi
depends strongly on the preparation conditions, has been
subject of the considerable studies, but the interpretation
the optical data is highly debated.4–6 In the visible and the
near-infrared regions the optical edge ofmc-Si films is in-
creased compared to crystalline silicon (c-Si).4–7 This be-
havior has been attributed either to the absorption by
amorphous fraction~noncrystallized! supposed very impor-
tant in the material5,6 or by the stress effect in the microcrys
talline network.6 However, these hypotheses do not co
pletely explain the optical edge inmc-Si materials and have
been challenged by the effect of the structural disorder at
medium range~due to the variation of the texture—size
shape, and crystallographic orientation—of crystallites!.7 As
for in the ultraviolet and the visible regions either the re
part («1) or the imaginary part («2) of the dielectric function
«(E) of mc-Si materials are considerably different fro
those ofc-Si.8 The typical spectrum of the imaginary part o
the dielectric function formc-Si materials is characterize
by ~i! a marked decrease in the intensity,~ii ! greatly weak-
ened 3.4-eV (E1), 4.2-eV (E2), and 5.4-eV (E81) structures,
and ~iii ! a pronounced tail below thec-Si fundamental-
absorption threshold, which depend strongly on the prep
tion conditions. In order to interpret this behavior,mc-Si
layers have been modeled using the Burggeman effect
medium approximation, consisting of a mixture of crystalli
silicon, amorphous silicon, and voids.8–10It is worth noticing
that the modeling using the effective-medium theory can
also achieved by polycrystalline silicon (p-Si) with large or
fine grains. Nevertheless, this method does not fit very w
the dielectric function and therefore does not provide
information about film parameters~i.e., thickness, surface
roughness, and dielectric function!.9,10 This is particularly
true for mc-Si layers with small crystallite size, where the
optical response is considerably different from those ofc-Si
andp-Si.9,10 It is also common practice to simulate the op
©2002 The American Physical Society30-1
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H. TOUIR AND P. ROCA I CABARROCAS PHYSICAL REVIEW B65 155330
cal functions of semiconductors with a dispersi
formula.11–14 These models approximate the interband tr
sitions between the band states over all vectors in the B
louin zone~BZ! with the optical response at the critical-poi
structure of the electronic density of states, and do not in
porate the full band structure in the Brillouin zone.

In this paper we present a different model for the para
etrization of the optical functions of crystalline and micro
rystalline semiconductors at the energies below and ab
the lowest gap. This model incorporates the full electro
band structure and the lifetime broadening and its parame
are physically significant. With the examples ofc-Si and
mc-Si, we shall demonstrate the good agreement betw
the simulation and the optical spectra~i.e., dielectric func-
tion! and both the realistic electronic band structure and
realistic lifetime broadening. We shall show that the gene
change in the optical functions in a microcrystalline mate
compared to their homologue crystalline material is due
the effects of the limited crystallite size and of the mediu
structural disorder ~i.e., ‘‘random’’ distribution of the
texture—size, shape, and crystallographic orientation—
crystallites!, which yields to the change in shape of the co
duction bands and the decrease of the lifetime of the exc
states.

II. MODEL

In perfect crystalline semiconductors, the imaginary p
of the dielectric function«2(E) is given within the first-order
perturbation theory of the radiation field effect on the crys
electronic states, by15

«2~E!54p2e2E
BZ

2V

~2p!3 uRcv~k!u2

3d@EC~k!2EV~k!2E#d3K, ~2!

whereV is the crystal volume@2V/(2p)3 being the density
of allowedk vectors in the BZ#, e is the electron change,E is
the photon energy,Ec (Ev) is the energy of the conductio
~valence! state,Rcv is given byRcv5^CunRuV&, wheren is
the polarization vector of the incident light,R is the position
operator,uV& (uC&) is the wave function of the valence~con-
duction! band state. In Eq.~2! the integral is over allk vec-
tors in the Brillouin zone~BZ!. As stressed above, the s
phisticated calculation of «2(E) cannot allow the
parametrization of the optical functions. The sophistica
calculation of the integral~2! is indeed performed numeri
cally by sampling the Brillouin zone, which has generally
very complicated shape, and computing the energy level
the valence and the conduction bands at everyk point. In the
next sections, we shall provide a number of simplifying a
proximations of Eq.~2!, which allow the parametrization o
the optical functions of crystalline materials as well as m
crocrystalline materials.

