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Optical excitation of electron-hole pairs in disordered one-dimensional semiconductors
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We apply the optimal fluctuation method to the calculation of the optical absorption in disordered one-
dimensional semiconductors below the fundamental optical gap. We find that a photon energy exists at which
the shape of the optimal fluctuation undergoes a dramatic change, resulting in a different energy dependence of
the absorption rate above and below this energy. In the limit when the interaction of an electron and a hole with
disorder is stronger than their interaction with each other, we obtain an analytical expression for the optical
conductivity. We show that to calculate the absorption rate, it is, in general, necessary to consider a manifold
of optimal fluctuations, rather than just a single fluctuation. For an arbitrary ratio of the Coulomb interaction
and disorder, the optimal fluctuation is found numerically.
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I. INTRODUCTION

The interplay between disorder and interparticle inter
tions results in a number of remarkable phenomena, e.g
singularity in the electron density of states at the Fe
energy1–4 and an enhanced localization length of pairs
interacting particles.5 A familiar situation in which the simul-
taneous presence of Coulomb interactions and disorder p
an important role, is the process of optical absorption in d
ordered semiconductors below the fundamental optical g
i.e., below the band-to-band transition.6 With the advent of
modern optical materials, this problem is not only of inter
in its three-dimensional version, for which it has receiv
most attention, but also in two dimensions~quantum wells7,8!
and one dimension~quantum wires7,8 and semiconducting
polymers9!. Interestingly, in the absorption spectrum the re
tive strength of the Coulomb interaction between the elect
and hole and their interactions with the disorder, does
only depend on the disorder strength, but also on the pho
energy: the lower the photon energy, the larger the amplit
of a disorder fluctuation should be in order to create
corresponding absorbing state below the fundamental op
gap.

The effect of a relatively weak disorder on the Wann
exciton was considered in Refs. 10 and 11. Here, relativ
weak refers to the situation where the exciton absorp
peak is still visible as a separate peak below the band
band transition and is not smeared entirely by the disor
Moreover, the restriction to weak disorder only applies
photon energies close to the exciton energy in the absenc
disorderEex . In this case, the exciton localization length
much larger than the average electron-hole separation,
the exciton center-of-mass motion decouples from the r
tive motion of the electron and hole. The Wannier excit
then essentially behaves as a Frenkel exciton in an effec
disorder potential and the calculation of the optical abso
tion spectrum becomes a single-particle problem. This ef
tive approach has been used to study numerically the abs
tion and luminescence line shapes due to excitons
semiconductor quantum wells with interface roughness.12

In Refs. 10 and 11, the low-energy tail of the excit
absorption peak was calculated analytically within the eff
0163-1829/2002/65~15!/155210~13!/$20.00 65 1552
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tive one-particle approach, by using the optimal fluctuat
method.13,14 This method applies when the dominant cont
bution to the quantity of interest comes from disorder re
izations close to a single large disorder fluctuation. T
method can be formulated as a saddle-point calculation
the functional integration over disorder realizations.15 It was
used previously to calculate the optical absorption in dis
dered Peierls conductors16 and it is similar to the calculation
of the Urbach tails resulting from the interaction of th
electron-hole pair with the lattice, treated in the quasista
approximation.17

In this paper we apply the optimal fluctuation method
the general case of arbitrary ratio of disorder strength
Coulomb interaction. We show that the shape of the optim
fluctuation crucially depends on the dimensionality of t
system and we consider in detail the one-dimensional c
In the strong disorder limit, when the exciton peak is d
stroyed, and for weak disorder, assuming sufficiently l
photon energies, we obtain an analytical expression for
optical conductivity. We show that in these situations, t
electron and hole in the optimal fluctuation are localized
two separate potential wells. We also show that in order
calculate the optical absorption rate, one has, in genera
consider a manifold of optimal fluctuations with differe
values of the electron-hole separation, rather than just
fluctuation.

In the general case of arbitrary ratio of the Coulomb
teraction and disorder strength the equation for the opti
fluctuation is solved numerically. We do this for an electr
and hole described within the one-dimensional tight-bind
model. The equation for the optimal fluctuation in this mod
is similar to the equation for polaronic excitons and bip
larons obtained in the adiabatic approximation.18–20We show
that, at some energyEc , lying in the region where the Cou
lomb interaction and disorder are of the same order,
shape of the optimal fluctuation undergoes a sudden cha
while aboveEc it has the form of a single potential wel
below Ec it consists of a ‘‘dip’’ that localizes the hole and
‘‘bump’’ that localizes the electron. This transition take
place only in one-dimensional systems.

This paper is organized as follows. In Sec. II we introdu
©2002 The American Physical Society10-1
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the continuum model that describes interacting electron-h
pairs in disordered semiconductors. In Sec. III we brie
recall the application of the optimal fluctuation method to t
calculation of the one-particle density of states and de
some basic expressions for later use. Then, in Sec. IV,
will discuss the shape of the optimal fluctuation for t
electron-hole states, in particular, its dependence on the
mensionality of the system. We obtain and solve pertur
tively the nonlinear nonlocal equation for the optimal flu
tuation in the one-dimensional case. In Sec. V we obtain
expression for the tails of the optical absorption spectru
which has a wider range of validity than the optimal fluctu
tion method. In Sec. VI we present and discuss our numer
results for the optimal fluctuation. Finally, we summarize a
conclude in Sec. VII. Some technical details have be
moved to the Appendix in order not to disturb the natu
flow of the text.

II. CONTINUUM MODEL AND OPTICAL ABSORPTION

We consider direct-gap semiconductors with Wannier
citons, in which case the low-energy electron-hole states
be described in the continuum approximation.21 In this ap-
proximation, the wave functionCa(x1 ,x2) of the electron-
hole pair with the energyEa , counted from the gap valueD,
satisfies the Schro¨dinger equation,

F2
\2

2mh
D12

\2

2me
D21U~x1!2bU~x2!1V~x12x2!GCa

5EaCa . ~1!

