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Resonant states induced by impurities in heterostructures
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A study of the formation of resonant states in the conduction band, induced by impurities outside hetero-
structure quantum wells, is presented. We derive general expressions for the capture and scattering amplitudes,
the resonance position and width, and we also calculate the effect on the energy spectrum and the density of
states in the quantum well. The theory is applied to two typical impurity potentials, the zero-range potential of
deep levels and the Coulomb potential. It is found that the perturbation of the density of states can be
significant over wide energy intervals, and that the resonance position may behave nonmonotonically with the
modulation-doping distance. The resonance width decays exponentially with the distance, but becomes of the
same order as the band discontinuity as we approach close to the quantum well interface. The capture and
scattering coefficients may vary by several orders of magnitude over narrow energy intervals, producing a
pronounced and strong scattering mechanism.
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l. INTRODUCTION Fand! and Dira¢? are presented in Sec. II. In Sec. IlI this
theory is applied to the case of AlGa, ;As/GaAs hetero-
Modulation-doped semiconductor heterostructures havstructures with deep donor centers, which we treat in the
been under extensive experimental and theoretical study fdramework of a zero-range potential model. We then proceed
the last few decadésln such structures, impurities located to consider donor impurities represented by the Coulomb
in the barrier material supply carriers to the conduction chanPotential in Sec. IV, and we apply this model to the same
nel, but also act as the source of a long-range scatteringystem as in Sec. lll, still assuming deep donors. Finally we
potential for these carriers. The effects of elastic scattering i§onsider a modulation-doped structure with shallow donors,
this framework have been studied in numerous wérks. Where the charge redistribution in the structure is also taken
the same time, impurity-induced resonant states can bi&to account.
formed, due to the overlap of the localized impurity orbitals
with the two-dimensional2D) continuum states in the con- Il. MODEL DESCRIPTION
duction channel. In result, alongside elastic scattering of car-
riers in the conduction channel, the impurities induce strong In this section we will describe a general treatment of
resonant scattering. Thus, carriers from the 2D continuungystems that consist of a quantum w@&Ww) and an impu-
states can be captured into localized states, and subsequerify located in the barrier region. We denote byz) and
be reemitted back. Such generation-recombination process¥s(r) the potentials of the QW and the isolated impurity,
may lead to new and unexpected features of the shot-noig@spectively. The total Hamiltonian of such a system has the
characteristics of devices based on semiconductor heteroform
structures.
Coulombic impurities in the valence band have been stud-
ied in bulk semiconductors under uniaxial stréift was
found, that the energy spectrum and the density of states can

be strongly perturbed due to the formation of resonant stategyherem is the effective electron mass that may depend on
This in turn will have consequences for optical transitionsthe z coordinate, which is parallel to the QW growth direc-
and kinetic processes. The influence of resonant scattering tion. According to Fand! we use different zero-order Hamil-
on the current-voltage characteristics of strained e  tonjans to describe the unperturbed localized and 2D quan-
has also been observéd. tum well states. Thus, the localized orbital wave function
In this paper we will consider resonant states in the conshould satisfy the Schdinger equation
duction band of heterostructures. These states can be induced
by both the Coulomb potential of shallow donors, and an
effective short-range potential produced by deep donors,
which appear as a result of the doping in the heterostructure
barrier regiort ~*®We will derive expressions for the capture
and scattering amplitudes, the energy position and width o
the resonant state, as well as the density of states of th
perturbed spectrum. )
The paper is organized in the following way. The general {_ ﬁ—V2+V(z)
considerations of resonant states based on the theory by

hZ
== 5 VA V(@) +V(n), 1)