A. Pseudoisotrope approximation

To simplify the calculation of Eq.~2!, we have approxi-
mated the Brillouin zone by the concentric spheres, wh
15533
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the center and the radius are equal to the center of the B
louin zone and Brillouin-zone boundaries in the high sy
metries, respectively. Then, we have assumed that in e
sphere the electronic bands structures are isotrope. U
these approximations, which we call pseudoisotrope appr
mations, as well as spherical coordinates, we have tra
formed Eq.~2! into

«2~E!54p2e2(
i

(
j
E

j BZ

2V

~2p!3 uRi jcv~k!u2

3d@Ei jc~k!2Ei j v~k!2E#4pk2dk, ~3!

where the sumi and j refer to over all pair of bands and t
the axis number of the high symmetries in the Brillouin zon
respectively. It is important to notice that our pseudoisotro
approximation not only allows the simplification of the com
putation of the optical functions but also allows the calcu
tion with a large number of points at everyk, which im-
proves the accuracy of the results. It is well known inde
that the result accuracy of the numerical computation of
optical functions depends strongly on the number of points
k space.16

B. Damping effect

It is well known that the optical transitions are strong
affected by the damping effect due either to the collect
vibration of atoms~i.e., phonons!, due to the thermal agita
tion, or to the structural defects of the crystalline netwo
which decrease the lifetime of the photocreated carriers.
broadening parameter can be expressed by a sum of
different contributions:G(T)5G01GP(T), whereG0 is in-
dependent of the temperature, arising mainly from the lat
defects, andGP(T) is a contribution through the emissio
and the absorption of the phonons of the average energyP,
proportional to@exp(P/KT)#

21. This lifetime broadening ef-
fect can be easily introduced in a phenomenological man
in Eq. ~3! by replacing the Dirac function by the Lorentzia
function, as

«2~E!54p2e2(
i

(
j
E

j BZ

2V

~2p!3 uRi jcv~k!u2

3
1

p

G i j 4pk2dk

@Ei jc~k!2Ei j v~k!2E#21G i j
2 , ~4!

whereG i j is the linewidth of the Lorentzian function, whic
can be linked to the lifetimet i j of the excited stateuC& via
the Heisenberg principle:G i j >\/2t i j . It is worth noticing
that from a theoretical point of view, the lifeime broadenin
for each conduction band depends on thek vector in the
BZ.2,3 For simplicity we have assumed that the lifetim
broadenings are constant for each conduction band.

C. Optical matrix elements approximation

In this section we develop an analytic expression of
optical matrix elements. To obtain the analytic expression
0-2
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OPTICAL DISPERSION RELATIONS FOR . . . PHYSICAL REVIEW B 65 155330
the optical matrix elementsRi jcv as a function of the elec
tronic band structure we multiply Eq.~4! by the energy and
we integrate

E E«2~E!dE>4p2e2(
i

(
j
E

j BZ

2V

~2p!3

3@Ei jc~k!2Ei j v~k!#uRi jcv~k!u24pk2dk.

~5!

Here, we have used the approximation

E 1

p

G

~x2x0!22G2 f ~x!> f ~x0!.

Then, we use the oscillator strengthf i j vc

f i j vc~k!5
2m@Ei jc~k!2Ei j v~k!#uRi jcv~k!u2

\2 , ~6!

and its sum rule,

(
i

(
j
E

j BZ

2V

~2p2!3 f i jc~k!4pk2dk5Neff , ~7!

whereNeff is the effective density of the valence electron
Assuming that the oscillator strength varies slowly withk

vectors for a pair of bands and their magnitude is appro
mated byN/n @whereN is the orbital number in each energ
band andn is the pair number of the bands intervening
«2(E)#, the oscillator strength becomes

f i jcv~k!5
N

n
5

1

VBZ

Neff

n

~2p!3

2V
, ~8!

whereVBZ is the sum volume of the concentric spheres in
Brillouin zone.

Thus, from Eq.~6! and~8!, the matrix elements for a pai
of bands become

uRi jcv~k!u25
1

VBZ

Neff

n

~2p!3

2V

\2

2m@Ei jc~k!2Ei j v~k!#
.

~9!

