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Confinement and amplification of acoustic waves in cubic heterostructures
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We present the theory of acoustic phonon confinement in elastically anisotcopic) quantum-wel(QW)
heterostructures grown in a direction of high symmetry. A general criterion for phonon confinement is derived.
For Si/Si sGe, 5/Si, Si/Ge/Si and AlAs/GaAs/AlAs QW heterostructures, dispersion curves are obtained, and
displacement fields corresponding to the confined phonons are studied in detail. It is found that the confinement
of acoustic phonons in these QW layers is strong in the subterahertz and terahertz frequency ranges. The
resulting description of phonon confinement is applied to analyze the amplification of confined modes by the
drift of the two-dimensional carriers as a function of the phonon frequency, the temperature, and the parameters
of heterostructure. The calculation shows that the amplification coefficient of the confined phonons can exceed
10° cm ! for Si/Ge-based structures and®16m™?* for AlAs/GaAs-based structures.
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I. INTRODUCTION coherent high-frequency confined phonons and for the study
of confined electron—confined phonon interaction.

The layered character of semiconductor heterostructures Confinement of the acoustic phonons is possible due to
causes the acoustic vibrations of the lattice to be differenthe mismatch in elastic properties of layers composing QW
from the usual bulklike waves. This difference manifests it-heterostructures. Typically, this mismatch is small, and con-
self in surfacé and leaky surfadewaves, interfack and finement properties are sensitive to both the mismatch and
leaky interfacé waves, confined waves in quantum well Symmetry (_)f crystals_composing the heterqstruct(magen-
heterostructure®;’ and folded acoustic phonons in eral analysis o_f possible acoustlca_l waves in Ifayered systems
superlattice€? Interacting with two-dimensional electrons, ¢@n be found in Refs. 17—19%reviously, confined waveés
the modified lattice vibrations contribute to kinetic phenom-and their amphﬁcatpﬁa were studied based on a simple
ena and different acoustoelectric effects. For example, thE0del of elastically isotropicmedia. In this paper, we de-
surface and confined waves determine the low-temperatufé®lop @ model ofelastically anisotropic (cubicnedia for
electron mobility in perfect heterostructufe® -2 and the layers C(_)nst|tut|ng the heter_ostruct_u_re t_o make an analysis of
leaky interface waves are responsible for the magnetophondf€ confined modes and their amplificatigenerationmore
resonancé® The surface waves were employed to control the'€alistic. , _
electric currentincluding single-electron transpoin quan- The rest of the paper is organized as follows. In Sec. 1,
tum wells and wired**5In general, a number of applications We formulate the basic equations and present an analysis of

of acoustic waves in layered quantum heterostructures can g€ confined phonons in cubic QW heterostructures grown in

realized to control electron transport, to modulate electrich® [001] direction. In Sec. I, we apply this analysis to
currents and optical signals, and to enhance overall devicel/Ge/Si, Si/SjsGe s/Si, and AlAs/GaAs/AlAs QW's, con-
performance. sidering the confined vibrations in details. In Sec. IV, the

Since the methods of generation and detection of the sufh€ory is extended to the problem of confined phonon ampli-
face waves are well developed, these waves and their intefcation. A summary follows in Sec. V. Some of the detailed
action with electrons have been studied the most extensiveljormulas are collected in Appendixes A and B.
Nevertheless, the confined acoustic waves in quantum-well
(QW) structures can be of great importance for high-  coNFINEMENT OF ACOUSTIC MODES IN CUBIC
frequency effects ;_and various applications. Indged, th_e con- HETEROSTRUCTURES
finement of acoustic modes increases progressively with fre-
guency. This can result in a strong phonon coupling to low- Consider the heterostructure shown in Fig. 1, where elec-
dimensional electrons in a high-frequency range. Recently, itrons are confined in a QW layérembedded in a semicon-
was suggested that the confined high-frequency phonons caluctor materiaB. The thickness of layeA is 2d. Both ma-
be amplified by the drift of two-dimensional electrofisA  terials A and B are supposed to be of cubic symmetry. We
realization of this effect in semiconductor heterostructuresassume that the structure is grown in f8@1] direction, and
would open up interesting perspectives for the generation dhat the propagation direction of the acoustic wavgliz0].
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z, [001] where p is the mass density; are the components of the
displacement vectox, y, andz are the coordinates, ang;
are the components of the stress tensor. Applying Hooke’s
law for a cubic crystal, the stress tensor can be written as
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where

