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Coherent backscattering of light in a strong localization regime
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Coherent backscattering~CBS! of light in a strong localization regime is studied with absorption/
amplification included. The CBS cones arising from strongly localized states inside the complete gaps of
disordered photonic crystals have been observed by numerical simulations in two dimensions. The structure of
the CBS cones can be described well by a theory that incorporates mean free paths, localization length,
amplification/absorption length, and single-particle scattering anisotropy. The excellent agreement between
theory and simulations without any adjustable parameters makes it possible to determine the localization length
from a measured CBS cone, even in an absorbing medium.
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I. INTRODUCTION

During the past decade the localization of classical wa
in random media has been the subject of intens
studies.1–13 The observation of light localization has bee
reported based on the exponential decay of light intensity
it propagates through the media.2,3 However, these report
have come under close scrutiny because of the presenc
absorption in the media. How to probe localized states
absorbing media has become a crucial issue at present
cently, a statistical approach has been taken to determine
extent of localization in the presence of absorption.4 In ad-
dition to transmission measurements, one may ask the q
tion: Is it possible to detect localization from reflection me
surements? Recent results based on random matrix th
indicate that the statistics of reflected intensity cannot p
vide localization information.5 However, it is well known
that the structure of coherent backscattering~CBS! cones has
provided a useful means to estimate the mean free path o
system in the diffusive regime.6,7 A natural question to ask is
whether the structure of the CBS cone in a localized reg
can provide localization information of the system as we

The phenomenon of enhanced backscattering, a prec
of Anderson localization due to the interference effect, h
been well studied in weak scattering media.6,7 In the pres-
ence of absoprtion~amplification!, the CBS cone become
rounded~sharper! due to the suppression~enhancement! of
long optical paths.7–9 However, the theoretical study of th
structure of the CBS cone in the critical region close to
localization transition has been an interesting and challe
ing problem.10–13 In this region, the structure of the CB
cone can change considerably due to the renormalizatio
the diffusion constant. Just above the localization transit
it is expected that the CBS cone has a sharp top with a ro
region close to it. Just below the localization transition,
sharp top disappears and a rounding of the CBS c
appears.10,11,13The rounding of the CBS cone has been o
served near the critical region.12 In Ref. 10, the authors con
sider a momentum-space renormalization of the diffus
constantD(q). Due to the requirement of flux conservatio
the authors also assume that the boundary layers at the
face ~or extrapolation length! should scale in the same wa
as the diffusion constant to avoid artificial logarithmic dive
0163-1829/2002/65~15!/155208~9!/$20.00 65 1552
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gence in the total reflection. However, this assumption is
made in the study of Ref. 11. Very recently, a self-consist
theory has been proposed to describe CBS near the mob
edge in the absence of absorption.13 In this work, the authors
take an approach of renormalizing the diffusion constan
real space. Again, no extrapolation length renormalization
assumed. Thus, whether or not an extrapolation length re
malization is necessary remains a controversial issue.

Much attention has been paid to the critical region, b
little attention has been paid to the structure of the CBS c
in the strong localization regime far below the Anderson
calization transition, which is actually an interesting proble
in its own right. One may ask the following question: If th
localization length is so small that it is of the order of th
‘‘lattice constant,’’ would there still be a CBS cone? If s
could its structure provide any useful localization inform
tion? In fact, Ref. 10 has predicted a totally flat curve w
no CBS cone in the strong localization regime. With t
rapid development of the photonic band-gap materials, it
become more likely to achieve strong localization states
side the complete gap of a disordered photonic crystal.14,15

The observation of strongly localized states has been
ported in both two16 and three dimensions.17,18 Recently,
CBS measurements have been performed at frequencie
side the incomplete gaps of weakly disordered photonic c
tals. However, only diffusive behavior was found.19 Even in
random media, localized states with a localization len
equal to ten times that of mean free path have been achie
recently,4 which is not far from the strong localization re
gime considered here.

