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Exact analytic results for the Gutzwiller wave function with finite magnetization
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We present analytic results for ground-state properties of Hubbard-type models in terms of the Gutzwiller
variational wave function with nonzero values of the magnetizationm. In dimensionD51 approximation-free
evaluations are made possible by appropriate canonical transformations and an analysis of umklapp processes.
We calculate the double occupation and the momentum distribution, as well as its discontinuity at the Fermi
surface, for arbitrary values of the interaction parameterg, densityn, and magnetizationm. These quantities
determine the expectation value of the one-dimensional Hubbard Hamiltonian for any symmetric, monotoni-
cally increasing dispersionek . In particular for nearest-neighbor hopping and densities away from half filling
the Gutzwiller wave function is found to predict ferromagnetic behavior for sufficiently large interactionU.
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I. INTRODUCTION

Quantum-mechanical many-body problems can alm
never be solved exactly. In this situation variational wa
functions have proved to be particularly useful. Althou
they describe correlations among the particles only in an
proximate way, they have the advantage of being explicit
physically intuitive. In particular, they allow for investiga
tions even when standard perturbation theory is not ap
cable, or is untractable.

Variational wave functions can, for example, be obtain
by applying a suitably chosen correlation operator~e.g., the
interaction part of the Hamiltonian under investigation! to a
simple one-particle wave function. For the one-band H
bard model1–3

Ĥ5(
ks

ekâks
1 âks1U(

i
n̂i↑n̂i↓ , ~1!

which is often used as an effective model to understand e
tronic correlation phenomena like itinerant ferromagneti
in transition metals, high-temperature superconductivity,
the Mott-Hubbard metal-insulator transition, the simple
projected wave function is the Gutzwiller wave functio
~GWF!,3

uCG&5g( i D̂ iuF0&5)
i

@12~12g!D̂ i #uF0&, ~2!

where g is a variational parameter~usually 0<g<1!, D̂ i

5n̂i↑n̂i↓ is the operator for double occupation at lattice sitei,
and the starting wave functionuF0& is a product state o
spin-up and spin-down Fermi seas,

uF0&5 )
ek<eFs

ks

âks
1 uvac&. ~3!

Using the GWF one may, in principle, calculate expectat
values of any operatorÂ as ^Â&G5^CGuÂuCG&/^CGuCG&.
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By the variational principle the energy expectation val

^Ĥ&G is an upper bound for the true ground-state energy

Ĥ.
The properties and quality of the GWF have been

subject of detailed investigations~for an early review, see
Ref. 4!. A diagrammatic theory for the calculation of expe
tation values in terms of the GWF, valid in arbitrary dime
sionsD, was formulated by Metzner and Vollhardt.5 ~Refer-
ence 5 is hereafter referred to as MV.! In particular, for
systems without net magnetic polarizationm5n↑2n↓50,
i.e., particle densitiesns5n/2 with kF↑5kF↓ in Eq. ~3!, they

calculated the momentum distributionnks5^âks
1 âks&G and

the double occupationd5^( i D̂ i&G/L analytically in D51
for all values ofg and n, whereL is the number of lattice
sites. The analytic calculation of correlation functions,
particular of the spin-spin correlation function, by Gebha
and Vollhardt6 showed that in the nonmagnetic case, forU
→`, the results obtained with the GWF are in very go
agreement with exact analytic and numerical results for
antiferromagnetic Heisenberg chain. In fact, Haldane7 and
Shastry8 discovered that the GWF atg50 is the exact
ground-state wave function of the antiferromagnetic Heis
berg chain with 1/r 2 exchange. Results were also obtained
dimensionsD51,2,3 using numerical techniques9,10 and fi-
nite orders of perturbation theory.11,12 Within the diagram-
matic approach of MV it also became possible to derive
well-known Gutzwiller approximation in the limit of infinite
spatial dimensions (D5`).13 Comprehensive investigation
in this limit were made possible by the approach
Gebhard,14 which allows for explicit evaluations of expecta
tion values for arbitrary starting wave functionsuF0& ~in-
cluding ones with broken symmetry! and facilitates the ex-
pansion in 1/D around D5`. This approach was also
extended to multiband Hubbard models;15 recently that
method was combined with density-functional theory, a
applied to ferromagnetic transition metals.16 The Gutzwiller
approximation also describes a correlation-induced transi
from metal to insulator, the Brinkman-Rice transition.17 We
recently investigated the effect of correlated hopping, wh
©2002 The American Physical Society21-1
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for the GWF can be calculated in terms ofnks andd in any
dimension, on this transition.18

Up to now the analytic calculation of expectation valu
in D51 was limited to the unmagnetized paramagne
phase. In view of the renewed interest in the microsco
foundations of metallic ferromagnetism~see Ref. 19 for a
review!, it is desirable to perform such evaluations also
the GWF withnonzeromagnetization (mÞ0). In this paper
we show that, in spite of formidable technical complicatio
it is indeed possible to evaluate such expectation values e
for finite magnetization. From suitable canonical transform
tions we obtain diagrammatic relations and reduce the ex
tation values formÞ0 to those form50. Thereby it be-
comes possible to calculate the double occupationd and the
momentum distributionnks for arbitrary values of the corre
lation parameterg, densityn, and magnetizationm. Further-
more we derive an expression fornks in closed form, which
was not available up to now even for zero magnetizati
These quantities determine the energy expectation value
thus the optimal variational parameter and spontane
magnetization.

The paper is structured as follows: In Sec. II the diagra
matic formulation is used to derive diagrammatic relatio
from canonical transformations, valid in arbitrary dime
sions. The evaluation of expectation values is derived in S
III. The resulting magnetic phase diagram for the Hubb
model in D51 is presented in Sec. IV. The conclusion
Sec. V closes the presentation.

II. DIAGRAMMATIC FORMULATION
IN ARBITRARY DIMENSION D

A. General formalism

The double occupationd(g,n,m) and the momentum dis
tribution nks(g,n,m) of the GWF are required for the calcu
lation of the variational energy,EG5^Ĥ&G/L. Another quan-
tity of interest is the discontinuityqs of nks at the Fermi
surface, qs(g,n,m)5nk

Fs
2 s(g,n,m)2nk

Fs
1 s(g,n,m).20 The

rules for the diagrammatic expansion of these expecta
values in powers of (g221) were developed by MV, with
the result

d~g,n,m!5g2(
p51

`

~g221!p21cp~n,m!, ~4a!

nks~g,n,m!5@12~12g!2n2s#nks
0

1
12~12g2!nks

0

~11g!2 (
p52

`

~g221!pf ps~k,n,m!,

~4b!

where nks
0 5nks(g51,n,m). The functions cp(n,m) and

f ps(k,n,m) can be represented by Feynman diagrams co
sponding to those of the energy and the Green’s funct
respectively, of af4 theory. For later convenience we defin
15512
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f 1s52n2snks
0 , f 0s5nks

0 , c052
n2umu

2
. ~5!

The diagrams forcp(n,m) can be obtained from those fo
f ps(k,n,m) by connecting the two external vertices~see
MV !:

cp~n,m!52
1

L (
k

nks
0 f ps~k,n,m!, p>1. ~6!

This equation yields sum rules21 for the density of particles
inside,ns

, , or outside of the Fermi surface,ns
. , namely

ns
,5ns2ns

.5
1

L (
k

nks
0 nks , ~7!

n↑
.5n↓

.5
12g

11g S n22m2

4
2d~g,n,m! D . ~8!

It is sometimes useful to remove the diagramscp from f ps

and thus define

hps~k,n,m!5 f ps~k,n,m!2cp21~n,m!, p>1. ~9!

Note that our definitions in Eqs.~5! and ~9! differ slightly
from MV.

B. Canonical transformations

For the relations to be discussed next the hopping am
tude t i j is assumed to be nonzero only for hopping betwe
sites i and j on different sublatticesA and B. In the next
chapter we will see, however, that in dimensionD51 this
requirement can be dropped. The simplest canonical trans
mation is the interchange of spin indices↑ and ↓ which
implies

d~g,n,m!5d~g,n,2m!, ~10a!

nks~g,n,m!5nk2s~g,n,2m!. ~10b!

