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We use a stochastic series-expansion quantum Monte Carlo method to study the phase diagram of the
one-dimensional extended Hubbard model at half-filling for small to intermediate values of the on-siteU and
nearest-neighborV repulsions. We confirm the existence of a novel, long-range-ordered bond-order-wave
~BOW! phase recently predicted by Nakamura@J. Phys. Soc. Jpn.68, 3123 ~1999!# in a small region of the
parameter space between the familiar charge-density-wave~CDW! state forV*U/2 and the state with domi-
nant spin-density-wave~SDW! fluctuations forV&U/2. We discuss the nature of the transitions among these
states and evaluate some of the critical exponents. Further, we determine accurately the position of the multi-
critical point, (Um ,Vm)5(4.760.1,2.5160.04) ~in energy units where the hopping integral is normalized to
unity!, above which the two continuous SDW-BOW-CDW transitions are replaced by one discontinuous
~first-order! direct SDW-CDW transition. We also discuss the evolution of the CDW and BOW states upon hole
doping. We find that in both cases the ground state is a Luther-Emery liquid, i.e., the spin gap remains but the
charge gap existing at half-filling is immediately closed upon doping. The charge and bond-order correlations
decay with distancer asr 2Kr, whereKr is approximately 0.5 for the parameters we have considered. We also
discuss advantages of using parallel tempering~or exchange Monte Carlo!—an extended ensemble method that
we here combine with quantum Monte Carlo—in studies of quantum phase transitions.

DOI: 10.1103/PhysRevB.65.155113 PACS number~s!: 71.10.2w, 71.27.1a, 71.30.1h, 05.30.2d
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I. INTRODUCTION

The one-dimensional~1D! extended Hubbard model ha
been extensively studied in recent years, both as an im
tant theoretical test bed for studying novel concepts in
~e.g., spin-charge separation!, methods, ~e.g., quantum
Monte Carlo, exact diagonalization, and the density-ma
renormalization group! and as a useful model for sever
classes of quasi-1D materials including copper-oxide mat
als related to the high-Tc cuprate superconductors,1 conduct-
ing polymers,2 and organic charge-transfer salts.3 General 1D
extended Hubbard models differ from the standard Hubb
model, which includes only an on-site electron-electron
teractionU, by the addition of longer-range interactions th
are necessary to explain several experimentally observe
fects in real materials, e.g., excitons in conducting polyme
The simplest extended Hubbard model~henceforth, EHM!,
on which we focus in this paper, consists of adding a near
neighbor interactionV. If the interaction parameters are a
sumed to arise solely from Coulomb interactions, bothU and
V are repulsive~positive!, and U.V. However, viewed as
phenomenological parameters incorporating the effects
additional~e.g., electron-phonon! interactions, the ranges o
these parameters can be much broader, includingU,V,0.
The Hamiltonian is
0163-1829/2002/65~15!/155113~18!/$20.00 65 1551
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whereci ,s
† (ci ,s) creates~annihilates! an electron with spin

s at site i, t is the hopping integral between adjacent si
andm is the chemical potential. Henceforth we sett51 and
express the interaction parametersU andV in units of t.

The ground-state phase diagram of the EHM at half-filli
(m50) has been extensively studied using both analyt
and numerical methods. Despite the apparent simplicity
the model, the phase diagram shows surprisingly rich str
ture. In the limit V50 ~the standard Hubbard model!, the
Hamiltonian~1! can be diagonalized exactly using the ge
eralized Bethe ansatz.4 For VÞ0, the model has been studie
using perturbative methods and numerical simulations.5–15

Broadly, the phase diagram consists of insulating phases
dominant charge-density-wave~CDW! and spin-density-
wave ~SDW! characters and metallic phases where sing
and triplet superconducting correlations dominate. In
physically relevant region for ‘‘Coulomb-only’’ parameter
(U,V.0), the system is in a CDW phase for largeV/U and
in a state with dominant SDW fluctuations for smallV/U.
The CDW phase has broken discrete symmetry, charac
©2002 The American Physical Society13-1
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SENGUPTA, SANDVIK, AND CAMPBELL PHYSICAL REVIEW B65 155113
ized predominantly by alternating doubly occupied a
empty sites and exhibits long-range order. The SDW ph
on the other hand, has continuous symmetry and he
cannot exhibit long-range order in 1D~by the Mermin-
Wagner theorem!. Instead, it is a critical state characteriz
by the slow~algebraic! decay of the staggered spin-spin co
relation function. Indeed, in the limitU@1, U@V, the model
reduces to an effective Heisenberg model withJ;1/(U
2V). For smallU and V (U,V!1), the boundary betwee
the CDW and the SDW phases was predicted to be aU
52V using weak-coupling renormalization-group techniqu
~‘‘g-ology’’ !.6,7 Strong-coupling calculations using secon
order perturbation theory also gave the same phase boun
(U52V) between the CDW and the SDW phases for largeU
and V (U,V@1).5,6 For intermediate values of the param
eters, the phase boundary was found to be shifted slig
away from theU52V line such that the SDW phase is e
hanced, as shown by quantum Monte Carlo simulations8,9 as
well as strong coupling calculations using perturbat
theory up to the fourth order.12 Moreover, the nature of the
transition is quite different in the two coupling region
changing from continuous~second-order! in the weak-
coupling limit to discontinuous~first-order! in the strong-
coupling limit. Estimates for the location of the multicritica
point, where the nature of the transition changes, h
ranged fromUm.1.5 toUm.5 ~andVm'Um/2).8–11,14De-
spite the broad uncertainty in the actual value of the tricr
cal point, the phase diagram was believed to be well un
stood.

Recently, however, by studying the EHM ground-sta
broken symmetries using level crossings in excitation spe
obtained by exact diagonalization, Nakamura16 has argued
for the existence of a novel bond-order-wave~BOW! phase
for small to intermediate values ofU andV in a narrow strip
between the CDW and the SDW phases. The BOW phas
characterized by alternating strengths of the expecta
value of the kinetic-energy operator on the bonds. It is p
dicted to be a state where the discrete~twofold! symmetry is
broken and should hence exhibit true long-range order.
kamura thus argues that the transition between CDW
SDW phases in this region is replaced by two separate t
sitions: ~i! a continuous transition from CDW to BOW; an
~ii ! a Kosterlitz-Thouless spin-gap transition from BOW
SDW. The BOW region vanishes at the multicritical poi
beyond which the transition between CDW and SDW pha
is direct and discontinuous. A schematic phase diagram
cluding Nakamura’s BOW state is shown in Fig. 1.

Considering the long history of the 1D EHM and the lar
number of studies of theU'2V region with a variety of
analytical and numerical tools, the proposal of a new phas
certainly remarkable. Importantly, the level-crossing meth
used by Nakamura cannot by itself exclude the conventio
scenario of a direct SDW-CDW transition for the who
range ofU,V.0; a level crossing corresponding to this tra
sition was also found16 between the SDW-BOW and BOW
CDW crossing curves. The position of the BOW-CDW lev
crossing is, however, in closer agreement with the stro
coupling result for the vanishing of the CDW order, and th
was taken as evidence of a long-range-ordered BOW in
15511
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ground state for certain parameters. It is important to confi
this hitherto undiscovered phase using other methods.

To attempt this confirmation, we have used the high
efficient stochastic series-expansion~SSE! quantum Monte
Carlo method17–19 to study the EHM at half-filling in the
vicinity of U52V. This method allows us to probe directl
the spin-, charge-, and bond-order correlations in the gro
state of lattices with more than one hundred sites~up to 256
sites were used in this study!. Using finite-size scaling tech
niques for the various order parameters, we confirm the
istence of a BOW state with spin and charge gaps in a reg
very close to that predicted by Nakamura for smallU,V. We
also further improved the SSE simulations by applying
quantum version of the thermal-parallel-tempering sche
~or exchange Monte Carlo! ~Refs. 20–22! for simulations
close to and across the phase boundaries. This ‘‘quan
parallel tempering’’ greatly reduced the effects
‘‘sticking’’—where the simulation gets trapped in the wron
phase close to a phase boundary—and was found to be
ticularly useful for the discontinuous~first-order! direct
SDW-CDW transition. As a consequence, we were able
obtain a more accurate estimate for the location of the m
ticritical point (Um ,Vm) where the BOW phase vanishes a
is replaced by a first-order SDW-CDW transition line. As w
discuss below, we findUm54.760.1,Vm52.5160.04.