In this work, by using the multiple-scattering method, w
study the structure of CBS cones arising from strongly loc
ized states inside the complete gap of disordered phot
crystals in two dimensions.20 This method is known to accu
rately reproduce experimental measurements. Through
simulation, we find that the CBS cone still exists and t
curve is not flat even when the localization lengthj is two to
three times that of the lattice constant, contrary to the pre
ous prediction in Ref. 10. What is more interesting is th
from the results of three different wavelengths and locali
tions lengths, we find that the rounding of the CBS co
follows a simple relationl/j, wherel is the wavelength. In
the absence of gain or absorption, such a relation makes
©2002 The American Physical Society08-1
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XIANGDONG ZHANG AND ZHAO-QING ZHANG PHYSICAL REVIEW B 65 155208
determination of localiztion length possible. In the presen
of gain or absorption, we find that the CBS cone becom
sharper or rounded as it does in the diffusive regime.

In addition to simulation, in this work we also present
theoretical approach to study the CBS cone in the str
localization regime. Our approach is similar to that describ
in Ref. 10. However, we incorpate wave localization in
slightly different way. In addition, we consider the singl
particle scattering contribution to the CBS cones, which
found to be important in the strong localization regime. T
effects due to absorption/amplification in the medium
also included in our approach. Thus, our theory incorpora
scattering and transport mean free paths, localization len
absorption/amplification length, and single-particle scatter
anisotropy. Due to strong wave localization, the issue of
trapolation length renormalization becomes unimporta
Our theory is capable of quantitatively reproducing the sim
lation data for a wide range of angles in all the cases we h
studied without any adjustable parameters. The excel
agreement between theory and simulation has made it
sible to determine the localization length from a measu
CBS cone, even in the presence of absorption. An analy
result for three dimensions is also presented.21

This rest of this paper is arranged as follows. In Sec.
we first present the results of the numerical simulation. T
analytical approach to the study of CBS cones is describe
Sec. III. Section IV includes the discussion of our results a
our conclusions.

II. NUMERICAL SIMULATION

We obtain a random medium by completely randomiz
an ordered photonic crystal, which consists of dielectric c
inders with a radiusR and a dielectric constante511.4 ar-
ranged in a square lattice with air as the background. If
let a denote the lattice constant, complete gaps exist fo
certain range ofR/a for s-polarized waves.15 The Maxwell
equation takes the form@c22v2e(rW)1¹2#E(rW)50, where
E(rW) is the electric field along the cylinder axis ande(rW) is
the position-dependent dielectric constant.

To randomize a sample of sizeW3L (W layers in width
andL layers in thickness!, we randomly move the position o
each cylinder within a distance (a22R)/2. The procedure is
repeated 1000 times to ensure complete randomizatio
move is forbidden if two cylinders overlap. To calculate t
transmission and reflection properties of the sample, we
the multiple-scattering method described in Ref. 20. T
source is prepared by passing a plane wave through an
slit in front of the sample. The width of the slit is about 20
smaller than the sample width to avoid diffraction. T
multiple-scattering method allows us to calculate the ne
and far-zone scattered field in both transmission and refl
tion geometries.20 In our calculations, we chooseW5101
and higher freqency gaps to ensure sufficient angular res
tion for the study of the CBS cone. For an ordered syst
the transmission coefficientsT as a function of renormalized
frequencyf (5va/2pc), for a sample of size 10137 along
the G-X direction are plotted in Fig. 1 forR50.28a, 0.3a,
and 0.32a, with dashed, dotted, and solid curves, resp
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tively. Here, only the second and the third gaps are sho
For each value ofR, we choose one frequency to study. T
following are the three cases we have studied here:~a! R
50.30a, f 50.48, ~b! R50.28a, f 50.48, and ~c! R
50.32a, f 50.64. Since the chosen frequencies are near
transimssion minima as shown in Fig. 1, they all lie insi
the second and the third complete gaps of the orde
systems.15 After randomization, localized states will appe
inside these gaps. To determine the localization length,
take the geometric mean of the transmission coefficie
which is expected to decay exponentially with sample thi
ness, i.e.,T;exp(2L/j) or ^ ln T&;2L/j.1 After an average
of 100 configurations, we shoŵln T& as a function of
sample thickness in Fig. 2~a!. From the slope we findj
51.95a, 3.2a and 5.8a for cases~a!, ~b!, and ~c!, respec-
tively. Thus, these states are indeed strongly localized w
the localization length of the order of the lattice constant

For strongly localized states, the scattering mean free p
is also very small. We can simulate the scattering mean
path from the exponential attenuation of the coherent par
the transmitted field, i.e.,u^E&u2;exp(2L/ls).