- X, [100]
! D=Cy1—C1,—2Cyy ©)
is the parameter of anisotropy and the summation oaed
j is not assumed in the last term of HE).
B For elastically isotropic medid) =0. In generalD #0,
FIG. 1. Geometry of the heterostructure under analysis. ~ Which results in the anisotropy of the propagation of the
acoustic waves. For long-wavelength acoustic waves, the
within the framework of the linear theory of elasticity, dispersion relations between the frequercyand the wave
acoustic vibrations in each of the media can be described byectorq become dependent on the wave-vector orientation:

the equation of motict! 0=V(q)q, whereV(q) is the wave velocity. In particular,
Egs. (1)—(3) imply that if the wave vector is on th€10
Pu o planeli.e., if = (g sin4,0,q cosé)], there are three types of
N Xi=X,Y,Z, (1)  the waves: quasilongitudinal and quasitransverse waves with
otz X orientation-dependent velocities,
|
V(%) (6)= V[(Cy1+ Cag) = V(Cri— Cqg?—siP(26)D(Cart C10) /25, @
|
and a purely transverse wave with a velocity Throughout this paper, the indicdsandB label the materi-
als. According to the definition, confined waves propagate
Vo= m_ (5) along theA layer and decay outside it. The latter requirement

provides additional boundary condition®—0 at z=*+.
The upper sign in EqA4) corresponds to the quasilongitudi- Two classes of the gonfined acous_tic waves, shear-horizontal
nal waves which comprise both longitudinal and transverséSH) and shear-verticalSV), can exist for the structures un-
lattice vibrations. Fof100] and[101] high-symmetry direc- der consideration. The SH waves are purely transverse and
tions, the quasilongitudinal waves reduce to purely longituelarized along the layer. The displacement vector for SH
dinal ones with velocities V(LquasD(O):V[LIOO] waves isu=(0,uy,0). The shear-vertical wavésagitally po-

_ miv(l_quasb(wm_):v[l_ml]: (C;,1—DI2)lp, respec- larized waveghave two projections of the displacement vec-

. . . . . tor: u=(uy,0\u,).
tively. For arbitrary 6 the dispersion curves(q) fall into ey . . .
the sectorS, determined by the IineSwZV[LlOO]q and In the high-frequency region of interest, the dominant

- . mechanism of electron—acoustic-phonon interaction is the
w=VI*g in the (»,q) plane. Analogously, the quasi- P

L o - interaction via the deformation potential. For this case, two-
transverse wavefthe lower sign in Eq(4)] comprising, in  gimensjonal electrons with an isotropic energy dispersion are

general, transverse and longitudinal vibrations, becomeqyieq only withlongitudinal lattice vibrations. Thus we
purely transverse for the high-symmetry directions with ve-.,cantrate on an analysis of confinement of SV waves

locities V{#42)(0)=VE= [Cyulp, VE2) (m/a) = VEH pich comprise both longitudinal and transverse vibrations.
=V(CustDI2)Ip. Inthe (w,q) plane their dispersion curves  For SV waves, the components of the displacement vector
fall into the sectorS; limited by the linesw=V{°g and  can be represented as
w=VL%%q. Obviously, the sectoB, is always above the
sectorSy in the (w,q) plane. Acoustic waves propagate in a Uyg(X,Z,t) =W, (z)e (@ o),
bulk material only when they have values @fandq which
fall into sectorsS, or Sy.

For the geometry given in Fig. 1, Eqd)—(3) should be

supplemented by the boundary conditions at the mterfaceS'One can show that functions,(z) andw,(z) always have

Uy(X,Z,t) =iw,(z)e (@, (7)

differentsymmetries. We define the symmetric shear-vertical

ut=u, of=of, at z==d. 6)  (SSV) modes as those withv,(z) =W,(—2),W,(2)= —w,
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(—2) and the antisymmetric shear-vertiqddSV) modes as ([ HSexd REz]+HBexd RBz],
those withw,(z) = —w,(—2),w,(2) =w,(—2).

The location of the sectorS, andS; in the (w,q) plane z<—d
is critically important for acoustic-phonon confinement. HfcosH R Az]+H5cosh R A 7],
Since SV wave confined in th& layer comprises both lon- Wy (2)={ I7|<d (13
gitudinal and transverse vibrations, solutions of the disper-
sion relation for such a wave have to be situated inside or Hoexd — R Bz]+Hyexgd —R % z],
between the sector; andS;'. Then the confinement of a >d.
phonon with frequencw, and two-dimensional wave vector \
o is possible only if in the surrounding mediunthere are P, 5 BB 5
no vibrations of the same frequenay, and wave vector Go "Hoexgd R Zz]+ G, "Hzexd R 1 2],
=(00,0,9,) with any arbitraryq,. Otherwise, the vibrations 7<—d
excited in the QW layer will leak out. This implies that so- CALAL A AAL A
lutions of the dispersion relation of the confined SV waves Go "HosinH R Zz]+ G, "Hasin{ R, z],
cannot be found above the sect®}. Thus the necessary WA2)={ |z|<d

condition of the confinement of the SV waves is the require-

—,By4B B +,B 4B B
. — Gy BHBex — R Bz]— G} BHBexd —
ment for the sectoB; to be situated below the sectsf, at Go "Hoexd ~R =2~ G, "Haexi ~R - 2],

least in part. z>d,
For the quantitative analysis of the confined waves, Eq. \ (14)
(1) provides the coupled equations far, and w, in each _
medium, with
2 dw RER®(0,9)], RERF(w,9)]>0, (15