In order to investigate the possibility of soliton lattice
forming out of the long-range CDW and BOW states wh
doping away from half-filling, we have also carried out som
simulations of lightly doped systems. We find that in bo
cases the ground state is a Luther-Emery liquid, with a s
gap and slow algebraic decay (;r 2Kr, with Kr'0.5) of the
dominant CDW and BOW correlations.

The remainder of the paper is organized into four secti
and two appendixes. In Sec. II we briefly sketch the S
method and introduce the different observables we study
Sec. III we present the results of our simulations at ha

FIG. 1. Schematic ground-state phase diagram of the EHM
half-filling, as proposed by Nakamura. The CDW and BOW pha
are long range ordered~broken symmetry!, whereas the SDW phas
has no broken symmetry but exhibits an algebraically decay
spin-spin correlation function.
3-2
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BOND-ORDER-WAVE PHASE AND QUANTUM PHASE . . . PHYSICAL REVIEW B 65 155113
filling and discuss their interpretation. Doped systems
considered in Sec. IV. We conclude with a brief summary
Sec. V. In Appendix A we present some important details
the extension of the SSE method to allow efficient loop u
dates for fermions. We illustrate the advantages of
quantum-parallel-tempering scheme in Appendix B.

II. NUMERICAL METHODS AND OBSERVABLES

A. The SSE method and its fermion loop-update extension

The SSE method17,18 is a finite-temperature quantum
Monte Carlo method based on importance sampling of
diagonal elements of the Taylor expansion ofe2bH, whereb
is the inverse temperatureb5t/T. Ground-state expectatio
values can be obtained using sufficiently large values ofb,
and there are no approximations beyond statistical err
Recently, in the context of spin systems,19 an efficient
‘‘operator-loop update’’ was developed to sample the ope
tor sequences appearing in the expansion. The resu
method has proven to be very efficient for several differ
models.23–25 To apply the most efficient variant of SS
method to the EHM, we need to generalize the previo
operator-loop-update scheme to spinful fermions. This is
important extension, but because of its technical nature
have relegated our detailed discussion of it to an append

We have applied the SSE algorithm to the 1D EHM f
system sizes ranging fromN58 to 256 sites, with maximum
inverse temperaturesb chosen appropriately to isolate th
ground state. We have verified the correctness of the sim
tion code by comparing N58 results with exact-
diagonalization~Lanczos! results.

Although the operator-loop update is indeed significan
more efficient than previous local updates for sampling
the SSE configurations, we still have problems with ‘‘tra
ping’’ close to a first-order phase transition, i.e., the simu
tion can get stuck in the wrong phase very close to the c
cal point. There are also problems with slow dynamics
long-range-ordered phases with a broken discrete symm
~such as, BOW or CDW phases!. In order to overcome thes
problems we have developed a ‘‘quantum-parall
tempering’’ scheme—a generalization of the therm
parallel-tempering method20–22 commonly used to equili-
brate classical spin glass simulations. The method amo
to running several simulations on a parallel computer, us
a fixed value ofU and different but closely spaced values
V at and around the critical valueVc . Along with the usual
Monte Carlo updates, we attempt to swap the configurati
for processes with adjacent values ofV at regular intervals
~typically after every Monte Carlo step! according to a
scheme that maintains detailed balance in the space o
parallel simulations, as explained in Appendix B. In contr
with Ref. 22, we here find parallel tempering to be partic
larly useful in studying the first-order transition, where t
problem of trapping is the most pronounced. In Appendix
we also present a comparative example to illustrate the
provement obtained by parallel tempering.
15511
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B. Observables

In addition to the ground-state energy,E5^H&/N, the ob-
servables we study include the static structure factors
susceptibilities corresponding to the different phases~CDW,
SDW, and BOW!. The structure factors are given by

SSDW~q!5
1

N (
j ,k

eiq( j 2k)^Sj
zSk

z&,

SCDW~q!5
1

N (
j ,k

eiq( j 2k)^njnk&2^nj&
2,

SBOW~q!5
1

N (
j ,k

eiq( j 2k)^kjkk&2^kj&
2, ~2!

where

kj5 (
s5↑,↓

~cj 11,s
† cj ,s1H.c.! ~3!

is the kinetic-energy operator associated with thejth bond.
The corresponding static susceptibilities are given by

xSDW~q!5
1

N (
j ,k

eiq( j 2k)E
0

b

dt^Sj
z~t!Sk

z~0!& ~4!

and analogous expressions forxCDW(q) andxBOW(q). Since
all the phases mentioned have a period 2, the staggered s
ture factor and susceptibilities are the most important obs
ables. We define order parameters for the phases in term
the staggered structure factors

ma5ASa~p!/N, ~5!

wherea5 CDW, SDW, or BOW. We have also studied th
charge stiffness constantrc . It is defined as the second de
rivative of the internal energy per site,E, with respect to a
twist f ~Ref. 26!,

rc5
]2E~f!

]f2
, ~6!

under which the hopping term in the Hamiltonian~1! is re-
placed by

kc~f!52t(
j ,s

~e2 ifcj 11,s
† cj ,s1H.c.!. ~7!

The spin stiffness constantrs is defined by a similar expres
sion, with the hopping term now being replaced by

ks~f!52t(
j ,s

~e2 ifscj 11,s
† cj ,s1H.c.!, ~8!

with f↑52f↓5f. In the framework of the SSE method
the estimators for the charge and spin stiffness are give
terms of expectation values of squared winding numbers~see
Appendix A!.
3-3



-
ce

n
ou
n
-

ns

o
an

a
ra

ties
s no

of

be
ese
ties

ell

W
a
ns

lity
our

e

as
W
for

ged
k
lly

nce

c
nt

W
e

l-

t

SENGUPTA, SANDVIK, AND CAMPBELL PHYSICAL REVIEW B65 155113
III. RESULTS AT HALF-FILLING

As noted above, we have studied chains withN up to 256
with periodic boundary conditions.27 Typically, an inverse
temperature ofb52N was sufficient for the calculated prop
erties to have converged to their ground-state values, ex
in the case ofN5256, for which b54N was needed for
some quantities. In this section we first discuss our evide
for the existence of a long-range BOW phase, then
analysis of the continuous BOW-CDW and SDW-BOW tra
sitions for small (U,V), the discontinuous SDW-CDW tran
sition for large (U,V), and finally our determination of the
location of the multicritical point separating these transitio

A. Existence of the BOW phase

Plots of the variation of the staggered susceptibilities c
responding to the three different phases—CDW, SDW,
BOW—show the existence of strong BOW fluctuations in
region with V.U/2 in parameter space where Nakamu
predicted a BOW state. Figure 2 is one such plot forU54
and 1.7<V,2.3. In a long-range-ordered phase~BOW,
CDW!, the correspondingx(p) is expected to diverge with

FIG. 2. The variation withV ~at fixed U54) of the staggered
susceptibilities~CDW, BOW, and SDW, from the top! in the neigh-
borhood of the BOW phase predicted by Nakamura~the vertical
dashed lines show the predicted SDW-BOW and BOW-CD
boundaries!. The statistical errors are typically of the order of th
size of the symbols~slightly larger for theN5128 CDW at highV).
The scans forN516 and 32 were obtained in single paralle
tempering simulations, whereas those forN564 and 128 consisted
of two and four nonoverlapping runs, respectively.
15511
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increasing system, whereas the other two susceptibili
should converge to constants. In the SDW phase there i
long-range order but algebraically decaying correlations
both SDW and BOW nature; hencexSDW(p) andxBOW(p)
should both diverge here, but the BOW divergence should
much slower than in the long-ranged BOW phase. Th
behaviors are indeed seen in Fig. 2, with the susceptibili
for SDW, BOW, and CDW dominating in turn asV is in-
creased. The BOW-CDW phase boundary can be quite w
resolved, since it involves a standard second-order~continu-
ous! phase transition. On the other hand, the SDW-BO
boundary is more difficult to locate, for it involves
Kosterlitz-Thouless transition in which the spin gap ope
exponentially slowly as one enters the BOW phase,16 result-
ing in only a slow decay of the staggered SDW susceptibi
in the BOW phase for the system sizes accessible in
work.