Here,x1 andx2 are the coordinates of, respectively, the ho
and electron,mh(me) is the effective hole~electron! mass,
V(x)52e2/ex is the Coulomb interaction between the ele
tron and hole,U(x) is the random potential due to impuritie
acting on the hole, while the disorder potential acting on
electron is2bU(x). The dimensionless coefficientb ac-
counts for a different dependence of the energies of the
tom of the conduction band and the top of the valence b
on the concentration of impurities.11 We consider here the
case of uncorrelated white noise disorder of strengthA

^U~x!U~x8!&5Ad~x2x8!. ~2!

The optical conductivity per unit volume for the electr
field, polarized, e.g., in thex direction, is given by

s~v!5
C

v
F~\v2D!, ~3!

where the coefficientC,

C5
2pe2\2

m2 U E
V0

d3ru0* ~r !
]

]x
v0~r !U2

, ~4!

is expressed through the periodic Bloch waves,u0(r ) and
v0(r ), describing, respectively, the electron and hole sta
with zero wave vector. In Eq.~4! m is the electron mass in
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vacuum and the integration goes over one elementary
cell V0, in which the functionsu0(r ) andv0(r ) are normal-
ized to unity.

The functionF in Eq. ~3! is the part of the optical con
ductivity that has to be calculated within the continuu
model

F(\v2D)5
1

V K (
a

uDa0u2d(D1Ea2\v)L . ~5!

In the last equation

Da05E ddxCa* ~x,x! ~6!

is the ‘‘continuum part’’ of the matrix element of the trans
tion from the ground state to the excited statea @see Eq.~1!#.
In Eq. ~5! the bracketŝ •••& denote the disorder averag
V5Ld is the total volume,L is the linear size, andd is the
dimensionality of the system.

III. THE ONE-PARTICLE CASE

In this section we briefly recall how the optimal fluctu
tion method can be used to calculate the low-energy tai
the density states~per unit volume!13–15

r~«!5
1

V K (
a

d~«a@U#2«!L ~7!

of a single particle moving in a random potential

Hca5S 2
\2

2m
D1U~x! Dca5«aca , a50,1,2, . . . .

~8!

We are now interested in the density of states with a la
negative energy. Such states can only be induced by l
negative fluctuations of the disorder potentialU(x) ~in the
absence of disorder the energy of all eigenstates is posit!.
The density of states is then, essentially, the probability
find such a fluctuation. When this probability is small,
suffices to keep in Eq.~7! only the contribution of the ground
state (a50),

r~«!'
1

V
^d~«0@U#2«!&, ~9!

because the probability to find a disorder fluctuation t
induces an excited state with the same energy is e
smaller.

For the white noise potential Eq.~2! the disorder average
can be performed by functional integration,

r~«!5
1

VE DUe2 S/Ad~«0@U#2«!

5
1

VE DU
dl

2p iA
expS 2

1

A
@S1l~«0@U#2«!# D ,

~10!

where the ‘‘action’’S is given by
0-2



cu

m

ion

e

at

tio

lly

l

rge
ion

-

he
n,

n-
ing
of

gy.

e

OPTICAL EXCITATION OF ELECTRON-HOLE PAIRS . . . PHYSICAL REVIEW B65 155210
S5
1

2E ddxU2~x!. ~11!

The optimal fluctuation method is the saddle-point cal
lation of the functional integral in Eq.~10!, in which one
assumes that the dominant contribution to this integral co
from the vicinity of one ‘‘optimal’’ disorder fluctuationU(x),
which has the highest weight among the disorder realizat
that induce a state at the energy«. At the ‘‘saddle-point’’ the
variation of

Sl5S1l~«0@U#2«! ~12!

with respect toU(x) vanishes. This gives

U~x!52l
d«0@U#

dU~x!
52lc0

2~x!, ~13!

where c0(x) is the ground-state wave function, which w
can take to be real. Inserting Eq.~13! into the Schro¨dinger
equation~8!, we obtain a nonlinear equation forc0 as

\2

2m
Dc01lc0

31«c050. ~14!

It is convenient to introduce the dimensionless coordin
z5kx, wherek is defined by«52\2k2/2m and the dimen-
sionless wave functionf(z)

c0~x!5
\k

Alm
f~z!, ~15!

which satisfies

Dzf12f32f50. ~16!

In dimensionless units the spatial extent of the wave func
and the optimal fluctuation is of the order of one. Ford51,
the solution of Eq.~16! is

f~z!5
1

coshz
, ~17!

while for d52,3 this equation has to be solved numerica
The dependence of the functionf on the radiusz5uzu is
shown in Fig. 1.

The solution of Eq.~16! is an extremum of the functiona

A@f#5
1

aE ddzF ~¹zf!21f22
1

2a
f4G , ~18!

wherea5*ddzf2. The coefficientl in Eq. ~13!, found using
the normalization condition*ddxc0

2(x)51 and Eq.~15!, is
expressed througha by

l5a
\2k22d

m

and the actionS, defined by Eq.~11!, for the optimal fluc-
tuation is given by
15521
-

es

s

e

n

.

S5212d/2b
\du«u22d/2

md/2
, ~19!

where

b5E ddzf45
2

~42d!
a.

The value of the coefficienta ~see, e.g., Refs. 22 and 23! is

a5H 2 for d51

5.85 . . . for d52

6.30 . . . for d53.

The result for the single-particle density of states at la
negative energies, obtained by the optimal fluctuat
method, has the form

r~«!5K~«!e2S/A, ~20!

where the prefactorK(«) results from the Gaussian integra
tions over the small deviations ofdU(x) from the optimal
fluctuation. The calculation of the prefactor also involves t
integration over the locations of the optimal fluctuatio
which cancels the volumeV in the denominator of Eq.~7!.
For d51, the prefactorK(«) is given by13

K~«!5
4u«u
pA

. ~21!