W, K E( )+wc —q—2[Cy;—Cyy—D]=0, (8)
xK(w,q 472 44qdz 11~ Cua ,

The ASV solutions can be obtained from E¢53) and (14)
by substituting sinh:cosh, cosh-sinh, andHg ,——Hg, in
) d?w, dw, the formulas forz>d.
WK (w,q)+ ——=C1y+ 95, [C1a~Cas=D]=0, ) For the SSV and ASV waves, boundary conditidi6s
dz provide two systems of four linear homogeneous algebraic

where Kf(w,q)=[pw2—qzclﬂ and K%(w,q)z[pwz equations for the coefficierhié"zB. Characteristic matrices of
—2C,4,]. The relationK  (w,q) =0K(w,q) =0 determine  these system® SSVASVY gre presented in Appendix A. Under
the dispersions of the bulk waves propagating in [th@Q] criteria (15), the resolvability condition for these equations,
direction. A general solution to Eq&8) and(9) can be rep e DSSVASY( 4. q)| =0, 16)

resented in the forms
provides the dispersion relations for the confined SV waves.
In general, there is aetof solutions describing the con-
fined waves with the dispersion relations(q), wherev is
_ - _ an integer. The solutions are orthogonal. Let us normalize the
W(2)=Foe" *+Fie -t HF ettt Fye Y, solutior?s by imposing the conditign that the energy of the
1D {v,q} wave is equal td w,(q). According to the virial theo-
with the following relationships between the coefficients: rem, the kinetic energy of vibrations is equal to the potential
(elastig energy. The density of the elastic energyUé"I
= %oi'\j"uij , Whereu;; are the components of the strain tensor.
Thus, to normalize a solutiom,, properly, we use the
conditior?*

Wy (2)=HgeR-?+H e "7+ H,e"+*+ Hye R+,
(10

g[C11—Cs—DIR+
Ki+CyuR2

Fr=(-1) Hj=G (w,q)H;.
Four exponential factors R can be expressed in terms of
» andq as solutions to the biquadratic equation: 2LxLle dzm —fw,g, 17)
C11CaaR*+ R[C1KE(@,9) + CaskF(,q) o
) ) ) 5 whereL, andL, are the lateral dimensions of the QW layer,
+9°(C11~ Cas— D) ]+ Ki(w,q)KT(w,q) =0. and the bar shows the averaging over one period of the os-

(12) cillations. In terms of the variables, andw,, the elastic
energy density is
dw,\?] 1 dw, 2

lutions corresponding to the confined SSV and ASV waves Yel(2)= 7C1i a7z |T2C 57 ~aw
have only four constants due to the symmetry requirements: g
Hy =HY, HY=HY . For example, the SSV waves can be 1 W,

+- —.
represented as 3 CrW (18

A general solution given by Eq§l0) and(11) contains eight
arbitrary constantei}"' with M=A,B andj=0,1,2,3; the so-

q’wi+
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A normalization of the solutiongmodes given by Eq.(7) TABLE |. Material parameters: mass densities (gignstifiness
allows one to quantize the lattice vibrations and introduceconstants and factors of anisotropy t1@lyn/cnf) and character-
confined SV phonons istic velocities (186 cm/sec).
Prior to numerically calculating the SV solutions and the
dispersion relations, we shall briefly discuss the exponentiaflaterial -~ p C;;  Cay Ciz D D* Ve
factorsR; which determine the_ acoustic confinement. Itis g 233 166 7.96 639 571 —3.36 5.66
cpnvement to present the solutions of Ef2) in each me- ce 533 1285 6.80 483_558 —277 3.37
dium in the form SipGe® 3.82 14.73 7.38 561-565 —3.06 4.20
2 AlAs® 3.76 1202 599 570-566 —2.48 3.63
Ri(waQ):qui w_zl, (19 GaAs 532 11.88 594 538-538 —2.46 3.08
q

] dReference 21.
with bReference 22.
‘Reference 23.

m2| @°|__p_ CutCa [\, @
“1g?| Cas 2Cyu 0 92 the wave vectors ¢,0,=q,), where q,=|R" (w,q)| for
purely imaginaryR factors. Such factors exist only fas
1@\/ w_z_\/2 a)_2+V2 >qVé. . . .
Cy+Cuy @ g T This analysis leads to the following conclusion: all con-

fined acoustic branches have phase velocities which obey the
(200 relation

Here both quantitie® andq are real. The analytical expres-
sions for the parameteig,, V_, andV, are given in Ap-
pendix B. When applied to an acoustic wave with the fre-It is important to emphasize that the condition given by Eq.
guency w and wave vectol, Eq. (20) represents thdR. (21) is typical for most of the semiconductor heterostruc-
factors as functions of the phase velocity of this wave. Thdures, including the SiGe- and &g, _,As-based structures
character of thdR.. factors changes at the/q=const lines considered in this paper. Consequently, for all these struc-
and the solutions can be classified in the different sectors atiresvV¥=v" .

