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We use a stochastic series-expansion quantum Monte Carlo method to study the phase diagram of the
one-dimensional extended Hubbard model at half-filling for small to intermediate values of the bhasite
nearest-neighbo¥ repulsions. We confirm the existence of a novel, long-range-ordered bond-order-wave
(BOW) phase recently predicted by Nakamiida Phys. Soc. Jprg8, 3123(1999] in a small region of the
parameter space between the familiar charge-density-(@D#&V) state forV=U/2 and the state with domi-
nant spin-density-wavéSDW) fluctuations forV=U/2. We discuss the nature of the transitions among these
states and evaluate some of the critical exponents. Further, we determine accurately the position of the multi-
critical point, U,,,V,)=(4.7£0.1,2.51-0.04) (in energy units where the hopping integral is normalized to
unity), above which the two continuous SDW-BOW-CDW transitions are replaced by one discontinuous
(first-orde) direct SDW-CDW transition. We also discuss the evolution of the CDW and BOW states upon hole
doping. We find that in both cases the ground state is a Luther-Emery liquid, i.e., the spin gap remains but the
charge gap existing at half-filling is immediately closed upon doping. The charge and bond-order correlations
decay with distance asr ~Xe, whereK , is approximately 0.5 for the parameters we have considered. We also
discuss advantages of using parallel tempefargexchange Monte Carfe-an extended ensemble method that
we here combine with quantum Monte Carlo—in studies of quantum phase transitions.

DOI: 10.1103/PhysRevB.65.155113 PACS nuni§er71.10—~w, 71.27+a, 71.30+h, 05.30—d
I. INTRODUCTION " 1 1
H= —tiE (Cly1,Ci ot HC)+ UZ (nm— 5) ( N — 5)
o

The one-dimensiondllD) extended Hubbard model has
been exten;ively studied in recent years, both as an _impor- +VE (ni+1_1)(ni_1)_ﬂz n, (1)
tant theoretical test bed for studying novel concepts in 1D [ [
(e.g., spin-charge separatjpnmethods, (e.g., quantum N o _ _
Monte Carlo, exact diagonalization, and the density-matrixVhereci, (ci ) createsannihilates an electron with spin
renormalization groupand as a useful model for several @ at Sitei, tiis the hopping integral between adjacent sites
classes of quasi-1D materials including copper-oxide materi@"d 4 is the chemical potential. Henceforth we setl and
als related to the higfi-c cuprate superconductorsonduct- express the interaction parametéksandv in units oft. -
ing polymers? and organic charge-transfer salGeneral 1D The ground-state phas_e d|agram_ of the.EHM at half-fllll.ng
extended Hubbard models differ from the standard Hubbaré’““ =0) has been extensively studied using both analytical

model, which includes only an on-site electron-electron in-and numerical methods. Despite the apparent simplicity of

. . . . the model, the ph iagram show rprisingly rich struc-
teractionU, by the addition of longer-range interactions that e model, the phase diagram shows surprisingly rich struc

. . re. In the limitV=0 (the standard Hubbard modgethe
are necessary to explain several experimentally observed el—iamiltonian(l) can be diagonalized exactly using the gen-

fects ip real materials, e.g., excitons in conducting pOIVmerSeralized Bethe ansafz=or V=0, the model has been studied
The simplest extended Hubbard modeenceforth, EHM, qing perturbative methods and numerical simulatfor.

on which we focus in this paper, consists of adding a nearesgoagly, the phase diagram consists of insulating phases with
neighbor interactiorV. If the interaction parameters are as- qominant charge-density-wavéCDW) and spin-density-
sumed to arise solely from Coulomb interactions, botand  \yqve (SDW) characters and metallic phases where singlet
V are repulsive(positive), and U>V. However, viewed as and triplet superconducting correlations dominate. In the
phenomenological parameters incorporating the effects gbhysically relevant region for “Coulomb-only” parameters
additional(e.g., electron-phongrinteractions, the ranges of (U,V>0), the system is in a CDW phase for largéU and
these parameters can be much broader, including<O0. in a state with dominant SDW fluctuations for smsU.