Furthermore, a particle-hole transformation for both sp
yields ~MV !

d~g,n,m!5d~g,22n,2m!1n21, ~11a!

nks~g,n,m!512nQ2ks~g,22n,2m!. ~11b!

Here Q is a vector in the first Brillouin zone witheiQ•R

561 for a lattice vector RPA, B, respectively; Q
5(p/a,p/a,•••p/a) for a hypercubic lattice with spacing
a. From Eqs.~10b! and~11b! it follows that the discontinuity
at the Fermi surface obeys20

qs~g,n,m!5q2s~g,n,2m!5q2s~g,22n,m!. ~12!

Note that in particularq↑5q↓ for n51.
For densities 0<n<2 the magnetization is in the rang

umu<min(n,22n). In view of Eqs.~10!–~12! we limit our-
selves from now on to 0<m,n<1. Therefores5↑ will be
referred to as ‘‘majority spin’’ ands5↓ as ‘‘minority spin.’’
1-2
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Note that the casen5m ~the fully polarized state withou
doubly occupied sites! can be obtained from the uncorrelate
caseg51.

Performing a particle-hole transformation for↑ operators
only,6

ĉi↑8 5~21! i ĉi↑
1 , ĉi↓8 5 ĉi↓ , ~13!

one may derive the following identities ford(g,n,m) and
nks(g,n,m):

d~g,n,m!5
n2m

2
2d~g21,12m,12n!. ~14a!

nk↑~g,n,m!512nQ2k↑~g21,12m,12n!, ~14b!

nk↓~g,n,m!5nk↓~g21,12m,12n!. ~14c!

For the uncorrelated case (g51) we have in particular

nk↑
0 ~n,m!512nQ2k↑

0 ~12m,12n!, ~15a!

nk↓
0 ~n,m!5nk↓

0 ~12m,12n!. ~15b!

The relations in Eq.~15! express a property of the startin
wave function@Eq. ~3!# and can also be derived directly from
the fact that hopping occurs only betweenA and B sublat-
tices.

C. Diagrammatic relations

We now derive diagrammatic relations forcp and f ps

from the identities in Eqs.~14! and~15!. The following equa-
tions are valid for allp>0 and 0<m<n<1 unless noted
otherwise.

1. Double occupation

From Eq.~4a! we obtain

d~g21,12m,12n!

5 (
p50

`

~g221!p~21!pS 1

g2D p11

cp11~12m,12n!. ~16!

Our goal is to equate coefficients of powers of (g221). To
this end we make use of the expansion

S 1

g2D p11

5(
r 50

` S 2p21

r D ~g221!r . ~17!

We then obtain from Eq.~14a!

d~g,n,m!5
n2m

2
2 (

p50

`

~g221!p ~21!p

3(
r 50

p S p

r D cr 11~12m,12n!, ~18!

while from Eq.~4a! we have
15512
d~g,n,m!5c1~n,m!1 (
p51

`

~g221!p

3@cp~n,m!1cp11~n,m!#. ~19!

We are thus led to the relation

cp~n,m!1cp11~n,m!

5~21!p11(
r 50

p S p

r D cr 11~12m,12n!, ~20!

Now we employ thebinomial inversion formula22

ap5~21!p(
q50

p S p

qD bq for all p>0

⇔ bp5~21!p(
q50

p S p

qD aq for all p>0, ~21!

which is valid for arbitraryap andbp . When applied to Eq.
~20! it yields

cp~n,m!5~21!p(
r 50

p S p

r D cr~12m,12n!. ~22!

We stress that the relations in Eqs.~20! and~22! are valid in
arbitrary dimensions for lattices with hopping betweenA and
B sublattices only. In the next section this equation will
used to calculatecp in D51.

2. Momentum distribution

An analogous procedure is used to derive relations
f ps . We define the abbreviations

Fps~k,n,m!5 f p12s~k,n,m!1nks
0 f p11s~k,n,m!, ~23a!

F̄p↑~k,n,m!5Fp↑~Q2k,12m,12n!, ~23b!

F̄p↓~k,n,m!5Fp↓~k,12m,12n!, ~23c!

and rewrite Eq.~4b! as

nks~g,n,m!5nks
0 ~n,m!1

1

~11g!2

3 (
p50

`

~g221!p12Fps~k,n,m!. ~24!

This expression appears on the left-hand sides of Eqs.~14b!
and ~14c!, while their right-hand sides take the form
1-3



w

e
W

nt
se
.
r

for

the

e

ral

nd
-
en

qs.

n
-

w-
m

es.
he

r

nt
-

ibu-
ted
ec.
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12nQ2k↑~g21,12m,12n!

5nk↑
0 ~n,m!1

1

~11g!2 (
p50

`
~g221!p12

~2g2!p11
F̄p↑~k,n,m!,

~25a!

nk↓~g21,12m,12n!

5nk↓
0 ~n,m!2

1

~11g!2 (
p50

`
~g221!p12

~2g2!p11
F̄p↓~k,n,m!.

~25b!

Expanding (g2)2p21 in powers of (g221) @Eq. ~17!#,
comparing coefficients, and combining both cases,
find

Fps~k,n,m!52sgn~s!~21!p(
r 50

p S p

r D F̄rs~k,n,m!. ~26!

For clarity we will from now on labelf ps , hps , and nks

with the subscripts, and ., depending on whether th
momentum lies inside or outside of the Fermi surface.
first simplify the equations forf p↑ . Using Eq.~26! together
with Eq. ~22! we obtain

hp11↑~k,n,m!5~21!p(
r 51

p S p

r D hr 11↑~Q2k,12m,12n!,

~27!

valid for all k, relatinghp↑
, andhp↑

. . For the minority spin a
similar calculation yields

f p↓
, ~k,n,m!5~21!p(

r 50

p S p

r D f r↓
, ~k,12m,12n!, ~28a!

f p12↓
. ~k,n,m!5~21!p(

r 50

p S p

r D f r 12↓
. ~k,12m,12n!, ~28b!

i.e., there is a relation between thef p↓ for momenta inside
of the Fermi surface, and another relation for mome
outside of the Fermi surface, each linking the ca
n1m<1 and n1m>1. Note that the relations in Eqs
~27! and ~28! are valid in arbitrary dimensions fo
lattices with hopping betweenA and B sublattices
only.
15512
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III. ANALYTIC EVALUATION IN DÄ1

In the remainder of the paper we consider the GWF
the Hubbard chain with a symmetric dispersionek5e2k that
increases monotonically withuku. This implies that nks

5n2ks ; therefore we only considerk>0.
For such dispersions the free Fermi sea described by

starting wave functionuF0& is centered aroundk50 and is
simply connected, i.e.,nks

0 5Q(kFs2uku) is a step function.
~We follow the convention of MV of measuringk in units of
2p/a, wherea is the lattice spacing; the first Brillouin zon
is the interval@21/2;1/2#, the reciprocal-lattice vectorsK
are integers, and the nesting vectorQ51/2.! For this Fermi-
surface topology the Fermi momentum,kFs5ns/25@n
1sgn(s)m#/4, only depends on the particle densityns , i.e.,
the particular form of the dispersion is irrelevant. In gene
this simplification occurs only in dimensionD51; higher-
dimensional tight-binding dispersions usually do not depe
only on uku, although this symmetry can be artificially im
posed to allow the construction of a dispersion from a giv
density of states.23

Since the values of the diagramscp and f ps are com-
pletely determined by the functionnks

0 ~which is independent
of the dispersion as long asek is increasing withuku) the
relations derived in Sec. II B, and hence the relations in E
~20!, ~22!, ~27!, and ~28!, are valid for all increasing and
symmetric dispersions inD51.