This equation shows that the optical matrix elementsRi jcv
and therefore the optical transition probability is proportion
to the inverse of the energy difference (Ei jc2Ei j v) between
the conduction and the valence bands. This behavior sh
that the higher (Ei jc2Ei j v) is, the smaller the transition
probability, as it should be because when the value of (Ei jc
2Ei j v) tends to infinity the transition probability tends
zero. It is worth noticing that the assumption about the va
tion of the oscillator strength for a pair of bands is associa
with a single optical transition as the classical Lorentz d
persion formula for an assembly of weakly photocreated c
riers. It is also important to notice that as a consequenc
the sum rule of the oscillator strength and the optical ma
elements approximation, the sum rule of«2(E) is taken into
account:
15533
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E E«2~E!dE5
p

2
Ep

2, ~10!

whereEp@Ep5(\24pNeffe
2/m)1/2# is the plasma energy. Thi

sum rule is indeed often used to test the consistency of
approximations involved in phenomenological optical mo
els. Taking into account the analytic expression of the opt
matrix elements@i.e., Eq.~9!#, the imaginary part«2(E) of
crystalline semiconductors can be expressed as

«2~E!5
p

2
Ep

2 1

VBZ
(

i

1

n (
j
E

j BZ

1

Ei jc~k!2Ei j v~k!

3
1

p

G i j 4pk2dk

~Ei jc~k!2Ei j v~k!2E!21~G i j !
2 ~11!

with

Ei jc~k!5 (
n50

4

ci j 2n k2n, Ei j v~k!5 (
n50

4

v i j 2n k2n.

Here, the valence and conduction bands are approximate
polynomials. The choice of the even polynomial is dictat
by the numerical approximation of the integral over the BZj ,
where the bands are supposed isotropes.

D. Effect of limited crystallite size and structural disorder

In the case of a microcrystalline semiconductor, the op
cal functions are strongly different from their homologu
crystalline. Nevertheless, these changes keep the main c
acteristics. As a consequence, the optical functions of a
crocrystalline semiconductor can be deduced from its hom
logue crystalline keeping into account the structural disor
due to the variation of the texture—size, shape, and crys
lographic orientation—of crystallites. This distribution of th
texture in microcrystalline semiconductors, which we c
define as a structural disorder at the medium distance
indeed the intrinsic feature of microcrystalline materia
This medium structural disorder yields to the potential flu
tuations and reduces therefore the coherence length of
photocreated carriers~i.e., the decrease of the lifetime of th
photocreated carriers!. Interesting conclusions can be d
duced from the results of the structural bands calculations
Kramer,2,3 where the order at the medium distance is relax
the electronic conduction bands change in shape accom
nied by their ‘‘blurring’’ with a negligible effect on the elec
tronic valence bands in many materials~i.e., Si, Ge, and
Se!.2,3 We shall give more details for this point in the case
silicon. These results can help us to understand the op
properties of microcrystalline materials and allow us to
troduce a supplementary limited lifetime of the excited sta
and a variation in shape of the structure of the conduct
bands. To take into account the effect of the limited cryst
lite size and the structural medium disorder, the parame
Ep , ci j 2n , andG i j can be treated as adjustable in Eq.~11!.
These parameters are characteristic of the medium and a
principle physically significant.

Having found an analytical line shape of the optical d
electric function to simulate the experimental«2(E) spec-
0-3
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H. TOUIR AND P. ROCA I CABARROCAS PHYSICAL REVIEW B65 155330
trum for crystalline and microcrystalline semiconductors
remains only to discuss how to perform the integration in E
~11!. This integration can be indeed approximated by
rectangular rule. Using this approximation Eq.~11! becomes

«~E!5
p

2
Ep

2 1

VBZ
(

i

1

n (
j

Dkj(
l

1

Ei j 1c~kj 1
!2Ei j 1v~kj 1

!

3
1

p

G i j 4pkj 1
2

~Ei j 1c~kj 1
!2Ei j 1v~kj 1

!2E!21~G i j !
2 , ~12!

whereDkj is the increment for sampling the BZj andEi jlc (v)
is the energy at thekjl point in BZj taken from the analytica
conduction~valence! bands given in Eq.~11!. In Eq. ~12! the
sum 1 refers to over allkjl points in the BZj . Remember that
the valence-band state is taken from the crystalline case
should be constant in crystalline and microcrystalline ma
rials.

