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Magnetic field dependence of the threshold electric field in unconventional charge density waves
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Many experiments suggest that the unidentified low-temperature phas¢ REDT-TTF),KHg(SCN), is
most likely unconventional charge density walBCDW). To further extend this identification we present our
theoretical study of the threshold electric field of UCDW in a magnetic field. The magnetic field-temperature
phase diagram is very similar to those indavave superconductor. The optical conductivity shows clear
features characteristic to both UDW and magnetic field. We find a rather strong field dependence of the
threshold electric field, which shows qualitatively good agreement with the experimental data.
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. INTRODUCTION parallel to the one im-wave superconductoré;® where the
Pauli paramagnetism or the Zeeman energy dominates the
In the quasi-one-dimensional and quasi-two-dimensionaiagnetic interaction. Also it is known that in a magnetic
systems the normal Fermi-liquid state is destroyed due to thiteld parallel to the conducting chain directidim order to
quasiparticle interaction at low temperature and enters intavoid the orbital effegtthe UCDW splits into two regimes:
one of four canonical states with energy gap: singlet superthe low-field regime wheré\(k,r) is uniform in space and
conductor, triplet superconductor, charge density wavehe high-field region whereA(k,r) varies periodically in
(CDW), and spin-density wavéSDW).1? space®!’In the first regime we shall show that the behavior
However since the discovery of heavy fermion superconof UCDW is exactly mapped to the one @¢fwave supercon-
ductors, organic superconductors, hibhsuperconductors, ductor when the Pauli paramagnetism or the Zeeman energy
and SgRuQ,, this simple picture has to be necessarily modi-dominates the magnetic interactibht> The second regime
fied. First of all, most of these new superconductors are unthat corresponds to Fulde-Ferrell-Larkin-Ovchinnikov
conventional or nodal. The quasiparticle spectrum has n¢FFLO) statel®'®the mapping tad-wave superconductd®
energy gap> Similarly some of the new CDW’s and is not exact in general. In particular, the phase diagram for
SDW'’s should be unconventional with no energy §ape-  the quasi-one-dimensional UCDW will be different from the
cently d-density wave state competing with superconductiv-one expected for quasi-two-dimensiortivave supercon-
ity has been proposed to elucidate the phase diagram of cductors.
prate superconductofsOne of the signatures of these new  The object of the present paper is to extend the early
states is insulating or semiconducting behavior but withoutinalysis of UCDW and its threshold electric fieldin the
clear energy gap. We shall call these new states unconvepresence of a magnetic fietdlAlso, for simplicity, we focus
tional CDW (or UCDW) and USDW. on the Zeeman splittingor the Pauli paramagnetic effect
Recently two of u$ have studied the thermodynamics due to an external magnetic field. Also, we limit ourselves to
and the optical response of USD.The thermodynamics the case wherd (k,r) is independent of the space coordi-
is very similar to the ones inl-wave superconductofS. nates, where the thermodynamics of UCDW is the same as
As to real systems, the low-temperature phasehe one ind-wave superconductors. Then we can borrow the
(LTP) of «-(BEDT-TTF),KHg(SCN), abbreviated as known results for the thermodynamics. These predictions can
a-(ET), has not been clearly understood yet, where BEDT-be readily tested by thermodynamic and scanning tunneling
TTF is bigethylenedithigtetrathiafulvalené!™** «-(ET), microscope measurements. The spin-lattice relaxation is
salts can be separated into two groups: one superconductimyaluated showing clear features of the effect of magnetic
and another with this mysterious LTP. The LTP does noffield.
exhibit x ray or nuclear magnetic resonance signals charac- As to the electric conductivity we study the optical con-
teristic to conventional CDW or SDW and this property is ductivity. At low temperature a clean optical gap develops
naturally born out from the UDW model. This property is below w<2ugH, which is smeared due to the possible ther-
considered as hidden order in the literatifeurther the re- mal excitations at higher temperature. The divergent peak
sponse of the LTP in a magnetic field suggests that it is notharacteristic to the gap maximmemains sharp.
SDW but more likely a kind of CDW. As we shall show later, Then we shall consider the nonohmic conduction in
the phase diagram of UCDW in a magnetic field is veryUCDW. Earlier we have constructed the phase Hamil-
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tonian for UCDW in the absence of magnetic field. Indeed,
the data for the threshold electric field of
a-(BEDT-TTF),KHg(SCN), are available both as a func- !
tion of temperature and magnetic fiéftP* Earlier we have §oo
compared our theoretical result for the threshold electric field &,
to the one obtained in Ref. 23 as a function of temperature < 0s
and we find a reasonable agreement if the three-dimensionaS
weak-pinning limit applie$? Qe
In the present paper we analyze the threshold electric-field o=
data from Ref. 24 foH=0 T andH=1 T as a function of
temperature. Again we obtain reasonable agreement. o>
These together with the magnetic phase diagram, the
threshold electric field bothll=0 T and 1 T provide us the
convincing evidence that the LTP in(ET), salts is UCDW. : 06