The Hamiltonian is The CDW phase has broken discrete symmetry, character-
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ized predominantly by alternating doubly occupied and v
empty sites and exhibits long-range order. The SDW phase H H H

on the other hand, has continuous symmetry and henci — — — /
cannot exhibit long-range order in 1[by the Mermin- cow U=2v
Wagner theorem Instead, it is a critical state characterized ’
by the slow(algebrai¢ decay of the staggered spin-spin cor- v
relation function. Indeed, in the limi>1, U>V, the model t
reduces to an effective Heisenberg model with 1/(U S AN
—V). For smallU andV (U,V<1), the boundary between _lf_’_T_ _lf_’_T_ _lf_’_T_
the CDW and the SDW phases was predicted to bé at b

=2V using weak-coupling renormalization-group techniques
(“g-ology” ).8" Strong-coupling calculations using second-
order perturbation theory also gave the same phase boundal
(U=2V) between the CDW and the SDW phases for lduge
and V (U,V>1)>8 For intermediate values of the param-
eters, the phase boundary was found to be shifted slightly
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away from theU =2V line such that the SDW phase is en- t
hanced, as shown by quantum Monte Carlo simulafidas FIG. 1. Schematic ground-state phase diagram of the EHM at

well as strong coupling calculations using perturbationnait filling, as proposed by Nakamura. The CDW and BOW phases
theory up to the fourth ordéf. Moreover, the nature of the 4re long range ordergtiroken symmetry whereas the SDW phase
transition is quite different in the two coupling regions, has no broken symmetry but exhibits an algebraically decaying
changing from continuougsecond-order in the weak-  spin-spin correlation function.

coupling limit to discontinuougfirst-ordey in the strong-
coupling limit. Estimates for the location of the multicritical ground state for certain parameters. It is important to confirm
point, where the nature of the transition changes, havéhis hitherto undiscovered phase using other methods.
ranged fromU,,,=1.5 toU,,=5 (andV,,~U/2) 8 114De- To attempt this confirmation, we have used the highly
spite the broad uncertainty in the actual value of the tricriti-efficient stochastic series-expansi®SE quantum Monte
cal point, the phase diagram was believed to be well under€arlo method’~*° to study the EHM at half-filling in the
stood. vicinity of U=2V. This method allows us to probe directly
Recently, however, by studying the EHM ground-statethe spin-, charge-, and bond-order correlations in the ground
broken symmetries using level crossings in excitation spectratate of lattices with more than one hundred sitgsto 256
obtained by exact diagonalization, Nakantfiraas argued sites were used in this studysing finite-size scaling tech-
for the existence of a novel bond-order-waBOW) phase niques for the various order parameters, we confirm the ex-
for small to intermediate values &f andV in a narrow strip  istence of a BOW state with spin and charge gaps in a region
between the CDW and the SDW phases. The BOW phase igery close to that predicted by Nakamura for sntlV. We
characterized by alternating strengths of the expectatioalso further improved the SSE simulations by applying a
value of the kinetic-energy operator on the bonds. It is prequantum version of the thermal-parallel-tempering scheme
dicted to be a state where the discréteofold) symmetry is  (or exchange Monte Carlo(Refs. 20—22 for simulations
broken and should hence exhibit true long-range order. Naelose to and across the phase boundaries. This “quantum
kamura thus argues that the transition between CDW angarallel tempering” greatly reduced the effects of
SDW phases in this region is replaced by two separate trarfsticking”—where the simulation gets trapped in the wrong
sitions: (i) a continuous transition from CDW to BOW; and phase close to a phase boundary—and was found to be par-
(i) a Kosterlitz-Thouless spin-gap transition from BOW to ticularly useful for the discontinuousfirst-orde) direct
SDW. The BOW region vanishes at the multicritical point SDW-CDW transition. As a consequence, we were able to
beyond which the transition between CDW and SDW phasesbtain a more accurate estimate for the location of the mul-
is direct and discontinuous. A schematic phase diagram inticritical point (U,,,V,,) where the BOW phase vanishes and

cluding Nakamura’s BOW state is shown in Fig. 1. is replaced by a first-order SDW-CDW transition line. As we
Considering the long history of the 1D EHM and the largediscuss below, we fint ,,=4.7+0.1V,,=2.51+0.04.
number of studies of th&~2V region with a variety of In order to investigate the possibility of soliton lattices

analytical and numerical tools, the proposal of a new phase if®rming out of the long-range CDW and BOW states when
certainly remarkable. Importantly, the level-crossing methoddoping away from half-filling, we have also carried out some
used by Nakamura cannot by itself exclude the conventionadimulations of lightly doped systems. We find that in both
scenario of a direct SDW-CDW transition for the whole cases the ground state is a Luther-Emery liquid, with a spin
range ofU,V>0; a level crossing corresponding to this tran- gap and slow algebraic decay- ¢ ~¥», with K,~0.5) of the
sition was also fourt§ between the SDW-BOW and BOW- dominant CDW and BOW correlations.

