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Resonant states induced by impurities in heterostructures
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A study of the formation of resonant states in the conduction band, induced by impurities outside hetero-
structure quantum wells, is presented. We derive general expressions for the capture and scattering amplitudes,
the resonance position and width, and we also calculate the effect on the energy spectrum and the density of
states in the quantum well. The theory is applied to two typical impurity potentials, the zero-range potential of
deep levels and the Coulomb potential. It is found that the perturbation of the density of states can be
significant over wide energy intervals, and that the resonance position may behave nonmonotonically with the
modulation-doping distance. The resonance width decays exponentially with the distance, but becomes of the
same order as the band discontinuity as we approach close to the quantum well interface. The capture and
scattering coefficients may vary by several orders of magnitude over narrow energy intervals, producing a
pronounced and strong scattering mechanism.
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I. INTRODUCTION

Modulation-doped semiconductor heterostructures h
been under extensive experimental and theoretical study
the last few decades.1 In such structures, impurities locate
in the barrier material supply carriers to the conduction ch
nel, but also act as the source of a long-range scatte
potential for these carriers. The effects of elastic scatterin
this framework have been studied in numerous works.2 At
the same time, impurity-induced resonant states can
formed, due to the overlap of the localized impurity orbita
with the two-dimensional~2D! continuum states in the con
duction channel. In result, alongside elastic scattering of
riers in the conduction channel, the impurities induce stro
resonant scattering. Thus, carriers from the 2D continu
states can be captured into localized states, and subsequ
be reemitted back. Such generation-recombination proce
may lead to new and unexpected features of the shot-n
characteristics3 of devices based on semiconductor hete
structures.

Coulombic impurities in the valence band have been st
ied in bulk semiconductors under uniaxial strain.4 It was
found, that the energy spectrum and the density of states
be strongly perturbed due to the formation of resonant sta
This in turn will have consequences for optical transitio
and kinetic processes.5,6 The influence of resonant scatterin
on the current-voltage characteristics of strained bulkp Ge
has also been observed.7

In this paper we will consider resonant states in the c
duction band of heterostructures. These states can be ind
by both the Coulomb potential of shallow donors, and
effective short-range potential produced by deep don
which appear as a result of the doping in the heterostruc
barrier region.8–10We will derive expressions for the captu
and scattering amplitudes, the energy position and width
the resonant state, as well as the density of states of
perturbed spectrum.

The paper is organized in the following way. The gene
considerations of resonant states based on the theor
0163-1829/2002/65~15!/155302~9!/$20.00 65 1553
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Fano11 and Dirac12 are presented in Sec. II. In Sec. III th
theory is applied to the case of Al0.3Ga0.7As/GaAs hetero-
structures with deep donor centers, which we treat in
framework of a zero-range potential model. We then proc
to consider donor impurities represented by the Coulo
potential in Sec. IV, and we apply this model to the sa
system as in Sec. III, still assuming deep donors. Finally
consider a modulation-doped structure with shallow dono
where the charge redistribution in the structure is also ta
into account.

II. MODEL DESCRIPTION

In this section we will describe a general treatment
systems that consist of a quantum well~QW! and an impu-
rity located in the barrier region. We denote byV(z) and
Vc(r ) the potentials of the QW and the isolated impuri
respectively. The total Hamiltonian of such a system has
form

Ĥ52
\2

2m
¹21V~z!1Vc~r !, ~1!

wherem is the effective electron mass that may depend
the z coordinate, which is parallel to the QW growth dire
tion. According to Fano,11 we use different zero-order Hamil
tonians to describe the unperturbed localized and 2D qu
tum well states. Thus, the localized orbital wave functi
should satisfy the Schro¨dinger equation

F2
\2

2m
¹21Vc~r !Gf~r !5Ecf~r !, ~2!

and the wave functions of the quantum well states should
found from

F2
\2

2m
¹21V~z!Gcnk~r !5Enkcnk~r !, ~3!
©2002 The American Physical Society02-1
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wherek is the wave vector in the QW plane, andn enumer-
ates the space quantization subbands.