the (w,q)-plane.

qVi<w=qVE. (23)

The factorsR2[ w?/q?] are parametric functions of the IIl. CONFINED PHONONS IN SiGe- AND
anisotropy parametdd. We have studiedR.. at differentD Al4Ga,_,As-BASED HETEROSTRUCTURES
and found the following properties. FBr<0, all parameters ) ] ) ) )
Vo, V_, andV. are positive defined. In this case, E80) In this section, we apply the results obtained previously in

explicitly shows that ReR-]#0, IMR.]#0 for w/q this paperto Si/Ge/Si, SilgiGe,s/Si, and AlAs/GaAs/AlAs
<V_. Solutions RER.]=0 and InfR.]#0 exist forw/q QW heterostructures. Parameters used in the calculations, as

>V _ if well as the associated characteristic velocities are collected
in Table I. From the data of Table I, it follows that for all
D<D*=—-[/Cy(C11—Cu)—(C11—Cu], (21 these  heterostructures as well as for the
[VCu(Cau~Cad = (CurmCadl. (21 Siy <Gey 5/ GelSh Ge, s QW, condition(21) is valid and con-
and for w/q>V+ otherwise. Thus the critical line, at which dition (23) can be satisfied. Thus, these structures are favor-
the factorsR. change their character can be definedwas able for confinement of the SV phonofis.
=V,q with First consider the SiGe heterostructures. For the Si/Ge/Si
. QW structure, in Fig. 2 we depict the sect@$andS?, the
_ V. for D=<D 22) onset line and an asymptote which corresponds to(E3),
|V otherwise. and four lowest confined phonon branches. We use the di-
mensionless representation

Let us apply this analysis to the confined phonons. First
consider the surrounding medium wheReE(w,q) deter- 0o od
mine the decay of the waves. It is obvious that, in the wo:W'
material,leaky wavesppear only above the critical line. At
and below this line confined modes can exist. Thus the linén terms of these dimensionless quantities, the dispersion re-
w=qV? is theonsetfor the dispersion of confined acoustic- lations do not depend on the half-thickness of the layer
phonon branches. Figure 2 clearly illustrates nearly all main features of the

In the embedded materi#, the critical velocity deter- confinement of SV waves in the systems considered. For this
mines the asymptotical behavior of the dispersion branchesase, the sectorS? and S‘T‘ do not overlap. Equatiorl6)
for confined acoustic modes gt—=. Indeed, in the limit gives two sets of the dispersion curves which correspond to
gd>1, a (w,q) wave confined inside the QW layer can be SSV and ASV solutions. For all structures, the lowest long-
considered as a superposition of bulklike plane waves witlwavelength branch is found to be the lowest-order ASV

Ve
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@ FIG. 3. (a) and (b) Spatial distribution of the displacement
FIG. 2. Dispersion for Si/Ge/Si QW heterostructure. Se&pr fields, and(c) elastic energy for the SSV-0 phonons in Si/Ge/Si QW
is delimited by thin dashed lines: the upper line has a sS\gp¥' &, heterostructuresQ is fixed at 0.3 for(a) and 2.0 for(b) and (c).
and the lower line has a slop&'®%® . SectorS} is delimited by ~ Vertical dotted lines indicate the heterointerfaces. Distributions
thin solid lines: the upper line has a slop&°?*  and the lower ~Wy(2) andw,(z) are shown by solid and dashed lines, respectively
line has a slop&*°U | In each secto8) , the line with slopev¥  [(@ and(b)].
is shown as the dotted line. Dispersions of the lowest two SSV
(ASV) confined phonon branches are shown by the thick solid Generally, the lattice vibrations of the SV modes corre-
(dashedl lines. spond to quite complex motions of the media. Figure 4 illus-
I I trates the displacement vector fields for both the ASV-0 and
R;a:qnucgn\é\lizg:gflst‘)g;n&t:ig)\//ﬁﬁ%glégzg ’t)trg?l((:)hsecé”ggg?oacﬁsv'o modes computed at a fixed moment of time with the
same dimensionless wave vectQr=2. The patterns along

zero. The positions of the onset frequencies for the highe{he x axis correspond to the dimensionless wave period

order branches obey the following sequence: ASV-1, SSV- . : : ; ; i
ASV-2, SSV-2, etc. All these branches fall into the secto%ZW/Q' The figure illustrates Fhe diiierence In the displace
ment patterns of waves of different symmetries. These data

given by. Eq.(23). . . , straightforwardly demonstrate that SV waves comprise both
It is important to emphasize that the isotropic model . :
longitudinal and transverse displacements.