22 For each
configuration, we measure the field at ten different points
the central speckle. Similar data are taken for 500 confi
rations for averaging. The results are plotted in Fig. 2~b!,
from which we findl s50.56a, 0.91a, and 1.28a for cases
~a!, ~b!, and~c!, respectively. In the presence of absorption

FIG. 1. S-wave transmission coefficients for photonic crystals
square lattice with dielectric cylinders of radiiR50.28a ~the
dashed line!, 0.3a ~the dotted line!, and 0.32a ~the solid line!, and
«511.4.

FIG. 2. The transmission coefficient,^, ln T&, as a function of
sample thicknessL/a for three cases studied in the text:~i! R
50.3a at va/2pc50.48 ~solid line!, ~ii !R50.28a at va/2pc
50.48 ~dotted line!, and ~iii ! R50.32a at va/2pc50.64 ~dashed
line!. ~b! The coherent part of the transmitted field lnu^E&u2 as a
function of sample thicknessL/a for the corresponding cases in~a!.
8-2
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COHERENT BACKSCATTERING OF LIGHT IN A . . . PHYSICAL REVIEW B65 155208
amplification, u^E&u2 decays as exp(2L/ l̄ ), where l̄ is the
extinction length and is related to the absorption lengthl a or
gain length l g by the relation 1/l̄ 51/l s61/l a,g .8,9 The
‘‘bare’’ transport mean free pathl t

o is related to the scatterin
mean free path through the relation l t

o

5 l s* u f (u)u2du/* u f (u)u2(12cosu)du, where f (u) is the
scattering amplitude of a single scatterer and can be obta
analytically. We find thatl t

o52.04l s ,2.2l s , and 1.05l s for
cases~a!, ~b!, and ~c!, respectively. These numerical resu
confirm that the states inside the complete gaps are stro
localized with localization lengths comparable to the me
free paths and they are all of the order of the lattice const
It should be pointed out thatl t

o denotes the bare transpo
mean free path, which is free of interference effects. In
localized regime, the true transport mean free path shoul
renormalized to zero.

To simulate the CBS cone, we use samples that hav
thicknessL a few times longer than the localization lengt
so that a converging result is reached. In order to separat
backscattering intensity from the specular contributions
to a residual photonic band-gap effect, we tilt the sample
5° relative to the incident wave front and calculate the f
zone scattered intensity in the reflection geometry as a fu
tion of the angle. The results of 2000 configurations
shown in Figs. 3~a!–3~c! with dotted curves for the case
~a!–~c! described above, respectively. The values ofL chosen
are 9a for ~a! and~b! and 18a for ~c!. The rounded peaks a
25° represent the CBS cones from localized states, whe

FIG. 3. Comparison between theory~solid curves! and simula-
tions ~dotted curves! of the CBS cones for three cases:~a! R
50.3a at va/2pc50.48, ~b!R50.28a at va/2pc50.48, ~c! R
50.32a at va/2pc50.64. ~d! shows the rounding angle of CB
cone (Du) as a function ofl/j. The inset shows how the degree
rounding is measured for case~a!.
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the sharp peaks at 5° are due to the specular contribut
not related to CBS. It should be pointed out that instead
tilting the sample to avoid the specular contributions, an
ternative way is to calculate the specular contributions to
total reflected intensity. This may be done by evaluating
coherent part of the reflected intensity as a function of an
i.e., u^E&u2. In the study of ballistic to diffusive transition
this coherent part represents the ballistic transport and is
mally separated from the diffusive part in the total transm
ted intensity.23–25

Following Ref. 12, we quantify the degree of rounding
each case by extrapolating two wings in the CBS cone in
triangular cone as shown in the inset of Fig. 3~d! for case~a!.
The results of rounding angleDu are plotted as a function o
l/j in Fig. 3~d!. A straight line indicates thatDu→0 asj
→` at the Anderson localization transition. It is interestin
to see that even in such a strongly localized regime, the C
cone is still a useful quantity to measure and the rounding
the CBS cone can give information on the localization len
of the system.