The resonant state is a hybridized product of a locali
orbital and the 2D continuum states in the QW. We constr
the total resonant state wave functionCnk(r ) in a typical
form for scattering problems, which following Dirac12 yields
~in the following we suppress the coordinate arguments!

Cnk5cnk1cnkf1 (
n8k8

tkk8
nn8

Enk2En8k81 i0
cn8k8 . ~4!

We limit the sum overn8 andk8 in Eq. ~4! to include only
statescn8k8 in the energy region close to the resonance. N

ertheless, since bothcnk and tkk8
nn8 decay rapidly~due to the

resonant behavior; see below! as we move away from the
resonance, we can extend the summation overk8 to infinity
and include all bound QW subbands below the resonanc

The resonant state wavefunction should satisfy the Sc¨-
dinger equation with the total Hamiltonian~1!,

ĤCnk5EnkCnk . ~5!

In Eq. ~4!, cnk and tkk8
nn8 are the capture and scattering coe

ficients, respectively. The influence of a single impurity
the 2D energy spectrum is negligible, and thus for the p
pose of calculating these coefficients we may assumeEnk
5Enk .

Substituting Eq.~4! into Eq. ~5! and using standard
procedures,12 we find the following expressions:

cnk5
Rnk /L

Enk2~Ec1DEnk!1 iGnk/2
, ~6!

tkk8
nn85

Vk8k
n8n

L2
1

cnk

L Xkk8
nn8 , ~7!

where L2 is the normalization area for the 2D continuo
states in the QW, and

DEnk5D2
1

~2p!2 (
n8

E d2k8Wn8k8Xkk8
nn8

1
1

~2p!2 (
n8

PE d2k8
Vn8k8Xkk8

nn8

Enk2En8k8

, ~8!

Gnk

2
5

p

~2p!2 (
n8

E d2k8Vn8k8Xkk8
nn8d~Enk2En8k8!, ~9!

Rnk5Vnk2
1

~2p!2 (
n8

E d2k8Vk8k
n8nWn8k8 . ~10!

Here P means the Cauchy principal value of an integral,
the following notation for the matrix elements has been
troduced:
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Xkk8
nn85Zn8k8

* 2~Enk2Ec!Wn8k8
* ,

Wnk /L5^fucnk&,

D5^fuV~z!uf&,

Vnk /L5^fuVcucnk&,

Vkk8
nn8/L25^cnkuVcucn8k8&,

Znk /L5^fuV~z!ucnk&. ~11!

In the expressions~6! and ~7! we have neglected terms tha
are of the second order in the impurity potentialVc . This
corresponds to the Born approximation in conventional sc
tering theory.13

One can see from Eq.~6! that the capture amplitude
ucnku2, which gives the contribution of the localized state
the hybridized one, exhibits a resonance behavior, shi
from the energy of the localized stateEc by DEnk . The value
of the shiftDEnk , the widthGnk and the numeratorRnk all
depend on the energy itself, as indicated by the indexk. We,
therefore, define the resonance energy as the energy at w
ucnku2 acquires its maximum. The lifetimet r5\/Gnk of the
resonant state can then be found to a good approximatio
evaluatingGnk at this energy.

The hybridization of the continuous states with the loc
ized orbital will also perturb the energy spectrum and mod
the density of states in the QW. To calculate this we use
identity

^CnkuĤuCnk&5Enk^CnkuCnk&. ~12!

As noted above, a single impurity has a negligible influen
on the energyEnk and the total wave functionCnk , which is
reflected in the appearance of the factorsL in Eqs. ~6! and
~7!. More specifically, the influence on the energy will b
Enk5Enk1O(1/L2), and the total wave function will be nor
malized to within a similar factor; ^CnkuCnk&51
1O(1/L2).