The following analytic calculation of GWF expectatio
values with magnetizationm5” 0 is based on the correspond
ing calculation for m50 by MV. The calculation for
m50 was made possible by exploiting the relations follo
ing from canonical transformations, the polynomial for
of the diagrams and their continuity as functions ofk and
n, and an analysis of the contribution of umklapp process
We will now use very similar methods to express t
double occupation d(g,n,m) and the momentum
distributionnks(g,n,m) in terms of the known quantities fo
m50.

In Sec. III A we review the results of MV and prese
closed formulas fornks for zero magnetization. For the mag
netic case the double occupation, the momentum distr
tion, and its discontinuity at the Fermi surface are calcula
in Secs. III B–D. The variational energy is evaluated in S
III E.

A. Zero magnetization

For the nonmagnetic case the diagramscp andhps were
already calculated by MV. Form50, n<1, 0<k<1/2, the
results may be summarized as

cp~n,0!5gp np11, ~29!

f ps~k,n,0!5hps~k,n,0!1cp21~n,0! ~30!
1-4
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55
np RpS k

nD for k,
n

4

npFQpS k

nD1gp21G for
n

4
,k<minS 3n

4
,12

3n

4 D
np gp21 for

3n

4
<k<

1

2

npFQpS k

nD1QpS 12k

n D1gp21G for 12
3n

4
<k<

1

2

, p>2. ~31!
r

e

en

(1
n

f
lcu-

to
f

Here and belowgp5(21)p11/@2(p11)#, and Rp(k) and
Qp(k) are certain polynomials of degreep in k. Note that at
kF5n/4 both f ps andhps are discontinuous, andhps50 for
k>3n/4. The contribution with momentum 12k in Eq. ~31!
is due to umklapp processes. From the diagrammatic se
in Eq. ~4! MV’s result for the double occupation is

d~g,n,0!5
g2

2~12g2!2
$2 ln@12~12g2!n#2~12g2!n%,

~32!

and the momentum distributionnks is given by

nks
, ~g,n,0!

512
12g

11g

n

2
1

g2

~11g!2 HR0F4k

n
,~12g2!nG21J , ~33!

nks
. ~g,n,0!52

12g

11g

n

2

1
1

~11g!2 H 2
1

2
ln@12~12g2!n#

1Q0F4k22n

n
,~12g2!nG

1Q0F4~12k!22n

n
,~12g2!nG J , ~34!

for k,kF and k.kF , respectively. Here we introduced th
generating functions

R0~x,z!5 (
p50

`

RpS x

4D ~2z!p, ~35!

Q0~x,z!5 (
p50

`

QpS 21x

4 D ~2z!p, ~36!

with the convention thatR0(x,z) and Q0(x,z) are zero
for uxu.1.

In MV the coefficients of the polynomialsRp(k) and
Qp(k) had to be calculated recursively to obtain the mom
15512
ies

-

tum distribution, and convergence was problematic for
2g2)n close to 1. In Appendix A we show how the recursio
equations forRp(k) can in fact be solved in closed form
@Eqs.~A5!–~A8!#, while Qp(k) can be expressed in terms o
them and their integrals. The generating functions are ca
lated as

R0~x,z!5
4/p

A~22z!22~xz!2
KS zA12x2

A~22z!22~xz!2D ,

~37!

Q0~x,z!5W0~x,z!1
z

2
@~12x! R0~x,z!1R1~x,z!#,

~38!

for uxu<1. HereK(k)5*0
p/2(12k2sin2f)21/2df is the com-

plete elliptic integral of the first kind,W0(x,z) is an auxil-
iary function,

W0~x,z!5
x21

2
R0~x,z!1

z22

4
R1~x,z!

1
z~z21!

2
Ṙ1~x,z!, ~39!

where the dot indicates a partial derivative with respect
second argument, andRj (x,z) is the repeated integral o
R0(x,z), defined by (j >0)

Rj 11~x,z!5E
1

x

dx8Rj~x8,z!

5
1

j ! E1

x

dx8~x2x8! jR0~x8,z!. ~40!

Below we will also need the following integral,

Q1~x,z!5E
1

x

dx8Q0~x8,z!

5
~12z!~x21!

2
R1(x,z)1

5z24

4
R2~x,z!

1
z~z21!

2
Ṙ2~x,z!. ~41!
1-5



e
h

di
or

-

he

r

m

-
as

-

of

r

f
-

ur

MARCUS KOLLAR AND DIETER VOLLHARDT PHYSICAL REVIEW B 65 155121
In Appendix A we provide an explicit expression forRj (x,z)
@Eqs.~A10! and ~A11!#, as well as other relations. Here w
note in particular the following functional relations, whic
are obtained from Eqs.~37! and ~38!,

Rj S x,
z

z21D5~12z! Rj~x,z!, ~42!

Qj S x,
z

z21D5Wj~x,z!. ~43!

These expressions analytically continueRj (x,z) and
Qj (x,z) to uzu.1.

B. Nonzero magnetization: Double occupation

To calculate the double occupation one needs the
gramscp . Using the methods of MV one can show that f
m.0 umklapp processes occur in the graphs forcp(n,m)
only if n>1. This implies that forn,1 cp(n,m) is a homo-
geneous function ofkF↑ andkF↓ of order p11, since every
contributing graph containsp11 free momenta. SincekFs

5@n1sgn(s)m#/4 it follows thatcp(n,m) can be written as
a linear combination of termsn↑

r n↓
p112r with 0<r<p11,

i.e., cp(n,m)/np11 is a polynomial inm/n of degreep11.
This is also the case forn51 sinced(g,n,m) is continuous
at n51 @see Eq.~11a!#. Therefore we can write the polyno
mial simply ascp(n,m)/np115cp(1,m/n) for n<1. For n
51, however, we can calculatecp(1,m) from Eqs.~22! and
~29!:

cp~1,m!5~21!p(
r 50

p S p

r D cr~12m,0!5gp~12mp11!. ~44!

The polynomial structure ofcp(n,m) then implies

cp~n,m!5np11cpS 1,
m

n D5gp ~np112mp11!,

5cp~n,0!2cp~m,0!. ~45!

Summation of the series in Eq.~4a! yields the simple result

d~g,n,m!5d~g,n,0!2d~g,m,0!. ~46!

It is remarkable that the double occupation at densityn and
magnetizationm is obtained as the difference between t
double occupation without magnetization at densityn and
density m. With the closed form ofd(g,n,0) taken from Eq.
~32! we finally obtain for the double occupation, valid fo
0<m<n<1,

d~g,n,m!

5
g2

2~12g2!2 S ln
12~12g2!m

12~12g2!n
2~12g2!~n2m!D ,

~47!

The double occupation is shown in Fig. 1 for various para
eter values. In the limit of strong correlation (g→0) it be-
haves as
15512
a-

-

d~g,n,1,m<n!5
g2

2 F ln
12m

12n
2~n2m!G1O~g4!, ~48a!

d~g,n51,m,1!

5g2F ln
1

g
1

ln~12m!2~12m!

2 G1O~g4ln g!, ~48b!

i.e., the double occupation isnonanalytic in the limit n
→1, g→0, as in the nonmagnetic case~see MV!.

C. Nonzero magnetization: Momentum distribution

To calculate the momentum distributionnks one needs the
diagramsf ps or hps . In the following subsections we dis
tinguish the cases of majority and minority spin, as well
whetherk lies inside or outside of the Fermi surface.

For finite magnetization,m.0, we make the following
observations, similar in spirit to those of MV for the non
magnetic case. As a function ofk, f ps(k,n,m) and
hps(k,n,m) are discontinuous atk5kFs , since the one-
particle irreducible graphs contain a factornks

0 . For k>kFs

12kF2s momentum conservation at the outer vertices
hps cannot be fulfilled, so that in this casehps(k,n,m)50.
For k>12kFs22kF2s (>kFs) umklapp processes occu
and yield an additional contribution tohps of normal pro-
cesses with external momentum 12k. In the absence of um-
klapp processesf ps andhps are homogeneous functions o
kF↑ andkF↓ of orderp, since every contributing graph con
tainsp free momenta. Thenf ps /np andhps /np are polyno-
mials in k/n and m/n of degreep, and due to momentum
conservation at outer vertices different polynomials occ
depending on whetherk is larger or smaller than6(2kF2s

2kFs). Furthermore, different polynomials forhp↓
. /np occur

also depending on howk compares to 3kF↓ ~see Sec. III C 4
below and Appendix B!.