failed to predict the behavior of the branch SSV-0 shown in The lowest SV modes for SiSiGe,/Si QW hetero-

Fig. 2. Indeed, in elastically isotropic media only the ASV-0 structures are presented in Figah They behave quite simi-
mode exists in the limiQ—0, and the SSV-0 mode is the P . y q .
lar to the modes of the previous case. Due to a lower elastic

first excited mode with finit€) and Q onsets®*® For elas- ; . _
tically anisotropic media, we found that the modes of bothm|smatch between Si andg3Geys, however, this system

symmetries ASV and SSV can exist @—0. Mathemati-
cally, this is because the oscillating and decaying solutions in
the B material allow to satisfy the boundary conditions of Eq.
(6) for the two lowest modes. These lowest ASV-0 and 2]
SSV-0 branches exhibit a relatively small separation. We
have studied the SSV-0 branch in detail, particularly for
small Q. In Fig. @), the SSV-0 mode witlQ=0.3 is pre- DERRRE
sented. One can see that this mode represents lattice vibr: :
tions in a wide spatial region outside the QW layer. Their ;4 o 4
magnitude oscillates and decays very sloffly. :
From the analysis presented in Sec. Il it follows that for
each branch the real part of the decay factorsRR€éw,q) ]
vanishes near the onset and, thus, the confinement of th
corresponding solutions is weak. The development of the
branch at the highd® leads to a progressive increase in both
the mode confinement and localization of the elastic energy

3, ....................
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AR b et At - e
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AAARS S SRttt 2
IEid 0t rrererimmnntn s
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inside the QW. In Figs. ®) and 3c), we present the results =81 aECE SREERRS

of calculations of the displacement vecfdq. (7)] and the 005 1 ;{fd 2 25 3 0 05 1 ;(fd 2 25 3
elastic energyEq. (18)] at Q=2 for the SSV-0 branch. One

can see that the lattice vibrations are well confined inside the FIG. 4. Displacement vector fields in Si/Ge/Si for SSV-0 and
QW layer. ASV-0 confined modes witQ=2.
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FIG. 5. (a) Dispersion for Si/SjsGe, 5/Si QW heterostructures;
notations are the same as in Fig(l—(d) Amplification coefficient
as a function of phonon frequency B&50 K (solid lineg, 100 K
(dash-dotted lines 200 K (dashed lines and 300 K(dotted line$.

FIG. 6. (a) Overlap of the sector§’}”, (b) dispersion of the
lowest confined phonon modes, aft) amplification coefficient
a(w) in AlAs/GaAs/AlAs QW heterostructures. I@), sectorSE is
delimited by thin dashed lines: the upper line has a sip& 8,
and the lower line has a slopéd'%%® sectorS} is delimited by thin

manifests a narrower sector of E@3) and, consequently, a g jines: the upper line has a slop§°?*, the lower line has a

weaker confinement of the elastic waves. slopeVIIUA the upper dotted line has a slog&, and the lower
Summarizing the results of the study of; SiGe-based  yotted line has a slope” . The notations ofb) are the same as in

QW heterostructures, one can state that for these materiaify. 2, and notations ofc) and (d) are the same as in Figs(t5—

the effect of acoustic-phonon confinement exists in a wides(g).

range of alloy compositior. This supports the interpretation

of experimental result§ on the low-dimensional transport in to all existing phonon modes. However, the phonons consid-
Si/lGe QW’s in the temperature interval 0.3-5.5 K. Indeed ered above and two-dimensional electrons are confined into
the authors of Ref. 10 found that for the QW layers fabri-almost the same spatial region and they should manifest the
cated of Ge and sandwiched between SiGe, the relaxatiosfrongest interaction. To analyze the electron-confined pho-
rate of electron energy directly indicates the reduction offon interaction, we will assume that only the lowest two-
dimensionalityof the acoustic phonons from 3 to 2. This dimensional subband is populated by electrons, and that the
means that the energy relaxation is duevo-dimensional energy distances to the next subbands are larger than the
(confined)phonons. On the other hand, for the QW layersenergies of the phonons under consideration. The electron
fabricated of Si and sandwiched between SiGe materials theave functions are¥, \(r,z) = (1/yL,L, e'“*y(z), wherek
phonon dimensionality was found to be 3. is the two-dimensional electron wave vector, dndand L,