If instead there is a finite numberNd of impurities, we
must take into account the contribution from each. Assum
a low enough doping concentration, such that the overlap
the impurity wave functions at different sites are negligib
the impurities can be considered as noninteracting. In
case, their total effect is given by multiplying the influen
of a single impurity by the number of donors. By evaluati
the left- and right-hand sides of Eq.~12! separately, and sum
ming over all impurities, we then arrive at

Enk5Enk1n2DF Ẽ
Rnk

2 22VnkRnk

Ẽ21Gnk
2 /4

2Vkk
nnG , ~13!

where Ẽ[Enk2(Ec1DEnk) and n2D[Nd /L2 is the sheet
density of donors. This is an equation forEnk that should be
solved to establish the relationship between the pertur
spectrumEnk and the corresponding wave-function labelk.
2-2
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Given the energy spectrum, we may proceed to calcu
the density of states per spin in each subband. Assuming
the conduction-band spectrum is isotropic, this is given b

rn~Enk!5
1

2p

k~Enk!

]Enk /]k
. ~14!

For isolated impurities the density of states is ad function,
whereas for the pure 2D quantum well states it is const
The formation of the resonant state due to the hybridiza
of the band states with the localized donor state will lead
a density of states that exhibits a combination of these
features. This has been shown to have important co
quences for, e.g., optical properties.4

By its definition in Eq.~4!, the coefficientcnk is directly
related to the probability for capture into the localized part
the resonant state.4–6 This process will give a nontrivial con
tribution to the electron distribution function, which in tur
will affect the current and the current noise in the QW.

III. ZERO-RANGE POTENTIAL APPROXIMATION

In this section we will apply the above described gene
approach to study resonant states induced by a short-r
impurity potential. The calculations will be performed for th
case of deep donor centers that appear in the barrier regio
Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As heterostructures~Fig. 1!
doped by Si. These centers were extensively stud
experimentally8–10 because they strongly affect the perfo
mance of heterostructure based electronic and optoelectr
devices.

It was shown8 that in doped AlxGa12xAs with Al content
x larger than 0.27, more than half of the Si donor cent
produce deep levels with binding energy.155 meV mea-
sured from the bottom of theG valley. The fraction of deep
donors increases with increasing Al mole fraction.

We will describe these localized deep states in the fra
work of a zero-range potential model.13 This approach as
sumes that the localized state wave functionf(r ) should be
a solution of the Schro¨dinger equation

F2
\2

2mb
¹21Vc~r !Gf~r !5Ecf~r !, ~15!

where the spherically symmetric impurity potentialVc(r )
has a finite nonzero value only within distances compara

FIG. 1. Schematic picture of the square quantum well struc
used for the deep donor centers in both the zero-range pote
approximation of Sec. III and for the Coulomb potential in Se
IV B.
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to the lattice constant, near the impurity. The wave funct
of the localized state should satisfy the boundary conditi

1

~rf!

]~rf!

]r
ur→052k, ~16!

wherek is related to the energy of the localized state by

Ec52
\2k2

2mb
, ~17!

and can be considered as a characteristic parameter o
potential. The normalized wave function of the isolated
calized impurity state that satisfies the boundary condit
~16! has the form

f~r !5A k

2p

e2kr

r
. ~18!

The wave functions of the states in the isolated squ
quantum well for the case of different effective massesmw
andmb in the well and barrier regions, respectively, are

cnk~r !5
1

Leik•rwn~z!, ~19!

where the envelope functionswn(z) are well known.13 For an
isotropic conduction band, the energy spectrum in thenth
subband is given by

Enk5En1
\2k2

2mw
, ~20!

and hence we can substitute the wave-vector indicesk by the
wave numberk.

We consider the case when the localized state is reso
only with the continuum states in the lowest space quant
tion subband, and skip the indexn. To obtain the expression
for DEk andGk in Eqs.~8! and~9!, one needs to calculate th
matrix elementVk of the impurity potentialVc between the
localized statef(r ) and the quantum well stateck(r ). To
calculate this matrix element with a general but unspecifi
short-range impurity potential we use Eq.~2! to expressVk
in the form

Vk* /L[^ckuVcuf&5 K ckU \2

2mb
¹21EcUf L . ~21!

The matrix element of the kinetic energy between the loc
ized state and the QW state wave functions diverges du
the singular behavior off(r ) at the impurity position. The
details of the calculation of this matrix element are presen
in the Appendix.

