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Exact analytic results for the Gutzwiller wave function with finite magnetization
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We present analytic results for ground-state properties of Hubbard-type models in terms of the Gutzwiller

variational wave function with nonzero values of the

magnetizatiom dimensionD = 1 approximation-free

evaluations are made possible by appropriate canonical transformations and an analysis of umklapp processes.
We calculate the double occupation and the momentum distribution, as well as its discontinuity at the Fermi
surface, for arbitrary values of the interaction paramgtattensityn, and magnetizatiom. These quantities
determine the expectation value of the one-dimensional Hubbard Hamiltonian for any symmetric, monotoni-
cally increasing dispersiog, . In particular for nearest-neighbor hopping and densities away from half filling

the Gutzwiller wave function is found to predict ferromagnetic behavior for sufficiently large interddtion

DOI: 10.1103/PhysRevB.65.155121

I. INTRODUCTION

PACS nuntber71.27+a

By the variational principle the energy expectation value
I:|)G is an upper bound for the true ground-state energy of

Quantum-mechanical many-body problems can almos,

never be solved exactly. In this situation variational wave

functions have proved to be particularly useful. Although

they describe correlations among the particles only in an ap-

proximate way, they have the advantage of being explicit an
physically intuitive. In particular, they allow for investiga-

tions even when standard perturbation theory is not appli

cable, or is untractable.

Variational wave functions can, for example, be obtainedsystems without net magnetic polarizatiom=n;—n =

by applying a suitably chosen correlation operdimg., the
interaction part of the Hamiltonian under investigajioom a
simple one-particle wave function. For the one-band Hub
bard modéi—

H:kz Ekél-(*—u—éko'—’— U2| ﬁiTﬁiLl (1)

which is often used as an effective model to understand elec-

tronic correlation phenomena like itinerant ferromagnetis
in transition metals, high-temperature superconductivity, an

the Mott-Hubbard metal-insulator transition, the simplest

projected wave function is the Gutzwiller wave function
Gwp),?

|\I’G>:92i6i|¢’o>zﬂ[1_(1_9)Di]|‘b0>- 2)

where g is a variational parametefusually 0<g<1), D;

= ﬁiTﬁil is the operator for double occupation at lattice §ite
and the starting wave functiofby) is a product state of
spin-up and spin-down Fermi seas,

[Poy= 11 aglvag.
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The properties and quality of the GWF have been the
ubject of detailed investigatior$or an early review, see
(ﬁZef. 4). A diagrammatic theory for the calculation of expec-
tation values in terms of the GWF, valid in arbitrary dimen-
sionsD, was formulated by Metzner and VollhartitRefer-
ence 5 is hereafter referred to as MVh particular, for
0,

i.e., particle densitien,,=n/2 with kg, =kg; in Eq. (3), they
calculated the momentum distribution, =(a; a,,)s and
the double occupatiod=(Z;D;)s/L analytically inD=1

for all values ofg and n, whereL is the number of lattice
sites. The analytic calculation of correlation functions, in
particular of the spin-spin correlation function, by Gebhard
and Vollhard? showed that in the nonmagnetic case, tfbr

o, the results obtained with the GWF are in very good
agreement with exact analytic and numerical results for the
&mtiferromagnetic Heisenberg chain. In fact, Haldaagd
Shastr{ discovered that the GWF aj=0 is the exact
ground-state wave function of the antiferromagnetic Heisen-
berg chain with 1> exchange. Results were also obtained in
dimensionsD=1,2,3 using numerical techniqié$ and fi-
nite orders of perturbation theoty!? Within the diagram-
matic approach of MV it also became possible to derive the
well-known Gutzwiller approximation in the limit of infinite
spatial dimensions=).* Comprehensive investigations
in this limit were made possible by the approach of
Gebhard'* which allows for explicit evaluations of expecta-
tion values for arbitrary starting wave functioh®,) (in-
cluding ones with broken symmejrand facilitates the ex-
pansion in 1D around D=o. This approach was also
extended to multiband Hubbard modétsrecently that
method was combined with density-functional theory, and
applied to ferromagnetic transition metafsThe Gutzwiller
approximation also describes a correlation-induced transition

S

Using the GWF one may, in principle, calculate expectationsrom metal to insulator, the Brinkman-Rice transitigrive

values of any operatoh as (A)g=(W g|A|W)/(Pg|Ps).
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recently investigated the effect of correlated hopping, which
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for the GWF can be calculated in termsmgf, andd in any o 0 n—|m|

dimension, on this transitiof?. fio="N0Ms  foo=Miys Co=——5—
Up to now the analytic calculation of expectation values

in D=1 was limited to the unmagnetized paramagneticThe diagrams foc,(n,m) can be obtained from those for

phase. In view of the renewed interest in the microscopid p,(k,n,m) by connecting the two external verticésee

foundations of metallic ferromagnetisisee Ref. 19 for a MV):

review), it is desirable to perform such evaluations also for

the GWF withnonzeromagnetization ih+0). In this paper

we show that, in spite of formidable technical complications,

it is indeed possible to evaluate such expectation values even

for finite magnetization. From suitable canonical transforma-This equation yields sum rul@sfor the density of particles

tions we obtain diagrammatic relations and reduce the expedaside,n; , or outside of the Fermi surfaca,, , namely

tation values form#0 to those form=0. Thereby it be-

comes possible to calculate the double occupati@amd the n<=n — n>=£ E n® n @

momentum distributiom,, for arbitrary values of the corre- o e To T 4 TkeTke

lation parameteg, densityn, and magnetizatiom. Further-

more we derive an expression fog,, in closed form, which 1-g(n®>-m?

was not available up to now even for zero magnetization. nf=nf= T+g| 4

These quantities determine the energy expectation value and

thus the optimal variational parameter and spontaneous is sometimes useful to remove the diagraggsfrom f .

1
co(nm) == 2 ngfs(knm), p=1. (6

—d(g,n,m) . (8)

magnetization. and thus define
The paper is structured as follows: In Sec. Il the diagram-
matic formulation is used to derive diagrammatic relations hpo(k,n,m)=f,.(k,n,m)—c,_1(n,m), p=1. (9)

from canonical transformations, valid in arbitrary dimen- I . . .
sions. The evaluation of expectation values is derived in SeéyOte that our definitions in Eqg5) and (9) differ slightly
lIl. The resulting magnetic phase diagram for the Hubbard™M MV.

model inD=1 is presented in Sec. IV. The conclusion in

Sec. V closes the presentation. B. Canonical transformations

For the relations to be discussed next the hopping ampli-
tudet;; is assumed to be nonzero only for hopping between
sitesi and | on different sublatticesA and B. In the next
chapter we will see, however, that in dimensior=1 this
A. General formalism requirement can be dropped. The simplest canonical transfor-
mation is the interchange of spin indicésand | which

II. DIAGRAMMATIC FORMULATION
IN ARBITRARY DIMENSION D

The double occupatiod(g,n,m) and the momentum dis-

tribution n,,(g,n,m) of the GWF are required for the calcu- implies
lation of the variational 'energ'EG.=<l:|>G/L. Another quan- d(g.,n,m)=d(g,n, —m), (104
tity of interest is the discontinuity, of ny, at the Fermi
— 20
surface, d,(g,n,m)=n,_ ,(g,n,m) —n: ,(g,n,m).~ The No(9,N, M) =n,_,(g,n, —m). (10b)

rules for the diagrammatic expansion of these expectation h icle-hol f ion for both spi
values in powers ofd?—1) were developed by MV, with Furthermore, a particle-hole transformation for both spins

the result yields (MV)
d(g,n,m)=d(g,2—n,—m)+n—-1, (113

d(g,n,m)=g2p§=:1 (0= 1P *cy(n,m), (4a) Nee(9,N,M) =1—nNg_y,(g,2—n,—m). (11b)