h/Axp T
Il. PHASE DIAGRAM, DENSITY OF STATES, / /Te
AND SPIN-LATTICE RELAXATION RATE FIG. 1. Stereograph of the order parameter in the reduced tem-

As a model we consider a quasi-one-dimensional interacqDerature and field plane. The dotted line denotes the metastability
q ine above which the normal state becomes local minimum of the

ing electron system described by the following Hamitonian:free energy.

.4

H=2 [s(k)—a,uBH]a,:Uak,g curs at smaller field approaching from the normal state than
k.o quitting the DW phase with increasing field. The presence of
1 5 the first-order transition requires that the coefficient of the
+ v 2 V(k,k’,q)a;+qvgak,gak+,_qlg,ak,,g, , lowest-order term ofA in the grand canonical potential van-
k,k’,,q ishes:
oY) —r ih 0 3
: . . "N+ —|=
wherea,fﬁ anday , are, respectively, the creation and anni- 2 2@T ’ ©

hilation operators of an electron of momentinand spino,

ug is the Bohr magneton, and is the applied magnetic Which determines the bicritical point ab/T~1.91, T
field, which is assumed to be parallel to the conducting chairF 0.56T o, andh=0.51A4,. By exceedingl'=0.56T, the

in order to avoid the orbital effect/ is the volume of the transition becomes second order at the bicritical point. The
sample, and the kinetic-energy spectrum on an orthorhombigecond-order phase diagram is given by

lattice is given by
1
v —), (4)

=ReV >

T
(k)= —2t,cogksa) — 2t cog kyb) — 2t.cogk,C) — u, — In( .
2) Teo

wheret,>ty,t.. In the second term of Eq1) we consider whereT, is the transition temperature htmagnetic field. It

the interaction between on site and nearest neighbor elegs worth noting that the phase diagram is modifiedTat
trons as in Ref. 8. By moving from Bloch space to Wannier<0.56T ., and h~0.51A o, because of the possibility of the
space, the Wannier function is well localized, leading to aFFLO regime what we excluded here for simplicity. The or-
significant dependence of the interaction matrix element oler parameter as a function ®fand h is shown in Fig. 1.

the incoming electron momenkaandk’. As a result the gap  This phase diagram belongs to UCDW while for USDW it is
depends on the quasiparticle momentum likk(k)  completely different as in the case of conventional CDW and
=A cospk), for example. The phase diagram is the same agDW. In a conventional SDW the effect of the Zeeman term
the one in ad-wave superconductdt without the FFLO s completely canceled it 22due to spin flop: the spins are
state. AtT=0 a first-order transition occurs to the normal oriented perpendicular to the magnetic field because of the
state ath=0.561y,, where Ay, is the zero-field zero- anisotropy of the spin space. Since in the case of USDW the
temperature order parameter ame ugH. The value of the spin susceptibilit§ retains the anisotropy found in conven-
gap is 0.9, at the transition point. With decreasing field, tional SDW, the Pauli term has no effect on USDW. Conse-
the transition occurs dt=0.41A,, and the gap jumps from quently the transition temperature is not expected to change.
zero to 0.9 . For T<0.56T, (Tq is the transition tem- The only field effect is due to the orbital effect, which we
perature ah=0) the transition remains first order, and hys- ignore in the present paper. The effect discussed in Ref. 29
teresis is observable somewhere between QWA ,, may be of importance, but this is beyond the scope of the
<0.56. In this region, the normal state becomes local minipresent paper.

mum of the free energy, and depending on the direction of The quasiparticle density of stat€30S) averaged over
the change of the external field, the first-order transition octhe spin is obtained &%

1+ ih
2 27T, B
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FIG. 2. The density of states is shown as a functiofcbf for FIG. 3. The spin susceptibility is shown as a function of the
h/A=0 (solid line), 0.2 (thin dotted ling, 0.4 (dashed ling 0.6 reduced temperature foWA=0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.52,
(dashed-dotted lineand 0.8(thick dotted ling. and 0.55 with endpoints from right to left. The dashddtted line

represents(T,h) along the secondirst-) order phase boundary.