1. Majority spins inside of the Fermi surface: nk_
Ë
„g,n,m…

For 0<k,kF↑5(n1m)/4 andn51 the diagramshp↑
, can

be obtained from Eq.~27! in terms of the known functions
hp↑

. of the nonmagnetic case@Eq. ~31!#:

FIG. 1. Double occupationd(g,n,m) as a function of the varia-
tional parameterg for various densitiesn and magnetizationsm.
Note thatd(g,n,m)5d(g,n,0)2d(g,m,0).
1-6
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hp11↑
, ~k,1,m!5~21!p(

r 51

p S p

r D hr 11↑
. S 1

2
2k,12m,0D ~49!

5~21!p(
r 51

p S p

r D ~12m!r 11 5
Qr 11S 1

2 2k

12m
D for

u3m21u
4

<k,
11m

4

0 for 0<k<
3m21

4

FQr 11S 1
2 2k

12m
D 1Qr 11S 1

2 1k

12m
D G for 0<k<

123m

4

. ~50!

Since umklapp processes do not occur fork,kF↑ , hp↑
, (k,n,m)/np is a polynomial ink/n and m/n. Hence we can obtain

hp11↑
, /np11 by replacingk by k/n andm by m/n in Eq. ~50!. This yields

hp11↑
, ~k,n,m!5~21!p(

r 51

p S p

r D ~n2m!r 11np2r 5 Qr 11
S n

2
2k

n2m
D for

u3m2nu
4

<k,
n1m

4

0 for 0<k<
3m2n

4

FQr 11
S n

2
2k

n2m
D 1Qr 11

S n

2
1k

n2m
D G for 0<k<

n23m

4

.

~51!

Note thathp11↑
, (k,n,m) is continuous for allk,kF↑ due toQp(3/4)50 ~see MV!. The normal processes contribute differen

depending on howk compares to6(2kF↓2kF↑), as expected.
Sincehp↑

, is available for arbitrary orders ofp, the series in Eq.~4b! can now be summed, with the result, valid for
<m,n<1, 0<k,(n1m)/4,

nk↑
, ~g,n,m!512~12g!2Fn2m

2
2d~g,n,m!G2

g2

~11g!2 FW0S 2m24k

n2m
,
~12g2!~n2m!

12~12g2!m
D

1W0S 2m14k

n2m
,
~12g2!~n2m!

12~12g2!m
D G , ~52!

where the functional relation in Eq.~43! was used. Form50 this result reduces to Eq.~34! by virtue of Eq.~A12!.

2. Majority spins outside of the Fermi surface: nk_
Ì
„g,n,m…

For (n1m)/4,k<1/2 we can deducehp↑
. at once by insertinghp↑

, into Eq. ~27!:

hp11↑
. ~k,n,m!5(

r 51

p S p

r D ~n2m!r 11~2m!p2r

¦

Qr 11
S k2

m

2

n2m
D for

n1m

4
,k<minS 3n2m

4
,12

3n2m

4 D
0 for

3n2m

4
<k<

1

2

FQr 11
S k2

m

2

n2m
D 1Qr 11

S 12k2
m

2

n2m
D G

for 12
3n2m

4
<k<

1

2

, ~53!
155121-7
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which is continuous for all k.kF↑ . In this sector
umklapp processes occur fork>122kF↓2kF↑ and contrib-
ute to hp↑

, like normal processes with external momentu
12k.

Summing the series in Eq.~4b! then yields the result,
valid for 0<m,n<1, (n1m)/4,k<1/2,

nk↑
. ~g,n,m!5

~12g!2

g2
d~g,n,m!

1
1

~11g!2 FQ0S 4k22n

n2m
,
~12g2!~n2m!

12~12g2!m
D

1Q0S 4~12k!22n

n2m
,
~12g2!~n2m!

12~12g2!m
D G ,

~54!

which alternatively can be derived directly from Eq
~14b!, ~52!, and ~43!. Note also that form50 this result
reduces to Eq.~34!. The momentum distributionnk↑(g,n,m)

FIG. 2. Momentum distributionnks of ~a! majority and
~b! minority spin electrons, as a function ofk for g50.1 and
densityn51.
15512
has thus been determined in the entire parameter range.
shown forg50.1 and densitiesn51 and 0.8 in Figs. 2~a!
and 3~a!.

3. Minority spins inside of the Fermi surface: nk`
Ë
„g,n,m…

For 0<k,kF↓5(n2m)/4 andn51 the diagramsf p↓
, are

given in terms of the known functionsf p↑
, of the nonmag-

netic case@Eq. ~31!# according to Eq.~28a!:

f p↓
, ~k,1,m!5~21!p(

r 50

p S p

r D ~12m!rRr S k

12mD . ~55!

Due to the absence of umklapp processes fork,kF↓ ,
f p↓

, (k,n,m)/np is a polynomial ink/n andm/n. Therefore it
is given by Eq.~55! with k replaced byk/n andm replaced
by m/n. We then have

f p↓
, ~k,n,m!5~21!p(

r 50

p S p

r D ~n2m!rnp2rRr S k

n2mD ,

~56!

5(
r 50

p S p

r D ~n2m!r~2m!p2rRr S k

n2mD ,

~57!

FIG. 3. Momentum distributionnks of ~a! majority and~b! mi-
nority spin electrons as a function ofk for g50.1 and densityn
50.8.
1-8
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where the second equation was obtained by inser
Eq. ~56! in Eq. ~28a!; it is equivalent to the functional rela
tion in Eq. ~42!. Note that form50 Eq. ~57! reduces to Eq.
~31!.

We use Eq. ~57! in Eq. ~4b! to find the following
expression for nk↓

, , valid for 0<m,n<1, 0<k,(n
2m)/4,

nk↓
, ~g,n,m!512

12g

11g

n1m

2
1

g2

~11g!2

3FR0S 4k

n2m
,
~12g2!~n2m!

12~12g2!m
D

12~12g2!m
21G .

~58!

This expression reduces to Eq.~33! for m50.

4. Minority spins outside of the Fermi surface: nk`
Ì
„g,n,m…

Finally we consider the case (n2m)/4,k<1/2,
for which the calculation ofnk↓

. is somewhat more compli
cated. We begin with the special casen51, for which
the momentum distribution can be determined immedia
from Eqs. ~14c!, ~10b!, and ~14b!, which combine to
give

nk↓
. ~g,1,m!5nk↓

. ~g21,12m,0!

5nk↑
. ~g21,12m,0!512n1/22k↑

, ~g,1,m!. ~59!
15512
g

ly

Inserting Eq.~52! we arrive at

nk↓
. ~g,1,m!5~12g!2S 12m

2
2d~g,1,m! D

1
g2

~11g!2 FW0S 2m14k22

12m
,
~12g2!~12m!

12~12g2!m
D

1W0S 2m24k12

12m
,
~12g2!~12m!

12~12g2!m
D G .

~60!

Next we consider arbitrary density and magnetization,
<m,n<1. We make use of the following relation, whic
follows from Eqs.~28b! and ~20!,

hp12↓
. ~k,n,m!522 cp11~n,m!2cp~n,m!

1~21!p(
r 50

p S p

r D hr 12↓
. ~k,12m,12n!.

~61!

The diagramshp↓
. that appear in this equation can b

written in terms of the contribution of normal processes,Np ,
as
ult for
hp↓
. ~k,n,m!55

np NpS k

n
,
m

n D for
n2m

4
,k<minS 3n1m

4
,12

3n1m

4 D
0 for

3n1m

4
<k<

1

2

npFNpS k

n
,
m

n D1NpS 12k

n
,
m

n D G for 12
3n1m

4
<k<

1

2

. ~62!