CDW crossing curves. The position of the BOW-CDW level  The remainder of the paper is organized into four sections
crossing is, however, in closer agreement with the strongand two appendixes. In Sec. Il we briefly sketch the SSE
coupling result for the vanishing of the CDW order, and thismethod and introduce the different observables we study. In
was taken as evidence of a long-range-ordered BOW in th8ec. Il we present the results of our simulations at half-
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filling and discuss their interpretation. Doped systems are B. Observables

considered in Sec. IV. We conclude with a brief summary in |, 5ddition to the ground-state ener@= (H)/N, the ob-
Sec. V. In Appendix A we present some important details Ofseryaples we study include the static structure factors and
the extension of the SSE method to allow efficient loop up-sysceptibilities corresponding to the different pha@BWw,

dates for fermions. We illustrate the advantages of thespw, and BOW. The structure factors are given by
guantum-parallel-tempering scheme in Appendix B.

1 .
Ssonl @)= 2; €07SS,
II. NUMERICAL METHODS AND OBSERVABLES '

A. The SSE method and its fermion loop-update extension ia(i—K
k e'9079(n;n) —(n;)?,

Z| -

Scow(d) =

The SSE methdd?® is a finite-temperature quantum J

Monte Carlo method based on importance sampling of the

diagonal elements of the Taylor expansioreof’™, whereg Ssow(q) =
is the inverse temperatuygg@=t/T. Ground-state expectation ©
values can be obtained using sufficiently large valueg,of
and there are no approximations beyond statistical error
Recently, in the context of spin systefisan efficient
“operator-loop update” was developed to sample the opera- ki= 2 (¢]11,Cj 0+ H.C) (3)
tor sequences appearing in the expansion. The resulting o=

method has proven to be very efficient for several differentg 4,4 kinetic-energy operator associated with jebond

3-25 i ; :
models?*~*° To apply the most efficient variant of SSE The corresponding static susceptibilities are given by
method to the EHM, we need to generalize the previous

operator-loop-update scheme to spinful fermions. This is an 1 o B
important extension, but because of its technical nature we Xsowl @)= > e'q(’_k)f dr(S{(1S(0))  (4)
have relegated our detailed discussion of it to an appendix. T 0

We have applied the SSE algorithm to the 1D EHM for gnd analogous expressions fiafspw(d) andxgow(q). Since
system sizes ranging frol= 8 to 256 sites, with maximum all the phases mentioned have a period 2, the staggered struc-
inverse temperature8 chosen appropriately to isolate the ture factor and susceptibilities are the most important observ-
ground state. We have verified the correctness of the simulables. We define order parameters for the phases in terms of
tion code by comparingN=8 results with exact- the staggered structure factors
diagonalization(Lanczo$ results.

Although the operator-loop update is indeed significantly m, = VS,(m)/N, 6)

more efflClent' than'prewous Igcal updates for sarnpl‘l‘ng Ofwhereaz CDW, SDW. or BOW. We have also studied the
the SSE configurations, we still have problems with “trap-

ina” ol 10 a first-ord h : tion. i.e.. the simul charge stiffness constapt . It is defined as the second de-
ping” close to a Tirst-order phase transition, 1.€., € SIMula-; 44ve of the internal energy per sitg, with respect to a

tion can get stuck in the wrong phase very close to thg Cr'_t"twist & (Ref. 26,
cal point. There are also problems with slow dynamics in

>, €907R(kik) — (k;)2, 2

ik

Z|l -

é/yhere

long-range-ordered phases with a broken discrete symmetry PE($)
(such as, BOW or CDW phasesn order to overcome these Pe= S (6)
problems we have developed a “quantum-parallel- do

tempering” scheme—a generalization of the thermal-
parallel-tempering methd822 commonly used to equili-
brate classical spin glass simulations. The method amoun
to running several simulations on a parallel computer, using _

a fixed value ofU and different but closely spaced values of ke(p)=—12 (e '%cl,, ¢ ,+H.C). (7)