Figure 3 shows ln@xa(p)# and ln@Sa(p)# vs ln@N# for the
parameters (U,V)5(4,2.14) for which the ground stat
should be inside the BOW phase. We find that bothxBOW(p)
andSBOW(p) diverge strongly with the system size, where
the structure factor and susceptibility corresponding to CD
have a maximum and then decrease with the system size
largeN. The SDW structure factor appears to have conver
for N5256 but the susceptibility still shows a wea
growth—in a spin-gapped BOW phase it should eventua
converge, too, but if the gap is very small the converge
occurs only for much larger systems. The growth withN seen
here is much slower thanN, which should be the asymptoti
behavior in an SDW phase for any spin rotationally invaria

FIG. 3. ln@x(p)# and ln@S(p)# vs ln@N# for the different phases a
U54, V52.14, and system sizesN up to 256. The dashed line in
the S(p) panel has slope 1.
3-4
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BOND-ORDER-WAVE PHASE AND QUANTUM PHASE . . . PHYSICAL REVIEW B 65 155113
1D system,28 and the growth slows with increasingN. Hence
an asymptotic divergence ofxSDW(p) can be excluded. The
dominant asymptotic characteristic of the ground state
clearly BOW. The system sizes considered are not la
enough forSBOW(p) to have reached the asymptotic beha
ior ;N expected if there is long-range order, which we w
explain further below. The very fast divergence ofxBOW(p)
is expected on account of the twofold degenerate BO
ground state. For finiteN this degeneracy is not perfect, b
an exponentially fast closing of the gap between the symm
ric and antisymmetric linear combinations of the two asym
totically degenerate symmetry-broken ordered states ca
expected, which would eventually causexBOW(p) to diverge
exponentially.

The most direct evidence for a long-range BOW com
from the the real-space kinetic-energy correlation functio

CBOW~r !5
1

N (
i 51

N

^kiki 1r&2^ki&
2. ~9!

As seen in Fig. 4, this correlation function oscillates w
period 2 and its magnitude decays considerably for sh
distances. For long distances there is a convergence
constant, nonzero magnitude, which is the same within
tistical errors forN5128 and 256. The significant enhanc
ment of the correlations at short distances explains the
viations from the expected asymptotic linear scaling of
integrated correlation function,SBOW(p), for the system
sizes shown in Fig. 3.

Further proof of the existence of the BOW phase is o
tained by looking for spin and charge gaps in this regi
Instead of calculating the gaps directly, which cannot ea
be done to high accuracy for large system sizes, we use
following indirect method: It is known28 that if the ground
state of a 1D system is gapless in the spin sector, the
tinger liquid parameterKs governing the asymptotic equa
time spin-correlation function isKs51.14 It has been further
shown29 that the slopeSSDW(q)/q gives Ks /p in the limit
q→0. Hence,SSDW(q)/q→1/p asq→0. On the other hand

FIG. 4. Real-space BOW correlation function atU54, V
52.14 for system sizesN5128 and 256.
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if the ground state has a spin gap,SSDW(q)/q→0 asq→0.
With this criterion, even a very small spin gap can be d
tected, since it is, in practice, sufficient to see th
pSSDW(q)/q decays below 1 for smallq to conclude that
KsÞ1 and hence that a spin gap must be present. Simila
for a ground state with no charge gap,pSCDW(q)/q→Kr as
q→0, whereas if the ground state does have a charge
SCDW(q)/q→0 as q→0. Unlike Ks , where the value is
fixed at 1 for spin rotationally invariant systems, the Lu
tinger liquid charge correlation parameterKr is a function of
U and V, and its precise value for givenU and V is not
known @except atV50 ~Ref. 30!#. Due to the logarithmic
corrections typical for 1D systems, it is very difficult to ob
serve numerically thatpSSDW(q)/q becomes exactly 1.31–33

Empirically, we have found that in the gapless case the va
1 is always approached from above~which is the case also
for spin systems32!, and hence the detection of the spin g
using this quantity is not hampered by the log corrections—
pSSDW(q)/q decays below 1 one can conclude that here
gap.

Figure 5 showspSSDW(q)/q and pSCDW(q)/q vs q/p
for U54 and two values ofV. One of the points (V
52.14) is inside the BOW phase, whereas the otherV
51.8) is in the SDW phase. ThepSSDW(q)/q curve for V
51.8 is close to 1 for a wide range ofq values, whereas the
V52.14 curve exhibits a sharp drop asq→0 indicating, re-
spectively, the absence and the presence of a spin gap. S
larly, the evidence for a vanishing limit ofSCDW(q)/q and
hence of a charge gap forV51.8 is clear. Since the poin
V52.14 is quite close to the critical point (Vc52.16), where

FIG. 5. SSDW(q)/q and SCDW(q)/q vs q for U54 and V
52.14 andV51.8 (N5128).
3-5
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SENGUPTA, SANDVIK, AND CAMPBELL PHYSICAL REVIEW B65 155113
the charge gap vanishes, the magnitude of the gap is
small and we need to go to still smallerq, i.e., larger system
size, to see a pronounced effect like that forV51.8. Never-
theless, the downturn for the smallestq is a good indication
of a gap.

The opening of spin and charge gaps can also be dete
in the spin and charge stiffness constants, which should v
ish asN→` if there are gaps. The asymptotic charge st
ness should hence be nonzero only exactly at the BO
CDW phase boundary. The spin stiffness should be~1!
nonzero in the SDW phase,~2! approach a constant valu
exactly at the phase boundary~with logarithmic size
corrections!,34,35 and ~3! vanish inside the CDW phase. I
Fig. 6 we show the stiffness constants forU54 in the neigh-
borhood of the BOW phase. As expected, the charge stiffn
peaks at the BOW-CDW phase boundary and decreases
idly away from it, confirming the vanishing of the charge g
only at the phase boundary. The peak becomes very shar
large system sizes, and the finite-size corrections to its lo
tion are small. We find this the most accurate way to loc
the BOW-CDW phase boundary. The spin stiffness is clea
zero in the CDW phase, and a sharp decrease with increa
N is also seen forV values well inside the BOW phase. Sinc
the spin gap opens up exponentially slowly at the SD
BOW boundary it is difficult to locate the transition this wa
Our data nevertheless indicate that the BOW phase aU
54 may not extend down to the valueV'1.82 obtained by

FIG. 6. Behavior of the charge and spin stiffness across
BOW-CDW boundary forU54. The upper~lower! panel shows the
charge~spin! stiffness. The vertical dashed lines indicate the po
tion of the phase boundaries according to Nakamura.
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Nakamura. We will discuss this phase transition and de
mine the transition point more accurately below, in S
III C.

B. BOW-CDW transition

In addition to proving the existence of the BOW phas
we have studied in detail the nature of the continuous BO
CDW transition for two different values ofU (U,Um). For
(U,V)5(Uc ,Vc), i.e., on the BOW-CDW phase boundar
the real space staggered charge and kinetic-energy cor
tion functions fall off algebraically as

^nini 1r&~21!r;r 2h,

~^KiKi 1r&2^Ki&
2!~21!r;r 2h. ~10!