T

2

h
— 5= VRV | () =Eca(r), @

nd the wave functions of the quantum well states should be
gund from

(1) = Enethni(1), 3
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wherek is the wave vector in the QW plane, anc&numer- nn'_ 5% _

ates the space quantization subbands. Xiger =Zyie = (Enk = E) Wi
The resonant state is a hybridized product of a localized

orbital and the 2D continuum states in the QW. We construct Wi/ L= (i)

the total resonant state wave functidn,(r) in a typical

form for scattering problems, which following Diroyields A=(¢|V(2)|¢),

(in the following we suppress the coordinate arguments
Vnk/£:<¢|vc| Pni)s

e
\I,nkzdfnk"'cnkd)"'%, —Enk_gn,k,+iol//n'k'- 4 Vige 1 £2= (i Vel tharicr ),

We limit the sum oven’ andk’ in Eq. (4) to include only Zn ! L= DIV (2) [ ¢rni)- (11

statesy,r in the energy region close to the resonance. Nev—In the expressionés) and (7) we have neglected terms that

ertheless, since botty, andty, decay rapidly(due to the  are of the second order in the impurity potential. This

resonant behavior; see belpaws we move away from the corresponds to the Born approximation in conventional scat-

resonance, we can extend the summation &veto infinity  tering theory*®

and include all bound QW subbands below the resonance. One can see from Eq6) that the capture amplitude
The resonant state wavefunction should satisfy the Schrdc,,|2, which gives the contribution of the localized state to

dinger equation with the total Hamiltonid), the hybridized one, exhibits a resonance behavior, shifted
. from the energy of the localized stdtg by AE,, . The value
HY = E Wk - (5)  of the shiftAE,, the widthI",, and the numeratoR,, all

, depend on the energy itself, as indicated by the indewe,
In EQ. (4), Cnk anthlf, are the capture and scattering coef-therefore, define the resonance energy as the energy at which
ficients, respectively. The influence of a single impurity on|Cq/? acquires its maximum. The lifetime =#/T of the
the 2D energy spectrum is negligible, and thus for the purfesonant state can then be found to a good approximation by
pose of calculating these coefficients we may assiye evaluatingl'y, at this energy.

=Ek. The hybridization of the continuous states with the local-
Substituting Eq.(4) into Eq. (5) and using standard ized orbital will also perturb the energy spectrum and modify
procedureé,z we find the following expressions: the density of states in the QW. To calculate this we use the
identity
R /L A
k= e (Bt AE, )+l 2’ ©® (Wil H i) = Enid Wk P i) - (12)
, As noted above, a single impurity has a negligible influence
an’ VEE Crk _nn on the energ¥,, and the total wave functio ., which is
Lo :FJF Kk (") reflected in the appearance of the factdrin Egs.(6) and
(7). More specifically, the influence on the energy will be
where £2 is the normalization area for the 2D continuous Enk=2&nct O(1/£?), and the total wave function will be nor-
states in the QW, and malized to within a similar factor; (¥, %) =1
+0O(1/L?).
1 ) If instead there is a finite numbét, of impurities, we
AE=A— > f d?K' W Xy must take into account the contribution from each. Assuming
(2m)? W a low enough doping concentration, such that the overlaps of

the impurity wave functions at different sites are negligible,

1 D 5 ,Vn’k’XEI?’ the impurities can be considered as noninteracting. In this
+ (2m)2 < Pf d°k W (8) case, their total effect is given by multiplying the influence
nken'k of a single impurity by the number of donors. By evaluating
the left- and right-hand sides of E{.2) separately, and sum-
ﬁ: T 2 f dzk’Vn’k’er];,5(5nk_5n’k’) 9) ming over all impurities, we then arrive at
2 (2m?w ’ ’
= RA— 2Rk
Enkzgnk+ n2D E#_VEE ’ (13)
V. 21 yn'n E2+T} /4
Rik=Vok w}‘, fd K' Vit Wi - (10)
n

whereE=E,— (E.+AE,) and n,p=Ng4/L? is the sheet
Here P means the Cauchy principal value of an integral, andensity of donors. This is an equation 6y, that should be
the following notation for the matrix elements has been in-solved to establish the relationship between the perturbed
troduced: spectrumi,, and the corresponding wave-function lakel
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d L to the lattice constant, near the impurity. The wave function
0 of the localized state should satisfy the boundary condition
z = z
1 d(re)
J—Ec WT|H0=—K, (16)
E, v : -
0 wherex is related to the energy of the localized state by
122
_— Ee=—5n (17)
FIG. 1. Schematic picture of the square quantum well structure My

used for the deep donor centers in both the zero-range potential d b idered h teristi t f th
approximation of Sec. Ill and for the Coulomb potential in Sec. and can be considered as a characteristic parameter ot the