To study the effects due to absorption or amplication,
introduce an imaginary dielectric constant for each cylind
i.e., e511.41 i e9. Taking the case~a! (R50.30 and f
50.48) as an example, the CBS cones with absorptione9
50.5) and amplification (e9520.03) included are shown in
Figs. 4~a! and 4~b! with the dotted curves, respectively. I
order to make a comparison with the CBS cone witho
absorption/amplification, we replot the simulation resu
shown in Fig. 3~a! as dashed lines in Figs. 4~a! and 4~b!. It is
clear that the CBS cone is reduced~enhanced! in the pres-
ence of absorption~amplification! just as it is in a diffusive
medium. However, the degree of rounding shifts in the o
posite way. It is worth mentioning that when the amplific

FIG. 4. Comparison between theory~the solid lines! and simu-
lations~the dotted lines! of the CBS cones for the caseR50.3a and
va/2pc50.48 with ~a! absorption (e950.5) and~b! amplification
(e9520.03) included. The dashed lines represent the simula
results in the absence of absorption/amplification.
8-3
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XIANGDONG ZHANG AND ZHAO-QING ZHANG PHYSICAL REVIEW B 65 155208
tion is larger thane9520.03, we find large angular intensit
fluctuations as observed in ‘‘random lases’’ due to the
hancement of recurrent scattering.26,27 In order to show these
fluctuations, in Fig. 5 we plot in semilog scale the distrib
tion of the normalized speckle intensity at angles 15°,uuu
,25° for three different values ofe9: 0 ~triangles!, 20.03
~squares!, and20.3 ~circles!. In a passive medium, the dis
tribution obeys Rayleigh statistics as predicted by the r
dom matrix theory.5 In the presence of gain, a tail in th
exponential decay is found, which increases with the g
parameter. Thus at large gain, it becomes diffucult to ob
a smooth CBS cone.

III. THEORY

In the following, we present a theory to describe the str
ture of CBS cones in the strong localization regime w
absorption/amplification included. In a diffusive regime, t
backscattering intensity can be described by the sum of t
bistatic scattering coefficients,gs(ms ,m i), g l(ms ,m i) and
gc(ms ,m i), which represent the contribution from sing
scattering, diffusive transport, and interference betw
counterpropagating waves, respectively.6,7 Here m i ,s
[cosui,s, and u i and us denote the incident and scattere
angles relative to the surface normal, respectively. To
more precise, we haveu i50 for normal incident light and
us50 when the backscattered light is directly opposite to
incident light. It is easy to show that by including the sing
particle scattering anisotropy,gs(ms ,m i) has the form

gs~ms ,m i !5
2p l̄ u f ~p2u i2us!u2

l sE
0

2p

u f ~u!u2du
S ms

ms1m i
D . ~1!

However, in a strong localization regime, the effects due
wave localization should be included in the evaluation
g l(ms ,m i) and gc(ms ,m i). Here, we assume that wave in
tensity follows a diffusive behavior with a Boltzmann diffu
sion constantDo5clt

o/d in a region r ,j centered at the
source and decays exponentially whenr .j, i.e, exp(2r/j).
Here d denotes the dimensionality of the system. This

FIG. 5. The distribution of the normalized intensity of the r
flected speckles fore950 ~triangles!, 20.03 ~squares!, and 20.3
~circles!.
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sumption becomes invalid when the system is close to
localization transition wherej@ l t

o . In this case, a scale
dependent diffusion constant due to interference should
used in the region betweenl t

o andj.10 However, in the case
of the strong localization limit considered here, we havej
' l t

o . Therefore there does not exist a scaling region t
necessitates the renormalization of the diffusion const
This assumption allows us to replace the diffusion pole
(2 iv1Doq2) by 1/@2 iv1Do(q21j22)#, which, in the
static limit, produces a correct exponential decay in the
tensity distribution at distancesr .j. In the time domain,
such a replacement makes the incoherent part of the ti
resolved abedo to decrease liket2d/2 for t,tc5j2/Do
and cross over to an exponential decay whent.tc , i.e.,
exp(2t/tc). If we define the time-dependent diffusion co
stant by using^r 2&;tD(t), we find that D(t)5Doexp
(2t/tc). A similar approach has been suggested in Ref.
except that instead of a smooth change, a sudden cuto
the diffusion pole is proposed forq,j21 and the diffusion
constant is assumed to be zero forq,j21 or t.tc . With our
modified diffusion pole, simple expressions forg l andgc can
be obtained following a procedure similar to that describ
in Ref. 7. A brief derivation is given in the Appendix for
semi-infinite scattering medium in two dimensions~2D! (d
52). The results are

g l~ms ,m i !5
1

m i l̄
2E0

`E
0

`

G~z1 ,z2 ;q'50!