1
N(E)= i[p(E+ h)+p(E—h)], (5 one forR(0,h). In the low temperature and small magnetic
field limit, x(T,h) is approximated &8
wherep(E) is the density of states in the absence of mag-

netic field, and is given By p(E)/po(0) h?

. 2In(2) —+ ——, =<1,
= (2|E|/w|ADK(|E[/A]) if |E|<|A], and p(E)/pe(0) X(T.h) D3 aTh T
=(2/7)K(|A|/|E|) if |E|>|A]|. K(2) is the complete elliptic =1 h (10
integral of the first kind. The density of states per spin is Xo o ?>1.
00

given by p(E=xh), where the upper and lower sign belongs

to down and up spins, respectively. Asncreases, the valley . D .
in the averaged DOS at the Fermi surface is filled in. AIso,The spin susceptibility is shown as a function of the reduced

the divergent peaks at A split into four new peaks at A temperature and magnetic field in Figs. 3 and 4hAtO, the
+h. Interestingly, ah=A the density of states is divergent low-temperature behavior of the relaxation rate is identified

at the Fermi surface, resulting in an unexpected change
slope in the spin-lattice relaxation rate, for example. These
properties can be seen in Fig. 2.

As a direct use of the obtained density of states per spir
the spin susceptibility and the spin-lattice relaxation rate cai
be evaluated from:

x(T,h) 1 (= p(E+h)+p(E—h) E
=—| dE sech—, (6
Xo 4T Jo Po 2T ©

x(T,h)/xo

Ry 2T sech—=. (7)

A 2

,h * h —h
R(T,h) 1f P EFMp(E=h)  E

At T=0 they are given by the following formulas:

Oh) 2h [h
x( ):—K(—)~h,
Xo mA T\ A

8

0.6

9) FIG. 4. The spin susceptibility is shown as a function of the
magnetic field forT/T,,=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 8, and
0.95 with endpoints from right to left. The dashédbotted line
which results in a linear magnetic field dependence almost iaccounts for x(T,h) along the second-(first-) order phase
the entireh range for the spin susceptibility and a quadraticboundary.

R(Oh) 2hK(hA))2 )
RN _( 7TA ~h !
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FIG. 5. The spin-lattice relaxation rate is shown as a function of ~FIG. 7. The real part of the complex conductivity in theirec-
the reduced temperature fafA=0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, tion with unconventional gap in thg direction is shown ath

0.52, and 0.55 with endpoints from right to left. The dastaatteg ~ =0.3Aqo for T/T.=0 (dotted ling, 0.25(dashed ling 0.5 (dashed-
line represent®(T,h) along the secondfirst-) order phase bound- dotted ling, and 0.75solid line). Note that the same curves belong
ary. to the quasiparticle part af,,(w) by changingv, to vg.

7T\ 2 The sudden change of slope close to the actual transition
(T) , (1)  temperature occurs at=A(T,h) when a new divergence
steps into the integral.

R(T,0) 1
Ry 3

while ath=0 close toT.y the small peak starts as

I1l. OPTICAL CONDUCTIVITY
R(T,0) T . - . . .
R =1+0.85\/1— 7o (12 The optical conductivity contains relevant informations
N c0 about the quasiparticle and collective excitation spectrum of

which can be regarded as the reminiscent of the divergerff€NSity waves. Here we explore the temperature and mag-
peak in Maniv's expressidh for the relaxation rate of con- netic field dependence of the quasiparticle part of the con-

ventional density waves. At arbitrafiyandh, the spin-lattice  ductivity without the effect of impurities. In the chain direc-
relaxation rate is evaluated numerically, and is shown irfion the optical conductivity consists of a Dirac delta peak at
Figs. 5 and 6. zero frequency due to the collective contributions as it is the

case in conventional DW, if no damping is present for the
electrons. In the perpendicular directions the quasiparticle
contribution gives to total optical conductivity, since no col-

lective contribution is expected in this case. The regular part
of the optical conductivitywithout the Dirac deltais ob-