Here Q is a vector in the first Brillouin zone witke'@R
=+1 for a lattice vectorReA, B, respectively; Q

— _ A2 0
Meo(9,1 M) =[1=(1=9)"n ;N =(wla,mla,- - -mla) for a hypercubic lattice with spacing

1—(l—gz)n8 o a. From Eqgs(10b) and(11b) it follows that the discontinuity
+—————— > (g°~1)Pfp,(kn,m),  atthe Fermi surface obe¥s
(1+g)?  p=2
(4b) qo(g,n,m)zq,a(g,n,—m)zq,a(g,Z—n,m). (12)
Note that in particulag,=q, for n=1.
where nEU= N(9=1,n,m). The functionsc,(n,m) and For densities &n<2 the magnetization is in the range

fps(k,n,m) can be represented by Feynman diagrams corrgim|<min(n,2—n). In view of Egs.(10)—(12) we limit our-
sponding to those of the energy and the Green’s functionselves from now on to & m<n<1. Therefores="1 will be
respectively, of ap* theory. For later convenience we define referred to as “majority spin” andr= | as “minority spin.”
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Note that the case=m (the fully polarized state without
doubly occupied sitesan be obtained from the uncorrelated

caseg=1.
Performing a particle-hole transformation fproperators

only?
¢ =(-Dc,

6ill:6il , (13)

one may derive the following identities fat(g,n,m) and
Nko(g,N,m):

n—m
d(g,n,m)=T—d(gfl,l—m,l—n). (149
N (9.N,M)=1-ng_y; (g~ 1 1-m,1-n), (14b

Ny (9.n,m)=ny (g~ *,1-m,1-n). (140

For the uncorrelated casg<1) we have in particular
(153

ng(nm)=1-ng ,,(1-m,1-n),

N (n,m)=ng (1-m,1-n). (15b)
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]

d(g,n,m)=cy(n,m)+ Zl (g>—1)P
=

X[Cp(n,m)+cp+1(n,m)]. (19)
We are thus led to the relation
Cp(n,m)+cp1(N,m)
° (P
=(—1PH> (r)cr+1(l—m,l—n), (20)
r=0
Now we employ thesinomial inversion formul
b (P
apz(—l)pz( )bq forall p=0
q=0 10
P[P
& by=(—1)P> q)2 forall p=0, (21
q=0

which is valid for arbitrarya, andb,. When applied to Eq.

The relations in Eq(15) express a property of the starting (20) it yields

wave function Eq. (3)] and can also be derived directly from

the fact that hopping occurs only betwedrand B sublat-
tices.

C. Diagrammatic relations

We now derive diagrammatic relations fop, and f,,
from the identities in Eq914) and(15). The following equa-
tions are valid for allp=0 and O=m=n=<1 unless noted
otherwise.

1. Double occupation

From Eg.(4a) we obtain

d(g”*1-m,1-n)

0 p+1
=p§o (gz—l)p(—l)p(?) Cpr1(1-m1-n). (16)

Our goal is to equate coefficients of powers gf€ 1). To
this end we make use of the expansion

1 p+1 o0 _p_l
(—2> =2 ( (g~ 1)". (17)
g r=0 r
We then obtain from Eq143
n-m <
d(g.nm=———2 (g°~1)°(~1)°
p=0
’ (P
XZO r)crﬂ(l—m,l—n), (19

while from Eq.(4a we have

p
cp(n,m)z(—l)pzo (f) c,(1-m,1-n). (22

We stress that the relations in EG20) and(22) are valid in
arbitrary dimensions for lattices with hopping betweeand

B sublattices only. In the next section this equation will be
used to calculate, in D=1.

2. Momentum distribution

An analogous procedure is used to derive relations for
foe. We define the abbreviations

Foo(kn,m) =1 o.(k,n,m)+np,foiq,(knm), (238
Foi(k,n,m)=F,:(Q—k,1-m,1-n), (23b)
Fp,(k,n,m)=F, (k,1-m,1—-n), (230
and rewrite Eq(4b) as
Ny (9,n,m)=n° (n,m)+
ko(9,n,M) =Ny, (n,m) 110y

X > (g°=1)P*2F,,(kn,m). (24)

p=0

This expression appears on the left-hand sides of Edd)
and (140, while their right-hand sides take the form

155121-3
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1- nQ—kT(g_lyl_ m,1—n)

0 * g _ )p+2
=N (n,m) (1+g) 2 o (gD Fpi(k,n,m),
(253
N (g~ 1-m,1-n)
o (gP-1Pre
_nkl(n m) (1+g) 20 gz)p“' Fpi(k,n,m).
(25b)

Expanding ¢%) P ! in powers of >—1) [Eq. (17)],

PHYSICAL REVIEW B 65 155121

IIl. ANALYTIC EVALUATION IN D=1

In the remainder of the paper we consider the GWF for
the Hubbard chain with a symmetric dispersigiF e that
increases monotonically withk|. This implies thatn,,
=n_,,; therefore we only considd«=0.

For such dispersions the free Fermi sea described by the
starting wave function®,) is centered around=0 and is
simply connected, i.en) =0 (kg,—|Kk|) is a step function.
(We follow the convention of MV of measuringin units of
2mla, wherea is the lattice spacing; the first Brillouin zone
is the interval[ —1/2;1/2, the reciprocal-lattice vectork
are integers, and the nesting vect@ 1/2.) For this Fermi-
surface topology the Fermi momentunke,=n,/2=[n
+sgn(c)m]/4, only depends on the particle dengity, i.e.,
the particular form of the dispersion is irrelevant. In general

comparing coefficients, and combining both cases, wehis simplification occurs only in dimensioDd=1; higher-

find

p p\_
Fprr(klnvm):_Sgr(o-)(_l)przo ( r)Frrr(klnrm)' (26)

For clarity we will from now on labeff,,, h,,, andny,
with the subscripts< and >, depending on whether the

momentum lies inside or outS|de of the Fermi surface. We®

first simplify the equations fof ;. Using Eq.(26) together
with Eq. (22) we obtain

b (P
thT(k,n,m):(—l)le ( r)hr+1T(Q_ k,1-m,1—n),
(27

valid for all k, relatingh; andhg, . For the minority spin a
similar calculation yields

p
foiknm=(-1)P>, (f) fi(kl-mi-n), (283

b (P
f;ﬂl(k,n,m):(—l)P;o(r) r+2,(k,1=m,1-n), (28b)

i.e., there is a relation between tlflgl for momenta inside

dimensional tight-binding dispersions usually do not depend
only on |k|, although this symmetry can be artificially im-
posed to allow the construction of a dispersion from a given
density of state&®

Since the values of the diagraneg and f,, are com-
pletely determined by the functlcnf(, (which is mdependent
of the dispersion as long as is increasing with|k|) the
relations derived in Sec. Il B, and hence the relations in Eqs.
(20), (22), (27), and (28), are valid forall increasing and
ymmetric dispersions iD=1.