In Appendix B we show that depending onk andm, the functionNp(k,m) is given piecewise by four polynomials ink andm
of orderp. The explicit determination of these polynomials is quite involved; it is presented in Appendix C. The final res
nk↓

. , valid for 0<m,n<1, (n2m)/4,k<1/2, can be written as

nk↓
. ~g,n,m!5

~12g!2

g2
d~g,n,m!1

1

~11g!2
@N~g,k,n,m!1N~g,12k,n,m!#, ~63!

whereN(g,k,n,m) is given by
1-9
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N~g,k,n,m!5

¦

N(1)~g,k,n,m! for
n2m

4
,k<minS n13m

4
,
3~n2m!

4 D
N(2)~g,k,n,m! for m<

n

3
and

n13m

4
<k<

3~n2m!

4

N(3)~g,k,n,m! for m>
n

3
and

3~n2m!

4
<k<

n13m

4

N(4)~g,k,n,m! for maxS n13m

4
,
3~n2m!

4 D<k<
3n1m

4

0 for
3n1m

4
<k

, ~64!

with

N(1)~g,k,n,m!5
@12~12g2!m#~3n23m24k!

2 ~n2m!
Q0S 4k22n12m

n2m
,
~12g2!~n2m!

12~12g2!m
D

1
~n23m! ~12g2!12

4
Q1S 4k22n12m

n2m
,
~12g2!~n2m!

12~12g2!m
D

1
~n2m! ~12g2! @12~12g2!n#

2 ~12~12g2!m!
Q̇1S 4k22n12m

n2m
,
~12g2!~n2m!

12~12g2!m
D

1N(3)~g,k,n,m!, ~65a!

N(4)~g,k,n,m!5
@12~12g2!m# ~4k2n23m!

2 ~n2m!
Q0S 4k22n22m

n2m
,
~12g2!~n2m!

12~12g2!m
D

2
~n23m! ~12g2!12

4
Q1S 4k22n22m

n2m
,
~12g2!~n2m!

12~12g2!m
D

2
~n2m! ~12g2! @12~12g2!n#

2 @12~12g2!m#
Q̇1S 4k22n22m

n2m
,
~12g2!~n2m!

12~12g2!m
D , ~65b!
o

n
is

ns
us

m

N(3)~g,k,n,m!5
~n2m!~12g2!

2

2
12~12g2!k

2
ln

12~12g2!m

12~12g2!n
,

~65c!

N(2)~g,k,n,m!5N(1)~g,k,n,m!

2N(3)~g,k,n,m!1N(4)~g,k,n,m!,

~65d!

and the dot again denotes derivative with respect to sec
argument. It can be checked that Eq.~63! indeed reduces to
15512
nd

Eq. ~60! for m50. Thus the momentum distributio
nk↓(g,n,m) has been determined for all parameters. It
shown forg50.1 and densitiesn51 and 0.8 in Figs. 2~b!
and 3~b!.

The calculation of the correlated momentum distributio
nks is now complete. We remark that they are continuo
functions ofk, except atkFs , and are also continuous inn
andm for fixed k. We have checked that they obey the su
rule in Eq.~8!.

D. Discontinuity of the momentum distribution
at the Fermi surface

It suffices to calculate the discontinuityqs of nks at the
Fermi surface for 0<m,n<1 @see Eq.~12!#. From our pre-
1-10
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vious results we obtain the left and right limit of the mome
tum distribution at the Fermi vector as

nk
Fs
2 s~g,n,m!512

12g

11g
n2s1

g2 ~Gs
2121!

~11g!2
, ~66a!

nk
Fs
1 s~g,n,m!52

12g

11g
n2s1

12Gs

~11g!2
, ~66b!

where the abbreviationGs is defined as

Gs5A@12~12g2!n#@12~12g2!m#2sgn(s). ~67!

For the discontinuity at thes-spin Fermi surface we thus
obtain

qs~g,n,m!5
~g1Gs!2

~11g!2 Gs

. ~68!

It follows thatqs vanishes only for a half filled band withou
double occupation (n51 and g50); in this case there is
exactly one particle at each site so thatnks51/2 for all k.
Note also thatq↑5q↓ if n51 ~or, trivially, if m50 or g
51). We plotqs for n51 andn50.8 in Fig. 4.

FIG. 4. Discontinuityqs of the momentum distribution at the
Fermi vector for densities~a! n51 ~in this caseq↑5q↓) and
~b! n50.8.
15512
- E. Energy expectation value

For any symmetric dispersionek , monotonically increas-
ing with uku, we can now calculate the energy expectati
value per site,EG5^Ĥ&G/L, of the one-dimensional Hub-
bard Hamiltionian~1!, which is then minimized with respec
to g to find the optimal variational energy,EG

! ,

EG
! ~n,m,U !5 min

0<g<1
EG~g,n,m,U !, ~69!

EG~g,n,m,U !52E
0

1/2

dkek (
s

nks~g,n,m!1Ud~g,n,m!.

~70!
Note that it follows from Eq.~11b! that the total kinetic
energy for dispersionek at densityn.1 can be calculated
from the dispersion2e1/22k at density 22n using the for-
mulas fornks andd that are valid below half filling.

For the Hubbard chain with nearest-neighbor hoppint
the dispersion relation in our notation isek522t cos(2pk).
We assumet.0 without loss of generality, so that the dis
persion is increasing withuku and our results for the
Gutzwiller expectation values apply. The optimal variation
energy for this system is shown in Fig. 5 for densitiesn
51 and 0.8 for various magnetizations. Note that at h
filling no Brinkman-Rice metal-insulator transition occurs

FIG. 5. Energy expectation value for the Hubbard chain w
nearest-neighbor hoppingt.0 for densities ~a! n51 and
~b! n50.8.
1-11
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any finite U; i.e., g50 is the optimal variational paramete
only for U5`. The variational result for the ground-sta
magnetization is determined in the next section.

IV. MAGNETIC PHASE DIAGRAM
OF THE HUBBARD CHAIN

In this section we determine the instability towards ferr
magnetism for the Hubbard chain with nearest-neighbor h
ping. Currently only homogeneous paramagnetic and fe
magnetic phases can be investigated analytically with
GWF in D51; hence we do not consider antiferromagnetis
or other broken symmetries. We begin by examining the
ergy for the special cases of the paramagnetic state~i.e., zero
magnetization! and the fully polarized state. The latter con
tains the minimum number of doubly occupied sites and
an eigenstate ofĤ, with eigenvalue

EFP~n,U !5EG~1,n,min~n,22n!,U !

5H e0~n! for 0<n<1

e0~n21!1U ~n21! for 1<n<2
, ~71!

wheree0(ns)52*0
ns/2dkek is the kinetic energy of one spin

species for the uncorrelated state. For the case of nea
neighbor hopping we havee0(ns)522t sin(pns)/p, t.0.

FIG. 6. Comparison of the total energy for the Hubbard ch
with nearest-neighbor hopping and for densities~a! n50.7, 1 and
~b! n50.3, 0.5.
15512
-
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In Fig. 6 the exact ground-state energy,E(n,m50,U),
obtained from the Bethe-ansatz solution,24 is compared to the
Gutzwiller energy for zero and maximal polarization, at va
ous densities. We also show the energy of the variatio
Hartree-Fock theory,EHF(n,m50,U); it is contained as a
special case in the results for the GWF,
EHF~n,m,U !5EG~1,n,m,U !

5e0S n1m

2 D1e0S n2m

2 D1
U

4
~n22m2!. ~72!

As expected, theg-optimized GWF significantly improves
upon Hartree-Fock theory but overestimatesE at largeU.5

Since all spin configurations are degenerate forU5`, the
exact ground-state energy coincides withEFP in this case;
therefore the Gutzwiller energyEG

! necessarily crosses th
valueEFP at some finite value of the interactionUc ~except
for n51). The existence of a finite critical interactionUc
above which the GWF predicts a ferromagnetic ground s
is in contrast to the Lieb-Mattis theorem,25 which states that
m50 for the exact ground state~i.e., Uc5`).The reason for
this overestimation of the instability of the paramagne
state lies in the simple structure of the GWF, which contr
only local correlations and cannot describe the special co
lated behavior inD51 microscopically.