Based on conformal-field-theory calculations for simil
phase transitions in 1D spin systems,36 the exponenth can
be expected to depend on (Uc ,Vc) but should be the sam
for both the CDW and BOW correlations. This gives th
finite-size scaling of the structure factor and the suscepti
ity at the critical point

SCDW,BOW~p!;N12h,

xCDW,BOW~p!;N22h. ~11!

With a spin gap but no charge gap, as was demonstr
above, we expect the critical state to be of the Luther-Em
liquid type.37 The exponenth is then related to the Luttinge
liquid parameterKr by h512Kr .

Figure 7 presents plots of ln@xCDW# and ln@xBOW# vs ln@N#
for U54 and three different values ofV around the critical
point, which as discussed above should be close to 2.16.
data points forV52.16 indeed fall almost on straight line
indicating critical scaling for both the CDW and BOW fluc
tuations. The value of the critical exponenth, obtained from
the slope of theV52.16 curves for bothxCDW andxBOW, is
h'0.5. The scaling of the structure factors,SCDW andSBOW
at V52.16 is also consistent withh'0.5. It is, however,
difficult to extract a precise value forh from this finite-size
scaling, due to subleading corrections to the scaling, as
as effects from the fact that theU,V point studied is not
exactly on the phase boundary. As was discussed in
III A, the Luttinger liquid parameterKr can also be extracted
from the q→0 limit of SCDW(q)/q. This is, in general, a
more accurate method, since the convergence with the
tem size is faster for the subleading 1/r 2 contribution to the
correlation function, which this estimator accesses.29,30 Fig-
ure 8 shows results forU54 andU53 and the respective
critical V values. Theq→0 behavior givesKr50.4460.01
for U54, i.e., h50.5660.01, which hence is consisten
with the finite-size scaling of theq5p quantities. ForU
53, we obtainVc51.65, in agreement with Nakamura
result,16 and the critical exponenth50.4760.01.

C. SDW-BOW transition

The SDW-BOW transition is marked by the opening of
spin gap in the electronic energy spectrum. As argued

e
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Nakamura, it is a quantum phase transition of the Kosterl
Thouless type and therefore the gap opens up exponen
slowly. This makes it difficult to determine the phase boun
ary numerically. The numerical data is affected by lar
finite-size effects that persist up to very large system siz
As discussed in Sec. III A, the most reliable evidence of
existence of a spin gap is obtained from the behavior
SSDW(q)/q as q→0. In practice, an asymptotic value o

FIG. 7. ln@xCDW(p)# and ln@xBOW(p)# vs ln(N) for U54 and
different values ofV near the critical point. The dashed lines are fi
to theV52.16 data.

FIG. 8. pSCDW(q)/q vs q/p for two points on the BOW-CDW
boundary.
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pSSDW(q)/q,1 asq→0 in any~large! system is an indica-
tion of the presence of a spin gap in the thermodynam
limit. This allows us to detect the presence of very small s
gaps. Figure 9 shows the behavior ofpSSDW(q)/q for U
54 and different values ofV. In the gapless region, logarith
mic corrections32 make it difficult to observe the approach
1 asq→0. In analogy with spin systems,33 we expect the
leading log corrections to vanish at the point where the s
gap opens, and therefore exactly at the critical point th
should be a clear scaling to 1. An apparent reduction of
log correction is indeed seen in Fig. 9 asV is increased
towards'1.88. Based on the results, we estimate the SD
BOW boundary to be atV51.8960.01 at U54. This is
slightly higher than Nakamura’s critical valueV51.82 for
this U. We believe the difference is due to nonasympto
finite-size effects in the exact diagonalization calculatio
which used system sizes only up toN514. Hence, we find
that the BOW phase exists in a slightly smaller, while s
significant, region of the phase space.

D. First-order SDW-CDW transition

For U.Um , the transition is a discontinuous~first-order!
direct SDW-CDW transition with no intervening BOW
phase. Figure 10 shows theV dependence of the CDW orde
parameter, the total energy, and the kinetic energy across
phase boundary forU58, which according to previous
studies8–11,14should be well within the regime of first-orde
transitions. The characteristics of a first-order transition
indeed quite apparent. The order parameter and the kin
energy change rapidly at the transition pointVc'4.14. The
finite-size effects diminish with increasingN as the results
approach the limiting behavior of a discontinuity in the ord
parameter and the kinetic energy in the thermodynamic lim
The total energy remains continuous, but there is a c
break in slope at the transition.

The size dependence of the BOW order paramete
shown in Fig. 11. It becomes considerably smaller inside
CDW phase than before the transition. This is expect

FIG. 9. SSDW(q)/q vs q for U54 and 4 different values ofV
around the SDW-BOW boundary.
3-7
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SENGUPTA, SANDVIK, AND CAMPBELL PHYSICAL REVIEW B65 155113
since in the SDW phase, but not in the CDW phase, th
should be power-law decaying BOW correlations. Howev
the BOW order parameter decays rapidly with the syst
size, confirming that there is no long-range BOW for th
U.Um .

The behavior with increasingly sharp discontinuities se
in Figs. 10 and 11 indicates a first-order transition due to
avoided level crossing. Note that with increasing ch
length the CDW order parameter approaches its thermo

FIG. 10. Behavior of the CDW order parameter, the kine
energy, and the ground-state energy across the SDW-CDW tra
tion for various system sizes andU58.

FIG. 11. Behavior of the BOW order parameter across
SDW-CDW transition for various system sizes andU58.
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namic value from above forV,Vc and from below forV just
aboveVc . The curves for different system sizes cross o
another in the neighborhood ofV5Vc and then once again
for a higherV. The second crossing point moves down t
wards the first one asN increases, whereas the first crossi
does not change much withV and appears to be a goo
criterion for locating the transition point.

The two curve crossings can be understood as follows
a transition caused by an avoided level crossing, a cros
of the order-parameter curves close to the critical coupl
~approaching the critical coupling asN→`) can be expected
since the low-energy levels corresponding to an ordered
disordered state swap characters within a parameter ra
V6DV(N), with DV(N)→0 asN→`. This behavior is seen
clearly in Fig. 10. The finite-N ground state starts to develo
CDW characteristics atV2DV(N) and thus, for a fixedV
,Vc , the CDW order parameter decreases with increas
N. An analogous argument for fixedV.Vc close toVc sug-
gests that, in this case, the CDW order must increase w
increasingN. On the other hand, forV@Vc the real-space
CDW correlations are enhanced at short distances~in the
same way as the BOW correlations shown in Fig. 4! and for
small system sizes there is also some enhancement o
long-distance correlations due to the periodic bound
conditions.38 Hence, one can expect the CDW order para
eter, when defined and measured in terms of its squared
pectation Eq.~5!, to againdecreasewith N for V@Vc and
this explains the second crossing of the order-param
curves seen in Fig. 10.

E. Multicritical point

Although the existence of the tricritical point~which, in
view of the existence of the BOW phase, we refer to as
multicritical point! separating the first-order and continuo
transition to the CDW state has long been known, its locat
in the (U,V) plane has not previously been determined
curately using large system sizes. Hirsch8,9 estimated a value
of Um53 using world line Monte Carlo. Cannon an
Fradkin10 obtained Um51.5 using field-theory technique
and world lines. Later Cannon, Scalettar, and Fradkin11 ob-
tained a value ofUm53.5–5 using finite-size scaling o
Lanczos results. Using a combination of bosonization a
renormalization-group~RG! techniques, Voit14 obtainedUm
54.76. However, as Voit also pointed out, the validity
bosonization and RG, which are applicable in the lim
U,V→0, for intermediate values of the parameters isa pri-
ori questionable.