IV. OPTIMAL FLUCTUATION FOR ELECTRON-HOLE
STATES

We now return to the problem of an interacting electro
hole pair in the presence of disorder. Similar to the preced
section, we can obtain an equation for the wave function
the typical electron-hole state with large negative ener
However, before turning to a formal consideration@see Eqs.
~29! and further#, we first give a qualitative discussion of th

FIG. 1. The shape of the wave functionf(z) for d51,2,3.
0-3
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MAXIM MOSTOVOY, FRANK ANTONSEN, AND JASPER KNOESTER PHYSICAL REVIEW B65 155210
properties of the optimal disorder fluctuation for the ex
tonic states.

From Eq.~13! we see that the spatial extent of the diso
der fluctuation, which induces the typical single-particle st
with the negative energy«, equals the spatial extent of th
state, given byk21}u«u21/2. Similarly, for the electron-hole
state with negative energyE, the spatial extent of the optima
fluctuation r}uEu21/2. While the magnitude of the disorde
potential}uEu, the magnitude of the Coulomb energy of th
electron-hole pair}r 21}uEu1/2. Thus, for large negativeE,
the Coulomb energy becomes smaller than the energy o
interaction of the electron and hole with disorder and
Coulomb interaction can be treated perturbatively. This s
ation is very similar to that of the Coulomb gas, which b
comes more ideal as its density increases.24

The shape of the typical electron-hole state crucially
pends on the dimensionality of the systemd. We first neglect
the electron-hole interaction completely and consider a lo
ized hole with the energy«h,0 and a localized electron with
the energy«e,0, such that«h1«e5E. Assuming that the
electron and hole are localized far from each other, the ac
of the corresponding disorder fluctuation is given by the s
of the single-particle actions@see Eq.~19!#,

S5Sh~«h!1Se~«e!5212d/2b\dS u«hu22d/2

mh
d/2

1
u«eu22d/2

b2me
d/2 D .

~22!

The factorb2 in the electron action is due to the fact that t
strength of the disorder potential, acting on the electron
b2A.

For d53 the minimum of the action is reached when on
one particle is localized, i.e., at

«h5E, «e50 for mh.meb
4/3,

«h50, «e5E for mh,meb
4/3.

If we now include the Coulomb interaction between t
electron and hole, we obtain the following picture of t
typical electron-hole state with a large negative energy: O
particle is localized by a disorder fluctuation, while the oth
particle forms a bound hydrogenlike state with the localiz
particle. If, e.g., the hole is localized, then the total pair e
ergy is

E.« (1)1« (2)1« (3), ~23!

where« (1)52\2kh
2/2mh is the energy of the localized hole

the second term is the binding energy of the electron,« (2)

52mee
4/2e2\2, and the third term is the energy of the r

pulsion of the electron from the disorder potential that loc
izes the hole. This picture is valid whenu« (2)u!u« (1)u, in
which case the size of the hydrogenlike stater
5e(m/me)aB ~here aB is the Bohr radius! is much larger
than spatial extent of the disorder fluctuation localizing
hole kh

21
15521
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@1.

In this limit the disorder potential acting on the electron c
be approximated by ad function and the corresponding en
ergy « (3).50(me /mh)3/2u« (2)u3/2/uEu is parametrically
smaller thanu« (2)u and can be neglected. Then the absorpt
rate ford53 is

F~E!}e2Sh /A5expH 2
b\3

21/2mh
3/2A

UE1
mee

4

2e2\2U1/2J .

~24!

For d52, the situation is, essentially, the same as fod
53: the minimization of the action~22! gives that in the
optimal fluctuation only one of the two particles is localize
by disorder~the hole, formh.b2me , or the electron, other-
wise!. For d51 the situation is quite different. In that cas
the minimum of the action~22! is reached at

«e

«h
5b4

me

mh
, ~25!

which means that in the one-dimensional electron-hole s
with large negative energy both the electron and the hole
likely to be localized. In that case the optimal fluctuation h
two parts@cf. Figs. 4~b! and 4~c! below#: a part where the
disorder potential is negative~to localize the hole! and a part
with positive disorder potential~to localize the electron!. The
minimal value of the action is then given by

S05
4\

3
A2uEu3

M
, ~26!

whereM5mh1b4me .
There are two kinds of corrections to this action:~i! the

correction due to the electron-hole interaction and~ii ! the
correction due to the interaction of the electron with the d
order fluctuation localizing the hole and vice versa. For la
negativeE these corrections are relatively small. The regu
way to find them is the perturbative solution of the equat
for the typical wave function of the electron-hole state o
given energy. This equation can be obtained using the s
considerations that led to Eq.~14!. The relation between the
optimal fluctuation U(x) and the wave function of the
electron-hole stateC(x1 ,x2) it induces, has the form

U~x!52lE ddx8@C2~x,x8!2bC2~x8,x!#, ~27!

where we used thatC satisfies Eq.~1!. Substituting this
0-4
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optimal fluctuation back into the Schro¨dinger equation~1!
leads to a nonlinear, nonlocal equation forC,

S 2
\2

2mh
D12

\2

2me
D21V~x22x1!2EDC~x1 ,x2!

5lC~x1 ,x2!E ddx8@C2~x1 ,x8!2bC2~x8,x1!

2bC2~x2 ,x8!1b2C2~x8,x2!#. ~28!

This equation is formally equivalent to the equation for t
excitonic polaron and bipolaron wave functions, obtained
the adiabatic treatment of the lattice.18–20It is clearly impos-
sible to solve this equation analytically. In the remainder
this section we obtain the action of the optimal fluctuati
for d51 using a perturbative solution of this equation, wh
in Sec. VI we give the results of a numerical solution, a
for d51.

The first term in the perturbative expansion of the wa
function

C5C01C11•••

is the product of the wave functions of a noninteracti
electron-hole pair separated by some distance

C0~x1 ,x2!5ch~x12xh!ce~x22xe!

