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Confinement and amplification of acoustic waves in cubic heterostructures
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We present the theory of acoustic phonon confinement in elastically anisotropic~cubic! quantum-well~QW!
heterostructures grown in a direction of high symmetry. A general criterion for phonon confinement is derived.
For Si/Si0.5Ge0.5/Si, Si/Ge/Si and AlAs/GaAs/AlAs QW heterostructures, dispersion curves are obtained, and
displacement fields corresponding to the confined phonons are studied in detail. It is found that the confinement
of acoustic phonons in these QW layers is strong in the subterahertz and terahertz frequency ranges. The
resulting description of phonon confinement is applied to analyze the amplification of confined modes by the
drift of the two-dimensional carriers as a function of the phonon frequency, the temperature, and the parameters
of heterostructure. The calculation shows that the amplification coefficient of the confined phonons can exceed
103 cm21 for Si/Ge-based structures and 102 cm21 for AlAs/GaAs-based structures.
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I. INTRODUCTION

The layered character of semiconductor heterostruct
causes the acoustic vibrations of the lattice to be differ
from the usual bulklike waves. This difference manifests
self in surface1 and leaky surface2 waves, interface3 and
leaky interface4 waves, confined waves in quantum we
heterostructures,5–7 and folded acoustic phonons i
superlattices.8,9 Interacting with two-dimensional electron
the modified lattice vibrations contribute to kinetic pheno
ena and different acoustoelectric effects. For example,
surface and confined waves determine the low-tempera
electron mobility in perfect heterostructures,6,10–12 and the
leaky interface waves are responsible for the magnetopho
resonance.13 The surface waves were employed to control
electric current~including single-electron transport! in quan-
tum wells and wires.14,15In general, a number of application
of acoustic waves in layered quantum heterostructures ca
realized to control electron transport, to modulate elec
currents and optical signals, and to enhance overall de
performance.

Since the methods of generation and detection of the
face waves are well developed, these waves and their in
action with electrons have been studied the most extensiv
Nevertheless, the confined acoustic waves in quantum-
~QW! structures can be of great importance for hig
frequency effects and various applications. Indeed, the c
finement of acoustic modes increases progressively with
quency. This can result in a strong phonon coupling to lo
dimensional electrons in a high-frequency range. Recentl
was suggested that the confined high-frequency phonons
be amplified by the drift of two-dimensional electrons.16 A
realization of this effect in semiconductor heterostructu
would open up interesting perspectives for the generatio
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coherent high-frequency confined phonons and for the st
of confined electron–confined phonon interaction.

Confinement of the acoustic phonons is possible due
the mismatch in elastic properties of layers composing Q
heterostructures. Typically, this mismatch is small, and c
finement properties are sensitive to both the mismatch
symmetry of crystals composing the heterostructure.~A gen-
eral analysis of possible acoustical waves in layered syst
can be found in Refs. 17–19.! Previously, confined waves5

and their amplification16 were studied based on a simp
model of elastically isotropicmedia. In this paper, we de
velop a model ofelastically anisotropic (cubic)media for
layers constituting the heterostructure to make an analys
the confined modes and their amplification~generation! more
realistic.

The rest of the paper is organized as follows. In Sec.
we formulate the basic equations and present an analys
the confined phonons in cubic QW heterostructures grow
the @001# direction. In Sec. III, we apply this analysis t
Si/Ge/Si, Si/Si0.5Ge0.5/Si, and AlAs/GaAs/AlAs QW’s, con-
sidering the confined vibrations in details. In Sec. IV, t
theory is extended to the problem of confined phonon am
fication. A summary follows in Sec. V. Some of the detail
formulas are collected in Appendixes A and B.

II. CONFINEMENT OF ACOUSTIC MODES IN CUBIC
HETEROSTRUCTURES

Consider the heterostructure shown in Fig. 1, where e
trons are confined in a QW layerA embedded in a semicon
ductor materialB. The thickness of layerA is 2d. Both ma-
terials A and B are supposed to be of cubic symmetry. W
assume that the structure is grown in the@001# direction, and
that the propagation direction of the acoustic wave is@100#.
©2002 The American Physical Society21-1
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Within the framework of the linear theory of elasticit
acoustic vibrations in each of the media can be described
the equation of motion20

r
]2ui

]t2
5

]s i j

]xj

, xi5x,y,z, ~1!

FIG. 1. Geometry of the heterostructure under analysis.
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wherer is the mass density,ui are the components of th
displacement vector,x, y, andz are the coordinates, ands i j
are the components of the stress tensor. Applying Hook
law for a cubic crystal, the stress tensor can be written a

s i j 5C12~div u!d i j 1C44S ]ui

]xj
1

]uj

]xi
D1D

]ui

]xj
d i j , ~2!

where

D5C112C1222C44 ~3!

is the parameter of anisotropy and the summation overi and
j is not assumed in the last term of Eq.~2!.