1.2

tained as
0.8
z 1—tanhh/T)?
g Res'29(.h) = Rer!%5 ) o
= 08 1—tanh w/T)?tank(h/T)?
E« (13
0.4

where Re's§%(w) is the optical conductivifyat h=0 in
which the magnetic field enters only througi{T,h), hence

02 the explicitly magnetic field dependent term can be sepa-

rated.
oL X = - - - ik We show the optical conductivity in Figs. 7, 8, 9 for gap
' ' h/Aoo ' ' ' functions A(k)=A sin(bk) or A(k)=A cospk) for T/T,
=0, 0.25, 0.5, and 0.75 &=0.3Ay,. This particular mag-

FIG. 6. The spin-lattice relaxation rate is shown as a function ofn€tic field value is chosen because it is in the bulk of the
the magnetic field fof/T,,=0, 0.3, 0.4, 0.5, 0.6, 0.7, 8 and 0.95 phase diagram so in this respect the general behavior of the

with endpoints from right to left. The dashédotted line accounts ~ optical conductivity can be seen in the figures. Also as we
for R(T,h) along the secondfirst-) order phase boundary. will show later, the threshold electric field belonging to this
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FIG. 10. Stereograph of the condensate density in the reduced

FIG. 8. The real part of the complex conductivity for a sinu- temperature and field plane. The dotted line denotes the metastabil-

soidal gap in they direction is shown ah=0.3Ay, for T/T,=0

(dotted ling, 0.25(dashed ling 0.5 (dashed-dotted lineand 0.75
(solid line).

ity line above which the normal state becomes local minimum of
the free energy.

Dirac delta peak is expected to be broadened and more im-

particularh value describes well the experimentally obtainedportantly to move to the pinning frequency as in conven-

threshold electric field ati=1 T.
At T=0, h#0 a clean optical gap=2h) develops in

tional DW.
The logarithmically divergent peak ab=2A(T,h) in

the optical conductivity because the optical transfer from ocFigs. 7 and 8 is the consequence of the fact that the distance

cupied to empty states requires a minimum df @nergy.

of the divergent peaks in the density of state per spin is

Consequently, the sum rule seems to be violated since a I§¥actly 2A(T,h). However, this peak in Fig. 9 is sup-
of optical weight is missing below the optical gap. But the pressed _because of the zero velocity of the electrons at the
missing oscillator strength is transferred to the weight of thed@P maximum.

Dirac delta at zero frequency even Bt 0. As a result, in

real systems where impurities are present, we expect a broad- |\, pHASE HAMILTONIAN AND THE THRESHOLD
ening of the Dirac delta into a Lorentzian like curve domi-

nated at higher frequencies by the broadened quasiparticle

contribution(with no sharp peaksin the chain direction, the

35 T T T T

Reo 2 (w)4Ago/e? Nov?

ELECTRIC FIELD

To study the threshold electric-field phenomenon, the pin-
ning of the density wave is necessary. The simplest source of
pinning is to consider the effect of nonmagnetic impurities as
in Ref. 21. One consequence of the impurities is the finite
lifetime of quasiparticles as it was mentioned in the preced-
ing section. Another important effect of the pinning is the
finite threshold electric field at which the sliding motion of
the condensate sets in. It is the most convenient to formulate
the threshold electric field in terms of the phase Hamiltonian,
which is given a3h3?

. |1 L(0D\2 L [a®\2 D)2
H(q))ZJ d°r ZNOf Vg X +up W +ug 7
b\ 2
+ = —4ve€ED |+ Vi (P) ¢, (14

where Ny is the density of states in the normal state at
the Fermi surface per spin,f=pg(T,h)/ps(0,0)=1

FIG. 9. The real part of the complex conductivity for a cosinu- — x(T,h)/xo wherepg(T,h) is the condensate densityand

soidal gap in they direction is shown ah=0.3Ay, for T/T.=0

(dotted ling, 0.25(dashed ling 0.5 (dashed-dotted lineand 0.75
(solid line).

E is an electric field applied in thedirection. Herevg, vy,
and v, are the characteristic velocities of the quasi-one-
dimensional electron system in the three spatial directions.
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For UDW the condensate density is the same as the supe!
fluid density ind-wave superconductors and is shown in Fig.
10.