The following analytic calculation of GWF expectation
values with magnetizatiom+ 0 is based on the correspond-
ing calculation form=0 by MV. The calculation for
m=0 was made possible by exploiting the relations follow-
ing from canonical transformations, the polynomial form
of the diagrams and their continuity as functionskoénd
n, and an analysis of the contribution of umklapp processes.
We will now use very similar methods to express the
double occupation d(g,n,m) and the momentum
distributionn,,(g,n,m) in terms of the known quantities for
m=20.

In Sec. lllA we review the results of MV and present
closed formulas fon,,, for zero magnetization. For the mag-
netic case the double occupation, the momentum distribu-
tion, and its discontinuity at the Fermi surface are calculated
in Secs. Il B—D. The variational energy is evaluated in Sec.
I E.

A. Zero magnetization

For the nonmagnetic case the diagracgsand h,, were
already calculated by MV. Fan=0, n<1, 0<k<1/2, the
results may be summarized as

of the Fermi surface, and another relation for momenta
outside of the Fermi surface, each linking the cases cp(n,0)=7y,nP*L, (29

n+m<1 and n+m=1. Note that the relations in Egs.
(270 and (28) are valid in arbitrary dimensions for
lattices with hopping betweenA and B sublattices
only.

fpo(K,1,0) =hy,p(K,N,0)+ ¢y 1(N,0) (30)

155121-4
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( nPR (E> for k<o
p 4
3n 3n
< Qp + Yp- 1} for Z<k<m|n<T 1- T)
= , p=2. 31
nPyp-1 for ?’—r]sksE P o
4 2
an(k) Q(l X + } for 1—3—n<k<1
\ P P Yp-1 4 "S5

Here and be|OV\ryp=(—1)p+1/[2(p+ 1)], andRy(k) and  tum distribution, and convergence was problematic for (1
Qp(k) are certain polynomials of degrgein k. Note that at —g?)n close to 1. In Appendix A we show how the recursion
ke=n/4 bothf,, andh,, are discontinuous, ana,,=0 for  equations forR,(k) can in fact be solved in closed form
k=3n/4. The contribution with momentum-1k in Eq. (31) [Egs.(A5)—(A8)], while Q,(k) can be expressed in terms of
is due to umklapp processes. From the diagrammatic seriekem and their integrals. The generating functions are calcu-

in Eq. (4) MV's result for the double occupation is lated as
g° 5 X B Al zy1—-x2
— B g —(1— —(1— Ro(X,2)= K
d(gn.0)= 5~ 5 (~In1-(1-g")n]l—(1-g)n}, 2= o= N o0
(32 37
and the momentum distributiom, is given by z
Qo(x,2) =Wo(x,2)+ 5[(1=X) Ro(x,2) + Ra(X,2)],
<
nk(r(ganio) (38)
1 1-gn 9’ k - b (a3 for [x|<1. HereK(k) = [ 7"%(1— k?sirP¢) Y2d ¢ is the com-
T 1+g §+(1+g)2 0 F’( —g9n|-1r. (33 plete elliptic integral of the first kindy(x,2) is an auxil-
iary function,
1-gn
> =__ = _ x—1 z—2
Ni,(9,n,0) 1tg2 Wi(X,2) =—=—Ro(X,2) + i = TRy(%,2)
1 1 1
+——— 1 —=In[1—(1—-g?)n 22-1).
(1rg2| 2ni-(=en 5—Ra(x.2), (39)
4k—2n 2 where the dot indicates a partial derivative with respect to
+Qo (1=9%n second argument, an®};(x,z) is the repeated integral of
Ro(X,2), defined by {=0)
4(1-k)—2n )
o — —(1=gn|}, (34

X
R,—H(x,z):f dx'R;(x",2)
for k<kp and k>kg, respectively. Here we introduced the !

generating functions 1 (x .
:J_'f dx' (x—=x"VRo(x',2). (40
- J1

- X
RO(X’Z):,JZO Rp(Z)(_Z)p! (35  Below we will also need the following integral,
X
Ql(x,z)=J’ dx’ Qp(x’,2)
Qo(x,2)= 2 Qp( (—2)°, (36) !
_(1—2)(x—1) 5z—-4
with the convention thatRq(x,z) and Qq(x,z) are zero N 2 1(x.2) Ra(x.2)
for |x|>1. L
- . 7—
In MV the coefficients of the_polynomlaI_Rp(k) and n Z( )Rz(x 2). (41)

Qp(k) had to be calculated recursively to obtain the momen- 2
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In Appendix A we provide an explicit expression & (x,z)

0.25

PHYSICAL REVIEW B 65 155121

. =1, m=0
[Egs.(A10) and(Al1l)], as well as other relations. Herewe 1 ~_ = «cccmee- E=1, ﬁi=0,4 !
note in particular the following functional relations, which 02 T I nfg.&ng i
are obtained from Eqg37) and(38), ‘ e T ﬁ;oﬁz m =0-4
z )
R,-(x,ﬁ)#l—z) Ri(x,2), (42 g 01T i
0] t..
z 01 \\M B
Q| X, s— | =Wi(x,2). (43) e
z=1) " T T
These expressions analytically continug;(x,z) and e i
Q(x2 tolz>1. T e
0 T T |~ ------- T
B. Nonzero magnetization: Double occupation 0 0.2 0.4 0.6 0.8 1

. . l-g
To calculgte the double occupation one needs the dia- FIG. 1. Double occupatiod(g,n,m) as a function of the varia-
gramscy. Using the methods of MV one can show that for tiona| parameteq for various densities and magnetizationsn.
m>0 umklapp processes occur in the graphs dgfn,m) Note thatd(g,n,m)=d(g,n,0)—d(g,m,0).
only if n=1. This implies that fon<1 c,(n,m) is a homo-

geneous function ok, andkg of orderp+1, since every g2 -m

contributing graph containp+1 free momenta. Sincke, d(g,n<1,msn)=7 Inl—n —(n—-m)|+0O(g"), (483
=[n+sgn(e)m]/4 it follows thatc,(n,m) can be written as

a linear combination of terma{nP™*~" with 0O<r<p+1, d(g.n=1m<1)

ie., cp(n,m)/np+1 is a polynomial inm/n of degreep+1. 1 In(Ll—m)—(1—m)

This is also the case for=1 sinced(g,n,m) is continuous =g? In§+ 5 +0(ging), (48b

atn=1 [see Eq.(11a]. Therefore we can write the polyno-
[ a(11a] poly i.e., the double occupation isonanalyticin the limit n

mial simply asc,(n,m)/nP*t=c,(1,m/n) for n<1. Forn ; .
ply ascy(n,m) ol ) —1, g—0, as in the nonmagnetic catgee M\).

=1, however, we can calculatg(1,m) from Egs.(22) and
29):
(29 C. Nonzero magnetization: Momentum distribution

To calculate the momentum distributioR, one needs the
diagramsf,, or h,,. In the following subsections we dis-
tinguish the cases of majority and minority spin, as well as
whetherk lies inside or outside of the Fermi surface.

For finite magnetizationm>0, we make the following
observations, similar in spirit to those of MV for the non-
magnetic case. As a function ok, f,,(k,n,m) and
hys(k,n,m) are discontinuous ak=Kkg,, since the one-
particle irreducible graphs contain a factmEr(,. For k=kg,
+2kg_, momentum conservation at the outer vertices of
h,, cannot be fulfilled, so that in this casg,(k,n,m)=0.