For elastically isotropic media,D50. In general,DÞ0,
which results in the anisotropy of the propagation of t
acoustic waves. For long-wavelength acoustic waves,
dispersion relations between the frequencyv and the wave
vector q become dependent on the wave-vector orientati
v5V(q)q, whereV(q) is the wave velocity. In particular
Eqs. ~1!–~3! imply that if the wave vector is on the~010!
plane@i.e., if q5(q sinu,0,q cosu)], there are three types o
the waves: quasilongitudinal and quasitransverse waves
orientation-dependent velocities,
VL,T
(quasi)~u!5A@~C111C44!6A~C112C44!

22sin2~2u!D~C111C12!#/2r, ~4!
ate
nt

ntal
-
and

SH
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cal
and a purely transverse wave with a velocity

VT5AC44/r. ~5!

The upper sign in Eq.~4! corresponds to the quasilongitud
nal waves which comprise both longitudinal and transve
lattice vibrations. For@100# and @101# high-symmetry direc-
tions, the quasilongitudinal waves reduce to purely long
dinal ones with velocities VL

(quasi)(0)5VL
[100]

5AC11/r,VL
(quasi)(p/4)5VL

[101]5A(C112D/2)/r, respec-
tively. For arbitraryu the dispersion curvesv(q) fall into
the sector SL determined by the linesv5VL

[100]q and
v5VL

[101]q in the (v,q) plane. Analogously, the quas
transverse waves@the lower sign in Eq.~4!# comprising, in
general, transverse and longitudinal vibrations, beco
purely transverse for the high-symmetry directions with v
locities VT

(quasi)(0)5VT
[100]5AC44/r,VT

(quasi)(p/4)5VT
[101]

5A(C441D/2)/r. In the (v,q) plane their dispersion curve
fall into the sectorST limited by the linesv5VT

[101]q and
v5VT

[100]q. Obviously, the sectorSL is always above the
sectorST in the (v,q) plane. Acoustic waves propagate in
bulk material only when they have values ofv andq which
fall into sectorsSL or ST .

For the geometry given in Fig. 1, Eqs.~1!–~3! should be
supplemented by the boundary conditions at the interfac

ui
A5ui

B , s iz
A 5s iz

B at z56d. ~6!
e

-

e
-

:

Throughout this paper, the indicesA andB label the materi-
als. According to the definition, confined waves propag
along theA layer and decay outside it. The latter requireme
provides additional boundary condition:uB→0 at z56`.
Two classes of the confined acoustic waves, shear-horizo
~SH! and shear-vertical~SV!, can exist for the structures un
der consideration. The SH waves are purely transverse
polarized along the layer. The displacement vector for
waves isu5(0,uy,0). The shear-vertical waves~sagitally po-
larized waves! have two projections of the displacement ve
tor: u5(ux,0,uz).

In the high-frequency region of interest, the domina
mechanism of electron–acoustic-phonon interaction is
interaction via the deformation potential. For this case, tw
dimensional electrons with an isotropic energy dispersion
coupled only withlongitudinal lattice vibrations. Thus we
concentrate on an analysis of confinement of SV wa
which comprise both longitudinal and transverse vibratio

For SV waves, the components of the displacement ve
can be represented as

ux~x,z,t !5wx~z!ei (qx2vt),

uz~x,z,t !5 iwz~z!ei (qx2vt). ~7!

One can show that functionswx(z) and wz(z) always have
differentsymmetries. We define the symmetric shear-verti
~SSV! modes as those withwx(z)5wx(2z),wz(z)52wz
1-2
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(2z) and the antisymmetric shear-vertical~ASV! modes as
those withwx(z)52wx(2z),wz(z)5wz(2z).

The location of the sectorsSL andST in the (v,q) plane
is critically important for acoustic-phonon confinemen
Since SV wave confined in theA layer comprises both lon
gitudinal and transverse vibrations, solutions of the disp
sion relation for such a wave have to be situated inside
between the sectorsST

A and SL
A . Then the confinement of a

phonon with frequencyv0 and two-dimensional wave vecto
q0 is possible only if in the surrounding mediumB there are
no vibrations of the same frequencyv0 and wave vectorq
5(q0,0,qz) with any arbitraryqz . Otherwise, the vibrations
excited in the QW layer will leak out. This implies that s
lutions of the dispersion relation of the confined SV wav
cannot be found above the sectorST

B . Thus the necessar
condition of the confinement of the SV waves is the requ
ment for the sectorST

A to be situated below the sectorST
B , at

least in part.
For the quantitative analysis of the confined waves,

~1! provides the coupled equations forwx and wz in each
medium,

wxKL
2~v,q!1

d2wx

dz2
C442q

dwz

dz
@C112C442D#50, ~8!

wzKT
2~v,q!1

d2wz

dz2
C111q

dwx

dz
@C112C442D#50, ~9!

where KL
2(v,q)5@rv22q2C11# and KT

2(v,q)5@rv2

2q2C44#. The relationsKL(v,q)50,KT(v,q)50 determine
the dispersions of the bulk waves propagating in the@100#
direction. A general solution to Eqs.~8! and ~9! can be rep-
resented in the forms

wx~z!5H0eR2z1H1e2R2z1H2eR1z1H3e2R1z,
~10!

wz~z!5F0
2eR2z1F1

2e2R2z1F2
1eR1z1F3

1e2R1z,
~11!

with the following relationships between the coefficients:

F j
75~21! j

q@C112C442D#R7

KT
21C11R 7

2
H j[Gj

7~v,q!H j .