V at and around the critical vallé,. Along with the usual he

Monte Carlo updates, we attempt to swap the configurationghe spin stiffness constapt, is defined by a similar expres-
for processes with adjacent values\6fat regular intervals  sjon, with the hopping term now being replaced by
(typically after every Monte Carlo stgpaccording to a

scheme that maintains detailed balance in the space of the gt

parallel simulations, as explained in Appendix B. In contrast Ks(#) = _t,EU (€7790C) 1 1,4,Cj 0t H.C, ®)

with Ref. 22, we here find parallel tempering to be particu- '

larly useful in studying the first-order transition, where thewith ¢,=—¢ =¢. In the framework of the SSE method,
problem of trapping is the most pronounced. In Appendix Bthe estimators for the charge and spin stiffness are given in
we also present a comparative example to illustrate the imterms of expectation values of squared winding numbsze
provement obtained by parallel tempering. Appendix A).

under which the hopping term in the Hamiltoniél) is re-
Pslaced by
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FIG. 3. I x(m)] and IrfS()] vs IN] for the different phases at
U=4,V=2.14, and system sizé$ up to 256. The dashed line in
FIG. 2. The variation withv (at fixed U=4) of the staggered the S() panel has slope 1.
susceptibilitiegCDW, BOW, and SDW, from the tgpn the neigh-
borhood of the BOW phase predicted by Nakam(ire vertical
dashed lines show the predicted SDW-BOW and BOW-CDW
boundaries The statistical errors are typically of the order of the
size of the symbolsslightly larger for theN=128 CDW at highv).
The scans forN=16 and 32 were obtained in single parallel-
tempering simulations, whereas those for 64 and 128 consisted
of two and four nonoverlapping runs, respectively.

increasing system, whereas the other two susceptibilities
should converge to constants. In the SDW phase there is no
long-range order but algebraically decaying correlations of
both SDW and BOW nature; henggpw(7) and xgow( 7)
should both diverge here, but the BOW divergence should be
much slower than in the long-ranged BOW phase. These
behaviors are indeed seen in Fig. 2, with the susceptibilities
IIl. RESULTS AT HALE-FILLING for SDW, BOW, and CDW dominating in turn ag is in-
creased. The BOW-CDW phase boundary can be quite well

As noted above, we have studied chains withp to 256 resolved, since it involves a standard second-ofdentinu-
with periodic boundary conditioré. Typically, an inverse gus} ghase' transmorlj'fon l:h? oltherthar;d, t'rt1e. SDIW'BOW
temperature of3=2N was sufficient for the calculated prop- oundary 1S more ditficult to locate, for it Involves a

erties to have converged to their ground-state values, exceétOSter“tZ_'Thou'eSS fransition in which the spin gap opens
in the case ofN=256, for which 8=4N was needed for xponentially slowly as one enters the BOW phH¥sesult-

some quantities. In this section we first discuss our evidencg1g in only a slow decay of the staggergd SDW su;cept_ibility
for the existence of a long-range BOW phase, then ouln the BOW phase for the system sizes accessible in our
analysis of the continuous BOW-CDW and SDW-BOW tran—Wolr:K' 3 sh | d IS N1 for th
sitions for small {U,V), the discontinuous SDW-CDW tran- igure 3 shows Iix,(m)] and INS,(m)] vs InN] for the

sition for large U,V), and finally our determination of the parameters lQ,V)=(4,2.14) for Whlch the ground state
location of the multicritical point separating these transi'[ions.ShOUId be 'ns'd.e the BOW phasg. We find that %BV‘K m)
andSgow( ) diverge strongly with the system size, whereas
the structure factor and susceptibility corresponding to CDW
have a maximum and then decrease with the system size for
Plots of the variation of the staggered susceptibilities corlargeN. The SDW structure factor appears to have converged
responding to the three different phases—CDW, SDW, andor N=256 but the susceptibility still shows a weak
BOW-—show the existence of strong BOW fluctuations in agrowth—in a spin-gapped BOW phase it should eventually
region with V=U/2 in parameter space where Nakamuraconverge, too, but if the gap is very small the convergence
predicted a BOW state. Figure 2 is one such plotUor 4 occurs only for much larger systems. The growth viiteeen
and 1.&V<2.3. In a long-range-ordered phasBOW, here is much slower thaN, which should be the asymptotic
CDW), the corresponding () is expected to diverge with behavior in an SDW phase for any spin rotationally invariant