For k=1—kg,—2ke_, (=kg,) umklapp processes occur
and yield an additional contribution to,, of normal pro-

cesses with external momentur-k. In the absence of um-
klapp processes,, andh,, are homogeneous functions of
ke, andkg, of orderp, since every contributing graph con-
tainsp free momenta. Thefy,,/nP andh,,/nP are polyno-

mials in k/n and m/n of degreep, and due to momentum

p
p
Cp(lam):(_ 1)p2 ( r )Cr(l_ m,0)= 'yp(l_ mp+1). (44)
r=0
The polynomial structure of,(n,m) then implies

— 1
cp(n,m)=nP*ic,

m
_ +1 +1
1,3) =7 (NPT E—mP™),

(49)

Summation of the series in E¢da) yields the simple result

=Cp(Nn,0) —c,(M,0).

d(g,n,m)=d(g,n,0)—d(g,m,0). (46)

It is remarkable that the double occupation at densignd
magnetizationm is obtained as the difference between the
double occupation without magnetization at densitand
density mWith the closed form ofi(g,n,0) taken from Eq.
(32 we finally obtain for the double occupation, valid for

osm=sn<l, . ; . .
conservation at outer vertices different polynomials occur
d(g,n,m) depending on whethék is larger or smaller thart (2kg_,
) ) —Kkg,). Furthermore, different polynomials ftbﬁlnp occur
g | 1-(1-g9m also depending on how compares to B¢, (see Sec. IlIC4

—(1-g*)(n—m) |,

= n .
2(1-g»2\ 1-(1-gHn below and Appendix B

(47)

The double occupation is shown in Fig. 1 for various param- For Os<k<kg;=(n+m)/4 andn=1 the diagrami;u,fT can
eter values. In the limit of strong correlatiog-(-0) it be- be obtained from Eq(27) in terms of the known functions
haves as ,} of the nonmagnetic cag&q. (317

1. Majority spins inside of the Fermi surface: ﬁ(g,n,m)

155121-6
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p
1
h;“(k,l,m):(—l)p;l( hr>+lT( —k,1—- mO) (49
( 1k 3m-1/  1+m
Qi1 T=m for 7 k< 7
P
p 3m-1
=(—1)P>, (r)(l—m)’+1< 0 for Osks= (50)
r=1
Lk R | BRI Sk
Qi1 +Qra1 or O<ks
(LT 1-m TH1-m
Since umklapp processes do not occur Ketkg,, h (k n,m)/nP is a polynomial ink/n and m/n. Hence we can obtain
h;m/np+ by replacingk by k/n andm by m/n in Eq (50). This yields
( n
-k |3m—n| n+m
2 for <k<
Qreal 7o 4 4
3m—n
ho 1 (k,n,m)=( 1)"2 ( )(n m) *nP=r ¢ 0 for Osk=
n k n +k n—3m
2 2 for O<ks
Qr+1 n-m +Qr+1 n-m
(51)

Note thath;+ 11(k;n,m) is continuous for alk<kg; due toQ(3/4)=0 (see MV). The normal processes contribute differently
depending on howk compares tat (2kg —Kg;), as expected.

Since hm is available for arbitrary orders qf, the series in Eq4b) can now be summed, with the result, valid for 0
=m<n=<1, 0sk<(n+m)/4,

n—m g° 2m—4k (1—g?®)(n—m)
ne(g,n,m=1—(1- 2[——d ,n,m)|— ,
k1(9,n,m) (1-9)%— (g,n,m) (1+9)? 0( nm ' 1-(1-g)m
2m+4k (1-g?)(n—m
W, ,( g°)( ) 52
n-m ' 1-(1-g*m
where the functional relation in E¢43) was used. Fom=0 this result reduces to E¢34) by virtue of Eq.(A12).
2. Majority spins outside of the Fermi surface:ﬁ(g,n,m)
For (n+m)/4<k=1/2 we can deduch,; at once by insertingn; into Eq. (27):
. m
2 o MM 3n-m  3n-m
Qi1 — or <k=min| ——, 2

3n—m 1

P 0 for <ks 3

> r+l p-r 4 2

hpe1i(k,n,m)= 2 (n m)"*1(—m) . . , (53
k— > 1-k— >
Qr+1 n +Qr+1 n-m
3n—m 1
for 1— sksz
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FIG. 2. Momentum distributionn,, of (a) majority and

(b) minority spin electrons, as a function & for g=0.1 and
densityn=1.

which is continuous for all k>kg; .
umklapp processes occur fae1—2kg —
ute to hy,
1-k.

In this sector
kg, and contrib-

Summing the series in Edq4b) then yields the result,

valid for 0O=sm<n=<1, (n+m)/4<k=1/2,

1— 2
nk?(g,n,m)=( gzg) d(g,n,m)
! (4k2n (1-g?®(n—m)
(1+g)?[ "l n=m ' 1-(1-g3)m

4(1-k)—2n (1—g?(n—m)
n-m " 1-(1-g’m

0

(59

which alternatively can be derived directly from EQgs.

(14b), (52), and (43). Note also that fom=0 this result
reduces to Eq(34). The momentum distribution,;(g,n,m)

like normal processes with external momentum

PHYSICAL REVIEW B 65 155121

@
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T, 04 - g .
vad .
g
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0.8 4 seemeees o m=04 |

m=0.6

0.6 B

n |(g=0.1,n=0.8,m)
=3
»
1

02 +

0.2 0.3
k/(2n/a)

04 0.5

FIG. 3. Momentum distributiom,, of (a) majority and(b) mi-
nority spin electrons as a function &ffor g=0.1 and densityn
=0.8.

has thus been determined in the entire parameter range
shown forg=0.1 and densities=1 and 0.8 in Figs. &)
and 3a).

3. Minority spins inside of the Fermi surface: ﬁl(g,n,m)

For O<k<kg =(n—m)/4 andn=1 the dlagramst are
given in terms of the known func:t|onf5p of the nonmag-
netic casdEq. (31)] according to Eq(28$

f5 (k1 m)= 1)P2( )(1 m)'R,

k
1- m) - 59

Due to the absence of umklapp processes Ketkg,
f 1 (k,n,m)/nP is a polynomial ink/n andm/n. Therefore it

|s glven by Eq.(55) with k replaced byk/n andm replaced
by m/n. We then have

k
fp (k,n,m)= )pz ( )(n m)'nP~ 'R (n—m)
(56)

Ep< )(n m)" (—m)P~ ’R(

=

(57)

155121-8
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where the second equation was obtained by insertingnserting Eq.(52) we arrive at

Eqg. (56) in Eq. (283 it is equivalent to the functional rela-

tion in Eqg.(42). Note that form=0 Eq. (57) reduces to Eq.

(3D). B
We use Eq.(57) in Eq. (4b) to find the following nfl(g,l,m)=(l—g)2(1—m—d(g,l,m))

expression forng, valid for 0Osm<n<1, O<k<(n 2

n g
(1+g)?

(2m+4k—2 (1—92)(1—m))
0

1I-m "1-(1-g¥)m
1-gn+m g2 (1799

1+g 2 (1+4g)?