The preceeding discussion only compared the variatio
energies for zero and full polarization. From our results
the ferromagnetic GWF we can also study the stability
partially polarized ferromagnetic states. We first consid
Hartree-Fock theory. A simple calculation shows that it p
dicts a fully polarized ground state forU>Uc

HF(n), where

Uc
HF~n!5H 16 sin~pn/2! @12cos~pn/2!#/~pn2!

for 0<n<1

Uc
HF~22n! for 1<n<2

. ~73!

This critical interactionUc
HF is smaller than that derived from

the Stoner criterion, Ũc
HF(n)51/N(en/4)52p sin(pn/2),

whereN(e) is the density of states. Note thatEHF as a func-
tion of m never develops a local minimum atmÞ0. On the
other hand, a maximum at finitem occurs for U.2@1
2cos(pn)#/min(n,22n), which leads to a global minimum a
full polarization already forU>Uc

HF. The Stoner criterion,
which merely signals a negative curvature ofEHF at m50
and does not take into account a finite magnetization, is t
irrelevant for the Hubbard chain with nearest-neighb
hopping.

For the Gutzwiller wave function we find thatEG
! as a

function of m at fixedU develops local extrema and glob
minima in a qualitatively similar fashion toEHF. As a con-
sequence the GWF also describes a discontinuous trans
from the paramagnetic state to a state with full polarizat
at U5Uc(n). This critical interactionUc is shown in Fig. 7.
Compared to Hartree-Fock theory we find agreement in
limit of small n. However, at intermediate densities the GW
predicts a significantly reduced ferromagnetic region. In p
ticular for n→1 we haveUc→`, as expected from the pre
vious discussion@see also Fig. 6~a!#. Thus, in contrast to
Hartree-Fock theory, the GWF does not exhibit a spurio
ferromagnetic transition at half filling, since it is able
avoid double occupation not only through a ferromagne

n

1-12
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polarization, but also by decreasing the variational param
g. Away from half filling, however, the GWF predicts ferro
magnetism for sufficiently largeU, in contrast to the exac
solution for the Hubbard chain.

V. CONCLUSION

In this paper we presented general diagrammatic relati
for the expectation values of theD-dimensional Hubbard
model in terms of the Gutzwiller wave function~GWF! at
nonzeromagnetizationm. In D51 explicit, approximation-
free evaluations of the double occupationd(g,n,m) and the
momentum distributionnks(g,n,m) were made possible by
exploiting ~i! relations for the Feynman diagrams ford and
nks , derived from canonical spin and particle-hole transf
mations,~ii ! the polynomial form of the diagrams in power
of k, n, andm, and ~iii ! an analysis of the contributions o
normal and umklapp processes. In this way the calculation
d(g,n,m) and nks(g,n,m) was reduced to that form50.
Furthermore, new closed expressions for the momentum
tribution nks were derived, facilitating numerical evaluation

The functionsd(g,n,m) and nks(g,n,m) in D51 are
qualitatively similar to those form50. The discontinuity
qs(g,n,m) of the momentum distribution at the Fermi en
ergy was also calculated explicitly. It is always finite, exce
for the half filled band without double occupation (g50, n
51, m50) in which case the electrons are trivially loca
ized. In all other cases the GWF describes a ferromagn
Fermi liquid.

Analysis of the Gutzwiller variational energy for the Hub
bard chain with nearest-neighbor hopping shows that
GWF predicts a fully polarized ferromagnetic state at lar
enoughU and away from half filling, in contrast to the Lieb
Mattis theorem.25 This exemplifies once more the peculiar
ties of the GWF which controls correlations between t
electrons only globally through the local Hubbard intera

FIG. 7. Critical interactionUc(n) for the transition from a para-
magnetic to a fully polarized ferromagnetic state for the Hubb
chain with nearest-neighbor hopping as obtained from
Gutzwiller wave function. The Hartree-Fock result,Uc

HF @Eq. ~73!#,
is also shown; it has a shallow maximum atn'0.856. Note that
Uc(n)5Uc(22n).
15512
er

ns

-

of

is-

t

tic

e
e

e
-

tion.While the GWF is an excellent wave function for th
one-dimensionalHeisenbergmodel ~at least for m50),6

since this only involves spin correlations between localiz
spins, it is not a very good wave function for the on
dimensionalHubbard model at largeU and nÞ1 since it
does not describe density correlations well in this case.4 As a
consequence the GWF cannot reproduce all characteristic
the one-dimensional system. This is also apparent from
finite discontinuity of the momentum distribution at th
Fermi surface, which is, in fact, continuous for Lutting
liquids such as the one-dimensional Hubbard model. On
other hand the ferromagnetic GWF represents a trial state
partially polarized, itinerant electrons and may thus be
garded as an effective, nonperturbative description of a
romagnetic Fermi liquid.

In view of the considerable technical complications i
volved in the present calculations it is not clear whethe
will be possible to compute correlation functions with th
GWF for mÞ0. Since the calculation of the spin-spin corr
lation function6 for m50 helped to gain considerable insig
into the properties of Heisenberg-type models,7,8 a corre-
sponding result formÞ0 would be helpful for a better un
derstanding of one-dimensional Heisenberg models in
magnetic field.
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APPENDIX A: CALCULATION OF POLYNOMIALS FOR
THE NONMAGNETIC CASE

In this appendix we describe the derivation of closed
pressions for the polynomialsRp(k) andQp(k) that appear
in Sec. III. By eliminatingQp(k) from MV’s recursion for-
mulas we obtain

p2Rp~k!1p~p11!Rp11~k!

5k@~2p21!Rp8~k!12pRp118 ~k!#

2~k22 1
16 !@Rp9~k!1Rp119 ~k!#, p>0.

~A1!

Furthermore, the polynomialsQp(k) can be expressed in
terms ofRp(k) as

Qp118 ~k1 1
2 !52~2p11!Rp~k!22~p11!Rp11~k!

1~2k2 1
2 ! @Rp8~k!1Rp118 ~k!#, p>0,

~A2!

together withQp( 3
4 )50. We defineR0(k)51, Q0(k)50.

A closed form forRp(k) is obtained as follows. Using
Eqs.~56! and ~57! we can reduce Eq.~A1! to

d
e
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p~p11!Rp~k!12kRp8~k!1~k22 1
16 !Rp9~k!

5p2Rp21~k!, p>0. ~A3!

This is essentially the differential equation of the Legen
polynomials except for the inhomogeneity on the right-ha
side. From an expansion in Legendre polynomialsPn(x) we
thus obtain

Rp~k!5 (
j 50

bp/2c
~21!pp! 2~4 j 11!

~p22 j !! ~p12 j 11!! S 2 1
2

j
D 2

P2 j~4k!,

~A4!

which after some calculation yields Eq.~37!. FromR0(x,z)
we then obtain the explicit expressions in terms of a~termi-
nating! hypergeometric function,

Rp~k!5 (
j 50

bp/2c
~21!p~2p22 j !! ~2 j !!

4 j 1p~p22 j !! ~p2 j !! j ! 3
~16k221! j ~A5!

5S 2 1
2

p
D 3F2S 2

1

2
p,2

1

2
p1

1

2
,
1

2
;
1

2
2p,1;1216k2D

~A6!

5S 2 1
2

p
D 3F2S 2p,2p,

1

2
;
1

2
2p,1;

4k21

4k11D S 4k11

2 D p

~A7!

5(
j 50

p S p

j D S 2 1
2

j
D S 2 1

2

p2 j
D S 124k

2 D j S 114k

2 D p2 j

.

~A8!