A. Existence of the BOW phase
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FIG. 4. Real-space BOW correlation function Ht=4, V
=2.14 for system sizel=128 and 256.
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)
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1D systent® and the growth slows with increasimy Hence 021

an asymptotic divergence gfspw(7) can be excluded. The 0.1 f ]
dominant asymptotic characteristic of the ground state is ' : . : :
clearly BOW. The system sizes considered are not large 0.0 0.2 0.4 06 0.8 10
enough forSgow( 7) to have reached the asymptotic behav- i/

ior ~N expected if there is long-range order, which we will  FiG. 5. S¢;()/q and Scow(a)/q vs q for U=4 and V
explain further below. The very fast divergencex@fouw( 7) =2.14 andv=1.8 (N=128).

is expected on account of the twofold degenerate BOW

ground state. For finit®& this degeneracy is not perfect, but . .
an exponentially fast closing of the gap between the symme f t.he QFOU”P' sFate has a spin g&,ov\(q)/_q—@ asq—0.

ric and antisymmetric linear combinations of the two asymp- ith this criterion, even a very small Spin gap can be de-
totically degenerate symmetry-broken ordered states can Bgcted, since it is, in practice, sufficient to see that

fed, which d tuall Ues to di 7Sspw(q)/q decays below 1 for smaly to conclude that
giggﬁ:ntie\\,ny.lc would eventualy ca w(m) to diverge K,# 1 and hence that a spin gap must be present. Similarly,

The most direct evidence for a long-range BOW comed©r & ground state with no charge gapScow(a)/q— K, as

from the the real-space kinetic-energy correlation function 40, whereas if the ground state does have a charge gap,
Scow(9)/g—0 asq—0. Unlike K., where the value is

1 N fixed at 1 for spin rotationally invariant systems, the Lut-
Cgowl(r)= N 2 (kiKi 4 ) — (ki) (9)  tinger liquid charge correlation parametéy is a function of
=1 U andV, and its precise value for gived and V is not
As seen in Fig. 4, this correlation function oscillates with known [except atvV=0 (Ref. 30]. Due to the logarithmic
period 2 and its magnitude decays considerably for shorgorrections typical for 1D systems, it is very difficult to ob-
distances. For long distances there is a convergence to serve numerically thatSspw(q)/q becomes exactly $733
constant, nonzero magnitude, which is the same within steEmpirically, we have found that in the gapless case the value
tistical errors forN=128 and 256. The significant enhance- 1 is always approached from abotehich is the case also
ment of the correlations at short distances explains the ddor spin systen®), and hence the detection of the spin gap
viations from the expected asymptotic linear scaling of theusing this quantity is not hampered by the log corrections—if
integrated correlation functionSgou(7), for the system 7Sspw(Q)/q decays below 1 one can conclude that here is a
sizes shown in Fig. 3. gap.

Further proof of the existence of the BOW phase is ob- Figure 5 showsmSspw(d)/q and wScpw(d)/q vs o/ w
tained by looking for spin and charge gaps in this regionfor U=4 and two values ofV. One of the points {
Instead of calculating the gaps directly, which cannot easily=2.14) is inside the BOW phase, whereas the othér (
be done to high accuracy for large system sizes, we use the 1.8) is in the SDW phase. TheSspw(0)/q curve forV
following indirect method: It is know¥ that if the ground =1.8 is close to 1 for a wide range gfvalues, whereas the
state of a 1D system is gapless in the spin sector, the Luty=2.14 curve exhibits a sharp drop @s-0 indicating, re-
tinger liquid parameteK, governing the asymptotic equal- spectively, the absence and the presence of a spin gap. Simi-
time spin-correlation function i&,= 1.1t has been further larly, the evidence for a vanishing limit @:pw(q)/q and
showrf® that the slopeSspw(q)/q givesK, /4 in the limit  hence of a charge gap faf=1.8 is clear. Since the point
g—0. Hence Sspw(q)/q— 1/ asq— 0. On the other hand, V=2.14 is quite close to the critical poin¥/(=2.16), where
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12 F } - ] Nakamura. We will discuss this phase transition and deter-
| R mine the transition point more accurately below, in Sec.
10| | LY N T
| e v Jelke
08 _\}r 7 . /9'] :\\ \\\ 1 B. BOW-CDW transition
<06 P / T S In addition to proving the existence of the BOW phase,
’ | e / 72 di | \ we have studied in detail the nature of the continuous BOW-
04 | | .’ /4 %\ e |  CDW transition for two different values d (U<U,,). For
e S mo (U,V)=(U.,V.), i.e., on the BOW-CDW phase boundary,
02 rf/ / | &9 *,\f, 7 the real space staggered charge and kinetic-energy correla-

LEJ@ '\XX& tion functions fall off algebraically as

0.0 .