Four exponential factors6R7 can be expressed in terms
v andq as solutions to the biquadratic equation:

C11C44R 41R 2@C11KL
2~v,q!1C44KT

2~v,q!

1q2~C112C442D !2#1KL
2~v,q!KT

2~v,q!50.

~12!

A general solution given by Eqs.~10! and~11! contains eight
arbitrary constantsH j

M with M5A,B and j 50,1,2,3; the so-
lutions corresponding to the confined SSV and ASV wa
have only four constants due to the symmetry requireme
H0

M5H1
M , H2

M5H3
M . For example, the SSV waves can

represented as
15532
.
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wx~z!55
H0

Bexp@R 2
B z#1H2

Bexp@R 1
B z#,

z,2d

H0
Acosh@R 2

A z#1H2
Acosh@R 1

A z#,

uzu,d

H0
Bexp@2R 2

B z#1H2
Bexp@2R 1

B z#,

z.d,

~13!

wz~z!55
G0

2,BH0
Bexp@R 2

B z#1G2
1,BH2

Bexp@R 1
B z#,

z,2d

G0
2,AH0

Asinh@R 2
A z#1G2

1,AH2
Asinh@R 1

A z#,

uzu,d

2G0
2,BH0

Bexp@2R 2
B z#2G2

1,BH2
Bexp@2R 1

B z#,

z.d,

~14!

with

Re@R 2
B ~v,q!#, Re@R 1

B ~v,q!#.0. ~15!

The ASV solutions can be obtained from Eqs.~13! and ~14!
by substituting sinh→cosh, cosh→sinh, andH0,2

B →2H0,2
B in

the formulas forz.d.
For the SSV and ASV waves, boundary conditions~6!

provide two systems of four linear homogeneous algeb
equations for the coefficientH0,2

A,B . Characteristic matrices o
these systemsD SSV,ASV are presented in Appendix A. Unde
criteria ~15!, the resolvability condition for these equation

detuD SSV,ASV~v,q!u50, ~16!

provides the dispersion relations for the confined SV wav
In general, there is asetof solutions describing the con

fined waves with the dispersion relationsvn(q), wheren is
an integer. The solutions are orthogonal. Let us normalize
solutions by imposing the condition that the energy of t
$n,q% wave is equal to\vn(q). According to the virial theo-
rem, the kinetic energy of vibrations is equal to the poten
~elastic! energy. The density of the elastic energy isUel

M

5 1
2 s i j

Mui j , whereui j are the components of the strain tens
Thus, to normalize a solutionunq properly, we use the
condition24

2LxLyE
2`

`

dzUel~z! 5\vnq , ~17!

whereLx andLy are the lateral dimensions of the QW laye
and the bar shows the averaging over one period of the
cillations. In terms of the variableswx and wz , the elastic
energy density is

Uel~z!5
1

4
C11Fq2wz

21S dwz

dz D 2G1
1

4
C44S dwx

dz
2qwxD 2

1
1

2
C12qwx

dwz

dz
. ~18!
1-3
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A normalization of the solutions~modes! given by Eq.~7!
allows one to quantize the lattice vibrations and introdu
confined SV phonons.

Prior to numerically calculating the SV solutions and t
dispersion relations, we shall briefly discuss the exponen
factorsR7 which determine the acoustic confinement. It
convenient to present the solutions of Eq.~12! in each me-
dium in the form

R 7
2 ~v,q!5q2R7

2 Fv2

q2 G , ~19!

with

R7
2 Fv2

q2 G5
r

C44

C111C44

2C11
F S V0

22
v2

q2 D
7

C112C44

C111C44
AS v2

q2
2V2

2 D S v2

q2
1V1

2 D G .

~20!

Here both quantitiesv andq are real. The analytical expres
sions for the parametersV0 , V2, andV1 are given in Ap-
pendix B. When applied to an acoustic wave with the f
quencyv and wave vectorq, Eq. ~20! represents theR6

factors as functions of the phase velocity of this wave. T
character of theR6 factors changes at thev/q5const lines
and the solutions can be classified in the different sector
the (v,q)-plane.

The factorsR7
2 @v2/q2# are parametric functions of th

anisotropy parameterD. We have studiedR6 at differentD
and found the following properties. ForD,0, all parameters
V0 , V2 , andV1 are positive defined. In this case, Eq.~20!
explicitly shows that Re@R7#Þ0, Im@R7#Þ0 for v/q
,V2 . Solutions Re@R6#50 and Im@R6#Þ0 exist forv/q
.V2 if

D<D* [2@AC11~C112C44!2~C112C44!#, ~21!

and forv/q.VT otherwise. Thus the critical line, at whic
the factorsR6 change their character can be defined asv
5Vcq with

Vc5H V2 for D<D*

VT otherwise.
~22!