IV B. potential. The normalized wave function of the isolated lo-
calized impurity state that satisfies the boundary condition

Given the energy spectrum, we may proceed to calculatét®) has the form
the density of states per spin in each subband. Assuming that o
the conduction-band spectrum is isotropic, this is given by b(r)= /Le
m I

(18)
1 Kk(En

Pn(Enk): E O'JEnk/é’k . (14)

The wave functions of the states in the isolated square

. . . . . . quantum well for the case of different effective massgs
For isolated impurities the density of states i$ éunction, andm, in the well and barrier regions, respectively, are

whereas for the pure 2D quantum well states it is constant.
The formation of the resonant state due to the hybridization 1

of the band states with the localized donor state will lead to Y1) ==e*Po (2), (19
a density of states that exhibits a combination of these two L

features. This has been shown to have important cons
quences for, e.g., optical properties.

By its definition in Eq.(4), the coefficient, is directly

related to the probability for capture into the localized part of

Suhere the envelope functions,(z) are well known'® For an
isotropic conduction band, the energy spectrum in rikte
subband is given by

the resonant stafe® This process will give a nontrivial con- 72K2
tribution to the electron distribution function, which in turn Ew=En+ =—, (20)
will affect the current and the current noise in the QW. 2m,,

and hence we can substitute the wave-vector indidag the
IIl. ZERO-RANGE POTENTIAL APPROXIMATION wave numbek.
We consider the case when the localized state is resonant

In this section we will apply the above described general . ; . .
gly with the continuum states in the lowest space quantiza-

approach to study resonant states induced by a short-ran ) . . .
impurity potential. The calculations will be performed for the 1N subband, and skip the indexTo obtain the expressions
case of deep donor centers that appear in the barrier region (" A Ex andl' in Egs.(8) and(9), one needs to calculate the
Al Ga, As/GaAs/Ab Ga, As  heterostructures(Fig. 1) matr!x elementV, of the impurity potentialV. between the
doped by Si. These centers were extensively studielpc@lized stateh(r) and the quantum well statg(r). To
experimentall§—1° because they strongly affect the perfor- calculate this matrix element with a general but unspecified

mance of heterostructure based electronic and optoelectronft'Ort-range impurity potential we use H@) to expressv),

devices. in the form

It was showfi that in doped AlGa _,As with Al content 5
x larger than 0.27, more th_an_half of the Si donor centers V§/£E<¢k|Vc|¢>>=< i ﬁ—V2+EC ¢>_ (21)
produce deep levels with binding energyl55 meV mea- 2my,

f h f th lley. The fracti f
sured from the bottom of thE valley. The fraction of deep The matrix element of the kinetic energy between the local-

donors increases with increasing Al mole fraction. . : )
We will describe these localized deep states in the frameized state and the QW state wave functions diverges due to

work of a zero-range potential modglThis approach as- the singular behavior o(r) at the impurity position. The
sumes that the localized state wave functigfr) should be details of the calculation of this matrix element are presented

luti f the Schidi ti in the Appendix. . _
7 SOTLTON 07 The Seninger equaton Following the procedure described in Sec. Il, we calculate

the resonance position and width as a function of the dis-
d(r)=Ec¢p(r), (15  tance between the impurity and the quantum well for the

case of deep Si donors with.= —155 meV, and for differ-
where the spherically symmetric impurity potenti}(r) ent QW widths. We have used the valUe=232 meV for
has a finite nonzero value only within distances comparabl¢éhe band offset between ttiepoints in the conduction bands

2

f V24V
" omg +Vc(r)
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= 07 T T T constante of the host material. The normalized ground-state
= I wave function, which satisfies E¢R), is
5
g $(r)= L e ' (23)
E \/wag 7
= where the parametea, can be related to the ground-state
= ] energyE. by the expression
e 1072
F e - hZ
-3 L 1 . 1 L L " &
1075 10 20 30 40 E.=— 5 (24
d(A) 2m*aZ