In AlAs/GaAs QW heterostructures, an extreme case ofire the lateral dimensions of the sample. In making esti-
the weak confinement can be observed. As shown in Fignates, we assume that the barriers confining the electrons are
6(a), these heterostructures are characterized by an overlapfinitely high andy/(z) = cosz/2d)/\/d. The energy of the
between the secto®? andSy. It is important to emphasize electrons  populating the lowest subband iE(k)
that for such a case the isotropic elastic mod@kannot =#%2k?2m*, wherem* is the effective mass. The electron
predict the existence of confined SV waves because in thigiotion along the QW layer is supposed to be semiclassical,
model each secta®; reduces to a line. Instead, criterion and is described by a distribution functiéiik, ,k,] depen-

(23) resolves the confinement problem even for this casedent on the applied electric field. Then we suppose the de-
The dispersion curves for the lowest confined SV modes iformation potential mechanism for electron-phonon coupling
an AlAs/GaAs/AIAs QW are shown in Fig(). The behav- Wwith the interaction energp div(u); b is the deformation

ior of this dispersion curves is quite similar to that analyzedpotential constant.

previously, except for a decrease in the spacing between the A quantum-mechanical description of carrier interaction
SSV-0 and ASV-0 branches, and the larger frequency—wavewith a given{»,q}-phonon mode leads to the development
vector onsets for the upper branches. of the kinetic equation for the mode population. Such an
analysis was made in Ref. 16. When the population of the
mode becomes large and the phonon subsystem can be
treated semiclassically, we can introduce the intensity of the
corresponding acoustic wave and define the amplification

Now we shall consider amplification of confined acoustic(absorption coefficient, «,. This coefficient describes the
phonons through the interaction with two-dimensional carri-rate of increasédecreaskgin the acoustic wave intensity per
ers. Apparently, the electrons localized in a QW are coupledinit length. Under the above assumption, we have obtained

IV. AMPLIFICATION OF CONFINED PHONONS BY
ELECTRON DRIFT
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the following formula for the amplification coefficient of the Now we shall return to particular QW heterostructures.
confined{v,q} wave?® For the case of SiGe-based structures, we will focus on
p-doped QW'’s. Holes are confined more than electrons in

m* |IM(q)|? (+) ) these QW’s. In such a case, the lowest subband is heavy-
Ayg= e do LyL[Z5 () =75, ()] hole-like. The effective mass for the heavy holes in the
TREAN (e () 12| =28 Si/Ge/Si QW can be estimated &g =0.4my, wherem, is
dq (24) the free-electron mass. Other parameters are taken from Ref.
21. For an AlAs/GaAs/AlAs QW, we consider phonon inter-
Here action with electrons of effective maas* =0.067m,.

To compute the amplification coefficient of E@4), we
take the concentrations of the carriers and drift velocity to be
102 cm 2 and 2.5 V%, respectively. In the case of Si/Ge/Si

. . ) _heterostructure, for instanc¥y,=2.5 V$ corresponds to 9
is the matrix element of the electron-phonon interaction.. 105 ¢m/s and can be reached in modest electric fitkis.

o d
M@=io [ a0+ 222 iz

«®(q) is the electron permittivity defined as follows from Table | and Figs. 2,(8), and @b), the chosen
262 value ofVy, ensures the fulfillment of the&Cenkov criterion
k®)(q)=1+ 7 A(q)B(qd), (25)  forany branch of the confined acoustic modes in all systems
K considered in this paper.

First we consider a 100-A Si/$iGe, 5/Si heterostructure.
The amplification coefficient for this case is presented in Fig.
5(b) as a function of the dimensionless phonon frequency

where « is the dielectric constant, and the polarization op-
erator A(q) and the function3 are in the forms

2 F(k)—F(k—q) wlwy for SSV-0 and SSV-1 phonon branches. Calculations
A(q)=— > q , are performed for different temperaturés=50, 100, 200,
Liby & E(k)—E(k—q) and 300 K. One can see that a considerable amplification

& effect exists for both phonon branches. The basic behavior of
* , Do sl «a is similar to that found in the isotropic model calculations
B(s)= ?J’ fﬁxdgdg ACOTATEER presented in Ref. 16. The maximum amplification is
achieved at low temperaturesissy o(364 GHz, 50 K)
The population factorgff) account for the number of elec- =1200 cm!. As the temperature increases above 50 K, the
trons interacting with thév,q}-mode, and are calculated via amplification coefficient decreases. Nevertheless, it remains
the electron distribution function high even af=300 K (about 300 cm? at the peak Note
that the amplification of the phonon modes belonging to the
m*qu+1 second branch starts at a finite frequency which coincides
sgriq) #lq| —Eq’ky JCY with the onset of the SSV-1 dispersion.