Let us apply this analysis to the confined phonons. F
consider the surrounding medium whereR 7

B (v,q) deter-
mine the decay of the waves. It is obvious that, in theB
material,leaky wavesappear only above the critical line. A
and below this line confined modes can exist. Thus the
v5qVc

B is theonsetfor the dispersion of confined acousti
phonon branches.

In the embedded materialA, the critical velocity deter-
mines the asymptotical behavior of the dispersion branc
for confined acoustic modes atq→`. Indeed, in the limit
qd@1, a (v,q) wave confined inside the QW layer can b
considered as a superposition of bulklike plane waves w
15532
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the wave vectors (q,0,6qz), where qz5uR 6
A (v,q)u for

purely imaginaryR factors. Such factors exist only forv
.qVc

A .
This analysis leads to the following conclusion: all co

fined acoustic branches have phase velocities which obey
relation

qVc
A,v<qVc

B . ~23!

It is important to emphasize that the condition given by E
~21! is typical for most of the semiconductor heterostru
tures, including the SiGe- and AlxGa12xAs-based structures
considered in this paper. Consequently, for all these st
turesVc

M[V2
M .

III. CONFINED PHONONS IN SiGe- AND
AlXGa1ÀxAs-BASED HETEROSTRUCTURES

In this section, we apply the results obtained previously
this paper to Si/Ge/Si, Si/Si0.5Ge0.5/Si, and AlAs/GaAs/AlAs
QW heterostructures. Parameters used in the calculation
well as the associated characteristic velocities are colle
in Table I. From the data of Table I, it follows that for a
these heterostructures as well as for t
Si0.5Ge0.5/Ge/Si0.5Ge0.5 QW, condition~21! is valid and con-
dition ~23! can be satisfied. Thus, these structures are fa
able for confinement of the SV phonons.25

First consider the SiGe heterostructures. For the Si/G
QW structure, in Fig. 2 we depict the sectorsST

B andST
A , the

onset line and an asymptote which corresponds to Eq.~23!,
and four lowest confined phonon branches. We use the
mensionless representation

V5
v

v0
[

vd

VT
A

, Q5qd.

In terms of these dimensionless quantities, the dispersion
lations do not depend on the half-thickness of the layerd.
Figure 2 clearly illustrates nearly all main features of t
confinement of SV waves in the systems considered. For
case, the sectorsST

B and ST
A do not overlap. Equation~16!

gives two sets of the dispersion curves which correspon
SSV and ASV solutions. For all structures, the lowest lon
wavelength branch is found to be the lowest-order AS

TABLE I. Material parameters: mass densities (g/cm3), stiffness
constants and factors of anisotropy (1011 dyn/cm2) and character-
istic velocities (105 cm/sec).

Material r C11 C44 C12 D D* Vc

Sia 2.33 16.6 7.96 6.39 25.71 23.36 5.66
Gea 5.33 12.85 6.80 4.83 25.58 22.77 3.37
Si0.5Ge0.5

b 3.82 14.73 7.38 5.61 25.65 23.06 4.20
AlAsc 3.76 12.02 5.99 5.70 25.66 22.48 3.63
GaAsc 5.32 11.88 5.94 5.38 25.38 22.46 3.08

aReference 21.
bReference 22.
cReference 23.
1-4
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branch which is denoted by ASV-0. AtQ→0, the oscillation
frequencies of both the ASV-0 and SSV-0 branches appro
zero. The positions of the onset frequencies for the hig
order branches obey the following sequence: ASV-1, SSV
ASV-2, SSV-2, etc. All these branches fall into the sec
given by Eq.~23!.

It is important to emphasize that the isotropic mod
failed to predict the behavior of the branch SSV-0 shown
Fig. 2. Indeed, in elastically isotropic media only the ASV
mode exists in the limitQ→0, and the SSV-0 mode is th
first excited mode with finiteV andQ onsets.5,6,16 For elas-
tically anisotropic media, we found that the modes of bo
symmetries ASV and SSV can exist atQ→0. Mathemati-
cally, this is because the oscillating and decaying solution
theB material allow to satisfy the boundary conditions of E
~6! for the two lowest modes. These lowest ASV-0 a
SSV-0 branches exhibit a relatively small separation.
have studied the SSV-0 branch in detail, particularly
small Q. In Fig. 3~a!, the SSV-0 mode withQ50.3 is pre-
sented. One can see that this mode represents lattice v
tions in a wide spatial region outside the QW layer. Th
magnitude oscillates and decays very slowly.26

From the analysis presented in Sec. II, it follows that
each branch the real part of the decay factors Re@R7(v,q)#
vanishes near the onset and, thus, the confinement of
corresponding solutions is weak. The development of
branch at the higherQ leads to a progressive increase in bo
the mode confinement and localization of the elastic ene
inside the QW. In Figs. 3~b! and 3~c!, we present the result
of calculations of the displacement vector@Eq. ~7!# and the
elastic energy@Eq. ~18!# at Q52 for the SSV-0 branch. One
can see that the lattice vibrations are well confined inside
QW layer.