It is worth noticing that the decrease of the lifetime of t
photocreated carriers in microcrystalline materials is also
to the contribution of the recombination process of the p
tocreated carriers on the deep localized states in the en
gap, due to the dangling bonds in the microcrystalline n
work. These effects traduce partly in the analytic express
of the imaginary part«2 ~E! for microcrystalline semicon-
ductors @i.e., Eq. ~12!# by adding to the damping effect
broadening, due to the decrease of the lifetime of the ph
created carriers, asG(T)5G01GP(T)1GMSD1GD , where
GMSD is the contribution of the medium structural disord
and GD is the contribution of the recombination process
the photocreated carriers on the deep localized states in
energy gap.

As already mentioned above the optical properties o
solid can be described using both the real part and the im
nary part of the complex dielectric function. Such functio
are related via Kramers-Kronig dispersion relations@Eq. ~1!#.
Nevertheless, the use of theses relations requires the kn
edge of the«1 ~E! or the «2 ~E! spectra in a large spectr
range~i.e., highE values! which is not generally the case. I
return, the tails of these spectra~i.e., «1 or «2! can be ex-
tended with theoretical functions as the Lorentz or the Dru
models depending on the kind of the material.

In order to calculate«1 ~E! via Kramers-Kronig relations
for semiconductor materials,«2 ~E! can be extended in th
high-energy range, with a tail as the Lorentz model. In t
classical model only a single transition is considered;«2 ~E!
is given by

«2~E!5
A1CE

~E22E0
2!21C2E2 , ~13!

whereE0 is the peak transition energy andC is the broaden-
ing term. It is worth noticing that the assumption abo
«2(E) for semiconductor materials in the high-energy ran
is that which is associated with weakly photocreated carri

E. c-Si and µc-Si

Let us now discuss the case ofc-Si andmc-Si materials.
It is well known that the imaginary part«2 ~E! spectrum for
15533
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c-Si in the 1.5–6-eV region can be identified through t
direct transitions in both theGX andGL directions in the BZ.
Figure 1 shows such a spectrum; these data are taken
Ref. 8. Three picks are found in the«2 ~E! spectrum corre-
sponding to~i! the transitions from the highest valence ba
to the first conduction band in theGL direction of the BZ
responsible for the peak at 3.4 eV,~ii ! the transitions from
the highest valence band to both the first and second con
tion bands in theGX direction of the BZ which is associate
with the peak at 4.2 eV, and~iii ! the transitions from the
highest valence band to the second conduction band in
GL direction of the BZ which are associated with the peak
5.4 eV. Figure 1 also shows the«2 ~E! spectrum formc-Si in
the 1.5–5-eV range; these data are obtained from Ref. 8.
picks located at 3.4 and 4.2 eV found in the«2 ~E! spectrum
of c-Si picks are also observed in the case of microcrystal
silicon, which suggest that the optical properties of this m
terial can be also deduced from both theGX andGL direc-
tions in the BZ. Nevertheless, this spectrum is considera
different in shape from that ofc-Si. This spectrum is indeed
characterized by~i! a marked decrease in the intensity wi
~ii ! greatly weakened 3.4-eV (E1) and 4.2-eV (E2) struc-
tures, and~iii ! a pronounced tail below thec-Si fundamental-
absorption threshold. Note that the peak located at about
eV for mc-Si material, while not shown in Fig. 1, is als
observed.17 The observed variations of the optical respon
betweenmc-Si andc-Si can be explained by the effect of th
average crystallite size from the results of the structural b
calculations by Kramer3 on c-Si where the order at the me
dium distance is relaxed by the relationr 05a/2h, wherer 0
is the distance from where the order is relaxed,a is the
crystalline parameter, andh is a constant between 0 and 1.
this work,3 the electronic properties have been studied wit
the complex band-structure concept~CBS concept! which