By using larger system sizes and an alternative criterion
distinguish between a continuous transition and a first-or
level crossing transition, we have obtained an estimate of
multicritical point that we consider more accurate and re
able than the previous estimates. In contrast to most prev
numerical studies, our method is not based on plotting his
grams of the order parameter, although we will also pres
such histograms in the following section. In this section
first exploit the qualitatively different finite-size dependen
of the growth of the order parameter close to the transit
above and below the multicritical point.
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BOND-ORDER-WAVE PHASE AND QUANTUM PHASE . . . PHYSICAL REVIEW B 65 155113
For fixedU, the order-parameter curves for different sy
tem sizes cross each other at or very close to the critical p
(V5Vc) in the case of a first-order transition, as discuss
above in Sec. III D. Such a crossing cannot occur at a c
tinuous transition, where instead there should be finite-s
scaling governed by Eq.~11!. This qualitative difference in
the finite-size dependence of the order parameter close to
transition point above and below the multicritical poi
(Um ,Vm) leads us to expect that in the neighborhood of t
point, curves of the order parameter for different cha
lengths will closely coincide with one another close toV
5Vc , andUm is the point at which the curves barely touc
each other. When the system size becomes sufficiently l
one can also directly observe discontinuities develop
when U.Um , in the order parameter as well as in oth
quantities, as in Fig. 10. In practice this criterion, or a
other criterion known to us, cannot be expected to be us
very close to the multicritical point, where the transition
only weakly first order and very large lattices are needed
detect discontinuities developing from avoided level cro
ings.

Figure 12 shows the finite-size dependence of the CD
order parameter across the transition for three different
ues ofU. ForU54.2, only theN516 curve crosses the othe
curves, and this occurs far from the critical point~as deter-
mined using the peak in the charge stiffness, as discusse
Sec. III A!. The noncrossing for larger system sizes sh
that the transition must be continuous at thisU. For U55.2,
all curves show a crossing behavior and a discontinuity
also be seen developing for the largest system size, i.e.
transition is here of first order. The curves forU54.6 closely
follow the expected behavior at the multicritical point, wi
the curves for the largest systems barely touching each o
Based on data, also for other values ofU, we estimate the
multicritical point to be (Um54.760.1,Vm52.5160.04).
This agrees very well with Voit’s estimate (Um54.76).14

However, it is not clear whether this agreement is fortuito
or whether there is some underlying symmetry that rend
bosonization and RG~that assumesU,V!1) applicable
close to the multicritical point.

F. CDW order parameter histograms

Previous studies of the multicritical point have exploit
the existence of a three-peak structure in the distribution
the CDW order parameter for a discontinuous SDW-CD
transition in the vicinity of the critical point and its absen
at a continuous transition.8 Outside the CDW phase, the dis
tribution of the CDW order parameter is peaked around ze
For a continuous transition to a CDW state this peak sp
into two ~corresponding to the positive and negative valu
of the order parameter!, which gradually move apart from
each other inside the CDW phase. In a first-order transit
on the other hand, the order parameter takes a nonzero v
immediately as the CDW phase is entered and hence the
peaks emerge already separated from each other. Fur
more, at the phase boundary the CDW phase coexists
the competing phase, and this is reflected as a central
remaining in the CDW order-parameter distribution. The p
15511
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sition of the multicritical point can then, in principle, b
obtained by locating the point where the three-peak struc
first appears. In practice, the accuracy of this method is l
ited by the fact that the discontinuity is very small for

FIG. 12. CDW order parameter vsV across the BOW-CDW
boundary for several system sizes near the multicritical point. T
dashed line shows the position ofVc for the respectiveU. Statistical
errors are smaller than the symbols.
3-9



ry
th
fo

de

a
ed

rli
at
er
in
T
lly
rld
o
,

at
r-
of

the
der
e
wn
of

e
s

e
en-
vel
be
ve
r an
a

n

le to
es

m

f th
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first-order transition close to the multicritical point and ve
large system sizes are then needed to observe the
peaks. This problem is, of course, common to all methods
distinguishing between a continuous and weakly first-or
transition.

In his early QMC study, Hirsch observed a three-pe
structure even forU as small as 3 and, therefore, conclud
that the transition there is already of first order.8 For largerU,
an unexplained four-peak structure was seen. We have
peated histogram calculations for the lattice sizeN532 stud-
ied by Hirsch. In Fig. 13 we show results forU56, V
53.15, where a four-peak structure was seen in the ea
calculation.8 We only find a central peak, which shows th
the system is not in the CDW state for these paramet
There are, however, already signs of side peaks develop
which shows that the system is close to the CDW phase.
significant differences with the earlier result could partia
be errors due to the Trotter decomposition used in the wo
line simulation method. Temperature effects are only min
as also shown in Fig. 13. Atb58, which was used in Ref. 8

FIG. 13. CDW order-parameter distributions for 32-site syste
at U56. Upper panel: Dependence on the inverse temperatureb at
V53.15. Lower panel: Dependence onV around the first-order
phase transition. Statistical errors are of the order of the size o
symbols.
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the histogram is only slightly more sharply peaked than
b516 and 32. Most likely, the simulation giving the fou
peak structure was not sufficiently long, as it consisted
only 104 Monte Carlo steps.8 Even with the more efficient
SSE algorithm used in the present work, we find that
autocorrelation times are quite long close to the first-or
transition~see Appendix B! and short simulation can produc
incorrect order-parameter histograms similar to those sho
in Ref. 8. For the histograms shown here, of the order
107–108 SSE Monte Carlo steps were used.

In Fig. 13 we also show results for several values ofV
across the phase transition. A clear three-peak structure~i.e.,
three peaks in the rangemCDWP@21,1#, of which we only
show the positive part! with peaks of almost the sam
heights can be seen forV53.165. In Fig. 14 we show result
for N564. At U56, the three-peak structure appears forV
'3.156, i.e., at a value slightly lower than for theN532
system. The size of theV region in which three peaks can b
observed is also significantly smaller, reflecting the sharp
ing of the first-order transition caused by an avoided le
crossing. AtU55, which we have argued above should
close to but above the multicritical point, we do not obser
three peaks. However, the histogram becomes very flat fo
extended range ofmCDW , and the side peak emerges at
finite value ofmCDW . This is consistent with the transitio
still being of first order atV55. Going to still lowerV val-
ues, the peak just becomes narrower, and it is not possib
definitely conclude this way when the transition becom
continuous.

s

e

FIG. 14. CDW order-parameter histograms forN564 systems
close to the phase transition.
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IV. DOPED SYSTEMS

An interesting question naturally arises from the existe
of the Nakamura BOW phase: Can the EHM model supp
a soliton lattice when doped slightly away from half-filling
Such a state exists in the Su-Schrieffer-Heeger model in
adiabatic limit ~with classical, ‘‘frozen’’ phonons!,39–41 and
also when electron-electron interactions are taken
account.40,41 In these models, the quantum nature of the p
non field is not taken into account, however. It is known th
the dimerized state at half-filling survives even in the pr
ence of quantum fluctuations, at least up to a critical value
the phonon frequency.42 However, to our knowledge, ther
have been no reliable numerical calculations addressing
stability of the soliton lattice in the presence of ful
quantum-mechanical phonons. The Nakamura BOW is s
lar to a dimerized lattice with quantum fluctuations, a
hence a study of its evolution with hole doping can gi
insights also into the quantum phonon problem. There
also unresolved issues regarding the doped CDW state.15 In
order to investigate the evolution of the long-range-orde
states upon doping, we have studied the EHM model a
away from half-filling, focusing on two parameter values
which the half-filled system is in the BOW~usingU54, V
52.14) or CDW phase~usingU54, V52.5).