Furthermore, an integration by parts of Eq.~A2! leads to the
expression forQ0(x,z) in terms of Rj (x,z) shown in Eq.
~38!.

By using a hypergeometric identity to rewrite Eq.~37! as

R0~x,z!5
1

A12z
2F1S 1

2
,
1

2
;1;

~x221!z2

4~12z! D ,

U~12x2!z2

4~12z!
U,1, ~A9!

integrating term wise with respect tox, and again using sev
eral hypergeometric identities we obtain the following e
plicit expression forRj (x,z):

Rj~x,z!5
22 j 11 j !

~2 j !! (
p50

`
~12x!p1 j z2pR̃p

( j )~x!

@~22z!22~xz!2#p11/2
,

~A10!

where theR̃p
( j )(x) are polynomials of degreep,
15512
e
d

-

R̃p
( j )~x!5S 2 1

2

p
D S 2 1

2

p1 j
D

3 3F2S 2p,
1

2
, j ;11p1 j ,

1

2
1 j ;

12x

11xD ~11x!p.

~A11!

The functionsRj (x,z) may be evaluated via the series~A10!
for not too large values ofz. Alternatively, the integration in
Eq. ~40! can be performed numerically.

Finally, we note a few special values. From MV’s pol
nomial relations we obtain

Q0~x,z!1Q0~2x,z!

512~12z!R0~x,z!1
1

2
ln~12z!. ~A12!

Together with Eqs.~37!–~39! we find in particular

R0~61,z!5
1

A12z
, Q0~1,z!50, ~A13!

Q0~21,z!512A12z1
1

2
ln~12z!. ~A14!

FIG. 8. A class of Feynman diagrams contributing
hp↓

. (k,n,m). Solid ~broken! lines represent majority~minority!
spins and vanish unless they carry momentum in the inte
@2kF↑ ,kF↑# (@2kF↓ ,kF↓#); see MV for diagrammatic rules. Fork
.3kF↓ the diagram in~a! vanishes sincek1k11k2P@2kF↓ ,kF↓#
cannot be fulfilled. Fork.5kF↓ the diagram in~b! vanishes for
similar reasons, and so on for higher odd multiples ofkF↓ .
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Furthermore, the sum rule for particles outside of the Fe
surface@Eq. ~8!# implies

R1~21,z!52R1~0,z!5
2

z
ln~12z!, ~A15!

Q1~21,z!5211
z22

2z
ln~12z!. ~A16!

APPENDIX B: POLYNOMIAL STRUCTURE
OF MINORITY SPIN DIAGRAMS

OUTSIDE OF THE FERMI SURFACE

In this appendix we derive the polynomial structure of t
diagramshp↓

. , for which many cases must be distinguishe
As discussed at the beginning of Sec. III C, different po
nomials occur in the contribution of normal processes
pending on the relation ofk to 2k↑2k↓ and 2k↑1k↓ . Fur-
thermore, due to a certain class of diagrams, shown in Fig
different polynomials forhp↓

. /np may in principle occur also
at 3kF↓ , 5kF↓ , and all higher odd multiples ofkF↓ ; however,
some simplification takes place, as we will show below.

Case A: 0<m<n/3. Here the momenta 2k↑2k↓ , 2k↑
1k↓ , 3k↓ , etc., are ordered as follows:
15512
i

.
-
-

8,

n13m

4
<

3~n2m!

4
,

3n1m

4
<

5~n2m!

4
, ~B1!

so that the contribution of normal processes tohp↓
. , as it

appears in Eq.~62!, can be written in terms of three polyno
mials Ap

( i )(k,m) of orderp:

Np~k,0<m< 1
3 !

55
Ap

(1)~k,m! for
12m

4
,k<

113m

4

Ap
(2)~k,m! for

113m

4
,k<

3~12m!

4

Ap
(3)~k,m! for

3~12m!

4
,k<

31m

4

0 for
31m

4
<k

.

~B2!

If k.12(3n1m)/4 umklapp processes contribute tohp↓
.

with momentum 12k, and several cases must be disti
guished to determine the appropriate polynomials.We fi
for n1m<1 andm>3n22
hp↓
. S k,n,0<m<

n

3D
np

5

¦

Ap
(1)S k

n
,
m

n D for
n2m

4
,k<

n13m

4

Ap
(2)S k

n
,
m

n D for
n13m

4
,k<

3~n2m!

4

Ap
(3)S k

n
,
m

n D for
3~n2m!

4
,k<

1

2
2U3n1m

4
2

1

2U
Ap

(3)S k

n
,
m

n D1Ap
(3)S 12k

n
,
m

n D for 12
3n1m

4
,k<

1

2

0 for
3n1m

4
,k<

1

2

, ~B3!

while for n1m<1 andm<3n22

hp↓
. S k,n,0<m<

n

3D
np

5

¦

Ap
(1)S k

n
,
m

n D for
n2m

4
,k<

n13m

4

Ap
(2)S k

n
,
m

n D for
n13m

4
,k<12

3n1m

4

Ap
(2)S k

n
,
m

n D1Ap
(3)S 12k

n
,
m

n D for 12
3n1m

4
,k<

1

2
2U3~n2m!

4
2

1

2U
Ap

(2)S k

n
,
m

n D1Ap
(2)S 12k

n
,
m

n D for 12
3~n2m!

4
,k<

1

2

Ap
(3)S k

n
,
m

n D1Ap
(3)S 12k

n
,
m

n D for
3~n2m!

4
,k<

1

2

, ~B4!

whereas forn1m>1
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hp↓
. S k,n,0<m<

n

3D
np

5

¦

Ap
(1)S k

n
,
m

n D for
n2m

4
,k<12

3n1m

4

Ap
(1)S k

n
,
m

n D1Ap
(3)S 12k

n
,
m

n D for 12
3n1m

4
,k<

n13m

4

Ap
(2)S k

n
,
m

n D1Ap
(3)S 12k

n
,
m

n D for
n13m

4
,k<

1

2
2U3~n2m!

4
2

1

2U
Ap

(2)S k

n
,
m

n D1Ap
(2)S 12k

n
,
m

n D for 12
3~n2m!

4
,k<

1

2

Ap
(3)S k

n
,
m

n D1Ap
(3)S 12k

n
,
m

n D for
3~n2m!

4
,k<

1

2

. ~B5!

Case B: n/3<m<n/2. Here on the other hand, we have the ordering

3~n2m!

4
<

n13m

4
<

5~n2m!

4
<

3n1m

4
<

7~n2m!

4
, ~B6!

and the contributions of normal processes tohp↓
. are now given by four polynomialsBp

( i )(k,m) of orderp:

Np~k, 1
3 <m< 1

2 !5

¦

Bp
(1)~k,m! for

12m

4
<k<

113m

4

Bp
(2)~k,m! for,

3~12m!

4
<k<

113m

4

Bp
(3)~k,m! for

113m

4
<k<

5~12m!

4

Bp
(4)~k,m! for

5~12m!

4
<k<

31m

4

0 for
31m

4
<k

. ~B7!

Let us determine the umklapp process contributions for the region 12n<m<n21/2,

hp↓
. S k,n,

n

3
<m<

n

2D
np

5

¦

Bp
(1)S k

n
,
m

n D for
n2m

4
,k<12

3n1m

4

Bp
(1)S k

n
,
m

n D1Bp
(4)S 12k

n
,
m

n D for 12
3n1m

4
,k<12

5~n2m!

4

Bp
(1)S k

n
,
m

n D1Bp
(3)S 12k

n
,
m

n D for 12
5~n2m!

4
,k<

3~n2m!

4

Bp
(2)S k

n
,
m

n D1Bp
(3)S 12k

n
,
m

n D for
3~n2m!