5
Akhke

2
f~kh@x12xh# !f~ke@x12xe# !,

~29!

wherexh(xe) are the average hole~electron! positions, the
single-particle wave functionf is given by Eq.~17!, and the
wave vectorskh andke are defined by«h52\2kh

2/2mh and
«e52\2ke

2/2me .
In the zeroth order of the expansion the disorder poten

in the optimal fluctuation is obtained by substituting Eq.~29!
into Eq. ~27!,

U0~x!5Uh~x2xh!1Ue~x2xe!

52lch
2~x2xh!1blce

2~x2xe!, ~30!

where the first term is the negative potential~a dip! that
localizes the hole and the second term is the positive po
tial ~a bump! that localizes the electron.

Inserting Eqs.~29! and~30! into Eq. ~28! and taking into
account that«h1«e5E, we obtain that the cancellation o
the zeroth-order terms in that equation requiresl
52\2kh /mh andlb252\2ke /me , from which we find

«h5
mh

M
E,

«e5
b4me

M
E, ~31!

l52\A2uEu
M

,

15521
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which agree with Eq.~25! obtained above. Also, the calcu
lation of the action in the zeroth-order approximation

S05
1

2E dx@Uh
2~x!1Ue

2~x!#

gives Eq.~26!.
Though the calculation of the first-order correction to t

wave function is, in general, difficult, the first-order corre
tion to the action can be expressed through the unpertu
wave functions of the electron and hole,

S1~r !5lE dxch
2~x!F E dx8ce

2~x8!V~x2x81r !

1blce
2~x2r !G , ~32!

wherer 5xe2xh is the average electron-hole separation. T
somewhat lengthy derivation of this result is given in t
Appendix. The first term in the square brackets is the corr
tion due to the electron-hole interaction, while the seco
term describes the interaction of the hole with the bum
localizing the electron and vice versa@see Eq.~30!#.

The optimal electron-hole distancer * is found by mini-
mizing S1 with respect tor,

dS1

dr U
r 5r

*

50. ~33!

From the form of Eq.~32! it is clear that the latter condition
is just the balance of average forces acting on the hole:
attraction from the electron and repulsion from the disor
potential localizing the electron. Thus the typical electro
hole state of large negative energy can be considered
kind of ‘‘molecule’’ in which the disorder fluctuations bind
ing the electron and the hole play the role of ‘‘nuclei’’ with
respectively, positive and negative charge.

The result Eq.~32! can be cast into a more transpare
form using the fact that for the Coulomb interaction betwe
the electron and hole to be small compared to their inter
tion with the disorder fluctuations, the optimal electron-ho
separationr * should be large compared to the spatial ext
of the disorder fluctuations:e2khr

* ,e2ker
* !1. We further-

more assume thatmh.meb
4 and thate2(kh2ke)r

* !1, i.e.,
the hole is sufficiently more localized than the electro
which holds unlessmh is very close tomeb

4. Then Eq.~32!
becomes

S1~r !

l
'2

e2

er
1blce

2~r !. ~34!

For the optimal distancer * , at whichS1 has its minimum,
we obtain

ker * e2ker
* 5A e2

4ebl
, ~35!

wherel is given by Eq.~31!. The dimensionless paramete
on the right-hand side is, essentially, the square root of
0-5
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ratio of the Coulomb energy to the total energyE, which, by
assumption, is small~and thusker * is logarithmically large!.

Furthermore, the second term in Eq.~34! ~due to repul-
sion of the hole from the electron optimal fluctuation! is
small compared to the first term~due to the electron-hole
interaction!,

blce
2~r * !

e2/~er * !
'

1

2ker *
.

Therefore,

S1'2l
e2

er *
5

dS0

dE

e2

er *
,

where in the last step we used

l52
dS0

dE
, ~36!

as follows from Eqs.~26! and ~31!. We thus see that, to th
lowest order, the effect of the correction to the actionS1 is to
replaceS0(E) by S0(E1e2/er * ), giving for the absorption
rate in one dimension

F~E!}expH 2
4A2\

3AM1/2UE1
e2

er *
U3/2J , ~37!

where the electron-hole Coulomb shift depends onE, as ac-
cording to Eq.~35!, r * }uEu21/2lnuEu.

To end this section about the shape of the optimal fl
tuation we note that the numerical solution of Eq.~33! for
sufficiently smalluEu givesr * 50, which corresponds to th
localization of the electron-hole pair by a symmetric sing
well disorder potential. In that case the repulsion of the el
tron from the disorder potential that localizes the hole
compensated by the Coulomb interaction between the e
tron and hole. The transition from the symmetric to t
asymmetric shape of the optimal fluctuation is studied
detail in Sec. VI, where the results of the numerical solut
of Eq. ~28! are discussed. We shall show that our analyti
approach, in fact, gives a rather accurate description of
transition~see Fig. 5!.

V. OPTICAL ABSORPTION TAIL IN ONE DIMENSION

In the precedings section we have shown that ford51 the
electron and hole in the typical state with a large nega
energy are localized relatively far from each other. T
property allowed us to calculate approximately the weigh
the optimal disorder fluctuation for the electron-hole pair
also simplifies the calculation of the preexponential facto
the expression for the absorption rate, which results from
integration over small deviations from the optimal disord
fluctuation. In this section we obtain an analytical express
for the tail of the optical absorption spectrum that actua
has a wider range of validity than the standard optimal fl
tuation method.

As we have shown in the preceding section, the domin
contribution to the optical absorption at large negativeE
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comes from the disorder realizations that are close to the
of the single-particle optimal fluctuations,U0(x)5Uh(x
2xh)1Ue(x2xe) @see Eq.~30!#, whereUh(x2xe) localizes
the hole with energy«h nearx5xh andUe(x2xe) localizes
the electron with the energy«e nearx5xe . In the preceding
section we have calculated the optimal electron-hole sep
tion, for which the weight of the disorder fluctuation reach
its maximum. In this section we shall treatxh andxe , as well
as the single-particle energies«h and «e , as the collective
variables of the functional integration over disorder. P
forming the Gaussian integration over all the small dev
tionsdU(x)5U(x)2U0(x) in Eq. ~5!, which are orthogonal
to the deviations corresponding to the four collective coor
nates, we obtain

F~E!.
1

LE d«hd«edxhdxeKh~«h!Ke~«e!D
2~xe2xh!