3expF2
1

l̄
S z1

ms
1

z2

m i
D Gdz1dz2 , ~2!

gc~ms ,m i !5
1

m i l̄
2E0

`E
0

`

G~z1 ,z2 ;q'!

3cos@k0~m i2ms!~z12z2!#

3expF2
1

2 l̄
S 1

ms
1

1

m i
D ~z11z2!Gdz1dz2

~3!

with

G~z1 ,z2 ;q'!5
1

2p l t
oE0

`FK0SAy21~z12z2!2

h D
2K0SAy21~z11z212l e!

2

h D Gcos~q'y!dy

~4!

and

h225j226S l t
ol a,g

2 D 21

, ~5!

whereK0 is the modified Bessel function of the second kin
k05v/c, q'5k0(sinus1sinui), and extrapolation lengthl e

5(0.78l t
o)(11R)/(12R). HereR is the ratio of the incom-

ing flux to the outgoing flux at the sample boundary.
8-4
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should be pointed out that in Eq.~4!, a constant bare extrapo
lation lengthl e has been used for the entireq space. It has
been suggested in Ref. 10 that aq-dependent renormalize
extrapolation length, similar to the renormalization of t
diffusion constant, should be used in the critical regionj21

,q,( l t
o)21. Since we havej' l t

o in the strong localization
region, we can use a bare extrapolation lengthl e for the
entire region ofq.j21. As for the localized part withq
,j21 or r .j, we assume it gives a negligible contributio
to g l and gc when compared with the diffusive part. Thu
the error we introduced is expected to be insignificant a
the question of extrapolation length renormalization becom
unimportant. The justification of this assumption will be d
cussed later.

The presence of the last term in Eq.~5! represents the
interplay between absorption /gain and diffusion and is
rived in Eq. ~A12! of the Appendix with the assumption o
l a,g@ l t

0 , wherel a andl g are, respectively, the absorption an
gain lengths of the medium.7 This result can also be unde
stood intuitively by using some diffusion arguments, i.
La,g

2 5D0ta,g , D05 l 0
t c/d, andta,g5 l a,g /c, whereLa,g and

ta,g are the decay~growth! length and absorption~gain!
time, respectively.1 The effects due to wave localizatio
come from the presence of thej22 term in our modified
diffusion pole. This simple insertion is to cut off the diffu
sion pole to take into account the wave localization. It do
not include the interplay between absorption/gain and lo
ization. However, the contribution to the change of the C
cone from the interaction between absorption/gain and lo
ization can be assumed to be much smaller than that from
diffusion part due to the exponential decay in the intens
when q,j21. In this case, the diffusion pole is dominate
by the large termj22, which cuts off the contribution to the
CBS cone and makes the error insignificant. This assump
is supported by a recent work on the absorption in a meta
photonic crystal.28 It has been found that the absorption
much smaller in the gap region than in the band region
to the evanescent decay of wave intensity in the gap reg
Although the last term in Eq.~5! does not include the inter
action between localization and absorption/gain, the prese
of this term is effectively to enhance~or reduce! the local-
ization effect in the case of absorption~or gain! if we con-
siderh as an effective localization length. This in turn w
reduce~or enhance! the CBS cone as we have seen in t
numerical simulations~Fig. 4!.

In the absence of absorption or amplification, wherel̄
5 l s , we use numerically calculatedl s , l t

o , j, and f (u) in
Eqs.~1!–~5!. The effective medium approximation is used
estimateR. The results are shown as the solid curves in F
3~a!–3~c!. Apart from some small statistical fluctuations, w
have obtained excellent quantitative agreements betw
theory and simulations for a wide range of angles in all ca
without any adjustable parameter. To isolate the CBS eff
we also plot separately the termsgs , g l , andgc in Fig. 6.
Compared with the same term in the diffusive regime,gc
now covers a much wider range of angles. Apprecia
amount of intensity appears even when the scattered angus
is above 10°. From the three curves ofgs(us) shown in Fig.
15520
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6, it is easy to see that whenus.10°, gs shows strong an-
gular dependence and behaves very differently betw
cases~a!, ~b!, and ~c!. This is due to large angular depen
dence in the scattering amplitudef and its sensitivity to the
ratio l/AeR near Mie resonance. In fact, the ratio ofl/AeR
is about 2 for the cases~a! and~b! and 1.5 for the case~c!. If
we ignore the single scattering anisotropy, Eq.~1! reduces to
the known result ofgs(ms ,m i)5ms /(ms1m i) in the absence
of absorption/amplification.7 By using this relation in our
theoretical calculations, we replot the results of cases~a! and
~c! as dashed curves in Figs. 7~a! and 7~b!. Compared to the
results of Eq.~1! ~solid lines!, appreciable discrepancies b
tween theory and simulations appear in the wings of C
cones whenus.10°. Thus, in a strong localization regime,
is necessary to include the single scattering anisotropy in
~1! in order to achieve a quantitative agreement with
simulation data.