N (g,n,my=1-

2m—4k+2 (1-g?)(1—m)
4k (1-g®(n—m) Wol == 5 ) :
0 n—-m’ 1—(1—92)m l_(l_g )m
X -1]. (60
1-(1-g*>m

(58) Next we consider arbitrary density and magnetization, 0
s=m<n=<1. We make use of the following relation, which

This expression reduces to E3) for m=0. follows from Egs.(28b) and (20),

4. Minority spins outside of the Fermi surface: ﬁ(g,n,m)

Finally we consider the case n{tm)/4<k=1/2, h;+2¢(k’”vm)= —2Cp+1(N,m)—cy(n,m)
for which the calculation ofy| is somewhat more compli-

cated. We begin with the special case=1, for which P (p .

the momentum distribution can be determined immediately +(_1)DZO r hriz(k1-m1-n).

from Egs. (140, (10b), and (14b), which combine to

give (61)
nﬁ(g,l,m)=nfl(g_l,1—m,0) The diagramsh;l that appear in this equation can be

N _ written in terms of the contribution of normal processés,
:nkT(g 1- mlo):l_nl/27kT(gvlim)' (59) as

( nP N (E T) for n_m<ksmin 3n+m _3n+m
Pln'n 4 4 4
- 3n+m 1
hy (k,;n,m)=4 0 for 7 sksi : (62
nP| N (E T) N (Lk T) for 1— 3n+m$k$3
L Pln’n Pl n ’'n 4 2

In Appendix B we show that depending &randm, the functionN(k,m) is given piecewise by four polynomials knandm
of orderp. The explicit determination of these polynomials is quite involved; it is presented in Appendix C. The final result for
nkj , valid for 0O=m<n=1, (h—m)/4<k=1/2, can be written as

(1-9)?

g2

( )
97 1 (

+g)2[N(g,k,n,m)+N(g,l—k,n,m)], (63

nfl(g,n,m):

whereN(g,k,n,m) is given by

155121-9
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n—m n+3m 3(n—m
N®(g,k,n,m)  for <k<min ¥)
4 4
n n+3m 3(nh—m)
N®@)(g,k <- <
(g,k,n,m)  for m< 3 and 7 k< 7
3) n 3(h—m) n+3m
N(g,k,n,m)={ N*(g,k,n,m)  for m= 2 and 1 <ks= 1 . (64)
n+3m 3(n—m 3n+m
N®(g,k,n,m)  for ma>< ] ,(T)>sks 7]
0 for 3n:m$
with
[1—(1—g?)m](3n—3m—4Kk) 4k—2n+2m (1—g?)(n—m)
N®(g,k,n,m)= 0 ,
2(n—m) n-m 1-(1—-g®)m
. (n—3m) (1-g?)+2 4k—2n+2m (1—g?)(n—m)
4 1onem Ti-(1-gdm
+(n—m)(l—gz)[l—(l—gz)n] . [4k—2n+2m (l—gz)(n—m))
2(1-(1-g*m) Honem T (1-gdm
+NG)(g,k,n,m), (653
1-(1—-g*»m](4k—n—3m 4k—2n—2m (1—-g?*(n—m
N(“)(g,k,n,m):[ (1=g%)m]( ) . ’( g)( )
2(n—m) n—m 1-(1-gd)m
(n—=3m) (1-g?)+2 4k—2n—2m (1—g%(n—m)
4 Nonem U o(1-g)m
(n—m) (1-g?) [1-(1—-g?)n] - (4k—2n—2m (1—92)(n—m)) (65D,
2[1-(1-g*)m] onem - asghm
|
5 (n—m)(1—g? Eq. (60) for m=0. Thus the momentum distribution
N )(g,k,n,m)=f Ny (g,n,m) has been determined for all parameters. It is

1-(1-g»)k 1-(1-g*)m
- In ,
2 1-(1-g?n

(650

N@(g,k,n,m)=N®(g,k,n,m)
—N®)(g,k,n,m)+N®(g,k,n,m),
(650

shown forg=0.1 and densitiem=1 and 0.8 in Figs. &)
and 3b).

The calculation of the correlated momentum distributions
Ny, is now complete. We remark that they are continuous
functions ofk, except atkg,, and are also continuous im
andm for fixed k. We have checked that they obey the sum
rule in Eq.(8).

D. Discontinuity of the momentum distribution
at the Fermi surface

and the dot again denotes derivative with respect to second It suffices to calculate the discontinuity, of n., at the
argument. It can be checked that E63) indeed reduces to Fermi surface for &m<n=<1 [see Eq(12)]. From our pre-

155121-10
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FIG. 4. Discontinuityq, of the momentum distribution at the FIG. 5. Energy expectation value for the Hubbard chain with
Fermi vector for densitiega) n=1 (in this caseq;=q;) and nearest-neighbor hopping>0 for densities (8 n=1 and

(b) N=0.8. (b) n=0.8.
vious results we obtain the left and right limit of the momen- E. Energy expectation value
tum distribution at the Fermi vector as For any symmetric dispersiog), monotonically increas-
1-g 92(G-1-1) ing with |k|, we can now calculate the energy expectation
a

, (663  value per siteEg=(H)g/L, of the one-dimensional Hub-
bard Hamiltionian(1), which is then minimized with respect
to g to find the optimal variational energg,

(66b) Eg(n,m,U)= min Eg(g,n,m,U), (69
0=g<1

nkgag(g,n,m)=1— i+g n_,+ (1+g)2

anmo_ 19, 1=C.
N+ o(g,n,M)=———n_, ,
keyo'9 1+g (1+g)2

1/2
Ec(g,n,mU)=2 dkekEnkg(g,n,m)+Ud(g,n,m).
0 o

G,=\[1-(1-g*)n][1-(1-g")m] ). (67 (70
Note that it follows from Eq.(11b) that the total kinetic
For the discontinuity at ther-spin Fermi surface we thus energy for dispersior, at densityn>1 can be calculated

where the abbreviatio®, is defined as

obtain from the dispersion- €1, at density 2-n using the for-
2 mulas forn,, andd that are valid below half filling.
q,(g,n,m)= (9+G,) _ (68) For the Hubbard chain with nearest-neighbor hopging
(1+9)°G, the dispersion relation in our notation ég= — 2t cos(2rk).

We assumé>0 without loss of generality, so that the dis-
It follows thatq,, vanishes only for a half filled band without persion is increasing withk| and our results for the
double occupationn=1 and g=0); in this case there is Gutzwiller expectation values apply. The optimal variational
exactly one particle at each site so tmgf,=1/2 for allk.  energy for this system is shown in Fig. 5 for densities
Note also thatg,=q, if n=1 (or, trivially, if m=0 or g =1 and 0.8 for various magnetizations. Note that at half
=1). We plotqg,, for n=1 andn=0.8 in Fig. 4. filling no Brinkman-Rice metal-insulator transition occurs at

155121-11
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(a) In Fig. 6 the exact ground-state enerd@(n,m=0,U),
obtained from the Bethe-ansatz solutf@iis compared to the
Gutzwiller energy for zero and maximal polarization, at vari-
ous densities. We also show the energy of the variational
Hartree-Fock theoryE,r(n,m=0,U); it is contained as a
special case in the results for the GWF,

Exe(n,m,U)=Eg(1,n,m,U)

E/t

n-+m
2

n—m
+€0( 2

=€

U
) + Z(nz—mz). (72)

cxact

——————— Hartree-Fock As expected, they-optimized GWF significantly improves
R GWF, m=0 [ upon Hartree-Fock theory but overestimatest largeU.®
24 s GWF, m=n Since all spin configurations are degenerate Wet «, the
0 5' 1'0 1'5 50 exact ground-state energy coincides wihy in this case;

therefore the Gutzwiller energlg necessarily crosses the
(&) value Egp at some finite value of the interactids, (except
for n=1). The existence of a finite critical interactidh,
above which the GWF predicts a ferromagnetic ground state
is in contrast to the Lieb-Mattis theorefhwhich states that
m=0 for the exact ground stafee., U,=).The reason for
this overestimation of the instability of the paramagnetic
state lies in the simple structure of the GWF, which controls
only local correlations and cannot describe the special corre-
lated behavior irD=1 microscopically.