3expH 2
1

A
@Sh~«h!1Se~«e!1dS#J

3d~«h1«e1d«2E!. ~38!

Here,L is the chain length,D is the transition matrix elemen
@see Eq.~6!#, Sh(«h) and Se(«e) are the single-particle ac
tions, given by Eq.~22!, and dS5dS(r ), where r 5xe
2xh , is the correction to the action of the electron-hole p
due to the overlap between the electron and hole opti
fluctuation

dS~r !5E dxUh~x2xh!Ue~x2xe!.

Furthermore,d«5d«(r ) is the energy correction due to th
electron-hole interaction and the interaction of the elect
with the hole optimal fluctuation and vice versa. The fir
order correction, calculated using the unperturbed electr
hole wave function Eq.~29!, is

d«~r !5E dx@ch
2~x2xh!Ue~x2xe!

1ce
2~x2xe!Uh~x2xh!#

1E dxdx8ch
2~x2xh!V~x2x8!ce

2~x82xe!,

~39!

wherer 5xe2xh is the electron-hole separation. In the sam
approximation the transition matrix element is given by

D~r !5E dxch~x2xh!ce~x2xe!.

Finally, in Eq. ~38! we used the fact that for small overla
between the electron and hole optimal fluctuations the p
actor, resulting from the Gaussian integration overdU(x), is
the product of prefactors for isolated the hole and electr
Kh(«h)Ke(«e).

25 @We note, that inKe(«e) the disorder
strengthA has to be substituted byb2A.#

The integration over the center-of-mass coordinate
0-6
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R5
mhxh1mexe

mh1me
,

which is a zero mode, gives the chain lengthL. Due to thed
function in Eq.~38! «e5E2d«2«h and the remaining inte
gration over the hole energy«h can be performed in the
saddle-point approximation. The condition of the minimu
of Sh(«h)1Se(«e) gives Eq. ~25!, which determines the
saddle-point values of«h and«e . Then Eq.~38! can be writ-
ten as follows:

F~E!.A2pA

B E drKh~«h!Ke~«e!D
2~r !

3expH 2
1

A
@S0~E2d«!1dS#J , ~40!

where

B5
d2

d«h
2 @Sh~«h!1Se~E2«h!#5

\

m
A2M

uEu
,

m5b4memh /(mh1b4me), andS0(E) is given by Eq.~26!.
ExpandingS0(E2d«(r ))'S0(E)2(dS0 /dE)d«(r ) and

using Eq.~36! and the relation between the single-partic
optimal fluctuations and the wave functions:Uh(x2xh)
52lch

2(x2xh) and Ue(x2xe)5lbce
2(x2xe), we find

that the r-dependent part of the action coincides with t
first-order correction to the action of the optimal fluctuati
Eq. ~32!,

dS2
dS0

dE
d«5S1~r !.

Thus, we can write Eq.~40! in the form

F~E!.A2pA

B E drKh~«h!Ke~«e!D
2~r !

3expH 2
1

A
@S0~E!1S1~r !#J . ~41!

The typical energy dependence of the absorption rate
~41! is shown in Fig. 2, where we plot lnF as a function of
(E/E0)3/2, with E0,0 being the exciton binding energy. On
can see, that the energy dependence of lnF very quickly
becomes linear for energies belowE0. The linear dependenc
reflects the relative weakness of the Coulomb interaction
tween the electron and hole@see Eq.~26!#, which was the
main assumption of this analytical calculation.

In the case when the integral over the electron-hole se
ration r comes from a small vicinity of the saddle-pointr * ,
determined by Eq.~33!, we find that the saddle-point actio
coincides with the action for the optimal fluctuation,S0
1S1(r * ), obtained in the Sec. IV. The result of the sadd
point integration overr is
15521
q.

e-
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F~E!.
2pA

AB
d2S

dr
*
2

rh~«h!re~«e!D
2~r * !e2S1(r

*
)/A,

where

d2S

dr
*
2

'
2le2

er
*
3 ~ker * 21!

and «h and «e are the unperturbed single-particle energi
given by Eq.~31! @we have used that the factorsKh(«h) and
Ke(«e) are slow functions of the energies#.

Equation~41! also applies when, instead of one optim
fluctuation, one finds an entire manifold of disorder realiz
tions that significantly contribute to the optical absorption.
particular, for a noninteracting electron-hole pair the mi
mum of the actionS1 is reached at the largest possib
electron-hole separation, since forV(x12x2)50 nothing can
counteract the ‘‘repulsion’’ between the two disorder fluctu
tions, described by the second term in Eq.~32!. However,
these electron-hole states clearly do not contribute to the
tical absorption as the transition matrix elementD vanishes
at infinite r. Since the repulsion decays exponentially w
the electron-hole separation, the actionS1 is a very weak
function of r, as soon as the latter exceeds the spatial ex
of the electron and hole states,kh

21 andke
21 . The contribu-

tion of the electron-hole pairs with larger is then suppressed
not by the weight of such fluctuations, but by the smallne
of the transition matrix elementD, which decays exponen
tially with r. Thus, when the electron-hole interaction is a
sent or relatively weak, in order to calculate the absorpt
rate, one has to sum the contributions of many disorder fl
tuations with different electron-hole separations, which c
be accomplished using Eq.~41!. In this case the electron
hole separation is the ‘‘soft mode’’ in the space of disord
realizations, integration over which is non-Gaussian.