In the presence of absorption or amplification, we a
calculate the extinction lengthl̄ numerically for case~a!
shown in Fig. 3. The absorption and gain lengths are fou
to be l a'10l s for e950.5 andl g'80l s for e9520.03, re-
spectively. By using these numbers in Eqs.~1!–~5!, we ob-
tain two solid curves in Fig. 4. The excellent agreeme
between theory and simulations show the validity of E
~1!–~5! even in the presence of absorption or amplificatio

The generalization of Eqs.~1!–~5! to 3D systems is
straightforward. In this case, the functionG in Eq. ~4! should
be replaced by

G~z1 ,z2 ;q'!5
3

2l t
o Fexp~2uz12z2uAh221q'

2 !

Ah221q'
2

2
exp~2uz11z212l euAh221q'

2 !

Ah221q'
2 G ~6!

FIG. 6. Comparison ofgs , g l , andgc for the three cases show
in Fig. 2: ~a! in solid lines,~b! in dashed lines, and~c! in dotted
lines.
8-5
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with

h225j226S l t
ol a,g

3 D 21

, ~7!

where q'5k0@(sinuicosci1sinuscoscs)
21(sinuisinci

1sinussincs)
2#1/2 andi ands stand for the incident and sca

tered angles, respectively.7 Again, Eqs.~6! and ~7! are valid
only in the strong localization regime.

IV. DISCUSSION AND CONCLUSIONS

In our theory, we have assumed that the diffusive par
the wave propagation represents the dominant contributio
the CBS cone, whereas the localized part makes a neglig
contribution due to its exponential decay in wave intens
This assumption is supported by the excellent agreemen
tween theory and simulation for all the cases we have stu
without any adjustable parameters. In fact, our assumptio
also supported by the result of the random matrix theo
which predicts Rayleigh-type statistics in the reflected int
sity distribution even in the localized regime.5 If the contri-
bution from the localized part were not negligible, o
should expect a tail in the exponential decay similar to
case of transmitted intensity distribution.1 Certainly, this is a
unique feature of wave propagation in the reflection geo
etry, not shared by the transmitted waves.

At this juncture, we would like to stress that the 2D d
order photonic crystals we have considered here are c
pletely random. Thus, all states are localized, including th
in the passbands. However, due to the hard-core repuls

FIG. 7. The CBS cones for two cases:~a! R50.3a at va/2pc
50.48 and~b! R50.32a at va/2pc50.64 with the single scatter
ing anisotropy included~solid and dotted lines! and without the
single scattering anisotropy~dashed lines!, respectively. The dotted
lines represent the simulation result.
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among the scatterers, systems possess certain short-ran
der even when they have been completely randomized. A
result of such short-range order as well as the the presenc
Mie resonances, some quantitative differences in the tra
port properties between the states in the gaps and in
bands still remain. For instance, the localization length ins
a gap is generally smaller than that in a band. In fact, the
played by resonant scattering in determining the band-
position has been studied.29,30Since the focus of this work is
in the strong localization regime, we did not study the CB
cone arising from those less localized states in a band. H
ever, both the method of numerical simulation and analyti
theory presented here can also be applied to the local
states in a band.