FIG. 2. Dispersion for Si/Ge/Si QW heterostructure. SectorST
B

is delimited by thin dashed lines: the upper line has a slopeVT
[100],B ,

and the lower line has a slopeVT
[101],B . SectorST

A is delimited by
thin solid lines: the upper line has a slopeVT

[100],A , and the lower
line has a slopeVT

[101],A . In each sectorST
M , the line with slopeVc

M

is shown as the dotted line. Dispersions of the lowest two S
~ASV! confined phonon branches are shown by the thick s
~dashed! lines.
15532
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Generally, the lattice vibrations of the SV modes cor
spond to quite complex motions of the media. Figure 4 illu
trates the displacement vector fields for both the ASV-0 a
SSV-0 modes computed at a fixed moment of time with
same dimensionless wave vectorQ52. The patterns along
the x axis correspond to the dimensionless wave per
2p/Q. The figure illustrates the difference in the displac
ment patterns of waves of different symmetries. These d
straightforwardly demonstrate that SV waves comprise b
longitudinal and transverse displacements.

The lowest SV modes for Si/Si0.5Ge0.5/Si QW hetero-
structures are presented in Fig. 5~a!. They behave quite simi-
lar to the modes of the previous case. Due to a lower ela
mismatch between Si and Si0.5Ge0.5, however, this system

V
d

FIG. 3. ~a! and ~b! Spatial distribution of the displacemen
fields, and~c! elastic energy for the SSV-0 phonons in Si/Ge/Si Q
heterostructures.Q is fixed at 0.3 for~a! and 2.0 for~b! and ~c!.
Vertical dotted lines indicate the heterointerfaces. Distributio
wx(z) andwz(z) are shown by solid and dashed lines, respectiv
@~a! and ~b!#.

FIG. 4. Displacement vector fields in Si/Ge/Si for SSV-0 a
ASV-0 confined modes withQ52.
1-5
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manifests a narrower sector of Eq.~23! and, consequently, a
weaker confinement of the elastic waves.

Summarizing the results of the study of Si12xGex-based
QW heterostructures, one can state that for these mate
the effect of acoustic-phonon confinement exists in a w
range of alloy compositionx. This supports the interpretatio
of experimental results10 on the low-dimensional transport i
Si/Ge QW’s in the temperature interval 0.3–5.5 K. Inde
the authors of Ref. 10 found that for the QW layers fab
cated of Ge and sandwiched between SiGe, the relaxa
rate of electron energy directly indicates the reduction
dimensionalityof the acoustic phonons from 3 to 2. Th
means that the energy relaxation is due totwo-dimensional
(confined)phonons. On the other hand, for the QW laye
fabricated of Si and sandwiched between SiGe materials
phonon dimensionality was found to be 3.

In AlAs/GaAs QW heterostructures, an extreme case
the weak confinement can be observed. As shown in
6~a!, these heterostructures are characterized by an ove
between the sectorsST

B andST
A . It is important to emphasize

that for such a case the isotropic elastic model5,16 cannot
predict the existence of confined SV waves because in
model each sectorSL,T

M reduces to a line. Instead, criterio
~23! resolves the confinement problem even for this ca
The dispersion curves for the lowest confined SV modes
an AlAs/GaAs/AlAs QW are shown in Fig. 6~b!. The behav-
ior of this dispersion curves is quite similar to that analyz
previously, except for a decrease in the spacing between
SSV-0 and ASV-0 branches, and the larger frequency–wa
vector onsets for the upper branches.

IV. AMPLIFICATION OF CONFINED PHONONS BY
ELECTRON DRIFT

Now we shall consider amplification of confined acous
phonons through the interaction with two-dimensional ca
ers. Apparently, the electrons localized in a QW are coup

FIG. 5. ~a! Dispersion for Si/Si0.5Ge0.5/Si QW heterostructures
notations are the same as in Fig. 2.~b!–~d! Amplification coefficient
as a function of phonon frequency atT550 K ~solid lines!, 100 K
~dash-dotted lines!, 200 K ~dashed lines!, and 300 K~dotted lines!.
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to all existing phonon modes. However, the phonons con
ered above and two-dimensional electrons are confined
almost the same spatial region and they should manifest
strongest interaction. To analyze the electron-confined p
non interaction, we will assume that only the lowest tw
dimensional subband is populated by electrons, and that
energy distances to the next subbands are larger than
energies of the phonons under consideration. The elec
wave functions areC l ,k(r ,z)5(1/ALxLy)e

ikxc(z), wherek
is the two-dimensional electron wave vector, andLy andLx
are the lateral dimensions of the sample. In making e
mates, we assume that the barriers confining the electron
infinitely high andc(z)5cos(pz/2d)/Ad. The energy of the
electrons populating the lowest subband isE(k)
5\2k2/2m* , wherem* is the effective mass. The electro
motion along the QW layer is supposed to be semiclassi
and is described by a distribution functionF@kx ,ky# depen-
dent on the applied electric field. Then we suppose the
formation potential mechanism for electron-phonon coupl
with the interaction energyb div(u); b is the deformation
potential constant.