FIG. 2. The energy dependence of the logarithm of the abs
tion rate.
0-7
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The integration in Eq.~41! for the noninteracting electron
and hole becomes particularly simple in the case when
hole is localized stronger than the electron, or more p
cisely, whene2(kh2ke)r!1 for relevant electron-hole sepa
rationsr, which we already have used in the Sec. IV. Th
the actionS1 for the noninteracting case is

S1~r !5l2bE dxch
2~x!ce

2~x1r !'l2bce
2~r !

and the transition matrix element is given by

D~r !'
p

A2kh

ce~r !,

and

E drD~r !2e2S1(r )/A5
p2

4kh
E

2`

1` dz

cosh2z
e2z/cosh2z

'
p2bMA

32muEu2
,

where we assumed that

z5
l2bke

2A
5

3meb
3

M

S0

A
@1. ~42!

Since for the applicability of the optimal fluctuation metho
anyhow, the actionS0 has to be much larger thanA, Eq. ~42!
holds, unless 3meb

3/M is very small.
Thus, finally, for the noninteracting electron and hole

one dimension the expression for the absorption rate~that
also includes the preexponential factor! is

F~E!.
1

b F pm

2A\
A uEu

2M G1/2

expH 2
4\

3A
A2uEu3

M J . ~43!

VI. NUMERICAL RESULTS

The analytical results of Secs. IV and V for the optim
fluctuation and the optical absorption spectrum were
tained by a perturbative treatment of the Coulomb interac
between the electron and hole. When this interaction is of
same order as the magnitude of the disorder potential,
optimal fluctuation has to be solved numerically. In this s
tion we present our numerical results for the optimal fluct
tion in one dimension.
15521
e
-

,

l
-
n
e

he
-
-

Instead of solving Eq.~28! directly, we perform the nu-
merical calculations for a tight-binding model defined on
lattice. The discrete version of the Schro¨dinger equation~1!
reads

2t1~cn21,m1cn11,m!2t2~cn,m111cn,m21!1Vnmcnm

1~Un2bUm!cnm5Ecnm , ~44!

wheret1 and t2 are, respectively, the hole and electron ho
ping amplitudes, the indicesn,m51,2, . . . ,L denote the
sites of the one-dimensional lattice with the lattice constana
and periodic boundary conditions,Un is the disorder poten-
tial

^Un&50, ^UnUm&5
A

a
dn,m ,

andVnm is the regularized Coulomb interaction

Vnm52g0S 1

un2mu1dn,m
1

1

N2un2mu1d un2mu,N
D .

~45!

Here, g05e2/ea and the second term in the brackets
added to satisfy the periodic boundary conditions.

The discrete equation~44! reduces to the Schro¨dinger
equation~1! in the continuum limit, when all relevant elec
tron and hole states have small wave vectors,k1a,k2a!1. In
that case, the dispersion of the free hole dispersion is

«h~k!522t1coska'22t11t1~ka!2,

so thatmh5\2/2t1a2 and, similarly, for the electron we hav
me5\2/2t2a2. In this calculation we puta5t15t251. Then
the continuum limit is reached for small values of the co
pling constantg0 and the energyE, counted from the bottom
of the band,

E5E12~ t11t2!5E14!1.

The discrete analog of the action~12! is

Sl@c,U#5
1

2 (
n

Un
21l~E@c,U#2E!, ~46!

where
E@U,c#5

22(
nm

@cnm~ t1cn11,m1t2cn,m11!1Vnmcnm
2 1~Un2bUm!cnm

2 #

(
nm

cnm
2

. ~47!
0-8
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The denominator in the last equation takes care of the wa
function normalization. It is readily seen that varyingSl with
respect to the wave functioncnm ~that can be chosen rea!
yields the discrete Schro¨dinger equation~44!, while the mini-
mization ofSl with respect to the disorder potentialUn gives
a relation between the optimal fluctuation andcnm ,

Un52
l

N (
m

~cnm
2 2bcmn

2 !, ~48!

where we have used the notation

N5(
nm

cnm
2 . ~49!

We find the optimal fluctuationUn and the corresponding
wave functioncnm by minimizing the functional

Al@c#52
2

N (
nm

cnm~ t1cn11,m1t2cn,m11!

1
1

N (
nm

Vnmcnm
2 2

l

2N 2 (
n

S (
m

~cnm
2

2bcmn
2 ! D 2

, ~50!

which is the two-particle analog of Eq.~18!. While Sl de-
pends on bothcnm andUn , Al is a functional of the wave
function only. One can easily check that the conditi
dAl /dcnm50 is equivalent to Eq.~44! with the disorder
potentialUn given by Eq.~48!. The minimization ofAl with
respect tocnm was carried out numerically, using the stee
est descent algorithm forL550. The energy of the electron
hole pair and other quantities of interest, e.g., the optim
fluctuationUn , its weight, and the corresponding electro
hole wave function, are first obtained as functions of
Lagrangian multiplierl. Then we eliminatel by replotting
these quantities as functions of the energyE.

We first consider the energy dependence of the weigh
the optimal fluctuation, which, essentially, determines the
ergy dependence of the optical absorption rate. This we
is given by e2S/A, where S5 1

2 (nUn
2 is the action of the

optimal fluctuation@cf. Eq. ~11!#. Motivated by the dominan
uEu3/2 behavior ofS @cf. Eq. ~26!#, we plot in Fig. 3S2/3 as a
function of the energyE for g050.2 andb50.5. The open
circles are obtained by the numerical procedure descr
above, while the solid line is the result of our approxima
analytical calculation of the action:S5S01S1, whereS0 and
S1 are given by Eqs.~26! and ~32!, respectively. Clearly,
apart from a small energy interval near the exciton bind
energy in the absence of disorder,E0'20.08, the energy
dependence ofS2/3 is indeed close to linear and the agre
ment between our numerical and analytical results is goo

For energies close toE0, the assumption that disorde
dominates the Coulomb interaction, used in our analyt
approach, breaks down, which explains the deviations of
numerical data from theS}uEu3/2 law and from the analytica
curve. On the other hand, the deviations found at relativ
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large energiesuEu;1 are due to the break down of the co
tinuum approximation, resulting from the fact that the ho
becomes localized on a single lattice site.