4
,k<

1

2
2Un13m

4
2

1

2U
Bp

(3)S k

n
,
m

n D1Bp
(3)S 12k

n
,
m

n D for
n13m

4
,k<

1

2

Bp
(2)S k

n
,
m

n D1Bp
(2)S 12k

n
,
m

n D for 12
n13m

4
,k<

1

2

. ~B8!
q

ne
,

Now we connect the polynomials with one another via E
~61!, which performs the transformationn→12m and m
→12n. This provides a link between Eqs.~B4! and ~B5!,
the right-hand sides of which are thus related, line by li
via Eq. ~61!. Similarly, Eqs.~B8! and ~B3! are connected
15512
.

,

which reveals that the distinction at momentum 125(n
2m)/4 in Eq. ~B8! is in fact absent in Eq.~B3!. Hence we
find Bp

(3)(k,m)5Bp
(4)(k,m), and also, by comparison with

the first transformation,Bp
(1)(k,m)5Ap

(1)(k,m), Bp
(3)(k,m)

5Ap
(3)(k,m). By inspecting the region 2n21<m<12n of
1-16
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caseB, we find a similar connection to largerm ~i.e., case
C: n/2<m<3n/5), and use of Eq.~61! shows that the
new distinction at momentum 7(n2m)/4 disappears in a
similar fashion, and that all its polynomials likewis
reduce to the ones above. It is not difficult to see t
this simplification repeats for larger magnetization, i.
p

n

n

-

15512
t
,

also for all 3n/5<m<n. We conclude that new polynomial
at higher odd multiples of (n2m)/4 are ruled out
by the symmetry of the diagrams; only the distinctio
at momentum 3(n2m)/4 survives.Therefore the contribu
tion ~62! of normal processes tohp↓

. can finally be written
as
Np~k,m!5

¦

Ap
(1)~k,m! for

12m

4
,k<minS 113m

4
,
3~12m!

4 D
Ap

(2)~k,m! for m<
1

3
and

113m

4
<k<

3~12m!

4

Bp
(2)~k,m! for m>

1

3
and

3~12m!

4
<k<

113m

4

Ap
(3)~k,m! for maxS 113m

4
,
3~12m!

4 D<k<
31m

4

0 for
31m

4
<k

, ~B9!
qs.
i.e., a total of four polynomials are needed to describenk↓
. ;

they are determined in Appendix C.

APPENDIX C:
CALCULATION OF POLYNOMIALS FOR MINORITY

SPINS OUTSIDE OF THE FERMI SURFACE

In this appendix we determine the polynomials that a
pear on the right-hand side of Eq.~B9!. First let us examine
Ap

(2)(k,m). For m50 we immediately obtainAp
(2)(k,0)

5Qp(k) by comparison with Eq.~31!. Furthermore, we can
derive its behavior for smallm from the equation

hp↓
. ~k,n,m!5hp↑

. ~k,n,2m!, ~C1!

which is a simple consequence of Eq.~10b!. Similar to MV it
can be shown thathp↑(k,n,m), when regarded as a functio
of n, has two continuous derivatives atn51 ~for all k
ÞkF↑).Then Eq.~49! implies thathp↑(k,n,m) has the same
property as a function ofm at m50. Hence the expressio
~50! may be used on the right-hand side of Eq.~C1! for small
positivem, up to an error ofO(m3). Inserting the appropriate
polynomials for momenta in the interval (n13m)/4,k
,min@3(n2m)/4,12(3n1m)/4# we obtain

Ap12
(2) ~k,m!5(

r 50

p S p11

r 11 D ~11m!r 12mp2r

3Qr 12S k1m/2

11m D1O~m3!, ~C2!

which holds for allk and smallm.
The following definitions will help keep the notation com

pact. LetP be any ofA(1), A(2), B(2), A(3). In addition to the
-

polynomials Pp(x,y), we define P̃p(x,y)5Pp(x,y)
1cp21(1,y), and introduce their generating functions

P~x,y,z!5 (
p52

`

Pp~x,y!~2z!p, ~C3!

P̃(a)~x,y,z!5P~x,y,z!2
z~12y!

2
1

1

2
ln

12yz

12z
. ~C4!

Now we are ready to collect the relations between E
~B4! and~B5! and between Eqs.~B8! and~B3! that Eq.~61!
provides~see Appendix B!. Settingx5k/n, y5m/n, ands
51/n in these relations, we obtain~for arbitrarys)

Ãp12
(1) ~x,y!5(

r 50

p S p

r D ~s2y!r 12~2s!p2r Ãr 12
(1) S x

s2y
,
s21

s2yD ,

~C5a!

Ãp12
(1) ~x,y!1Ap12

(3) ~s2x,y!

5(
r 50

p S p

r D ~s2y!r 12~2s!p2r Ãr 12
(2) S x

s2y
,
s21

s2yD ,

~C5b!

B̃p12
(2) ~x,y!1Ap12

(3) ~s2x,y!

5(
r 50

p S p

r D ~s2y!r 12~2s!p2r Ãr 12
(3) S x

s2y
,
s21

s2yD ,

~C5c!

B̃p12
(2) ~x,y!1Bp12

(2) ~s2x,y!52cp11~1,y!2scp~1,y!,
~C5d!
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and other relations that are in fact implied by these. By
peated combination of Eqs.~C5! we find the important
equality

Ap
(1)~x,y!1Ap

(3)~x,y!5Ap
(2)~x,y!1Bp

(2)~x,y!. ~C6!

Furthermore, by settings52x in Eq. ~C5c! we immediately
obtain the explicit expression

Bp12
(2) ~x,y!52cp11~1,y!2xcp~1,y!. ~C7!

In terms of generating functions our results so far can
expressed as

A(2)~x,y,z!5Q0S 4x22

11y
,
~11y!z

11yz D1O~y3!, ~C8!

Ã(1)~x,y,z!5~12sz!Ã(1)S x

s2y
,
s21

s2y
,
~s2y!z

sz21 D ,

~C9!

Ã(1)~x,y,z!1Ã(3)~s2x,y,z!

5~12sz!Ã(2)S x

s2y
,
s21

s2y
,
~s2y!z

sz21 D , ~C10!

B̃(2)~x,y,z!5~12sz!B̃(2)S x

s2y
,
s21

s2y
,
~s2y!z

sz21 D
5

xz

2
ln

12yz

12z
, ~C11!

Ã(3)~x,y,z!5B̃(2)~x,y,z!

1~12sz!Ã(3)S s2x

s2y
,
s21

s2y
,
~s2y!z

sz21 D . ~C12!

We proceed to determineA(3). First we obtainA(3)(x,0,z)
from Eq. ~C10! at y50 by inserting the expansion~C8! and
d
e
k

e

15512
-

e

differentiating with respect tos; we then sets51, so that the
error term vanishes. This yields an expression
dA(3)(x,0,z)/dx, which we integrate with respect tox, using
A(3)(3/4,0,z)50. This result forA(3)(x,0,z) is used in Eq.
~C12! with s51, which yieldsA(3)(x,y,z) for arbitraryy,

A(3)~x,y,z!

5
~12yz!~4x2123y!

2~12y!
Q0S 4x2222y

12y
,
~12y!z

12yz D
2

~123y!z12

4
Q1S 4x2222y

12y
,
~12y!z

12yz D
2

~12y!~12z!z

2~12yz!
Q̇1S 4x2222y

12y
,
~12y!z

12yz D . ~C13!

The dot indicates derivative with respect to second argum
Next we deriveA(1). First we obtainA(1)(x,0,z) from Eq.
~C10! at s51 andy50, using Eq.~C8! at y50. This result
for A(1)(x,0,z) is used in Eq.~C9! with s51, which thus
yields A(1)(x,y,z) for arbitraryy,

A(1)~x,y,z!

5
~12yz!~323y24x!

2~12y!
Q0S 4x2212y

12y
,
~12y!z

12yz D
1

~123y!z12

4
Q1S 4x2212y

12y
,
~12y!z

12yz D
1

~12y!~12z!z

2~12yz!
Q̇1S 4x2212y

12y
,
~12y!z

12yz D
1B(2)~x,y,z!. ~C14!

Finally, A(2)(x,y,z) is obtained from Eq.~C6!. These results
can be rearranged into Eqs.~63!–~65!.
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