FIG. 2. The resonance energypper paneland the resonant
width (lower panel normalized by the energies of the first space

guantization level as a function of the distarttbetween |mpur|ty tive Bohr radiusag=e#2/m*e2. However, experimentally
and QW for the <case of deep donor in an

Al Gay As/GaAs/Af G As heterostructureL =50 A, Eq= f[he bipding energy is found to dep_end also on the particular
—157.7 meV (—); L=75 A, E;=—185.6 meV ( — —); L lmpurln_/ species. T_o account fpr th|s,_an ao_ldmonal p_henom-
=100 A, E,=—201.8 meV ( - - -); L=125 A, E,= enological part is mtroduceq in the |mpur|_ty p_otent|al, the
—208.8 meV (—-—). so-called central-cell correctidfi This correction is assumed
to alter the potential in a substantial way only in a region

of GaAs and A} Ga, -As, and for the effective masses in the very close to the impurity position, whereas the long-range
QW and the barrier region the values 0.067 and 0.092 rebehavior is still determined by the original Coulomb poten-
spectively. tial. h _ dvin thi K the i

The results of the calculations are presented in Fig. 2. In In the systems we aim o study in this work, the important
the upper panel we plot the resonance energy, defined as thLocesses take place in the quantum well, which is situated at

position of the maximum of the capture amplituag|?, for some distance from the impurity. It is, therefore, reasonable
four different well widths. In the lower panel is shc;wn the 0 @ssume, that the matrix elements required to calculate the

width of the resonant state, defined Ias evaluated at this capture and scattering coefficients, can be evaluafced using
resonance energy. A more detailed discussion of these ré_he Coulomb potential22) for V instead of the true impu-

sults, along with corresponding ones for the Coulomb poten Y Potential. , o
tial case, will be given in Sec. IV B. Moreover, due to the central-cell correction, the impurity

We observe that for the case of a short-range impurity"

potential the dependence of the resonant position on the dig2dius. This is especially true if we attempt to treat the type

tance between the impurity and the QW can be nonmonclf deep impurities considered in the preceding section with a
tonic when the binding energy of the localized impurity state(;’]OUIOhmp'C |mpurt|)ty dpotentlal. We_ W'I.l’ therefor?, assume
is close to the position of the space quantization level. Thdhat the impurity binding energlg, is given, e.g., from ex-

position of the resonance is shifted towards the space quaR€riments, and from it define, using E@4), the localization

tization level fromE, when the distance decreases, but it'adius a. that determines the decay of the wave function

does not cross the bottom of the 2D subband. As a result g We will thus have two characteristic length scales, the
the interaction between the localized and the 2D states, th@diusa. of the localized state, and the effective Bohr radius

resonant level is pushed back from the quantization level g&s that controls the range of the Coulomb potential. This
some critical distance. approach will enable us to describe both traditional shallow

donors, as well as deeper ones of the type discussed in Sec.
I, by the Coulomb potential.
IV. COULOMB POTENTIAL IMPURITY Using the impurity potentia(22) and the wave function
A. General considerations (23), we can now derive expressions for the matrix elements
(11) defined in Sec. Il. We will further assume that the dif-
$erence in dielectric constant between the well and the bar-
rier is negligible, and do not take into account image charges.
o2 The conduction band is taken to be isotropic; hence all ma-

Ve(N)=——- (22 trix elements, except’::;, can be labeled by the wave num-
berk instead of the wave vectdx.