These changes in the energy dependence ofS reflect
changes in the shape of the optimal fluctuation and the
responding electron-hole wave function. In Fig. 4 we plotUn
and the contour plot ofcnm , calculated numerically, for
three different values of the energy:20.14, 20.30,

FIG. 3. The actionSof the optimal fluctuation to the power 2/
plotted as a function of the electron-hole energyE for g050.2, b
50.5, and the chain lengthL550. The open circles are results o
the numerical calculation and the solid curve was obtained ana
cally ~see explanations in the text!.

FIG. 4. The shape of the numerically obtained optimal fluctu
tion for E520.13 ~a!, E520.3 ~b!, and E520.94 ~c!. Panels
~d!–~f! show contour plots of the corresponding electron-hole wa
function cnm . All plots correspond tog050.2, b50.5, and L
550. The coordinatesx15na and x25ma, wheren,m51, . . . ,L
describe, respectively, the hole and electron positions in the cha
units of a51. Note, that asE decreases, the shape of the optim
fluctuation undergoes a transition from a single-well to a ‘‘di
bump’’ structure.
0-9
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and20.94. The first valueE520.14 is rather close to the
exciton binding energyE0. In that case, the optimal fluctua
tion, shown in Fig. 4~a!, is rather shallow and it is symmetri
aroundx0, wherex0 is the position of the minimum of this
fluctuation. This symmetry implies that no separation ex
between the average electron and hole positions. Suc
optimal fluctuation was discussed in Ref. 11 for the situat
where the Coulomb interaction dominates the disorder
the spatial extent of the optimal fluctuationl opt is much
larger than the exciton radiusr ex , leading to decoupling of
the center-of-mass and the relative motion. That limit
rather difficult to simulate numerically within our discre
model, as the requirement to maintain the validity of t
continuum approximation then leads to 1!r ex! l opt!L,
thus forcing us to consider a very large lattice sizeL. From
Fig. 4 one observes that forE520.14, l opt is comparable to
the exciton radiusr ex;5. Still, one can see from Fig. 4~d!
that the electron-hole wave function, apart from the deloc
ization along the electron coordinatex2, also shows a strong
delocalization along the linex15x2, which corresponds to
the center-of-mass motion of the exciton. For the sec
value of the energy,E520.3, the optimal fluctuation has th
asymmetric ‘‘dip-bump’’ shape, which corresponds to the
calization of the electron and hole on different sites of
chain@see Fig. 4~b!#. Finally, atE520.94, the hole is prac
tically localized on one chain site, in which case the discr
model should not be used to simulate the continuum one@see
Fig. 4~c!#. From Figs. 4~e!,~f! one can see that forE5
20.3 andE520.94 the electron-hole wave functioncnm is
mostly delocalized along the electron coordinatex2 and it
has no delocalization along the center-of-mass directionx1
5x2.

The transition from the symmetric to the asymmet
shape of the optimal fluctuation can be most clearly s
from the energy dependence of the average electron-
separation, defined by

FIG. 5. Numerical~circles! and analytical~solid line! energy
dependence of the average electron-hole separation calculate
g050.2, b50.5, andL550.
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~m2n!cnm
2 .

The results of the numerical calculation ofr as a function of
the energyE are shown in Fig. 5 by circles. In this figure w
also plot the optimal electron-hole distancer * , obtained by
our approximate analytical approach of Sec. IV@Eq. ~33!#.
The minimization of the correction to the actionS1 was per-
formed numerically, as the approximation that was used
obtain Eq.~35! is too crude to describe the changes in t
shape of the optimal fluctuation. Figure 5 shows a transit
from the optimal fluctuation with zero-average electron-h
separation to one with finite separation. One can also see
the approximate analytical approach provides a good qu
tative description of this transition@in particular, the onset of
the transition and the shape of ther (E) curve#, but it gives a
somewhat larger value of the electron-hole separation at
energies.

To clarify the nature of this transition, we plot in Fig
6~a!–~c! the coordinate distributions of the electron~thick
line! and hole~thin line!

Pn
h5(

m
cnm

2 ,

Pm
e 5(

n
cnm

2 ,

for g050.2, b50.5, and three different values of energyE.
In addition, Figs. 6~d!–~f! show the corresponding effectiv
Hartree potential acting on the electron

Wm52bUm1(
n

Pn
eVnm .

for
FIG. 6. The left-hand side of the figure shows the electron~thick

line! and the hole~thin line! distributions in the typical electron
hole state forE520.18 ~a!, E520.20 ~b!, andE520.50 ~c!. On
the right-hand side@panels~d!–~f!# the corresponding effective po
tentials acting on the electron are plotted. All plots correspond
g050.2, b50.5, andL550.
0-10
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At E520.18, just above the transition, the electron wa
function has two peaks, in accordance with the double-w
structure of the effective Hartree potential@see Figs.
6~a!,~d!#. The peak separating the two potential wells is t
disorder potential that localizes the hole and repels the e
tron. As the energyE decreases, the height of the pe
grows, which suppresses the electron tunneling between
two wells. For large separations between the wells,
weight of the symmetric optimal fluctuation, in which th
electron is delocalized over the two wells, is lower than
weight of the single-well optimal fluctuation with the sam
electron energy. ForE520.20 in the transition region the
two wells become unequal@see Figs. 6~b! and 6~e!#, and at
E520.50, well below the transition region, the electron
predominantly located in a single well@see Figs. 6~c! and
6~f!#.

We finally note that, though the weight of the optim
fluctuation varies smoothly at the critical energyEc;0.19
@see Fig. 3#, the transition matrix elementD @see Eq.~6!#,
being sensitive to the shape of the electron-hole wave fu
tion, is singular at the critical energy. This is illustrated
Fig. 7, where we plot the energy dependence ofD22. Clearly
the derivativedD/dE is discontinuous atE5Ec ~one can see
also a small discontiuty ofD at the critical energy, which is
likely to be a finite-size effect!.