Following the procedure described in Sec. II, we calcul
the resonance position and width as a function of the d
tance between the impurity and the quantum well for
case of deep Si donors withEc52155 meV, and for differ-
ent QW widths. We have used the valueU5232 meV for
the band offset between theG points in the conduction band

e
ial
.

2-3
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BLOM, ODNOBLYUDOV, YASSIEVICH, AND CHAO PHYSICAL REVIEW B65 155302
of GaAs and Al0.3Ga0.7As, and for the effective masses in th
QW and the barrier region the values 0.067 and 0.092,
spectively.

The results of the calculations are presented in Fig. 2
the upper panel we plot the resonance energy, defined a
position of the maximum of the capture amplitudeucku2, for
four different well widths. In the lower panel is shown th
width of the resonant state, defined asGk evaluated at this
resonance energy. A more detailed discussion of these
sults, along with corresponding ones for the Coulomb pot
tial case, will be given in Sec. IV B.

We observe that for the case of a short-range impu
potential the dependence of the resonant position on the
tance between the impurity and the QW can be nonmo
tonic when the binding energy of the localized impurity sta
is close to the position of the space quantization level. T
position of the resonance is shifted towards the space q
tization level fromEc when the distance decreases, but
does not cross the bottom of the 2D subband. As a resu
the interaction between the localized and the 2D states,
resonant level is pushed back from the quantization leve
some critical distance.

IV. COULOMB POTENTIAL IMPURITY

A. General considerations

In the simplest case, donors or acceptors in semicond
tors are represented by the Coulomb potential

Vc~r !52
e2

er
. ~22!

The energy of such a hydrogenic impurity state can be
pressed through the effective massm* and the dielectric

FIG. 2. The resonance energy~upper panel! and the resonan
width ~lower panel! normalized by the energies of the first spa
quantization level as a function of the distanced between impurity
and QW for the case of deep donor in a
Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As heterostructure.L550 Å, E05
2157.7 meV ( ); L575 Å, E052185.6 meV ( ); L
5100 Å, E052201.8 meV (• • • •); L5125 Å, E05
2208.8 meV (—•—•).
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constante of the host material. The normalized ground-sta
wave function, which satisfies Eq.~2!, is

f~r !5
1

Apac
3

e2r /ac, ~23!

where the parameterac can be related to the ground-sta
energyEc by the expression

Ec52
\2

2m* ac
2

. ~24!

For the pure hydrogenic case,ac coincides with the effec-
tive Bohr radiusaB5e\2/m* e2. However, experimentally
the binding energy is found to depend also on the particu
impurity species. To account for this, an additional pheno
enological part is introduced in the impurity potential, th
so-called central-cell correction.14 This correction is assume
to alter the potential in a substantial way only in a regi
very close to the impurity position, whereas the long-ran
behavior is still determined by the original Coulomb pote
tial.

In the systems we aim to study in this work, the importa
processes take place in the quantum well, which is situate
some distance from the impurity. It is, therefore, reasona
to assume, that the matrix elements required to calculate
capture and scattering coefficients, can be evaluated u
the Coulomb potential~22! for Vc instead of the true impu-
rity potential.

Moreover, due to the central-cell correction, the impur
wave function should decay faster than the effective B
radius. This is especially true if we attempt to treat the ty
of deep impurities considered in the preceding section wit
Coulombic impurity potential. We will, therefore, assum
that the impurity binding energyEc is given, e.g., from ex-
periments, and from it define, using Eq.~24!, the localization
radius ac that determines the decay of the wave functi
~23!. We will thus have two characteristic length scales,
radiusac of the localized state, and the effective Bohr radi
aB that controls the range of the Coulomb potential. Th
approach will enable us to describe both traditional shall
donors, as well as deeper ones of the type discussed in
III, by the Coulomb potential.