The energy of such a hydrogenic impurity state can be ex- After employing a number of standard integrals, we arrive
pressed through the effective masg and the dielectric at the following expressions:

For the pure hydrogenic casg, coincides with the effec-

In the simplest case, donors or acceptors in semicondu
tors are represented by the Coulomb potential

155302-4



RESONANT STATES INDUCED BY IMPURITIES IN . .. PHYSICAL REVIEW B5 155302

o Z 1 =} [ f\ T T '\\I T T T T T i
A=—| V(z) u+§)e‘z|”a6dz, =06 e
cJ —® ac Bo—07F SN, T -
g I R
§ —osf e .
2\a.m (= lz] 1 £ ool ]
an=—ch son(Z)e‘Z'f/aC(—Jr— V(z)dz, 20
& —o a ¢ g -1} i
m ] ] ] ] ] ] ]
100? I 1 I I 1 I I J
2\acm (= |z 1 -
Wo=—— f en(z)e” 283 =+ = 1dz, = o10tF :
§2 —® aC ~ ;
3
—2\me? [~ ' e 3
B 7‘Z|§/a -3 L L . M ML P B
Vik é\ace j ,x‘P”(Z)e “dz, (29 10750 30 40 50 60 70 80 90 100
C

d(4)

where we have defineg= 1+ (ka.)2. The matrix elements FIG. 3. Position and width of the resonant state for the lowest
decay exponentially with the distanck since the originz QW subband as function of the distaratef the impurity from the
=0 is taken at the impurity position, whereas the wave funcAlGaAs/GaAs QW. The curves correspond to different well widths:
tions ¢,(z) and the potentiaV/(z) are centered around the L=50 A (—), L=75 A (~ — ), andL=100 A (— —:).
quantum well. All curves are normalized by the positidfy, of the bottom of the

To calculate the capture and scattering coefficiéBitsind guantization subbanee Fig. 2 for valugs|n this figure we con-
. ’ . sider a deep donoE.=—155 meV.
(7) we also need to evaluate the matrix eIerrMEuE, which

with the potential(22) becomes B. Deep level Coulomb impurity
) We now apply the Coulomb potential theory to the same
n:n:_zﬂ-e fx <pn(z)(p*,(z)e*‘z‘qdz, (26) system considered in Sec. lll, a deep donor state outside a
Kk eq J_-w n Al Ga, /As/GaAs/ Al [Gay -As quantum well(Fig. 1). We

use the same quantum well wave functiof9 and the same
where q=k?+k'?—2kk’cosé is the magnitude of the impurity binding energy, i.efF.=—155 eV, corresponding
transferred momentun’ﬁ(is the ang|e betweek and k’) to a localization radiuac= 16.4 A, whereas the Bohr radius

The expressiori26), and hence the numeratg, of the ~ @s=70.2 A.The screening length defined by E27) of the

capture coefficient6) as well as the ternV() in Eq. (13, 2DEG in the GaAs layer is G,=48.2 A. Furthermore the
diverges agj—0, corresponding to forward elastic scatter- ISOtropic dispersion relatio(20) is retained.
ing. This is a manifestation of the characteristic long-range N the upper panel of Fig. 3 we plot the calculated reso-
nature of the Coulomb potentié22). The singularity is re- Nnance energy, which 2|n this case is taken as the position of
moved by introducing screening by the 2D electron @@) ~ the maximum of|c,|* for the lowest QW subband. The
in the quantum Weﬂ-,5 which can be accounted for by rep|ac- width Fnk of the resonant State, defined as before in Sec. ”I,
ing g—q-+qs in Eq. (26). The screening constagt can be i shown in the lower panel.

taken as Although many features of Figs. 2 and 3 are similar, we
note that the horizontal range is quite different; as expected,
2 the long-range Coulomb potential is felt at much larger dis-
qs=27re—D(Ef), (27)  tances. The resonance position converges towards the unper-
€

turbed valueE. asd—<. For the Coulomb potential impu-

rity, the general trend appears to be that the resonance
whereD (Ey) is the density of states at the Fermi level, for position is pushed up towards the continuum with decreasing
which we can use the standard expressigp/7%2 if we  distance, in contrast to what we observed for the zero-range
assume that only the lowest subband is occupied. potential, where it was instead pulled down towards the bot-