We first discuss the effects of doping on the spin a
charge gaps in the half-filled CDW and BOW ground stat
As in preceding sections, we make use of the behavior of
static structure factor in the limitq→0. Figures 15 and 16
showpSCDW(q)/q andpSSDW(q)/q as a function ofq for a
range of doping levels, both for parameters where the h
filled system is in the BOW phase~Fig. 15! and in the CDW
phase~Fig. 16!. From the data we conclude that upon dopi
away from half-filling, the charge gap vanishes immediat
whereas the spin gap survives. This is true for both the C
and BOW parent states. This behavior is characteristic
Luther-Emery liquid,37 in which the charge sector can b
described in terms of a Luttinger liquid and the spin secto
gapped. The limiting value ofpSc(q)/q as q→0 indicates
that the Luttinger liquid exponentKr'0.5 in both the cases
with only a weak dependence on the doping level for
parameters considered here. Note the crossover behavio
curring in the charge structure atq'2pd54kF in Fig. 16
~which is accompanied by a peak in the corresponding s
ceptibility, as will be shown below!,43 reflecting a weak re-
pulsion between dopant holes. No crossover in the cha
structure is seen in Fig. 15, where the parent state is a B

Figure 17 shows the variation of the ground-state st
susceptibilities for several doping levels in a chain of len
N5128 for the parametersU54,V52.5. For d.0 the
charge susceptibility converges to a nonzero value asq→0,
again showing the absence of a charge gap. Very strongkF
peaks are evident, and weaker 4kF peaks are also clearl
visible. The 2kF peaks diverge with the system size where
the 4kF peaks are nondivergent, in accord with the Luth
Emery picture. For a Luther-Emery liquid, the charge cor
lations decay with distancer as r 2Kr,14 which gives
xCDW(2kF);N22Kr for the finite-size scaling of the corre
sponding 2kF susceptibility. Figure 18 shows the size depe
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FIG. 15. The static charge~upper panel! and spin~lower panel!
structure factor divided by the wave numberq as a function ofq for
256-site chains at different doping fractionsd. For these paramete
values (U54,V52.14), the half-filled system (d50) is in the
BOW state.

FIG. 16. Same as Fig. 15 forU54, V52.5, where the half-filled
system is in the CDW phase.
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SENGUPTA, SANDVIK, AND CAMPBELL PHYSICAL REVIEW B65 155113
dence ford50.0625 on a log-log scale. For system sizesN
>64, the data is seen to fall on a line with slope'1.5,
consistent with the valueKr'0.5 extracted above.

As a further test of the Luther-Emery liquid nature of t
ground state away from half-filling, we have studied the re
space charge and bond correlations as a function of dista
Figure 19 shows the charge correlation for two different s
tem sizes at a dopant concentration of 6.25% and interac
parametersU54 andV52.5. The ground state at half-filling

FIG. 17. Static CDW and SDW susceptibilities at different do
ing levels forU54, V52.5 for aN5256 chain. The inset show
the xCDW(2kF) peaks on a more detailed scale.

FIG. 18. Finite-size scaling of the static charge susceptibility
q52kF for a system withU54, V52.5 at a doping level of
6.25%. A slope of 1.5 is shown by the dashed line.
15511
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is a CDW, and for the doped system we find solitonic fe
tures with alternatingA and B phases separated by doma
walls or kinks. However, the correlation decays with d
tance, and there is no real soliton lattice. In fact, the deca
the magnitude of the peaks is well approximated by an
velope curve of the formy;x20.5, and hence also these da
are consistent with a Luther-Emery state withKr'0.5.

Figure 20 shows a similar plot of the real-space bon
order correlation forU54 andV52.14 at the same dopan
concentration and for the same system sizes. The gro
state of the half-filled system for this choice of parameter
here a BOW, and away from half-filling, the dominant co
relation are still of bond-order type. Once again, the grou
state of the doped system has solitonic features with an
gebraic decay of the magnitude of the peaks. As in the p
vious case, the decay is consistent with a Luther-Emery
uid with Kr'0.5.

V. SUMMARY

To summarize, we have studied the 1D EHM using t
SSE method incorporating an efficient operator-loop upd
and a ‘‘quantum-parallel-tempering’’ scheme. Our resu
confirm the surprising prediction16 of the existence of a
novel long-range-ordered BOW phase between the w
known CDW and SDW phases in the ground-state ph
diagram for small to intermediate values of the on-site int
action U (U,Um). We have presented several ways to d
tect the spin and charge gaps expected in the BOW phase
have also probed directly the BOW correlations and c
cluded that true long-range order develops. We have stu

-

t

FIG. 19. Real-space charge correlations vs distance at a do
level d50.0625 for system sizesN5128 and 256 atU54,V52.5.
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a few points on the BOW-CDW phase boundary and
tained a very good agreement with Nakamura’s lev
crossing prediction16 for the location of this phase boundar
For the SDW-BOW phase boundary, our results indicat
higher criticalV for fixed U than given by the level crossin
method and thus overall a slightly smaller size of the BO
phase. Our results are for significantly larger systems tha
the previous study and it is not surprising that the finite-s
effects in the level crossings can be large for the SDW-BO
transition since the spin gap opens exponentially slowly
this Kosterlitz-Thouless transition. An overestimation of t
size of the BOW phase from the level crossings is also
parent considering that our estimated multicritical point
well within the BOW phase of Nakamura’s phase diagra
Since our BOW-CDW phase boundaries agree, this indic
problems with the scaling of the exact SDW-BOW lev
crossings close to the multicritical point, as was also m
tioned by Nakamura.16 For large values ofU (U.Um) the
transition is discontinuous~first order!. We have shown tha
curves of the CDW order parameter across this boundary
different system sizes cross each other twice, and expla
this behavior in terms of an avoided level crossing. We h
also used the curve crossings as a means to locate the
tion of the multicritical point with greater accuracy than pr
viously attained. Our estimate for the multicritical point
Um54.760.1, Vm52.5160.04.

We have also studied systems doped slightly away fr
half-filling. We find that both the doped CDW and BOW
states give rise to ground states of the Luther-Emery ty
i.e., the quantum fluctuations do not allow the formation

FIG. 20. Bond-order correlations atd50.0625,U54,V52.14,
for system sizesN5128 and 256.
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true soliton lattices. Based on the fact that the BOW stat
very similar to the dimerized ground state of models w
finite-frequency~nonadiabatic! phonons, we conjecture tha
the soliton lattice is also unstable to arbitrarily weak qua
tum fluctuations in these models, unless two- or thr
dimensional couplings are taken into account.

After our completion of the numerical calculations at ha
filling Tsuchiizu and Furusaki44 presented a weak-couplin
g-ology calculation taking into account second-order corr
tions to the coupling constants. They obtained a phase
gram in very good quantitative agreement with ours, inclu
ing the location of the multicritical point.
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APPENDIX A: OPERATOR-LOOP UPDATES
IN THE SSE METHOD

The basic SSE approach has been discussed in se
papers.17–19 We here start with a brief review as a basis f
introducing the operator-loop update19 in the context of fer-
mion models.

To implement the SSE method, the Hamiltonian~1! is
written, up to an additive constant, in the form

H52 (
b51

N

~H1,b1H2,b1H3,b!, ~A1!

whereb is the bond connecting the sitesb andb11, N is the
length of the chain, and the operatorsHa,b ,a51,2,3 are de-
fined as

H1,b5C2
U

2 S nb,↑2
1

2D S nb,↓2
1

2D2
U

2 S nb11,↑2
1

2D
3S nb11,↓2

1

2D2V~nb21!~nb1121!,

H2,b5t~cb11,↓
† cb,↓1H.c.!,

H3,b5t~cb11,↑
† cb,↑1H.c.!. ~A2!