A quantum-mechanical description of carrier interacti
with a given$n,q%-phonon mode leads to the developme
of the kinetic equation for the mode population. Such
analysis was made in Ref. 16. When the population of
mode becomes large and the phonon subsystem can
treated semiclassically, we can introduce the intensity of
corresponding acoustic wave and define the amplifica
~absorption! coefficient,anq . This coefficient describes th
rate of increase~decrease! in the acoustic wave intensity pe
unit length. Under the above assumption, we have obtai

FIG. 6. ~a! Overlap of the sectorsST
M , ~b! dispersion of the

lowest confined phonon modes, and~c! amplification coefficient
a(v) in AlAs/GaAs/AlAs QW heterostructures. In~a!, sectorST

B is
delimited by thin dashed lines: the upper line has a slopeVT

[100],B ,
and the lower line has a slopeVT

[101],B sectorST
A is delimited by thin

solid lines: the upper line has a slopeVT
[100],A , the lower line has a

slopeVT
[101],A , the upper dotted line has a slopeVc

B , and the lower
dotted line has a slopeVc

A . The notations of~b! are the same as in
Fig. 2, and notations of~c! and ~d! are the same as in Figs. 5~b!–
5~d!.
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the following formula for the amplification coefficient of th
confined$n,q% wave:16

anq5
m*

p\3uqu

uM~q!u2

@k (el)~q!#2Udvn,q

dq U LxLy@I n
(1)~q!2I n

(2)~q!#.

~24!

Here

M~q![ ib E
2`

` S qwnq,x~z!1
dwnq,z~z!

dz Dc2~z!dz

is the matrix element of the electron-phonon interacti
k (el)(q) is the electron permittivity defined as

k (el)~q!511
2pe2d

k
A~q!B~qd!, ~25!

wherek is the dielectric constant, and the polarization o
eratorA(q) and the functionB are in the forms

A~q!52
2

LxLy
(

k

F~k!2F~k2qW !

E~k!2E~k2q!
,

B~s!5
d2

s E E
2`

`

dzdz8c2~zd!c2~z8d!e2suz2z8u.

The population factorsI n
(6) account for the number of elec

trons interacting with the$n,q%-mode, and are calculated vi
the electron distribution function

I n
(6)~q!5E

2`

`

dkyFFsgn~q!
m* vnq

\uqu
6

1

2
q,kyG , ~26!

with sgn(x)51 for x.0 and sgn(x)521 for x,0.
Depending on the shape of the distribution functi

F(kx ,ky), the valueanq can be either positive or negative
For the electrons drifting in an applied electric field alo
the QW layer, the distribution function can be describ
in terms of a shifted Fermi distribution:F@kx ,ky#
5FF@kx2Vdrm* /\,ky#, whereFF(k) is the Fermi function
and Vdr is the electron drift velocity. In such an approac
Eqs. ~24!–~26! express the amplification coefficient as
function of two electron parameters: the electron tempera
T and the drift velocityVdr . For a particular heterostructure
a given lattice temperature, and a given applied electric fi
both T and Vdr can be calculated from the energy and m
mentum balance equations.27

From Eqs.~24!–~26!, it follows that for phonons propa
gating along the electron flux, the amplification coefficie
anq.0 if the electron drift velocity exceeds the confine
phonon phase velocity:Vdr.vnq /uqu. This criterion is, in
fact, the well-known condition of the Cˇ erenkov generation
effect.28 If the amplification coefficient caused by th
electron-phonon interaction is positive and exceeds all p
non losses, the intensity of the corresponding confin
wave~s! should increase exponentially with the coordina
i.e., we obtain the effect of phonon amplification.
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Now we shall return to particular QW heterostructure
For the case of SiGe-based structures, we will focus
p-doped QW’s. Holes are confined more than electrons
these QW’s. In such a case, the lowest subband is he
hole-like. The effective mass for the heavy holes in t
Si/Ge/Si QW can be estimated asm* 50.4m0, wherem0 is
the free-electron mass. Other parameters are taken from
21. For an AlAs/GaAs/AlAs QW, we consider phonon inte
action with electrons of effective massm* 50.067m0.

To compute the amplification coefficient of Eq.~24!, we
take the concentrations of the carriers and drift velocity to
1012 cm22 and 2.5 VT

A , respectively. In the case of Si/Ge/S
heterostructure, for instance,Vdr52.5 VT

A corresponds to 9
3105 cm/s and can be reached in modest electric fields.6 As
follows from Table I and Figs. 2, 5~a!, and 6~b!, the chosen
value ofVdr ensures the fulfillment of the Cˇ erenkov criterion
for any branch of the confined acoustic modes in all syste
considered in this paper.