The termV}y appearing in Eq(13) has an unexpected tom of the well. An exception can, however, be found when

consequence for the perturbed spectrum, as it is in fact indehe impurity levelE, is very close to the bottom of the sub-
pendent ok, which can be seen from E¢R6). Thus also far band (=50 A); we then observe a nonmonotonic behav-
from the resonance, the bracket in E§j3) does not vanish. ior, for both types of impurity potentials. The resonance can-
The reason is that we have treated the problem in the Bornot cross the quantization level.
approximation, which is valid under the condition that the In the upper panel of Fig. 4 we pldt,,/?, again for the
kinetic energy of the incoming particle is much larger thanlowest subband. We clearly see the Lorentzian shape and the
the strength of the impurity potential. This assumption failswidening of the resonance with decreasing distadcét
in the limit k— 0, and thus our results are not strictly appli- large distances the resonance peak becomes very well de-
cable there. In the opposite linit— the bracket becomes fined and narrowexponential decay, as seen in Fig, Bhile
negligible since,— . the peak height grows exponentially. THas,|? behaves as
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We observe an almost complete depletion of the density
of states in the wings of the resonance, just before the sharp
increase. This resembles a miniature band gap, which could
be possible to observe in optical-absorption measurements.

A further detail seen from Fig. 4 is that the maximum of
the capture amplitude does not coincide exactly with the
peak in the density of states. The reason can be found in the
| ] expression(13) for E,, where two terms containinyy

2

L
a,

Cnk
e

logyg

§ ' (corresponding to direct Coulomb scattepirand V,, (the
& | ] interaction of the localized state with the QW state via the
=z : N Coulomb potentiglappear. Without these, the square bracket
1l emms ] in Eq. (13) would simply be proportional tdc,,|?, but in
7 ‘_1'50 0 o o their presence we obtain a so-defined Coulomb shift of the
Energy (meV) resonance.

A final noteworthy detail in the upper panel of Fig. 4 is

- 2
FIG. 4. The capture coefficiefit,|” (upper pangland the den- o ¢\ \qden drop in the capture amplitude as we cross the next

sity of states(lower panel for the lowest subband as functions of .
the energy, for the case—75 A for the AlGaAs/GaAs QW. The quantum level. As the subband enei€y, crosses a higher

density of states is normalized by the density of states for the unl€Vel, & further term is introduced in the su@) for I'y /2,
perturbed 2D spectrup,=m,/27%2. The doping concentration is and thus the denominator e, |? increases abruptly. This
taken as 5 10 cm™2, which is consistent with the requirement corresponds to the increased density of final states available
for noninteracting impurities. The curves correspondita,=2.5  in the second subband. There is no such corresponding step-
(—) andd/a,=4.0 (—-—-). The second QW level appears at like behavior inR,,, and thus we will observe a sharp drop
E;=—-64.1 meV. in the capture amplitude at each QW level. The discontinuity

a & function asd—oc, which is to be expected, since the is most pronounced at small distances and vanished as

impurity becomes more or less isolated and does not interact’ - ) o ) )

with the well states. These discontinuities in the capture amplitude is the rea-
A striking feature of the Coulomb potential case is that,son why for the widest well considered in Fig. 3 (

unlike for the zero-range potential, when we approach close=100 A), the curve is cut off already afa.=2.9. At this

to the well, the resonance vanishes. From the lower panel afistance, the resonance is just about to cross the second QW

Fig. 3 we see that in this region the width of the resonanfevel, which appears & ;= —114.34 meV. The resonance

state is comparable to the depth of the quantum well. Thes in fact carried over fronficy,|? (used for the definition of

capture amplitude becomes essentially independent of th§e resonance positiprinto the capture amplitudéc, |2

energy, hence no well-defined resonance peak can be foun@which is defined only for energies E,) for the next sub-
Instead, the effect of the impurity potential is spread outy_ 4 vt with much lower amplitude

through the entire spectrum. At the same time, the capture . P :
) ; . . ' If such a discontinuity were to appear in the same ener
amplitude increases in the energy region close to the QW Y bp gy

level, and thus even electrons close to the bottom of th [egion as the resonance energy, the resonance peak, both in
subb’and can be strongly affected. We should, however, b e capture coefficient and the density of states, would be

careful in this interpretation, since our entire approach isabruptly cut off. It could, therefore, be possible to control

based on the existence of a well-defined resonance, which @qd limit the influence of .the resona_nce. scattering by ;hifting
not shifted too far from its unperturbed value. Thus, in thethe QW energy levels, either by adjusting the well width or

region close to the QW, the applicability of our method is by tun_ing the_ doping concentration and thereby the spacer
questionable. potential barrier heightsee Sec. IV ¢