Using the impurity potential~22! and the wave function
~23!, we can now derive expressions for the matrix eleme
~11! defined in Sec. II. We will further assume that the d
ference in dielectric constant between the well and the b
rier is negligible, and do not take into account image charg
The conduction band is taken to be isotropic; hence all m

trix elements, exceptVk8k
n8n , can be labeled by the wave num

ber k instead of the wave vectork.
After employing a number of standard integrals, we arr

at the following expressions:
2-4
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D5
1

ac
E

2`

`

V~z!S uzu
ac

1
1

2De22uzu/ac dz,

Znk5
2Aacp

j2 E
2`

`

wn~z!e2uzuj/acS uzu
ac

1
1

j DV~z!dz,

Wnk5
2Aacp

j2 E
2`

`

wn~z!e2uzuj/acS uzu
ac

1
1

j Ddz,

Vnk5
22Ape2

jAace
E

2`

`

wn~z!e2uzuj/acdz, ~25!

where we have definedj[A11(kac)
2. The matrix elements

decay exponentially with the distanced, since the originz
50 is taken at the impurity position, whereas the wave fu
tions wn(z) and the potentialV(z) are centered around th
quantum well.

To calculate the capture and scattering coefficients~6! and

~7! we also need to evaluate the matrix elementVk8k
n8n , which

with the potential~22! becomes

Vk8k
n8n

5
22pe2

eq E
2`

`

wn~z!wn8
* ~z!e2uzuqdz, ~26!

where q[Ak21k8222kk8cosu is the magnitude of the
transferred momentum (u is the angle betweenk andk8).

The expression~26!, and hence the numeratorRnk of the
capture coefficient~6! as well as the termVkk

nn in Eq. ~13!,
diverges asq→0, corresponding to forward elastic scatte
ing. This is a manifestation of the characteristic long-ran
nature of the Coulomb potential~22!. The singularity is re-
moved by introducing screening by the 2D electron gas~EG!
in the quantum well,15 which can be accounted for by repla
ing q→q1qs in Eq. ~26!. The screening constantqs can be
taken as

qs52p
e2

e
D~Ef!, ~27!

whereD(Ef) is the density of states at the Fermi level, f
which we can use the standard expressionmw /p\2 if we
assume that only the lowest subband is occupied.

The termVkk
nn appearing in Eq.~13! has an unexpecte

consequence for the perturbed spectrum, as it is in fact in
pendent ofk, which can be seen from Eq.~26!. Thus also far
from the resonance, the bracket in Eq.~13! does not vanish.
The reason is that we have treated the problem in the B
approximation, which is valid under the condition that t
kinetic energy of the incoming particle is much larger th
the strength of the impurity potential. This assumption fa
in the limit k→0, and thus our results are not strictly app
cable there. In the opposite limitk→` the bracket become
negligible sinceEnk→`.
15530
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B. Deep level Coulomb impurity

We now apply the Coulomb potential theory to the sa
system considered in Sec. III, a deep donor state outsid
Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As quantum well~Fig. 1!. We
use the same quantum well wave functions~19! and the same
impurity binding energy, i.e.,Ec52155 eV, corresponding
to a localization radiusac516.4 Å, whereas the Bohr radiu
aB570.2 Å. The screening length defined by Eq.~27! of the
2DEG in the GaAs layer is 1/qs548.2 Å. Furthermore the
isotropic dispersion relation~20! is retained.

In the upper panel of Fig. 3 we plot the calculated res
nance energy, which in this case is taken as the positio
the maximum ofucnku2 for the lowest QW subband. Th
width Gnk of the resonant state, defined as before in Sec.
is shown in the lower panel.

Although many features of Figs. 2 and 3 are similar,
note that the horizontal range is quite different; as expec
the long-range Coulomb potential is felt at much larger d
tances. The resonance position converges towards the u
turbed valueEc asd→`. For the Coulomb potential impu
rity, the general trend appears to be that the resona
position is pushed up towards the continuum with decreas
distance, in contrast to what we observed for the zero-ra
potential, where it was instead pulled down towards the b
tom of the well. An exception can, however, be found wh
the impurity levelEc is very close to the bottom of the sub
band (L550 Å); we then observe a nonmonotonic beha
ior, for both types of impurity potentials. The resonance c
not cross the quantization level.