The constantC shifts the zero of the energy and is chosen
ensure a non-negative expectation value forH1,b ~needed in
order to ensure a positive definite expansion of the partit
function!. Introducing a basis$ua&%5$uz1 ,z2 , . . . ,zN&%,
wherez iP$0,↑,↓,↑↓% denotes the electron state at the sitei,
the partition functionZ5Tr$e2bH% can be expanded in a
Taylor series as
3-13
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Z5(
a

(
n50

`

(
Sn

bn

n!
^au )

p51

n

Hap ,bp
ua&, ~A3!

whereSn denotes a sequence of index pairs defining the
erator string)p51

n Hap ,bp

Sn5@a,b#1@a,b#2•••@a,b#n , ~A4!

where we use the notation@a,b#p5@ap ,bp# and a
P$1,2,3%, bP$1, . . . ,N%. In order to construct an efficien
updating scheme, the Taylor series is truncated at a s
consistently determined powerL, large enough to cause onl
an exponentially small, completely negligible error (L
;buEu, whereE is the total internal energy; for details se
Refs. 17 and 18!. We can then define a sampling space wh
the length of the sequences is fixed, by insertingL2n unit
operators, denoted byH0,0, into each sequence. The terms
the partition function must be divided by (n

L) in order to
compensate for the different ways of inserting the unit o
erators. The summation overn is then implicitly included in
the summation over all sequences of lengthL. The partition
function takes the form

Z5(
a

(
SL

bn~L2n!!

L! K aU)
p51

L

Hap ,bpUaL , ~A5!

where the operator-index pairs@a,b#p now haveaP$1,2,3%
and bP$1, . . . ,N% or @a,b#p5@0,0#. For convenience, we
introduce a notation for states obtained by the action of
first p elements of the operator stringSL

ua~p!&;)
j 51

p

Haj ,bj
ua&. ~A6!

For a nonzero contribution to the partition function,ua(L)&
5ua(0)&.

A Monte Carlo scheme is used to sample the configu
tions (a,SL) according to their relative contribution
~weights! to Z. The sampling scheme consists of two types
updates,17–19 referred to as diagonal update and operat
loop updates. The diagonal update involves local subs
tions of the form@0,0#p↔@1,b#p and is attempted consecu
tively for every pP$1, . . . ,L% in the sequence for which
@a,b#p5@0,0#p or @1,b#p . The updates are accepted wi
probabilities

P~@0,0#p→@1,b#p!5
NbM1,b~p!

L2n
,

P~@1,b#p→@0,0#p!5
L2n11

NbM1,b~p!
, ~A7!

where

Ma,b~p!5^zb~p!,zb11~p!uHa,buzb~p21!,zb11~p21!&
~A8!

is a matrix element on bondb, which in this case is diagona
(a51). Only a single stateua(p)& is stored in the compute
during the diagonal update. When off-diagonal operators
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encountered during the successive scanning of the ope
string, the corresponding electron states are updated so
the information needed for evaluation of the probabiliti
~A7! is always available when needed.

The operator-loop update has been discussed in deta
Ref. 19 in the context of spins. Here we present the const
tion of loops for fermions. As explained in Ref. 19, the m
trix element in Eq.~A5! can be graphically represented by
set ofn vertices~corresponding to then nonunit operators in
SL) connected to one another by the propagated elec
states@see Fig. 21~a!#. Each vertex has four ‘‘legs’’ with elec-
tron statesuz i(p21),z i 11(p21)& and uz i(p),z i 11(p)& be-
fore and after the action of the associated Hamiltonian
erator Hap ,bp

. There are 32 allowed vertices—16 diagon

ones and eight each associated with the off-diagonalH2,b and
H3,b . A configuration (a,SL) is completely specified by the
leg states of then vertices—except for sites that do not ha
any operators acting on them.

To carry out the operator-loop update, the linked list
the n vertices is first constructed. In addition to the electr
states at the legs of each vertex, the list also contains
addresses~i.e., the location inSL) of the next vertex and the
corresponding leg that each leg is connected to. The l
construction begins with randomly choosing a vertex and
‘‘entry’’ leg. The electron state at the entry leg is changed
one of the three other allowed states chosen at random. N
an ‘‘exit’’ leg is chosen~following a procedure describe
below! and its associated electron state is updated so tha
new leg states constitute an allowed vertex@see Fig. 21~b!#.
The exit leg will be linked to a leg of another vertex~or, if
there is only one operator in the configuration that acts on
site in question, another leg on the same vertex! and this will
be the entry leg for the next vertex. The electron state at
new entry leg is then updated to match the state at the
leg of the previous vertex. A new exit leg is then chos
following the same procedure. This is repeated until the e
leg from a vertex points to the starting point of the loo

FIG. 21. ~a! A few allowed vertices. The solid lines denote th
diagonal Hamiltonian operator, the dashed and dotted lines de
the hopping operators for the up and down spins, respectively.
lower legs denote the statesz i(p21) and z i 11(p21) while the
upper legs denotez i(p) and z i 11(p). ~b! An example of a vertex
update. The entrance leg is the lower left leg of the vertex,
indicated by the dot. The electron state at the entrance leg↑ is
changed to↑↓ in this particular update. Given that, the three po
sible resulting vertices are shown. The corresponding exit legs
denoted by open circles. Exit at the upper right leg does not resu
an allowed vertex in this case.
3-14
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which implies that the loop is closed and a new allow
configuration has been generated.

To choose an exit leg—given a vertex, an entry leg a
the updated electron state at the entry leg—all the legs ca
considered in turn and attempts made to update the as
ated electron state so that the new leg states constitut
allowed vertex. Because of spin and charge conservation
the vertices, at a given exit leg there is at most one poss
update of the electron state that can lead to an allowed
tex. Hence, the exit leg uniquely determines the new ve
and the probability of choosing a given leg should be p
portional to the weight of the new vertex, i.e., a matrix e
ment of the form~A8!, which in this case can be eithe
diagonal or off-diagonal. In practice, a fast selection of
exit leg and updating of the vertex state is achieved us
two pregenerated tables. The first one contains the cum
tive probabilities of the four exit legs given an entrance le
the old vertex state, and the new state at the entrance.
second table contains the new vertex states correspondin
the updated entrance and exit legs.

A special case occurs if the initial update at the entry
of the first vertex of a loop is a spin flip, i.e., the electr
state changes from↑ to ↓ or vice versa. In this case, th
vertex weight does not change when updated and as a
sequence the ‘‘bounce process,’’ where the exit leg is
same as the entrance leg, does not have to be included i
loop construction. The loop then becomes deterministic,
there is a unique exit leg given by the entrance leg.19 This is
similar to the ‘‘loop-exchange’’ algorithm proposed in th
context of the world-line method.45

A full Monte Carlo updating cycle~MC step! consists of a
diagonal update, followed by the construction of a link
vertex list. Next a number of operator-loop updates are
ried out and finally the vertices are mapped back into a c
responding sequenceSL . The loop update typically also im
plies changes in the stored stateua&5ua(0)&, as some of the
vertex legs~links! span across the periodic boundary in t
propagation direction. The number of up and down electr
can be changed by the operator-loop update, as can the
tial winding numbers, and the algorithm is hence fully gra
canonical. Note that at high and moderately low tempe
tures there are typically some sites of the system, which
no vertices associated with them. The states on these
can be randomly changed, since they have no effect on
configuration weight.

The number of loops constructed for every MC step
determined such that on an average a total of;L vertices
~we typically use 2L) are visited. The truncationL and the
number of loops are adjusted during the equilibration par
the simulation and are thereafter held fixed.L is determined
by requiring that the highestn reached during equilibration i
at most 70–80 % ofL.