The preceeding discussion only compared the variational
energies for zero and full polarization. From our results for

-0.5

-0.6 -

E/t
(=)
-~

1

-0.8

-0.9

GWF, m=0
e GWF, m=n

the ferromagnetic GWF we can also study the stability of
partially polarized ferromagnetic states. We first consider
Hartree-Fock theory. A simple calculation shows that it pre-

,0 dicts a fully polarized ground state far=U"(n), where

16 sin(7n/2) [ 1—cog wn/2)]/(mn?)
for Os=sn<1

utff(2—n) for

This critical interactior£ is smaller than that derived from

the Stoner criterion, UM (n) =1/N(e,,) =27 sin(@m/2),
whereN(e) is the density of states. Note tha},: as a func-
tion of m never develops a local minimum at#0. On the
other hand, a maximum at finiten occurs forU>2[1
—cos@)]/min(n,2—n), which leads to a global minimum at
full polarization already forU>UE'F. The Stoner criterion,

In this section we determine the instability towards ferro-which merely signals a negative curvatureBfr at m=0
magnetism for the Hubbard chain with nearest-neighbor hopand does not take into account a finite magnetization, is thus
ping. Currently only homogeneous paramagnetic and ferroirrelevant for the Hubbard chain with nearest-neighbor
magnetic phases can be investigated analytically with th@opping.

GWF inD=1; hence we do not consider antiferromagnetism For the Gutzwiller wave function we find th&g as a
or other broken symmetries. We begin by examining the enfunction of m at fixed U develops local extrema and global
ergy for the special cases of the paramagnetic ¢t&te zero  minima in a qualitatively similar fashion tB,e. As a con-
magnetizationand the fully polarized state. The latter con- sequence the GWF also describes a discontinuous transition
tains the minimum number of doubly occupied sites and iSrom the paramagnetic state to a state with full polarization
an eigenstate dfl, with eigenvalue atU=U_,(n). This critical interactiorlJ; is shown in Fig. 7.
Ere(n,U)=Eg(1,n,min(n,2—n),U) C_Zo_mpared to Hartree-Fock _theory we find agreement in the
limit of small n. However, at intermediate densities the GWF
predicts a significantly reduced ferromagnetic region. In par-
“|e(n-1)+U(n—-1) for 1<n<2’ ti_cular f(_)r n—>_1 we haveUC—>_oo, as expecte(_JI from the pre-
. . o ~ vious discussior{see also Fig. @]. Thus, in contrast to
whereeg(n,) =2/ ,” “dke is the kinetic energy of one spin Hartree-Fock theory, the GWF does not exhibit a spurious
species for the uncorrelated state. For the case of neare$érromagnetic transition at half filling, since it is able to
neighbor hopping we havey(n,) = — 2t sin(mn,)/m, t>0. avoid double occupation not only through a ferromagnetic

0 5 10 15

FIG. 6. Comparison of the total energy for the Hubbard chain
with nearest-neighbor hopping and for densiti@sn=0.7, 1 and
(b) n=0.3, 0.5.

utf(n)= (73

lsn=2

any finite U; i.e., g=0 is the optimal variational parameter
only for U=0o0. The variational result for the ground-state
magnetization is determined in the next section.

IV. MAGNETIC PHASE DIAGRAM
OF THE HUBBARD CHAIN

B €o(N) for 0sn=<1 @
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tion.While the GWF is an excellent wave function for the
one-dimensionalHeisenbergmodel (at least form=0)°
since this only involves spin correlations between localized
spins, it is not a very good wave function for the one-
- dimensionalHubbard model at largeU and n#1 since it

i does not describe density correlations well in this ¢asea
consequence the GWF cannot reproduce all characteristics of
the one-dimensional system. This is also apparent from the
- finite discontinuity of the momentum distribution at the

i Fermi surface, which is, in fact, continuous for Luttinger
liquids such as the one-dimensional Hubbard model. On the
other hand the ferromagnetic GWF represents a trial state for

100 3

10 3

U (m)

Hartree-Fock ------- . . L
0.1 . T . T . T . T . partially polarized, itinerant electrons and may thus be re-

0 0.2 0.4 0.6 0.8 1 garded as an effective, nonperturbative description of a fer-
o romagnetic Fermi liquid.
In view of the considerable technical complications in-
FIG. 7. Critical interaCtiorUc(n) for the transition from a para- Volved |n the present Calculat|ons |t |S not Clear Whether |t
magnetic to a fully polarized ferromagnetic state for the Hubbard|| pe possible to compute correlation functions with the
chain with nearest-neighbor hopping as obtained from theg\yF for m+0. Since the calculation of the spin-spin corre-
Gutzwiller wave function. The Hartree-Fock reswty” [Eq. (73], |4tion functiorf for m=0 helped to gain considerable insight

is also shown; it has a shallow maximum rat0.856. Note that into the properties of Heisenberg-type modelsa corre-

Ue(n)=Ue(2=n). sponding result fom#0 would be helpful for a better un-

o ) o derstanding of one-dimensional Heisenberg models in a
polarization, but also by decreasing the variational parametgfagnetic field.

0. Away from half filling, however, the GWF predicts ferro-
magnetism for sufficiently largéJ, in contrast to the exact ACKNOWLEDGMENTS
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nonzeromagnetizatiorm. In D=1 explicit, approximation-

free evaluations of the double occupatify,n,m) and the  AppENDIX A: CALCULATION OF POLYNOMIALS FOR
momentum distributiom,,(g,n,m) were made possible by THE NONMAGNETIC CASE

exploiting (i) relations for the Feynman diagrams firand

Nk, , derived from canonical spin and particle-hole transfor-  In this appendix we describe the derivation of closed ex-
mations,(ii) the polynomial form of the diagrams in powers pressions for the polynomiaR,(k) andQ,(k) that appear

of k, n, andm, and (i) an analysis of the contributions of in Sec. Ill. By eliminatingQ,(k) from MV’s recursion for-
normal and umklapp processes. In this way the calculation ofulas we obtain

d(g,n,m) and ny,(g,n,m) was reduced to that fom=0.