In the upper panel of Fig. 4 we plotucnku2, again for the
lowest subband. We clearly see the Lorentzian shape and
widening of the resonance with decreasing distanced. At
large distances the resonance peak becomes very wel
fined and narrow~exponential decay, as seen in Fig. 3!, while
the peak height grows exponentially. Thusucnku2 behaves as

FIG. 3. Position and width of the resonant state for the low
QW subband as function of the distanced of the impurity from the
AlGaAs/GaAs QW. The curves correspond to different well width
L550 Å ( ), L575 Å ( ), and L5100 Å (—•—•).
All curves are normalized by the positionE0 of the bottom of the
quantization subband~see Fig. 2 for values!. In this figure we con-
sider a deep donor,Ec52155 meV.
2-5
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a d function asd→`, which is to be expected, since th
impurity becomes more or less isolated and does not inte
with the well states.

A striking feature of the Coulomb potential case is th
unlike for the zero-range potential, when we approach cl
to the well, the resonance vanishes. From the lower pane
Fig. 3 we see that in this region the width of the reson
state is comparable to the depth of the quantum well. T
capture amplitude becomes essentially independent of
energy, hence no well-defined resonance peak can be fo
Instead, the effect of the impurity potential is spread o
through the entire spectrum. At the same time, the cap
amplitude increases in the energy region close to the
level, and thus even electrons close to the bottom of
subband can be strongly affected. We should, however
careful in this interpretation, since our entire approach
based on the existence of a well-defined resonance, whic
not shifted too far from its unperturbed value. Thus, in t
region close to the QW, the applicability of our method
questionable.

The perturbed density of statesrn(Enk), defined by Eq.
~14! and normalized by the density of states for the unp
turbed 2D spectrum, is shown in the lower panel of Fig. 4
is clear that we have contributions from both the 2D sta
~constant density of states far from the resonance! and the
d-function-like behavior of an isolated impurity. The regio
over which the spectrum is perturbed is notable even
d/ac54, in which case the increase in the density of state
by an order of magnitude at the resonance. The width of
peak inrn(Enk) increases with smaller distanced, in com-
plete correspondence with the spreading of the capture
plitude as discussed above, and the peak height decre
accordingly. The density-of-states peak width also depe
strongly on the doping concentration, which is not the c
for the capture amplitude.

FIG. 4. The capture coefficientucnku2 ~upper panel! and the den-
sity of states~lower panel! for the lowest subband as functions
the energy, for the caseL575 Å for the AlGaAs/GaAs QW. The
density of states is normalized by the density of states for the
perturbed 2D spectrumr05mw/2p\2. The doping concentration is
taken as 531011 cm22, which is consistent with the requiremen
for noninteracting impurities. The curves correspond tod/ac52.5
( ) and d/ac54.0 (—•—•). The second QW level appears
E15264.1 meV.
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We observe an almost complete depletion of the den
of states in the wings of the resonance, just before the sh
increase. This resembles a miniature band gap, which c
be possible to observe in optical-absorption measuremen

A further detail seen from Fig. 4 is that the maximum
the capture amplitude does not coincide exactly with
peak in the density of states. The reason can be found in
expression~13! for Enk , where two terms containingVkk

nn

~corresponding to direct Coulomb scattering! and Vnk ~the
interaction of the localized state with the QW state via t
Coulomb potential! appear. Without these, the square brac
in Eq. ~13! would simply be proportional toucnku2, but in
their presence we obtain a so-defined Coulomb shift of
resonance.

A final noteworthy detail in the upper panel of Fig. 4
the sudden drop in the capture amplitude as we cross the
quantum level. As the subband energyEnk crosses a highe
level, a further term is introduced in the sum~9! for Gnk/2,
and thus the denominator inucnku2 increases abruptly. This
corresponds to the increased density of final states avail
in the second subband. There is no such corresponding s
like behavior inRnk , and thus we will observe a sharp dro
in the capture amplitude at each QW level. The discontinu
is most pronounced at small distances and vanishes ad
→`.