First we consider a 100-Å Si/Si0.5Ge0.5/Si heterostructure.
The amplification coefficient for this case is presented in F
5~b! as a function of the dimensionless phonon frequen
v/v0 for SSV-0 and SSV-1 phonon branches. Calculatio
are performed for different temperatures:T550, 100, 200,
and 300 K. One can see that a considerable amplifica
effect exists for both phonon branches. The basic behavio
a is similar to that found in the isotropic model calculatio
presented in Ref. 16. The maximum amplification
achieved at low temperatures:aSSV20(364 GHz, 50 K)
51200 cm21. As the temperature increases above 50 K,
amplification coefficient decreases. Nevertheless, it rem
high even atT5300 K ~about 300 cm21 at the peak!. Note
that the amplification of the phonon modes belonging to
second branch starts at a finite frequency which coinci
with the onset of the SSV-1 dispersion.

In general, the magnitude of amplification depends
three factors: carrier population factor, the degree of wa
localization, and the relative magnitude of longitudinal-lik
vibrations in the confined wave. All these factors can
changed by a variation of the materials composing the Q
doping type, concentration, and temperature, as well as
the width of the well. The influence of the latter parameter
illustrated in Figs. 5~c! and 5~d!. The reduction ofd for the
same Si/Si0.5Ge0.5/Si system leads to an increase in the ma
nitude of amplification for the first amplification band, a
well as to the inversion of the temperature dependence of
amplification magnitudes and their suppression for the s
ond amplification band. The frequency which corresponds
the maximum of amplification also tends to increase
higher temperatures.

The magnitude of the amplification essentially depen
not only on the degree of phonon confinement, but also
the value ofm* . From this point of view, it is hard to expec
that amplification of the phonons by electrons in an AlA
GaAs/AlAs QW will lead to a large effect. Nevertheless,
indicated by the data presented in Figs. 6~c! and 6~d!, the
low-temperature amplification of the phonons with a fr
quency of about 200 GHz can reach hundreds of cm21 even
in this heterostructure. The second amplification band
completely suppressed.
1-7
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A significant increase in the amplification coefficient c
be achieved for Si/Ge/Si QW heterostructures, where
phonon confinement is stronger due to the larger elastic m
match in the layers composing the structures. Moreo
these structures manifest a unique dependence ofa on the
width of the well and temperature. As shown in Fig. 7~a!,
a 100-Å Si/Ge/Si QW is expected to have a broad SS
amplification band and a relatively narrow SSV-1 amplific
tion band. Unlike all previously considered cases, the str
gest amplification with a record value of 7100 cm21 is ex-
pected for the second band at the frequency of 640 G
Additionally, this value remains almost independent on te
perature in the intervalT550–100 K. A reduction of the
well width to 50 Å leads to another interesting effect. Fi
ure 7~b! shows that in this case both bands can mani
strong and almost equal amplifications so thata can reach its
maximum for the first band at low temperature whereas
most the same value ofa can be achieved at high temper
ture for the band SSV-1. Note that both the SSV-0T
550 K) and SSV-1 (T5300 K) bands are relatively nar
row. One can see that the magnitude of theaSSV21(300 K)
is almost insensitive to the variation ofd from 50 to 25 Å. At
d515 Å, however, the second band is almost totally s
pressed, as shown in Fig. 7~c!. Nevertheless, the magnitud
of the SSV-0 band amplification remains higher than in
case of the Si/SiGe structure.

For all the structures and amplification bands conside
in this paper, the maximum ofa shifts toward higher fre-
quencies with increasing temperature. Figure 7~d! shows that
the frequency of the amplification maximum also tends
increase when the width of the QW decreases. For the s
set of widths, the latter effect is less pronounced
AlAs/GaAs/AlAs heterostructures where the sector with
confined phonon dispersion branches restricted in the (v,q)
plane by Eq.~23! is narrow. This leads to a relatively sma

FIG. 7. ~a!–~c! Amplification coefficient in Si/Ge/Si heterostruc
tures as a function of phonon frequency atT550 K ~solid lines!,
100 K ~dash-dotted lines!, 200 K ~dashed lines!, and 300 K~dotted
lines!. ~d! Confined phonon frequencies at the maxima of amp
cation coefficients presented in Figs. 5~b!–5~d!, 6~c!, and 6~d!, and
7~a!–7~c! for SSV-0 phonon branches.
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carrier-phonon interaction: the phonons with phase veloci
close toVc

B are weakly confined, whereas for the phono
with phase velocities close toVc

A the contribution of the
longitudinal-like vibrations to the SV mode vanishes. As
result, the maximum amplification can be reached in a re
tively narrow interval of phonon frequencies and wave ve
tors, so that the dependence of the properties of the elect
phonon system ond has only a minor impact on the positio
of the maximum. This explanation is also supported by
other results presented in Fig. 7~d!. One can see that fo
SiGe-based structures, a tendency—the wider the secto
fined by Eq. ~23!, the more sensitive the position of th
maximum becomes to the well width—is manifested.