2
Furthermore, new closed expressions for the momentum dis- P°Rp(k) +p(p+1)Rp1(K)
tribution ny, were derived, facilitating numerical evaluation. =k[(2p—1)R}(k)+2pR’,4(K)]
The functionsd(g,n,m) and n,,(g,n,m) in D=1 are
qualitatively similar to those fom=0. The discontinuity —(K?— %)[Rg(k)ﬂL g+1(k)], p=0.
d,(g,n,m) of the momentum distribution at the Fermi en-
ergy was also calculated explicitly. It is always finite, except (A1)

for the half filled band without double occupatiog=0, n Furthermore, the polynomialQ,(k) can be expressed in
=1, m=0) in which case the electrons are trivially local- terms ofR(k) as
ized. In all other cases the GWF describes a ferromagnetic

Fermi liquid. Qps1(k+ 3)=—(2p+1)Rp(k)—2(p+1)Ry. 1(K)
Analysis of the Gutzwiller variational energy for the Hub-

bard chain with nearest-neighbor hopping shows that the +(2k—3) [Ry(K)+ Ry, 1(K)],  p=0,

GWEF predicts a fully polarized ferromagnetic state at large (A2)

enoughU and away from half filling, in contrast to the Lieb-

Mattis theorent> This exemplifies once more the peculiari- together Witth(%)=0. We defineRy(k) =1, Qqy(k)=0.
ties of the GWF which controls correlations between the A closed form forR,(k) is obtained as follows. Using
electrons only globally through the local Hubbard interac-Egs.(56) and(57) we can reduce EqA1) to

155121-13
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p(p+1)Rp(k)+2kR,'3(k)+( )R (k)

=p?Rp-1(k), p=0. (A3)

PHYSICAL REVIEW B 65 155121

(a)

This is essentially the differential equation of the Legendre
polynomials except for the inhomogeneity on the right-hand

side. From an expansion in Legendre polynomiléx) we
thus obtain

Lp/2]

Py

(—1)Pp!2(4j+1) 1\2
(p 2])'(p+2j+1) ( . ) sz(4k),

Rp(k)= J
(A4)

which after some calculation yields E7). From Ry(x,2)
we then obtain the explicit expressions in terms gfeami-
nating hypergeometric function,

Lp/2] (—

§ (-1Pzp-2))12)!
=0 41*P(p—2j)! (p—)1j!°

Ry(k)= (16k?—1)] (A5)

Fol —2p—2pt oo 1;1-16k?
3F2 Ep’ §p+§,§§ p.

(A6)
[ . 11 Ak-1)(4k+1)
=, e Pl | S

(AT)
=Ep (p)(—%)(—%)(1—4k1 144K\ P~
= by g J\p=j/l 2 2

(A8)

Furthermore, an integration by parts of E42) leads to the
expression forQy(x,z) in terms of Rj(x,z) shown in Eq.
(39).

By using a hypergeometric identity to rewrite E§7) as

1 (1 (X*-1)7
Ro(X,2)= \/1—2':1 > m
(1-x%)22

integrating term wise with respect 10 and again using sev-

eral hypergeometric identities we obtain the following ex-

plicit expression forR;(x,z):

22]+l *©

(2))!

(1—x)p+iz29ﬁg>(x)

[(2 Z (XZ)Z]p+l/2’
(A10)

Rj(x,z)—

where theR()(x) are polynomials of degree,

k+k1+ko+k3+kyg

FIG. 8. A class of Feynman diagrams contributing to
h,i(k,n,m). Solid (broken lines represent majorityminority)
spins and vanish unless they carry momentum in the interval
[ —Kep Kep] ([ —Kg; . Kg 1); see MV for diagrammatic rules. Fér
>3k, the diagram in(a) vanishes sincé+k;+kye[ —kg kg ]
cannot be fulfilled. Fork>5kg, the diagram in(b) vanishes for
similar reasons, and so on for higher odd multipleskof.

p+i)

1
><3F2( P.5 !J 1+p+Ja +J:

1
2

N

1-—x
T x (1+x)P.
(Al1)

The functionsR;(x,z) may be evaluated via the seri@sl0)
for not too large values dof. Alternatively, the integration in
Eq. (40) can be performed numerically.

Finally, we note a few special values. From MV'’s poly-
nomial relations we obtain

QO(X7Z) + QO( - X,Z)

=1—(1—2)R0(x,z)+%In(l—z). (A12)
Together with Eqs(37)—(39) we find in particular
1
Ro(*12)= Nes Qu(12)= (A13)
Qy(—12)=1—1-z+ —In(l 2). (A14)
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Furthermore, the sum rule for particles outside of the Fermi n+3m 3(n—-m) 3n+m 5(n—m)
surface[Eq. (8)] implies YR 7~ 1 (B1)
2 so that the contribution of normal processesh@, as it
Ri(=12)=2R4(02)= 7 In(1-2), (A15) appears in Eq(62), can be written in terms of three polyno-
mials Ag)(k,m) of orderp:
z2=2
Qi(—1z)=—-1+ yln(l—z). (A16) Np(k,0=m= 3)
( 1-m _ 1+3m
ASP(k,m)  for k<
APPENDIX B: POLYNOMIAL STRUCTURE 4 4
OF MINORITY SPIN DIAGRAMS . 1+3m 3(1-m)
OUTSIDE OF THE FERMI SURFACE Ap (k,m) for 2 k= 2
In this appendix we derive the polynomial structure of the = 3(1-m) 34m
diagramsh, , for which many cases must be distinguished. AP(k,m)  for 2 ks—
As discussed at the beginning of Sec. Il C, different poly-
nomials occur in the contribution of normal processes de- 0 3+m<
pending on the relation df to 2k, —k; and X +k, . Fur- \ for ——=<k

thermore, due to a certain class of diagrams, shown in Fig. 8,
different polynomials fom;l/np may in principle occur also (B2)
at 3kg| , 5kg , and all higher odd multiples &, ; however, If k>1-(3n+m)/4 umklapp processes contribute hle
some simplification takes place, as we will show below.  with momentum *+k, and several cases must be distin-

Case A O0s=ms=n/3. Here the momentakZ—k , 2k; guished to determine the appropriate polynomials.We find

+k;, 3k, etc., are ordered as follows: for n+m=<1 andm=3n-2
A k m ¢ n—m . n+3m
Pin’'n o T4
k m n+3m 3(n—m
AE)Z)(H’H) for 2 k= (4 )
> n
hpl(k,n,0$m$3 AQ® k m ¢ 3(n—m)<k<1 3n+m 1 B3
" =\ AP~ or — <3 2 o (B3)
k m 1-k m 3n+m 1
(€)] ()] P — _ =
Ap (n’n +Ap ( . ’n) for 1 7 <ks2
0 ¢ 3n+m<k 1
g_
or 7 5
while for n+ m=1 andm=3n—2
A k m ‘ n—m ‘ n+3m
R <
Pin'n o Tg 4
A®@ k m ¢ n+3m<k<1 3n+m
N Pln'n "3 - 4
pl(k'n’ogms_) Ao KM @itk m)y o snem 1 |3(n-m) 1 o
= —_ — _ — <-——|———
nP Pin'n Pl n 'n or 4 2 4 2/’ (B4)
k m 1-k m 3(n—m 1
AP = —|+AD ,—| for 1- (-m_ 1
Pin'n n 'n 4 2
k m 1-k m 3(n—m 1
Ag,3>(—,— +A§,3>(—,—) for 20— 1
\ n'n n 'n 4 2

whereas fom+m=1
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h” | k,n,0< <n
pl| K NUSMSZ

for

for 1

for

n
—<
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3n+m
4

n+3m
<
4

k=1-

=

3n+m
4

(B5)

nP

for 1

_— - = - =

513 513 513 =13

—_
w
—
=)
|
3
=

Case B n/3=m=n/2. Here on the other hand, we have the ordering

3(n—m)<
4

n+3m 5(n—-m) 3n+m 7(n—m)
< < <
4 4 4 4

(B6)

and the contributions of normal processemﬁg are now given by four polynomiaIBg)(k,m) of orderp:

1-m 1+3m

4

sks

( B{Y(k,m)  for

3(1—m)

B (k,m)  for,

Np(k, t <ms= 1)={ BP(k,m) (B7)

BSY(k,m)  for 2

3+m
<k

=

for

k 0
Let us determine the umklapp process contributions for the regiondm=n—1/2,

f k m
B -, — for
Pin’n

for

for

(B8)
for

for

for

513 =13 =13 =13 =513

—_ = = = =
w
—
=)
|
3
=
[EEN

Now we connect the polynomials with one another via Eq.which reveals that the distinction at momentum-4(n
(61), which performs the transformatiom—1—m and m —m)/4 in Eq.(B8) is in fact absent in Eq(B3). Hence we
—1-n. This provides a link between EqeB4) and (B5),  find B{(k,m)=B{Y(k,m), and also, by comparison with
the right-hand sides of which are thus related, line by linethe first transformationB{"(k,m)=A{P(k,m), B{(k,m)
via Eq. (61). Similarly, Egs.(B8) and (B3) are connected, =Ag3)(k,m). By inspecting the regionr?—1<m=<1—n of
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caseB, we find a similar connection to largen (i.e., case also for all Z1/5<=m=n. We conclude that new polynomials
C: n/2=m=3n/5), and use of Eq(61) shows that the at higher odd multiples of (—m)/4 are ruled out
new distinction at momentum @ m)/4 disappears in a by the symmetry of the diagrams; only the distinction
similar fashion, and that all its polynomials likewise at momentum 3f—m)/4 survives.Therefore the contribu-
reduce to the ones above. It is not difficult to see thation (62) of normal processes tb; can finally be written
this simplification repeats for larger magnetization, i.e.,as

1-m
AD(k,m)  for —;—<k=min

1+3m 3(1—-m)
4 4
1 1+3m 3(1-m)

(2)
Ay(k,m)  for m<z and — —=<ks—,

@) 1 3(1—m) 1+3m

Np(k,m)={ By”(k,m) for m= = andeks o (B9)

1+3m 3(1—-m)
4 ' 4

AP(k,m)  for ma>< )sks

0 for ——=<k

i.e., a total of four polynomials are needed to descn’ﬁp; polynomials P,(x,y), we define f’p(x,y)z Po(X,Y)

they are determined in Appendix C. +¢p-1(1y), and introduce their generating functions
APPENDIX C: _ _ P
CALCULATION OF POLYNOMIALS FOR MINORITY P(X'y’z)_pZz Pp(x,y)( 2% ©3

SPINS OUTSIDE OF THE FERMI SURFACE

In this appendix we determine the polynomials that ap- P@(x,y,2)=P(X,y,2)— Z1-y) + Elnl—_yz. (C4)
A

pear on the right-hand side of E@®9). First let us examine 2 21
AP(k,m). For m=0 we immediately obtainA{”(k,0)
=Qp(k) by comparison with Eq(31). Furthermore, we can
derive its behavior for smath from the equation

Now we are ready to collect the relations between Egs.

(B4) and(B5) and between Eq$B8) and(B3) that Eq.(61)
provides(see Appendix B Settingx=k/n, y=m/n, ands
L(k,n,m) h (kon,—m), 1) =1/n in these relations, we obtaiffior arbitrarys)
which is a simple consequence of Efj0b). Similar to MV it. A (x,y)= 2 ( )(s y)'2(—s)P AL, L E)
can be shown thaty; (k,n,m), when regarded as a function A S—y s~y
of n, has two continuous derivatives at=1 (for all k (C5a
#Kgp).Then Eq.(49) implies thathy, (k,n,m) has the same _
property as a function ofh at m=0. Hence the expression AL2,(X,y)+AR,(s—x,y)
(50) may be used on the right-hand side of Eg1) for small b
positivem, up to an error oD(m?®). Inserting the appropriate =3
polynomials for momenta in the intervaln{¢3m)/4<k =
<min[3(h—m)/4,1— (3n+m)/4] we obtain

)(s y) (5P fA‘”( o E)

(C5b
AR, (k,m)= E g @y eme Bio06y) + AR (s—x.y)
p
p s—1
+ _ s— r+2 -5 pfrA(3) ( )
X Q2 len:r/]Z +0(md), (C2 20 r)( YyrH(=s) S—y's-y
(C50
which holds for allk and smallm. ~
The following definitions will help keep the notation com- BZ),(x,y) +BE),(s—x,y) = — i 1(1y) —SCy( 1Y),
pact. LetP be any ofA®), A®), B®) AG) |n addition to the (C50)
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and other relations that are in fact implied by these. By redifferentiating with respect ts; we then ses=1, so that the

peated combination of Eq9C5 we find the important
equality

APGY) +AR ) = AR (xy) +BP(xy).  (CB)

Furthermore, by setting=2x in Eq. (C5¢0 we immediately
obtain the explicit expression

B 2(X,Y) = — Cpr1(L1y) —XCo(LY). (o)

In terms of generating functions our results so far can be

expressed as

Ax—2 (1+y)z
(2) = E— 3
~ 5 s—1 (s—y)z
& =(1-szAM
AT(xYy,2)=(1-s2)A (S_y’s—y’ sz—l)'
(C9Y
AM(x,y,2)+AC)(s—x,y,2)
N X s—1(s—y)z
(1 —eAR®
(1-s2A (S—y’S—y' 1 ), (C10
_ 5 s—1 (s—y)z
@) =(1-s2B®
B®(x,y,2)=(1-s2)B (S_y’s—y'sz—l)
_le l-yz C1
“2Mi=z (C1
A®)(x,y,2)=B®(x,y,2)
~ [5=X s—=1 (s—Yy)z
P 16
+(1-s2A (s—y's—y’sz—l)' (C12

We proceed to determina®). First we obtainA®)(x,0z2)
from Eq.(C10 aty=0 by inserting the expansiai€8) and

error term vanishes. This vyields an expression for
dA®)(x,0z)/dx, which we integrate with respect i using
A®)(3/4,0z)=0. This result forA®)(x,0z2) is used in Eq.
(C12) with s=1, which yieldsA®)(x,y,z) for arbitraryy,

AC)(x,y,2)

~ (1-yz)(4x—1-3y) Ax—2-2y (1-y)z
a 2(1-y) o0 1-y ' 1-yz
(1-3y)z+2 [4x—2-2y (1-vy)z
a 4 SN 1-y 0 1-yz
(1-y)(1-2)z. [4x—2-2y (1-y)z
 21-yz M1y T 1-yz
The dot indicates derivative with respect to second argument.
Next we deriveA®™). First we obtainA®M)(x,0z) from Eq.
(C10 ats=1 andy=0, using Eq.(C8) aty=0. This result

for AM(x,02) is used in Eq.(C9) with s=1, which thus
yields AM)(x,y,z) for arbitraryy,

). (C13

AD(x,y,2)
_(1-y2)(3—-3y—4x) (4x—2+2y (1—y)z)
- 2(1-y) o0 1-y ' 1-yz
(1-3y)z+2 (4x—2+2y (1—y)z)

* 4 “Hoo1-y 0 1-yz
(1-y)(1-2)z- (4x—2+2y (1—y)z)
2(1-yzy Y 1-y ' 1-yz

+B®(x,y,2). (C14

Finally, A®®)(x,y,z) is obtained from Eq(C6). These results
can be rearranged into Eq$3)—(65).
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