In certain parameter regions, the length of a loop c
sometimes become extremely long before it closes—in p
tice, it may even never close. It is, therefore, necessar
impose a maximum length, beyond which the loop constr
tion is terminated and a new starting point is chosen~typi-
cally, we use;50L for this cut-off length!. In order to re-
duce the likelihood of the next loop also exceeding
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termination length, it has proven useful to carry out a dia
onal update before starting the next loop. The loop termi
tion does not violate detailed balance and does not cause
systematical errors in the results. In most cases, incomp
loop termination occurs so infrequently that it does not a
versely affect the simulation. In analogy with Ref. 46, whe
a scheme~there called ‘‘worm’’ update! similar to the opera-
tor loops considered here was first introduced within the c
tinuous world-line representation, the end points of the lo
during construction can be related to the single-parti
Green’s function of the system and hence the tendency
loops to become exceedingly long for some parameter va
must be related to some physical properties of the syst
This issue should be studied further.

Estimators for the various structure factors and susce
bilities have been discussed in previous papers.17,18 Here we
only note that the charge and spin stiffness constants, Eq.~6!,
can be expressed in terms of spin and charge current op
tors in analogy with the spin stiffness of the Heisenberg
tiferromagnet previously discussed in Ref. 18, leading to

rc,s5
@~nR

↑ 2nL
↑ !6~nR

↓ 2nL
↓ !#2

Nb
, ~A9!

wherenR,L
s is the number of kinetic-energy operators in t

SSE term propagating spin-s particles in the ‘‘right’’ and
‘‘left’’ direction on the ring. Because of spin and charge co
servation, the topological winding numbers (nR

s2nL
s)/N can

take only integer values.
Although the operator-loop algorithm very significant

speeds up SSE simulations, in many cases reducing the
tocorrelation function by orders of magnitude, the dynam
is still very slow in some parameter regions. For the e
tended Hubbard model studied here, problems with very lo
autocorrelation times occur in the long-range-ordered BO
and CDW phases. The problems are particularly severe
large systems close to the BOW-CDW phase bound
where ‘‘trapping’’in the wrong phase often occurs. The slo
dynamics in the BOW phase is illustrated in Fig. 22, whi
shows the simulation time dependence ofSBOW(p) and
xBOW(p) during a simulation of a 256-site system atb
5512@SBOW has converged at thisb but xBOW is about 20%
larger still atb51024#. It is evident that the BOW autocor
relation time here is tens of thousands of MC steps. T
BOW susceptibility exhibits a behavior where it sometim
takes very small values~less than 1023 of the average value!,
but corresponding large fluctuations upwards do not oc
i.e., the distribution of thexBOW(p) estimator for individual
configurations is very skewed. The structure factor exhibit
more symmetric distribution. This behavior can be und
stood as a consequence of the BOW ground state for a fi
system being a symmetric combination of the two possi
real-space symmetry-broken states. The symmetry is not
ken in a finite system and the simulation is also not trapp
in one of the real-space states. Hence, the wave function
is sampled in the simulation contains both the real-sp
states and the behavior seen in Fig. 22 indicates that i
vidual configurations also contain both components, in s
a way that transitions~‘‘tunneling’’ ! between the two real-
3-15
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space states can occur during the SSE propagation~which
can be simply related47 to a propagation in imaginary time!,
at least for some configurations. Tunneling can be infer
from the qualitatively different evolutions of the structu
factor and the susceptibility in MC time. The susceptibility
an integral of the bond-order correlation, as in Eq.~4!, which
in configurations where tunneling occurs can be mu
smaller than in configurations with no tunneling, since c
relations between states with the same real-space config
tion contributes positively but correlations between differe
states give a negative contribution. The structure factor,
the other hand, is an equal time correlation function a
would not be reduced much by tunneling if the tunneli
times are short. This explains the qualitatively different d
tributions of thexBOW and SBOW measurements in Fig. 22
Evidently, the updating process is very slow in adding a
removing tunneling events in the configurations, whic
maybe, is not that surprising considering that the tunnelin
between two states with a discrete broken symmetry. Th
problems do not occur in SSE simulations of systems wit
broken continuous symmetry, such as the two-dimensio
Heisenberg model.

The trapping and tunneling problems can be significan
reduced by using the parallel tempering scheme~or exchange
Monte Carlo!,20–22which is discussed below in Appendix B

APPENDIX B: QUANTUM PARALLEL TEMPERING

The ‘‘quantum-parallel-tempering’’ scheme is a straig
forward generalization of the thermal-parallel-tempering20–22

FIG. 22. BOW structure factor and susceptibility for a 256-s
system withU54 and V52.14 at inverse temperatureb5512.
Results of six independent simulations are shown. Each point
resents an average over a bin consisting of 104 Monte Carlo steps.
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method commonly used to equilibrate classical spin gl
simulations. Our implementation amounts to running seve
simulations simultaneously on a parallel computer, usin
fixed value ofU and different but closely spaced values ofV.
Along with the usual Monte Carlo updates, we attempt
swap the configurations for processes with adjacent value
V at regular intervals, typically after every Monte Carlo ste
according to a scheme that maintains detailed balance in
extended ensemble of parallel simulations. The probability
swapping theV values of runsi and i 11, which are running
at Vi andVi 11, respectively, before the swap, is

Pswap~Vi ,Vi 11!5minF1,
Wi~Vi 11!Wi 11~Vi !

Wi~Vi !Wi 11~Vi 11!G , ~B1!

whereWi(V) is the SSE weight of thei th simulation con-
figuration evaluated with the couplingV. The swap prob-
abilities for fixedDV5Vi 112Vi decreases with increasin
system size and decreasing temperature and henceDV and
the range ofV values~if the number of processes is fixed!
must be chosen smaller for larger system sizes.

The computational effort required for the swapping pr
cess is very minor compared to the actual quantum Mo
Carlo simulations. It is, therefore, useful to carry out seve
swap attempts of all pairs of neighboring simulations b
tween every MC step. Histograms containing the numbe
times each of the current configurations has ‘‘occupied’’ ea
V bin can then be constructed and used for adding the cp-

FIG. 23. CDW order parameter across the SDW-CDW ph
boundary forU58 (N564, b564). The upper panel shows da
from individual runs. The lower panel shows the same data obta
using quantum parallel tempering, with two independent runs
indicated by the open and solid circles.
3-16
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tributions of each configuration to all theV bins. This can
contribute to reducing the statistical error of measured qu
tities.

To illustrate the advantage of quantum parallel temperi
we show two sets of data—obtained with and without the
of tempering—for a system undergoing a first-order tran
tion. Figure 23 shows the CDW order parameter across
first-order SDW-CDW phase boundary atU58. The upper
panel shows the data obtained from individual runs;
lower panel shows data for the same parameters obta
using tempering. The length of the individual simulatio

FIG. 24. Tempering acceptance rate during the simulation ac
the first-order SDW-CDW phase boundary.
K.
ys
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was 105 MC steps for allV values, and this was also th
number of steps performed by each process in the tempe
runs. The improvement in the quality of the tempering data
evident, especially close to the transition point where two
the individual simulations have relaxed into the wro
phases. The statistical errors are hence severely unde
mated due to the failure to equilibrate properly within t
simulation time. The tempering error bars are also large
the phase transition, but in contrast to those of the individ
simulations they are accurate error estimates. The errors
idly become much smaller as one moves away from the tr
sition point. The effects of tempering are also favorable f
ther inside the CDW phase, where several of the individ
simulations are apparently affected by trapping in configu
tions with defects, where the order is reduced.

The tempering acceptance rate during the run spann
across the phase transition in Fig. 23 is shown in Fig.
There is a sharp reduction in the acceptance rate at the
sition. This reflects the rapid change in the SSE configu
tions across the phase boundary, which implies that the c
figuration weights evaluated withV values from the
‘‘wrong’’ phase are likely to decrease and the swap accord
to the probability~B1! will be rejected.

Finally, we note that tempering, in general, is an applic
tion where a superlinear speed-up can be achieved in pra
on parallel computers. In addition to doubling the density
data points when the number of processes is doubled,
statistical errors are also reduced. Sometimes the error re
tion can be dramatic, but even in cases where there are
real problems with the dynamics of individual simulatio
the effects of tempering are often very favorable.
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