We may think of Eq.(14) as a natural extension of the

(&)

Fukuyama-Lee-RicéFLR) Hamiltoniari®34for UCDW and § .
for T#0, H#0, and for three spatial directions. v%
The pinning potential is obtained as =
<
~
8V,oV,N3 =
Vimp(®) = = —— = 3 cos[2QR; + ®(RIA(T.) W
1
fll BIA(T,h)x+h]
— —_ -
X .2 tan 5
BLA(T,h)x—h] : :
+tanhf h/&oo 00 T/To
X E( /—1—x2)[K(x)— E(x)]dx (15) FIG. 11. The threshold electric field in the strong pinning limit

is plotted as a function of the reduced temperature and field. The

whereR; is an impurity siteK (z) andE(z) are the complete dashed line is the threshold field belonging to the metastability line.

elliptic integrals of the first and second kind, respectively. In "

obtaining Eq. (15) we assumed a nonlocal impurity in theh, T<Aqrange.” For T>0.56T ¢, along the second-

potential?! order phase boundary the threshold electric field is obtained
from Eq. (18) in the A—O0 limit as

U(Q+a)=Vo+ > Vicodq;8). (16) rep' (L4 1N
1=y E3(T,h) 2 2aT) T s
Then following FLR333% in the strong pinning limit the ES(0,0 N ih |\ Agy4x0.5925 (20
threshold electric field aT =0 is given by 2" o0 T
2Kg n; 16 A(Oh) (1 which is divergent at the bicritical poirfpossibly tricritical
E3(0h)= - FNgVOVy_ oh) E(V1-x?) with the FFLO statg This divergence is not an artifact be-
™ ps(OR) Jhvag cause the vanishing denominator coincides with the condi-
X[K(x)—E(x)]dx, (17)  tion for the presence of first-order phase boundary, as it was
already discussed in EB). As a result, the threshold elec-
and for general temperature it is obtained as tric field close to the bicritical point is given by
ET,h)  pg0,0 A(T,h) 1 ER(Th) 112
s - S ~1.91-h/T @
ES0,00 ps(T.h) Ay 05925 E$(0,0
11 B[A(T,h)x+h] approaching along the second-order phase boundary. The
Xf 5( > presence of FFLO state would not affect this behavior since
0 it may appear below 0.58,, consequently this new phase
B[A(T,h)x—h] does not change quantities evaluated along the second-order
+tanhf)E(\/1—x2) phase boundary. We show the threshold electric field as a
function of the temperature and the magnetic field in Fig. 11
X [K(x)—E(x)]dx, (18) in the strong pinning limit.

The weak-pinning limit is more appropriate for high qual-

where 0.5925 is the value of the integral in the second line ofty crystals. Then we obtain for a three-dimensional system,
Eq.(18) at T=0 andh=0.

4
At low temperature using Eq10), ES is well approxi- EY(T,h) :( E?(T,h)) 22
mated by EVY(0,0 | E3(0,0
h? h E‘{"(T,h) is plotted as a function of temperature and mag-

1+2In(2) —+ » =<1, netic field in Figs. 12 and 13, respectivel

EX(T,h Ao 4TAg T gs. \d Lo, resp Y-
TS( ' )% ps(0.0 = 00 00 At small but increasing fields, the enhancement of the
EF(0,0 ps(T.h) 1+ h E>1 threshold electric field at the transition temperature relative
Ago’ T to the T=0 value becomes smaller due to the initial linear

(19 decrease of the condensate density vehsasT=0. At low

155119-6



MAGNETIC FIELD DEPENDENCE OF THE THRESHOLD. .. PHYSICAL REVIEW B5 155119

15

EY(T,h)/E¥ (0, h)
Er(mV/cm)

0 1 1 1 L L 1 1 1 1 1 1 1 1 L 1 L L L
0 0.1 0.2 0.3 0.4 0.5 06 0.7 038 0.9 1 O0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

T/Tew T/To

FIG. 12. The threshold electric field in the weak pinning limitis ~ FIG. 14. The theoretical and experimental threshold electric
plotted as a function of the reduced temperaturehfaxy,=0, 0.1, field are plotted as a function of the reduced temperature. The mea-
0.2, 0.3, 0.4, 0.45, 0.5, 0.52, and 0.55 with endpoints from right tesuredE+ in the a-(ET), salt$*is shown forH=0 T (open circles
left. The circle represents the end of the 0.4A,, curve, whichis andH=1 T (crosses The solid(dashed line represents the theo-
very close to then=0.3A,; one. The dashed line accounts for the retical curve ah/Ay=0 (h=0.3Ay).
threshold field along the second-order phase boundary while the