In general, the magnitude of amplification depends on
with sgnx) =1 for x>0 and sgnf) = —1 for x<0. three factors: carrier population factor, the degree of wave
Depending on the shape of the distribution functionjocalization, and the relative magnitude of longitudinal-like
F(ky.ky), the valuea,, can be either positive or negative. vibrations in the confined wave. All these factors can be
For the electrons drifting in an applied electric field alongchanged by a variation of the materials composing the QW,
the QW layer, the distribution function can be describeddoping type, concentration, and temperature, as well as by
in terms of a shifted Fermi distribution:F[k,,k,]  the width of the well. The influence of the latter parameter is

=Fe[ky—Vgm*/%i,ky ], whereFg(K) is the Fermi function illustrated in Figs. &) and 5d). The reduction ofl for the

and Vg, is the electron drift velocity. In such an approach, same Si/SjGe, 5/Si System leads to an increase in the mag-
Egs. (24—(26) express the amplification coefficient as anitude of amplification for the first amplification band, as
function of two electron parameters: the electron temperaturgell as to the inversion of the temperature dependence of the
T and the drift velocityVy, . For a particular heterostructure, amplification magnitudes and their suppression for the sec-
a given lattice temperature, and a given applied electric fieldpnd amplification band. The frequency which corresponds to
both T and Vg, can be calculated from the energy and mo-the maximum of amplification also tends to increase for
mentum balance equatiofs. higher temperatures.

From Eqgs.(24)—(26), it follows that for phonons propa- The magnitude of the amplification essentially depends
gating along the electron flux, the amplification coefficientnot only on the degree of phonon confinement, but also on
a,q>0 if the electron drift velocity exceeds the confined- the value ofm*. From this point of view, it is hard to expect
phonon phase velocityVq,> w,q/|q|. This criterion is, in  that amplification of the phonons by electrons in an AlAs/
fact, the well-known condition of the €@enkov generation GaAs/AlAs QW will lead to a large effect. Nevertheless, as
effect?® If the amplification coefficient caused by the indicated by the data presented in Figéc)6and &d), the
electron-phonon interaction is positive and exceeds all pholow-temperature amplification of the phonons with a fre-
non losses, the intensity of the corresponding confinedjuency of about 200 GHz can reach hundreds of teven
waves) should increase exponentially with the coordinate,in this heterostructure. The second amplification band is
i.e., we obtain the effect of phonon amplification. completely suppressed.

I(f)(q)=J dk/F
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1lay a=5nm i) , d-250m . carrier-phonon interaction: the phonons with phase velocities
ool CozTI00T 08 so=4T0om ! close toV? are weakly confined, whereas for the phonons
N £ o ’ N with phase velocities close tv2 the contribution of the
s | sices s i\ longitudinal-like vibrations to the SV mode vanishes. As a
' ' Y result, the maximum amplification can be reached in a rela-
o2 o2 %o BN tively narrow interval of phonon frequencies and wave vec-
% o % 2 w/g" Bra— tors, so that the dependence of the properties of the electron-
0 0 phonon system od has only a minor impact on the position
600 of the maximum. This explanation is also supported by the
e sso (R other results presented in Fig(d]. One can see that for
2= 20GHz gL % Ca SiGe-based structures, a tendency—the wider the sector de-
Che ‘\* TreelL fined by Eg.(23), the more sensitive the position of the
cgzzz el maximum becomes to the well width—is manifested.
0 Se. Note that although the dependence presented in Fifj. 7
- i »50 G--eoo .. o for the Si/Ge/Si structure is stronger than that for the
oo, 8 ! g d(,ﬁm) ¢ s Si/S, 5G&, 5/Si system, the absolute values of frequencies

which correspond to the maxima ef are smaller. This oc-
FIG. 7. (8—(c) Amplification coefficient in Si/Ge/Si heterostruc- curs as a result of a faster development of the carrier-phonon
tures as a function of phonon frequencyTat 50 K (solid lines, interaction upon increasing or w in the Si/Ge/Si QW,
100 K (dash-dotted lings 200 K (dashed lings and 300 K(dotted  where for a mode with the same degree of confinement the
lines). (d) Confined phonon frequencies at the maxima of amplifi-re|ative contribution of the longitudinal vibrations is higher.
cation coefficients presented in Figgbp-5(d), 6(c), and &d), and In efforts to realize the large amplification of confined
7(a)—7(c) for SSV-0 phonon branches. phonons by electron drift at high frequencies, it is important
to keep in mind that an increase in the phonon frequency
A significant increase in the amplification coefficient cangives rise to an enlargement of phonon losses due to crystal
be achieved for Si/Ge/Si QW heterostructures, where th@anharmonicity, scattering on defects, etc. For frequencies less
phonon confinement is stronger due to the larger elastic mighan 1 THz, phonon losses due to the anharmonicity and
match in the layers composing the structures. Moreoverscattering by natural defectgsotopes are well below the
these structures manifest a unique dependencg of the  phonon gain estimated for heterostructures considered in this
width of the well and temperature. As shown in Figa)7  study?® To observe the amplification effect, however, one

a 100-A Si/Ge/Si QW is expected to have a broad SSV-Ghould use well-designed and high-quality QW heterostruc-
amplification band and a relatively narrow SSV-1 amplifica-tures.