Instead of complete randomness, if only a small disor
is introduced, the wave propagation inside a gap rema
evanescent in nature. In return, the statistics of reflec
speckle intensities will exhibit a non-Rayleigh distribution31

In this case the analytical theory presented here cannot a
However, for the case of complete randomness studied h
the second and third gaps shown in Fig. 3 are closed. Wa
lose their evanescent nature completely and Rayleigh st
tics are recovered.31 This makes the analytical theory valid
The qualitative difference in the transport behavior betwe
the cases of small randomness and large randomness ha
been reported in the study of 1D disordered photo
crystals.32,33 It has been found there can exist two types
localized states inside a band gap. In the case of large d
der, all the states inside a gap belong to normal-type lo
ized states, satisfying the single-parameter scaling the
However, when disorder is small, the localized states w
inside a gap do not satisfy the single-parameter sca
theory due to the residual evanescent nature of the wa
Such distinct transport behaviors inside a gap between
cases of small and large disorder also appear in higher
mensions. In this work, our focus is on systems with lar
disorder. The structure of the CBS cone arising from
localized states inside the gap of a weakly disordered ph
nic crystal remains an interesting subject for future study

We would also like to point out that in the diffusive par
although the number of scatterings is small in the stro
localization regime, nevertheless, this small number of s
terings is sufficient to develop diffusive behavior. If we ta
a typical case ofj'3l 0

t and useD05( l 0
t )2/3t0, wheret0 is

the scattering time, the crossover time it takes from diffus
to localized behavior is abouttc5j2/D0'27t0. Thus, it
takes about 27 scattering processes before waves bec
localized. In a recent study of ballistic to diffusive transitio
using transmitted pulse measurements, it has been found
the peak of the pulse starts to develop a diffusive beha
when the sample thickness is as small as three mean
paths.25. This indicates that only a few scattering process
are needed to develop a diffusive behavior. Therefore, e
in a strong localization regime, it is possible to have a dif
sive region that constitutes the dominant part of wave pro
gation in the reflection geometry.

Although our present work is focused on the strong loc
ization regime, both the numerical and theoretical a
proaches presented here can, in principle, be extende
8-6
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include the critical region. Numerically, one has to simula
the CBS cone arising from states withj@ l 0

t . In this case, the
sample size becomes very large, i.e.,W@L.j. Unfortu-
nately, our present computing capability does not permit
to perform such large-scale simulation. Analytically, as
critical region is approached, one has to renormalize the
fusion constant as well as the extrapolation length as s
gested in Ref. 10. The interplay between absorpti
amplifcation and diffusion can also be obtained from t
intuitive arguments described earlier by adopting a sc
dependent diffusion constantD(L)5D0l 0

t /L to replaceD0

for L,j. Such a replacement will lead to the result ofLa,g
2

5@( l 0
t )2l a,g /d#2/3.34,35The existence of the factorj22 in the

diffusion pole will again provide a smooth cutoff whenL
.j. Of course, the validity of this generalization should
tested against theab initio simulation as we have done her
If this can be done, through comparison between theory
simulation, it may be able to resolve the controversial is
of extrapolation length renormalization in the critical regio

The excellent agreement in the structure of the CBS c
between theory and simulations suggests the possibility
method to determine the localization length even in the p
ence of absorption. In order to do so, the absorption len
and the scattering mean free path should be determined
In order to know the absorption length of the medium, o
can determine the absorption timeta by using a pulse
measurement.36 In a thick sample, it is expected that th
time-resolved total reflected intensity decays as exp(2t/ta).
In order to determine the scattering mean free path, one
measure the decay of ballistic~coherent! intensity as a func-
tion of sample thickness in thin samples in transmission m
surements, i.e.,u^E&u2;exp(2L/ls).

22 Then l t
0 and the func-

tion gs of Eq. ~1! are calculated by using the scatterin
function f (u) of the single scatterer. Finally, the localizatio
length can be determined by fitting the measured CBS c
to the analytic results.

In summary, we have simulated CBS cones of light
different wavelengths and localization lengths inside
complete gap of disordered photonic crystals in two dim
sions by using the multiple-scattering method. We ha
found that CBS cones still exist and the curve is not flat e
when the localization lengthj is two to three times that o
the lattice constant. Furthermore, the rounding of the C
cone is found to follow a simple relationl/j, which can be
used to estimate the localization length. Like in a diffusi
regime, the presence of absorption or amplification is fou
to reduce or enhance the CBS cone. In addition to sim
tions, we have also presented an analytical theory that in
porates scattering and transport mean free paths, localiza
length, absorption/amplification length, and single-parti
scattering anisotropy. We have obtained excellent quan
tive agreement between theory and simulations with a w
range of angles in all the cases we have studied without
adjustable parameters. This makes it possible to determ
the localization length from a measured CBS cone, eve
the presence of absorption. The main results obtained
are also valid in three dimensions.
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APPENDIX