FIG. 1. The imaginary part of the dielectric functions«2 for
mc-Si ~solid curve! and forc-Si ~open curve! systems. These dat
are taken from Ref. 8.
0-4
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OPTICAL DISPERSION RELATIONS FOR . . . PHYSICAL REVIEW B 65 155330
uses the complex energy concept. Figure 2 shows the m
fication of the electronic band structure when we go from
ideal crystal (h50) to a structure where the order at th
medium range is relaxed (h50.05). This figure shows the
change in shape of the electronic conduction bands which
accompanied by a ‘‘blurring’’~imaginary part of energy!,
with a negligible effect on the electronic valence band. T
blurring, which can be interpreted by the limited lifetime
the excited state, is accompanied by the decrease of the
part of the conduction band energy in theGL direction, by
the decrease in energy of the direct gap atG, and by the
increase in the energy gap nearX. It is worth noticing that
the«2 ~E! spectrum formc-Si shown in Fig. 1 is often called
polycrystalline Si~i.e., p-Si! with fine grains size. The opti
cal functions ofp-Si with fine grains can be used to fit i
many cases the ellipsometric data ofmc-Si layers.9–10

FIG. 3. The imaginary part of the dielectric function«2 ~open
circle! and its best fit~solid curve!, obtained with Eq.~12!, for c-Si.
These data are taken from Ref. 8.

FIG. 2. Complex electronic band structure for Si:~a! infinite
crystal (h50) and~b! crystal where the order at the medium di
tance is relaxed (h50,05). These curves are taken from Ref. 3.
15533
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III. ANALYSIS AND DISCUSSION

A. c-Si

Let us now confront our assumptions to the experimen
data. In order to test the consistency of the approximati
involved in our phenomenological optical model, we ha
chosen first thec-Si system, where the electronic band stru
ture and the interpretation of its optical response are w
known. The dispersion relation~12! could in principle fit the
experimental dispersion of«2 ~E! by varying the parameter
Ep , ci j 2n , andG i j . As shown in Fig. 3, perfect agreeme
between the simulation and the«2 ~E! spectrum has been
achieved forc-Si using Eq.~12!. Interestingly enough the
convergence of the parameters with our model has been
cessfully achieved using the conjugate gradient metho18

Indeed, the model takes into account the topological con
erations, such as the shape and the size of the BZ, w
explains the best convergence and less possibility of find
false minima in fitting.

After the excellent agreement between the simulation
the «2 ~E! spectrum, we should discuss whether the para
eters of the model are physically significant. The electro
band structure forc-Si deduced from the fitted paramete
ci j 2n is shown in Fig. 4. For more clarity the valence-ba
structure, obtained by fitting the calculated valence bands
c-Si by varying the parametersv i j 2n of the analytical equa-
tion in Eq. ~11!, are also shown in this figure. Figure
clearly shows that the electronic band structure forc-Si ob-
tained with our model is in agreement with those obtain
with sophisticated methods. The direct and indirect ene
gaps are indeed equal to 3.4 and 1.1 eV, respectively
excellent agreement with the well-known gaps. The excell
agreement of the conduction bands deduced from theci j 2n
parameters with the well-known structure bands corrobora
indeed the consistency of the approximations of our mo
and demonstrates that the parametersci j 2n of the model are
physically significant.

Let us now discuss the fitted parametersG i j . The values
found for these parameters are listed in Table I. This ta

FIG. 4. Electronic band structure forc-Si obtained by fitting the
experimental dispersion of the«2 ~E! spectrum forc-Si with Eq.
~12!.
0-5



g
in

e

e
th
t
e
e

s
e
h
rs
f
l.
ob

ca
e

tio
o

s
be-
the
V,

the
nt

8;

n in
of

the
rom
se

ho-

t

n-

f
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shows that the lifetime broadening increases when we
from the first to the second conduction bands, which expla
that the lifetime of the excited states decreases when w
to the second highest conduction bands in theGL and GX
directions of the BZ. The nonzero value of the paramet
G i j can be easily explained by the interaction between
excited photocreated carriers and the phonons, due to
thermal agitation, and possibly by the interaction betwe
the excited photocreated carriers and the structural def
~i.e., freeze phonons! of the crystalline network.

We now turn to the real part of the dielectric function. A
stressed before, the«1 ~E! spectrum can be deduced from th
«2 ~E! spectrum, in the low-energy range prolonged in t
high-energy range with the Lorentz model, via the Krame
Kronig relation@Eq. ~1!#. Figure 5 shows the prolongation o
the «2 ~E! spectrum from 6 to 7 eV with the Lorentz mode
The parameters of the Lorentz model in this figure are
tained by fitting the experimental dispersion of«2 ~E! with
the Lorentz formula in the 5.5–6-eV range. The theoreti
curve of«1 ~E! deduced from Fig. 5 up to 15 eV, where th
values are close to zero, using the Kramers-Kronig rela
could be in principle equal to the experimental dispersion

TABLE I. The values of the lifetime broadening for each co
duction band inGL andGX directions of the BZ obtained by fitting
the experimental dispersion of the«2(E) spectrum forc-Si with the
Eq. ~12!.