These discontinuities in the capture amplitude is the r
son why for the widest well considered in Fig. 3 (L
5100 Å), the curve is cut off already atd/ac.2.9. At this
distance, the resonance is just about to cross the second
level, which appears atE152114.34 meV. The resonanc
is in fact carried over fromuc0ku2 ~used for the definition of
the resonance position! into the capture amplitudeuc1ku2

~which is defined only for energies.E1) for the next sub-
band, but with much lower amplitude.

If such a discontinuity were to appear in the same ene
region as the resonance energy, the resonance peak, bo
the capture coefficient and the density of states, would
abruptly cut off. It could, therefore, be possible to contr
and limit the influence of the resonance scattering by shift
the QW energy levels, either by adjusting the well width
by tuning the doping concentration and thereby the spa
potential barrier height~see Sec. IV C!.

C. Shallow Coulomb impurity

A Coulomb potential is more commonly associated w
shallow donors. In Al0.3Ga0.7As the impurity binding energy
is about 9 meV, while the band discontinuity in the condu
tion band is 232 meV. To reach the resonance energy,
electrons in a flat quantum well~usually only the lowest few
subbands are assumed to be populated! would have to be
accelerated to very large energies, and most likely instea
scattered by phonons or other scattering processes.16,17

With modulation doping, which is a dominating choic
for device applications based on heterostructures,1 the QW
levels can be brought closer to the impurity level. The cha
transfer from the doping region, over the undoped spa

n-
2-6
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region 0,z,d into the QW, leads to the buildup of an ele
tric field and a resulting band profile that qualitatively loo
like that in Fig. 5.

Still, the distance between the lowest QW levels and
resonant state is rather large, and for low-field mobility m
surements the effects of resonant scattering are probably
ficult to observe. However, for device operation under hig
field conditions, resonant scattering can be an impor
mechanism.7 Most scattering processes take place at any
ergy, with a probability that depends smoothly on the el
tron momentum.16,17 In contrast, the resonant scattering
presented here takes place in a very narrow energy rang
least as long as we have a well-defined resonance peak i
capture amplitude. Over this interval the capture and sca
ing probabilities vary by several orders of magnitude, a
thus introduces strong scattering of carriers that have po
bility to reach this energy region.

Using a modulation-doped structure with a 2Dd-doping
layer atz50, as shown in Fig. 5 for a particular choice of th
distanced, we perform similar calculations as for the de
donor case in the preceding section. For simplicity we c
sider the charge distribution in the QW to be constant a
assume that all donors are ionized. The potential profile
self-consistent in the sense that we confirm that the resu
Fermi level is well belowEc .

The effective localization radius is substantially larg
for a shallow donor; in the case under investigation w
Ec529 meV, ac567.8 Å, which essentially is equal t
the Bohr radius. We continue to use a doping concentra
of 531011 cm22.

The results for a shallow donor~Fig. 6! are qualitatively
similar to those of the preceding section. The resonant le
is pushed upward towards the continuum, in this case ab
zero, but it is still bound. The resonance is also much sha
than before. This is due to the fact that the energy distanc
larger between the resonance and the QW level, and thu
quantityj that appears in the matrix elements~25! is larger
in the resonance region, causing a more rapid decay of
capture coefficient.

FIG. 5. The modulation-doping profile used for the calculatio
with shallow donors. For this example is used a well width ofL
5200 Å and d/ac52. The lowest quantization level
(278.6 meV and240.6 meV) and their corresponding wav
functionswn(z) are indicated; these are the only levels belowEc .
15530
e
-
if-
-
nt
n-
-

, at
the
r-

d
si-

-
d
is
g

r

n

el
ve
er
is

the

he

V. CONCLUSIONS

We have studied the formation of resonant states in
conduction band of heterostructures, induced by donor im
rities situated in the barrier region. Two types of impuri
potentials, a short-range potential associated with deep le
and the Coulomb potential, were considered.

The resonant state is a hybridized product of the 2D b
states in the quantum well and the localized impurity orbit
As a result, in addition to being elastically scattered off t
impurity potential, carriers in the QW subbands also have
possibility to be captured into the localized state, and sub
quently be reemitted. This will have several consequen
for electrical and optical properties of devices based
modulation-doped heterostructures.