tion band. Unlike all previously considered cases, the stron-
gest amplification with a record value of 7100 cthis ex-
pected for the second band at the frequency of 640 GHz.
Additionally, this value remains almost independent on tem- We have performed an analysis of confined acoustic vi-
perature in the interval =50-100 K. A reduction of the prations in QW heterostructures composed of cubic materi-
well width to 50 A leads to another interesting effect. Fig-als. A general criterion of the occurrence of confined
ure Ab) shows that in this case both bands can manifesphonons in such structures has been derived. We have pre-
strong and almost equal amplifications so thatan reach its  sented a realistic analysis of these phonons in cubic Si/Ge/Si,
maximum for the first band at low temperature whereas alSi/Si, .Ge, 5/Si and AlAs/GaAs/AlAs QW heterostructures
most the same value @f can be achieved at high tempera- with a focus on shear-vertical vibrations. We have found that
ture for the band SSV-1. Note that both the SSV-D ( the model of an elastically isotropic media cannot be applied
=50 K) and SSV-1 T=300 K) bands are relatively nar- to layered systems composed of materials with relatively
row. One can see that the magnitude of thgyy. 1(300 K) small elastic mismatch and negative anisotropy factor.
is almost insensitive to the variation dfrom 50 to 25 A. At AlAs/GaAs/AlAs QW heterostructures belong to this class of
d=15 A, however, the second band is almost totally supsystems. We have calculated dispersion curves for the con-
pressed, as shown in Fig(cJ. Nevertheless, the magnitude fined phonons. For all of the analyzed structures, we have
of the SSV-0 band amplification remains higher than in theshown that the behavior of the lowest phonon branches is
case of the Si/SiGe structure. quite different from that in the model of elastically isotropic
For all the structures and amplification bands consideredhedia. We have studied the displacement fields correspond-
in this paper, the maximum ok shifts toward higher fre- ing to these phonons, and discovered their complex internal
qguencies with increasing temperature. Figui@ 8hows that structure. In the subterahertz and terahertz frequency range,
the frequency of the amplification maximum also tends toSV phonons are strongly confined inside the QW layers.
increase when the width of the QW decreases. For the sanhese results support the experimental observitiohthe
set of widths, the latter effect is less pronounced inreduction of the dimensionality of acoustic phonons effi-
AlAs/GaAs/AlAs heterostructures where the sector with theciently coupled to the two-dimensional holes in Si/Ge/Si
confined phonon dispersion branches restricted in éhe)Y  quantum wells?
plane by Eq.(23) is narrow. This leads to a relatively small For p-doped Si/SiGe,_,/Si and n-doped AlAs/GaAs/

V. SUMMARY
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AlAs quantum-well heterostructures, we have studied the ef-
fect of amplification of the confined phonons by the drift of
low-dimensional carriers. We have shown that the amplifica-
tion coefficient can be of the order of hundreds of ¢nfior
Al,Ga, _,As heterostructures, and of the order of thousands
of cm™! for SiGe heterostructures in the terahertz phonon
frequency range. This suggests that electric methods for the
amplification and generation of terahertz coherent phonons

PHYSICAL REVIEW B 65 155321
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can be realized in these technologically important QW het-

erostructures.
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APPENDIX A
The characteristic matrix for SSV wavés>SVis
Di1=cosiR_d), Dip=cosiR .d),
Dig=cogRid), Dy=sin(R;d),
Dy=EaR-x-sin(R_d),
Dy3= &gl £1C0qRid) — {osin(Rid)],
Dyy= €pl £2c04Rid) + {1sin(R;d)],
D31= (1~ &ax-)R-sinh(R_d),
D3p=(1—&ax+)RySINAR  d),

Da3=[{{>sIN(R;d) — {10 R;d)}ég— Risin(R;d)
~RicogR;d)C5/Chy,

Dyy=EpR-_x-sini(R_d),

Dys=[—{{1SIN(Rid) + {,coq R;d)} g+ Rjcog R;d)
~Rsin(R;d)1CZ/Chy,

A

Cll 2
=| —x éARZx-+1|cosHR_d),
.C12 |

A

11
C_AgARiX-%—"_l cosl{R . d),
L ~12 |

R.=RA,
pu o[\
M )
&u=|[CY}—C))+DM] 1I-—w =l x==x2 with
Cas
M_ ~M [CQ"l—Cﬁ"ﬁDM]Z Cgﬂl pu @
x==C1y| Rz w+ M ~M v =
C11Cus Ca Cunq

(R =RE(RE], RX)i=IIM(RX)Z], &1=xiR

xR, LHL=xiR+x/Ri, and {3=R?’-R?. The matrix
DASY can be obtained fror®SSY by making the following
substitutions in the first two columns: sifcos, sinh
—cosh, cos-sin, and cosh:sinh.
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