The perturbed density of states(E,,), defined by Eq.
(14) and normalized by the density of states for the unper-
turbed 2D spectrum, is shown in the lower panel of Fig. 4. It
is clear that we have contributions from both the 2D states A Coulomb potential is more commonly associated with
(constant density of states far from the resonaramed the  shallow donors. In AJsGa, -As the impurity binding energy
S-function-like behavior of an isolated impurity. The region is about 9 meV, while the band discontinuity in the conduc-
over which the spectrum is perturbed is notable even fotion band is 232 meV. To reach the resonance energy, the
d/a.=4, in which case the increase in the density of states iglectrons in a flat quantum welisually only the lowest few
by an order of magnitude at the resonance. The width of theubbands are assumed to be populateduld have to be
peak inp,(E, increases with smaller distancein com-  accelerated to very large energies, and most likely instead be
plete correspondence with the spreading of the capture anscattered by phonons or other scattering proce’$sés.
plitude as discussed above, and the peak height decreasesWith modulation doping, which is a dominating choice
accordingly. The density-of-states peak width also depend®r device applications based on heterostructire QW
strongly on the doping concentration, which is not the caséevels can be brought closer to the impurity level. The charge
for the capture amplitude. transfer from the doping region, over the undoped spacer

C. Shallow Coulomb impurity
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—50F

—100

—150 I N 1 N 1 N 1 N 1 N 1 3
0 100 2/{)0 300 400 !
? ( ) ; L 1 L 1 f 1 L 1 jl L 1 L 1
FIG. 5. The modulation-doping profile used for the calculations v 9z 94 Egﬁirgyg(glev)m 102104
with shallow donors. For this example is used a well widthLof
=200 A and d/a;=2. The lowest quantization levels  FIG. 6. Results similar to those presented in Fig. 4, but for the

(—78.6 meV and—40.6 meV) and their corresponding wave modulation-doping potential shown in Fig. 5. The two curves are
functions¢,(z) are indicated; these are the only levels bebw for d/a,=2.0 —) andd/a,=25 (- - - -).