Note that although the dependence presented in Fig.~d!
for the Si/Ge/Si structure is stronger than that for t
Si/Si0.5Ge0.5/Si system, the absolute values of frequenc
which correspond to the maxima ofa are smaller. This oc-
curs as a result of a faster development of the carrier-pho
interaction upon increasingq or v in the Si/Ge/Si QW,
where for a mode with the same degree of confinement
relative contribution of the longitudinal vibrations is highe

In efforts to realize the large amplification of confine
phonons by electron drift at high frequencies, it is importa
to keep in mind that an increase in the phonon freque
gives rise to an enlargement of phonon losses due to cry
anharmonicity, scattering on defects, etc. For frequencies
than 1 THz, phonon losses due to the anharmonicity
scattering by natural defects~isotopes! are well below the
phonon gain estimated for heterostructures considered in
study.29 To observe the amplification effect, however, o
should use well-designed and high-quality QW heterostr
tures.

V. SUMMARY

We have performed an analysis of confined acoustic
brations in QW heterostructures composed of cubic mat
als. A general criterion of the occurrence of confin
phonons in such structures has been derived. We have
sented a realistic analysis of these phonons in cubic Si/Ge
Si/Si0.5Ge0.5/Si and AlAs/GaAs/AlAs QW heterostructure
with a focus on shear-vertical vibrations. We have found t
the model of an elastically isotropic media cannot be app
to layered systems composed of materials with relativ
small elastic mismatch and negative anisotropy fac
AlAs/GaAs/AlAs QW heterostructures belong to this class
systems. We have calculated dispersion curves for the c
fined phonons. For all of the analyzed structures, we h
shown that the behavior of the lowest phonon branche
quite different from that in the model of elastically isotrop
media. We have studied the displacement fields correspo
ing to these phonons, and discovered their complex inte
structure. In the subterahertz and terahertz frequency ra
SV phonons are strongly confined inside the QW laye
These results support the experimental observation10 of the
reduction of the dimensionality of acoustic phonons e
ciently coupled to the two-dimensional holes in Si/Ge
quantum wells.30

For p-doped Si/SixGe12x /Si and n-doped AlAs/GaAs/

-

1-8



e
of
ca

nd
o
t

on
e

i-
.K
c

CONFINEMENT AND AMPLIFICATION OF ACOUSTIC . . . PHYSICAL REVIEW B 65 155321
AlAs quantum-well heterostructures, we have studied the
fect of amplification of the confined phonons by the drift
low-dimensional carriers. We have shown that the amplifi
tion coefficient can be of the order of hundreds of cm21 for
Al xGa12xAs heterostructures, and of the order of thousa
of cm21 for SiGe heterostructures in the terahertz phon
frequency range. This suggests that electric methods for
amplification and generation of terahertz coherent phon
can be realized in these technologically important QW h
erostructures.
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APPENDIX A

The characteristic matrix for SSV wavesD SSV is

D115cosh~R2d!, D125cosh~R1d!,

D135cos~Rid!, D145sin~Rid!,

D215jAR2x2sinh~R2d!, D225jAR2x2sinh~R2d!,

D235jB@z1cos~Rid!2z2sin~Rid!#,

D245jB@z2cos~Rid!1z1sin~Rid!#,

D315~12jAx2!R2sinh~R2d!,

D325~12jAx1!R1sinh~R1d!,

D335@$z2sin~Rid!2z1cos~Rid!%jB2Risin~Rid!

2Rrcos~Rid!#C44
B /C44

A ,

D345@2$z1sin~Rid!1z2cos~Rid!%jB1Ricos~Rid!

2Rrsin~Rid!#C44
B /C44

A ,

D415FC11
A

C12
A

jAR2
2 x211Gcosh~R2d!,

D425FC11
A

C12
A

jAR1
2 x111Gcosh~R1d!,
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D435
C11

B

C12
A

jB@~x rz322RrRix i !cos~Rid!

1~x iz312RrRix r !sin~Rid!#1
C12

B

C12
A

cos~Rid!,

D445
C11

B

C12
A

jB@~x rz322RrRix i !sin~Rid!

2~x iz312RrRix r !cos~Rid!#1
C12

B

C12
A

sin~Rid!.

The indexA(B) denotes the material of the QW~surround-
ing material!; the other notations are

R7[R 7
A ,

jM5S@C11
M2C44

M1DM#F12
rM

C44
M

v2

q2GD21

, x7[x7
A with

x7
M[C11

MFR7,M1
@C11

M2C44
M1DM#2

C11
MC44

M
2S C11

M

C44
M

2
rM

C44
M

v2

q2 D G ,

(R,x) r[uRe@(R,x)7
B #u, (R,x) i[uIm@(R,x)7

B #u, z1[x iRi

2x rRr , z2[x iRr1x rRi , and z3[Rr
22Ri

2 . The matrix
D ASV can be obtained fromD SSV by making the following
substitutions in the first two columns: sin→cos, sinh
→cosh, cos→sin, and cosh→sinh.

APPENDIX B

In Eq. ~20!, the characteristic velocities are

V0
25

2

r~C111C44!
S C11C441DH C112C442

D

2 J D ,

~B1!

V7
2 5

2~C111C44!

r~C112C44!
2 FC112C442D

C111C44

3A2C11C44DS D

2
1C442C11D

7DH D

2
1C442C11J G . ~B2!
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