G1X ~eV! G1L ~eV! G2X ~eV! G2L ~eV!

0.151 0.067 0.343 0.983

FIG. 5. The imaginary part of the dielectric function«2 pro-
longed with the Lorentz model up to 7 eV forc-Si. These data are
taken from Ref. 8.
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«1 ~E!. For clarity, we have shown in Fig. 5 only the value
up to 7 eV. As shown in Fig. 6, the perfect agreement
tween the calculation and the experimental dispersion of
«1 ~E! spectrum, deduced from data of Fig. 5 up to 15 e
explains that the prolongation of«2 ~E! is valid.

B. µc-Si

After the success obtained with the example ofc-Si, in
applying the model developed in Sec. II, we have used
same set formc-Si. As shown in Fig. 7, perfect agreeme
between the simulation and the«2 ~E! spectrum has been
also achieved formc-Si using Eq.~12!. The band structure
for mc-Si deduced from the simulation is shown in Fig.
the electronic band structure forc-Si of Fig. 4 is also shown
for comparison. As expected, according to the discussio
Sec. II E, Fig. 8 shows the modification of the structure
the electronic conduction bands when we go fromc-Si to
mc-Si. The direct band gap decreases indeed with
change in shape of the conduction bands when we go f
c-Si to mc-Si. This effect can be explained by the decrea
of the coherence lengths of the wave functions for the p
tocreated carriers, due to the medium structural disorder~i.e.,

TABLE II. The values of the lifetime broadening for the firs
conduction bands in theGL andGX directions of the BZ obtained
by fitting the experimental dispersion of the«2(E) spectrum for
mc-Si with Eq. ~12!.

G1X ~eV! G1L ~eV!

0.203 0.135

FIG. 6. Experimental spectrum~open circle! and theoretical cal-
culation~solid curve! obtained with the Kramers-Kronig relation o
the real part of the dielectric function«2 for c-Si. These data are
taken from Ref. 8.
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‘‘random’’ distribution of the texture—size, shape, and cry
tallographic orientation—of crystallites! of the microcrystal-
line network. Otherwise, this medium structural disorder
duces the potential fluctuations in the microcrystalli
network and therefore reduces the lifetimes of the photo
ated carriers.

Let us now discuss the values found for the fitted para
etersG i j for mc-Si. These parameters are listed in Table
The lifetime broadening ratio (Gx1)mc-Si/(Gx1)c-Si and
(GL1)mc-Si/(GL1)c-Si are equal to 1.34 and 2.01, respe
tively, which suggests that the lifetimes of the photocrea
carriers formc-Si are smaller than forc-Si. These differ-
ences can be essentially explained by the effect of the in
action between the excited photocreated carriers and
freeze phonons, due to the medium structural disorder~i.e.,
random distribution of the texture—size, shape, and crys

FIG. 7. The imaginary part of the dielectric function«2 ~open
circle! and its best fit~solid curve!, obtained with Eq.~12!, for
mc-Si. These data are taken from Ref. 8.

FIG. 8. Electronic band structure formc-Si obtained by fitting
experimental dispersion of«2 ~E! with Eq. ~12!; the electronic band
structure of Fig. 5 is shown for comparison.
15533
-

-

e-

-
.

-
d

r-
he

l-

lographic orientation—of crystallites! of the microcrystalline
network. It is important to remember that the«2 ~E! spec-
trum for mc-Si has unfortunately measured in a short ene
range~i.e., 1.5–5 eV!, where we do not have all the infor
mation about the transitions from the highest valence ban
the second conduction bands in theGL andGX directions of

FIG. 9. ~a! The imaginary part of the dielectric function«2

~open circle! and its best fit~solid curves! and~b! the real part of the
dielectric function«1 ~open circle! and its best fit~solid curves! for
mc-Si. The fitting results are obtained by simultaneously fitting t
parameters of double absorbing oscillator in the 4.5–5-eV range
«2 ~E! spectrum and in the 1.5–5-eV range for the«1 ~E! spectrum,
obtained by the Kramers-Kronig transformation.
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the BZ, which contribute on the«2 ~E! spectrum up to 6 eV.
The accuracy of the results of such bands is poorer than
obtained forc-Si, where the«2(E) spectrum is measured i
the large energy range~i.e., 1.5–6 eV!. For this reason, we
have not shown the second conduction bands in theGL and
GX directions of the BZ.