In this appendix, we give some key steps that lead to
final results of Eqs.~4! and~5! for the CBS cone in 2D. For
convenience, the notations used here follow the 3D work
van der Market al. in Ref. 7. Also, we assume that wav
speedc in vacuum is unity. In 2D, the single-particle scatte
ing operators(kW1 ,kW2) takes the form1

s~kW1 ,kW2!54iApk0

2
expS i

p

4 D f ~kW08 ,kW0!. ~A1!

Assuming a point scatterer, Eq.~A1! has the following form
in real space:

sa~rW1 ,rW2!54iApk0

2
expS i

p

4 D f d~rW12rWa!d~rW22rWa!,

~A2!

whererWa denotes the position of the scatterera. From Eq.
~A2!, we can write the vertex function for the ladder di
grams as

Ls5(
a

E sa~rW1 ,rW2!sa* ~rW3 ,r 4
W !drWa

5
4k0

l
d~rW12rW2!d~rW32rW1!d~rW42rW1!, ~A3!

wherel 51/(2pn0f 2) andn0 is the density of scatterers. Fo
point scatterers, the functionf is angular independent and th
transport mean free path equals the scattering mean free
i.e, l t(0)5 l s5 l . Thus, the functionF(rW1 ,rW2) in the ladder
diagram satisfies

F~rW1 ,rW2!5S 4Apk0

2
f D 4

n0
2A~rW12rW2!

1n0S 4Apk0

2
f D 2E A~rW12r 8W !F~rW1 ,rW2!dr8W ,

~A4!

where

A~rW12rW2!5^Gk01v/2~rW12rW2!&^Gk02v/2* ~rW12rW2!&,
~A5!

and
8-7
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^Gk0
~rW !&5

1

~2p!2E eikW•rWdkW

@k01 i /~2 l̄ !#22k2

52 iH 0
(1)@$k01 i /~2 l̄ !%urWu#/4, ~A6!

where 1/l̄ 51/l 61/l a,g has been defined in Sec. II andH0
(1) is

the Hankle function of the first kind. Equation~A4! is solved
in the momentum space by taking its Fourier transform, i

F~qW !5

16k0
2

l 2
A~qW !

12
4k0

l
A~qW !

, ~A7!

where

A~qW !5E ^Gk01v/2~rW !&^Gk02v/2* ~rW !&e2 iqW •rWdrW. ~A8!

Substituting Eq.~A6! into Eq. ~A8! and taking the diffu-
sion limit, we find

F~qW !5
8k0 /~ l l̄ 2!

a2
iwb

D0
1q2

, ~A9!

where

a55
2~ l 1 l a!2

l l a
3

for absorption

22~ l g2 l !2

l l g
3

for gain,

~A10!
es

l-

re

e

s.
,

15520
.,

b5H ~ l 1 l a!

l a
for absorption

~ l g2 l !

l g
for gain,

~A11!

whereD05 l /2. In absence of absorption and gain, we ha
a50 and b51 and Eq.~A9! contains a diffusion pole as
expected. In the situationl a,g@ l , a and b can be approxi-
mated by6( l l a,g/2)21 andb51. Here1 and2 correspond
to the absorption and gain, respectively. In the localizat
regime, from the assumption described in Sec. III, we sho
replace the factor 1/(a2 ivb/D01q2) in Eq. ~A9! by 1/(a
2 ivb/D01q21j22), wherej is the localization length. In
the casel a,g@ l , Eq. ~A9! becomes

F~qW !5
8k0 /~ l l̄ 2!

2
iw

D0
1h22

, ~A12!

whereh225j226( l l a,g/2)21.
Thus, in the static limit (v50), by taking the Fourier

transform of Eq.~A12!, we obtain

F~rW !5
2k0

p l l̄ 2
K0S r

h D , ~A13!

whereK0 is the modified Bessel function of the second kin
In the real situation where the functionf is angular depen-
dent, the bare transport mean free pathl t

0 should be used for
l. Inserting Eq.~A13! into the bistatic scattering coefficient
for the ladder and maximally crossed diagrams describe
Ref. 7, we obtain Eqs.~4! and ~5!.
ev.
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