region 0<z<d into the QW, leads to the buildup of an elec- V. CONCLUSIONS

tric field and a resulting band profile that qualitatively looks  \we have studied the formation of resonant states in the
like that in Fig. 5. conduction band of heterostructures, induced by donor impu-
Still, the distance between the lowest QW levels and theities situated in the barrier region. Two types of impurity
resonant state is rather large, and for low-field mobility meapotentials, a short-range potential associated with deep levels
surements the effects of resonant scattering are probably diénd the Coulomb potential, were considered.
ficult to observe. However, for device operation under high- The resonant state is a hybridized product of the 2D band
field conditions, resonant scattering can be an importanstates in the quantum well and the localized impurity orbital.
mechanisni. Most scattering processes take place at any enAs a result, in addition to being elastically scattered off the
ergy, with a probability that depends smoothly on the elecimpurity potential, carriers in the QW subbands also have the
tron momentunt®*” In contrast, the resonant scattering aspossibility to be captured into the localized state, and subse-
presented here takes place in a very narrow energy range, @iently be reemitted. This will have several consequences
least as long as we have a well-defined resonance peak in tffier electrical and optical properties of devices based on
capture amplitude. Over this interval the capture and scattemodulation-doped heterostructures.
ing probabilities vary by several orders of magnitude, and The capture probability is found to exhibit a resonance
thus introduces strong scattering of carriers that have possbehavior, with a maximum at an energy shifted from the
bility to reach this energy region. original impurity energy. The shift may behave nonmono-
Using a modulation-doped structure with a ZBdoping  tonically as a function of the doping distance, and is pushed
layer atz=0, as shown in Fig. 5 for a particular choice of the in different directions for the two choices of impurity poten-
distanced, we perform similar calculations as for the deeptials. The width of the resonance decays exponentially with
donor case in the preceding section. For simplicity we conthe doping distance, but becomes comparable to the band
sider the charge distribution in the QW to be constant andffset or the quantum well depth at small distances. The ef-
assume that all donors are ionized. The potential profile i$ect of the resonant state is then felt throughout the energy
self-consistent in the sense that we confirm that the resultingpectrum, also at the bottom of the subband.
Fermi level is well belowE,. . For optimal device performance, it is desirable to have a
The effective localization radius is substantially largerhigh concentration of carriers in the QW. Thus the
for a shallow donor; in the case under investigation withmodulation-doping layer cannot be placed too far from the
E.=—9 meV, a,=67.8 A, which essentially is equal to heterojunction. On the other hand, if it is placed close to the
the Bohr radius. We continue to use a doping concentratioQW interface, the increased scattering—both resonant and
of 5x 10 cm™2, elastic—will deteriorate the current and lower the perfor-
The results for a shallow dondFig. 6) are qualitatively ~mance. Thus some optimal distance has to be found by con-
similar to those of the preceding section. The resonant levedidering all relevant processes involved.
is pushed upward towards the continuum, in this case above Optical properties are determined by the density of states,
zero, but it is still bound. The resonance is also much sharpexhich is shown to acquire contributions both from the con-
than before. This is due to the fact that the energy distance istant 2D part and thé-function-like impurity part. The den-
larger between the resonance and the QW level, and thus tlsity of states also exhibits a resonance behavior, although the
quantity ¢ that appears in the matrix elemerig5) is larger  peak need not coincide exactly with the resonance position
in the resonance region, causing a more rapid decay of thef the capture probability. A small band gap was observed
capture coefficient. close to the resonance, and at the resonance, which can be
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very wide, the density of states may be enhanced by ordefBhe integral over the sphere with radil®—oco tends to

of magnitude. zero, while the second integral should be considered more
The electron distribution function and thus the high-field carefully,

kinetic processes in the QW will be influenced by the strong

resonant scattering that takes place in a narrow interval at the

resonance energy. We can also expect a pronounced effect on f d3rdiv(ygf Vg)=— w:(O)f (Vé.ng )dSg,

the shot-noise spectrum, due to the carrier capture and re- SR,

emission process accompanying the resonant scattering.

¢
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APPENDIX
Here we have used thag(r) varies slowly in the region

We will use in our derivation that the localized state wavejnfinitesimally close to the impurity. This allows us to take it

function ¢(r) satisfies the following relation: out of the integral with its value at the impurity position.
J Using the similar procedure one can show that the second
_d): _Kd)_f. (A1)  integral in Eq.(A2) becomes
ar r
First consider the matrix element of the Laplace operator 3 . 3 02 %
between the states(r) and i, (r). f d erﬂkVGb:—J d>r Vyic . (A5)
<¢k|v2|¢>=J dr[V(yEVe) -V Vel Thus the original matrix element in EGA2) becomes
- f o°r div(yc v )= f VIV 9. (V2 B) = 4mgit (0) \[ 5+ (BIV2Ip) T, (A6)
(A2)

Let us consider the first integral. We surround the origin ofwhere<~ )" denotes Hermitian conjugate. .

the coordinate where the impurity is located by two spheres Now we use Eq.(3) to obtain the final expression for the
with radii R, andR,. We will let R; tend to infinity andR, ~ Malix elemeni21);

to zero at the end of the calculation. We now transform the
volume integrals to two surface ones using Gauss theorem;

Ko #2
(WdVel )= p)E+ 4 Zl//k(o)z—mb

m(z) m(z)
+{ V(2) . ¢ ) —Ei| ¥ my ).

- LR VALY (A7)

0

f dr div(¢§V¢)=L (Y VN )dSg,

Thus we have expressed the matrix element with the un-
= —f (¢§V¢,nR0)dSRO. (A3) known impurity potential via another matrix elements in Eq.
SRo (11).
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