As for the calculation for«1(E) for mc-Si material, the
theoretical curve deduced from the«2(E) spectrum in the
1.5–5-eV range extended up to 15 eV with a tail from t
Lorentz model using the Kramers-Kronig transformati
does not agree at all with the experimental dispersion
«2(E). This disagreement can be easily explained by the
that the«2(E) spectrum, used in the calculation, does n
contain the information about the 5.4-eV (E81) structure,
which is distributed in the full energy range in the«1(E)
spectrum. According to the Kramers-Kronig relation, ea
experimental point of the«1(E) spectrum depends indeed o
the whole points of«2(E) in the full energy range. Thus it is
obvious that the lack of the information about the 5.4-
structure in the«2(E) spectrum prolonged with a tail from
the Lorentz model yields the disagreement between the
perimental data and the calculation of«1(E). Nevertheless,
knowing that a part of the information about the 5.4-e
structure in the experimental dispersion of«2(E) is distrib-
uted in the 1.5–5-eV range on the«1(E) spectrum, we could
in principle via the causality agreement extract therefore
part of the information. Indeed, by combining the prolong
tion of the experimental dispersion of the«2(E) spectrum
with an artificial structure such as a double absorb
oscillator—to take into account the 5.4-eV structure—w
the fit of the parameters of this double absorbing oscillato
the 4.5–5-eV range for the«2(E) spectrum and in the 1.5–
5-eV range for the«1(E) spectrum, we can on the one han
obtain the best fit of experimental dispersion of«1(E), and
on the other hand obtain the information about the 5.4-
structure in the«2(E) spectrum. As shown in Fig. 9, th
satisfactory fitting result has been achieved for the theoret
«2(E) in the 4.5–5-eV range and for the theoretical«1(E) in
the 1.5–5-eV range, which explains that the lack of the
formation about the 5.4-eV structure in the experimental d
persion of«2(E) has been extracted from the experimen
dispersion of«1(E) in the 1.5–5-eV range via the causali
argument. Note that in this fitting procedure the theoreti
curve of«1(E) is deduced from the data of«2(E) up to 15
eV, where the values are close to zero. For clarity, we h
shown in Fig. 9 only the values up to 7 eV.

It is worth noticing that our model also allows the param
etrization of the optical functions for polycrystalline mate
e
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als with large grain size. Perfect agreement has been ind
achieved~not shown in this paper! between the optical spec
tra and the simulation for polycrystalline silicon with larg
grain size.

As stressed in the introduction, the dispersion formu
are useful to interpret the optical response of thin films. T
optical response involves indeed the film parameters suc
thickness, dielectric function, and surface roughness. I
common practice to approximate the roughness layer us
effective-medium approximation, consisting of 50% voi
and 50% of dielectric function.8–10 Moreover, the measure
ment of the microcrystalline systems can be influenced
the presence of voids and possibly other mechanisms.
void effect can be approximated by the effective-mediu
approximation, consisting of a mixture of dense microcry
talline silicon and voids.

IV. CONCLUSION

We have developed a dispersion formula of the opti
functions of both crystalline and microcrystalline semico
ductors at the energies below and above the lowest gap.
model incorporates the full electronic band structure and
lifetime broadening and its parameters are physically sign
cant. With the example of crystalline silicon, we have de
onstrated the good agreement between the simulation
optical spectra~i.e., dielectric function!. It is shown that the
electronic band structure forc-Si obtained from the fitted
parameters is in agreement with the well-known electro
band structure, which demonstrates the consistency of
approximation of the model. After the success obtained w
the example ofc-Si, we have used the same set formc-Si. It
is shown that the general change in the optical functions
microcrystalline silicon materials compared to their hom
logue crystalline materials is due to the effects of the d
crease of the coherence lengths of the wave functions for
photocreated carriers, due to the medium structural diso
~i.e., random distribution of the texture—size, shape, a
crystallographic orientation—of crystallites!, which yields to
the change in shape of the electronic conduction bands
the decrease of the lifetime of the excited states.
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