The capture probability is found to exhibit a resonan
behavior, with a maximum at an energy shifted from t
original impurity energy. The shift may behave nonmon
tonically as a function of the doping distance, and is push
in different directions for the two choices of impurity pote
tials. The width of the resonance decays exponentially w
the doping distance, but becomes comparable to the b
offset or the quantum well depth at small distances. The
fect of the resonant state is then felt throughout the ene
spectrum, also at the bottom of the subband.

For optimal device performance, it is desirable to hav
high concentration of carriers in the QW. Thus th
modulation-doping layer cannot be placed too far from
heterojunction. On the other hand, if it is placed close to
QW interface, the increased scattering—both resonant
elastic—will deteriorate the current and lower the perfo
mance. Thus some optimal distance has to be found by c
sidering all relevant processes involved.

Optical properties are determined by the density of sta
which is shown to acquire contributions both from the co
stant 2D part and thed-function-like impurity part. The den-
sity of states also exhibits a resonance behavior, although
peak need not coincide exactly with the resonance posi
of the capture probability. A small band gap was observ
close to the resonance, and at the resonance, which ca

s

FIG. 6. Results similar to those presented in Fig. 4, but for
modulation-doping potential shown in Fig. 5. The two curves
for d/ac52.0 ( ) andd/ac52.5 (• • • •).
2-7
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very wide, the density of states may be enhanced by or
of magnitude.

The electron distribution function and thus the high-fie
kinetic processes in the QW will be influenced by the stro
resonant scattering that takes place in a narrow interval a
resonance energy. We can also expect a pronounced effe
the shot-noise spectrum, due to the carrier capture and
emission process accompanying the resonant scattering
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APPENDIX

We will use in our derivation that the localized state wa
function f(r ) satisfies the following relation:

]f

]r
52kf2

f

r
. ~A1!

First consider the matrix element of the Laplace opera
between the statesf(r ) andck(r ).

^cku¹2uf&5E d3r @“~ck*“f!2“ck*“f#

5E d3r div~ck*“f!2E d3r “ck*“f.

~A2!

Let us consider the first integral. We surround the origin
the coordinate where the impurity is located by two sphe
with radii R0 andR1. We will let R1 tend to infinity andR0
to zero at the end of the calculation. We now transform
volume integrals to two surface ones using Gauss theore

E d3r div~ck*“f!5E
SR1

~ck*“f,nR1
!dSR1

2E
SR0

~ck*“f,nR0
!dSR0

52E
SR0

~ck*“f,nR0
!dSR0

. ~A3!
s:

-

15530
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The integral over the sphere with radiusR1→` tends to
zero, while the second integral should be considered m
carefully,

E d3r div~ck*“f!52ck* ~0!E
SR0

~“f,nR0
!dSR0

52ck* ~0!E
SR0

]f

]r
dSR0

52ck* ~0! lim
R0→0

4pR0
2

3S 2kf~R0!2
f~R0!

R0
D

54pck* ~0!A k

2p
. ~A4!

Here we have used thatck(r ) varies slowly in the region
infinitesimally close to the impurity. This allows us to take
out of the integral with its value at the impurity position
Using the similar procedure one can show that the sec
integral in Eq.~A2! becomes

E d3r “ck*“f52E d3r ¹2ck* f. ~A5!

Thus the original matrix element in Eq.~A2! becomes

^cku¹2uf&54pck* ~0!A k

2p
1^fu¹2uck&

†, ~A6!

where^•••&† denotes Hermitian conjugate.
Now we use Eq.~3! to obtain the final expression for th

matrix element~21!;

^ckuVcuf&5^ckuf&Ec14pA k

2p
ck* ~0!

\2

2mb

1 K ckV~z!U m~z!

mb
Uf L 2EkK ckU m~z!

mb
Uf L .

~A7!

Thus we have expressed the matrix element with the
known impurity potential via another matrix elements in E
~11!.
.
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