VII. CONCLUSIONS

In this paper we studied theoretically the photoexcitat
of electron-hole pairs in disordered one-dimensional se
conductors. Using the optimal fluctuation method, we cal
lated the low-energy tail of the absorption spectrum in th
systems. We were, in particular, interested in the effects
the Coulomb interaction between the electron and hole
the energy dependence of the absorption spectrum.

We want to point out, however, that the calculation of t
absorption rate is a nontrivial problem even for the nonint
acting electron and hole. In particular, it cannot be reduce

FIG. 7. The energy dependence ofD22 for g050.2, b50.5,
andL550.
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a single-particle calculation, since, on the one hand, the e
tron and hole move in a common disorder potential, and,
the other hand, the effect of the disorder on the electron
different from the effect of the disorder on the hole. W
showed that to calculate the optical absorption tail for re
tively weak interactions between electron and hole, one
to go beyond the standard optimal fluctuation method a
perform the ~non-Gaussian! integration over the ‘‘soft
mode’’—the electron-hole separation@see the derivation of
Eq. ~43!#.

We found that, as the photon energy decreases, the s
of the optimal fluctuation undergoes a crossover. Close toE0
~the exciton binding energy in the absence of disorder!, the
Coulomb energy dominates over the disorder and the opti
fluctuation has a symmetric shape. It reflects the fact tha
those energies the exciton is not entirely destroyed by di
der. That limit was considered previously in Ref. 11. In t
opposite limit, when the disorder dominates over the C
lomb interaction, the optimal fluctuation has two parts:
‘‘dip’’ that localizes the positively charged hole and
‘‘bump’’ that localizes the negatively charged electron. Th
transition to an asymmetric optimal fluctuation is charact
istic for motion in one dimension—it does not occur in tw
and three dimensions. It can, in principle, be observed
perimentally, as the absorption rate has a different ene
dependence above and below the critical energy~see Figs. 3
and 7!.

At photon energies well below the exciton energy, wh
the Coulomb interaction can be treated as a perturbation
obtained an analytical expression for the optical conductiv
of a disordered one-dimensional semiconductor. We also
formed numerical calculations of the optimal fluctuation f
a discrete model that allowed us to study the whole region
photon energies, in which the optimal fluctuation method
applicable~i.e., for E,E0, for which the actionS is much
larger thanA). In the continuum limit we found a good
agreement between our numerical and analytical results.

Finally, in the region of validity of the optimal fluctuation
method, we do not observe a significant delocalization du
interaction discussed in Ref. 5. In particular, as can be s
from Fig. 4, the shape transition has little effect on the loc
ization length of the electron-hole pair. We note, howev
that the mechanism of delocalization, proposed in Ref.
essentially relies on the high density of excited two-parti
states, which enhances the diffusion rate of the two-part
states along the chain. We, however, consider low-ene
states that are all strongly localized. The density of su
states is relatively small and we do not expect, neither do
see, an enhancement of the localization length. The only
ception to this is the caseb;1, when the interaction of a
tightly bound electron-hole pair with disorder is relative
weak.
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APPENDIX: FIRST-ORDER CORRECTION
TO THE WEIGHT OF THE OPTIMAL FLUCTUATION

OF THE ELECTRON-HOLE PAIR

The calculation of the first-order correction can be p
formed in two different ways. On the one hand we can u
the exact relation between the action of the optimal fluct
tion and the disorder potential averaged over the elect
hole wave function:

E d2xC2~x1 ,x2!@U~x1!2bU~x2!#

52
1

lE dxU2~x!52
2

l
S.

This equation allows us to write the action in the form

S5
l

2E d2xCS 2
\2

2mh

]2

]x1
2

2
\2

2me

]2

]x2
2

1V~x12x2!2ED C.

The first-order correction to the action is then given by

S15
l

2E d2xC0
2V~x12x2!1S18 , ~A1!

where

S185lE d2xC1S 2
\2

2mh

]2

]x1
2

2
\2

2me

]2

]x2
2

2ED C0 .

Using Eq.~29! for the unperturbed electron-hole wave fun
tion C0 and Eq.~16! for the single-particle wave functionf,
we obtain

S1852lE d2xC0C1$u«huf2~kh@x12xh# !

1u«euf2~ke@x22xe# !%.

On the other hand, the direct calculation of the first-ord
correction to the action, in which one uses Eq.~11!, gives
d
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r

S152
4«h«e

b E dxf2S kh@x2xh#f2~ke@x2xe# !

1E dxU0~x!U1~x!, ~A2!

whereU1 is the first-order correction to the disorder pote
tial

U1~x!522lE dx8@C0~x,x8!C1~x,x8!

2bC0~x8,x!C1~x8,x!#.

The second term in Eq.~A2! can be rewriten in the form

E dxU0~x!U1~x!54lE d2xC0~x1 ,x2!C1~x1 ,x2!

3$u«huf2~kh@x12xh# !1u«euf2~ke@x2

2xe# !2b21u«euf2~ke@x12xe# !

2bu«huf2~kh@x22xh# !%'2S18 ,

~A3!

where in the last step, we used that the overlap between
unperturbed electron and hole wave functions,ch(x2xh)
and ce(x2xe) is small, as a result the third and the four
terms in the curly brackets of Eq.~A3! give a much smaller
contribution than the first and the second terms. Thus,
obtain

S152
4«h«e

b E dxf2~kh@x2xh# !f2~ke@x2xe# !12S18 .

~A4!

Combining Eqs.~A1! and ~A4!, we obtain

S15lE d2xC0
2V~x12x2!1

4«h«e

b E dxf2

3~kh@x2xh# !f2~ke@x2xe# !, ~A5!

which is equivalent to Eq.~32!.
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