dotted line accounts for the one along the first-order phase bounogl T, the agreement at low temperatures is qualitatively

ary. good with theh=0.3A(, curve as far as the increasing ten-
dency is concerned, while close to the transition temperature
temperatureEY(T,h) increases witth almost linearly. Fur-  the matching is remarkable again. By fitting our theoretical

ther EY(T,h) diverges forT=0.56T, when the magnetic CUrves to the experimental data, the only fitting parameter,

transition changes from second order to first order. E+(0,0) was determined first from t¢=0 case. Then by
As a direct application of the theory to real materials, wechanging the magnetic fielé,=0.3A4o was found to be the

present the threshold electric field ta «-(ET), salts in closest to the measured threshold electric field atl T. As

the presence of magnetic field together with our prediction irf FéSult,Aqo turns out to be of the order of a few kelvins,
Fig. 14. At zero field the agreement is excellent. At  Which falls of the same order of magnitude as the transition

temperature T.~8 K). The remaining discrepancy of the
numerical values may arise from the neglect of the Fermi-
liquid renormalization of the Bohr magneton.

At the same time, the strortd dependence of the thresh-
old electric field aff=2.2 K referred to in Ref. 23 appears to
be consistent with the present result, though no details are
available. Clearly, these are the only available data at the
moment, so we should really need more experiments in this
field to make more decisive statements. Unfortunately, the
present result does not apply fofF<0.56T.,, and h
=0.51A o due to the presence of the FFLO regime. Never-
theless, the present result can be tested in a wide range of the
H-T phase diagram of the LTP ia-(ET), salts. The effect
of the FFLO state and the related threshold electric field is
beyond the scope of the present paper.

60

501

401

EY (T,h)/EY (T,0)

0 0.1 0.2 0.3 0.4 0.5 V. CONCLUDING REMARKS

Ay In this paper we have extended our earlier analysis on
FIG. 13. The threshold electric field in the weak pinning limit is Unconventional density V\{a\&m the presence of magnetic
plotted as a function of the magnetic field f6fT,,=0, 0.2, 0.3, field. The magnetic field is introduced as the Zeeman split-
0.4, 0.6, and 0.7 with endpoints from right to left. The dashed lineting. The phase diagram is found to be identical to the one in
accounts for the threshold field along the second-order phas@d-wave superconductdtwithout the FFLO state. The den-
boundary while the dotted line accounts for the one along the firstsity of states averaged over the spins exhibit four sharp peaks
order phase boundary. at = A=*h instead of the usual peaks atA. The enhance-
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ment of the spin susceptibility in the presence of magnetisalts excludes all the possible non-density-wave like ground
field clearly shows the destructive effect of the applied fieldstatesE in conventional CDW and SDW theories is not in
and can be readily accessible from Knight-shift measureagreement with experiments an-(ET), salts. The former
ments. The cusplike behavior of the spin-lattice relaxatiorpredicts a divergent peak at the transition temperature while
rate close tdl; is a unique property of this system together the |atter gives an almost temperature-independent threshold
with the h* dependence &=0. The optical conductivity in  electric field. On the other han&; in UCDW describes the

the perpendicular directions properly distinguishes betweeyperimental data oa-(ET), salts as it can be seen either in
the possible gap structures. The appearance of the clean oRef. 21 or in Fig. 14. The stronlg dependence of threshold
tical gap (~h) with the applied field at very low tempera- electric field agrees well with experimental results, which

tures differs from the conventional density wave scenarioyrely strengthen our proposal that the LTRaefET), salts
where the magnetic field has no effect on the optical gap fognould be UCDW.

h<2A in either perpendicular directions. The present model
predicts very strondd dependence of the threshold electric
field, even divergent behavior at the bicritical point, which
should be readily accessible experimentally.

The so-called hidden order, the missing of any obvious We would like to thank Bojana Korin-Hamzior useful
long-range order together with robust thermodynamic feadiscussions on possiblé dependence of the threshold elec-
tures of phase transitions makes UCDW a very likely canditric field. We thank also Takahiko Sasaki for providing us
date for the ground state of the (ET), salts. Moreover the with the experimental data. This work was supported by the
destruction of the UCDW phase in the presence of applietHungarian National Research Fund under Grants Nos.
magnetic field coincides with experimental observatitns. OTKA T032162 and T037451, and by the Ministry of Edu-
The detection of the threshold electric field in the(ET),  cation under Grant No. FKFP 0029/1999.
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