1.2 l 1 (nini ) (= 1) ~r=7,

1.0 | = : (KiKi 4 ) =(K)A) (= 1) ~1 7, (10

0.8 : ‘ :q A Based on conformal-field-theory calculations for similar
o } Egguxi N\ phase transitions in 1D spin systeffighe exponent; can

06 | by * 1 be expected to depend obJ{,V.) but should be the same

04 L . w9 N=16 ] \X . | for both the CDW and BOW correlations. This gives the

' | e—eN=32 % finite-size scaling of the structure factor and the susceptibil-
02 | . T N=64 3 ity at the critical point
! &—a N=128
0.0 ! I ! ! ! SCDW,BOV\A,]T)NN]-_”’

1.7 1.8 1.9 2 2.1
M Xcowsow( ™) ~N>"7. (13)
With a spin gap but no charge gap, as was demonstrated
above, we expect the critical state to be of the Luther-Emery
liquid type3” The exponenty is then related to the Luttinger
liquid parameteK , by n=1-K,.

Figure 7 presents plots of[lgcpwl and If xgowl Vs INN]
the charge gap vanishes, the magnitude of the gap is vefgr U=4 and three different values af around the critical
small and we need to go to still smallgri.e., larger system point, which as discussed above should be close to 2.16. The
size, to see a pronounced effect like that¥or 1.8. Never-  data points fotV=2.16 indeed fall almost on straight lines,
theless, the downturn for the smallegis a good indication indicating critical scaling for both the CDW and BOW fluc-
of a gap. tuations. The value of the critical exponeitobtained from

The opening of spin and charge gaps can also be detectelde slope of the/=2.16 curves for botlycpw andxgow. iS
in the spin and charge stiffness constants, which should vans~0.5. The scaling of the structure facto8;pw andSgow
ish asN— if there are gaps. The asymptotic charge stiff-at V=2.16 is also consistent witlp~0.5. It is, however,
ness should hence be nonzero only exactly at the BOWifficult to extract a precise value fof from this finite-size
CDW phase boundary. The spin stiffness should (e  scaling, due to subleading corrections to the scaling, as well
nonzero in the SDW phasé¢2) approach a constant value as effects from the fact that the,V point studied is not
exactly at the phase boundarfwith logarithmic size exactly on the phase boundary. As was discussed in Sec.
correction$>*%® and (3) vanish inside the CDW phase. In Il A, the Luttinger liquid parameteK , can also be extracted
Fig. 6 we show the stiffness constants tb= 4 in the neigh- ~ from the q—0 limit of Scpw(g)/q. This is, in general, a
borhood of the BOW phase. As expected, the charge stiffned§0re accurate method, since the convergence with the sys-
peaks at the BOW-CDW phase boundary and decreases raﬁ?—m size is fastgr for thg sub[eadlrl_gzltontrlbutlon to .the
idly away from it, confirming the vanishing of the charge gapcOrrelation function, which this estimator accesse¥ Fig-

only at the phase boundary. The peak becomes very sharp f4f& 8 shows results fdd =4 andU=3 and the respective

large system sizes, and the finite-size corrections to its Ioci—rItlcal v ve}lues. Theg—0 behavpr g|ves<p=p.44i 0'.01
tion are small. We find this the most accurate way to locatd®’, Y=4 1-€. 7=0.5620.01, which hence is consistent
the BOW-CDW phase boundary. The spin stiffness is clearl)y_v 'gh the flr;fe.-sge_slcggng of the=n ?uaqﬂtlils.kForU )
zero in the CDW phase, and a sharp decrease with increasir}_gsdlt%ear?d 3:2 C(I:‘igcél e;(ggnae%ezegni; 2’)\”01 akamuras
N is also seen fo¥ values well inside the BOW phase. Since ' T

the spin gap opens up exponentially slowly at the SDW-
BOW boundary it is difficult to locate the transition this way.
Our data nevertheless indicate that the BOW phas# at The SDW-BOW transition is marked by the opening of a
=4 may not extend down to the valle=1.82 obtained by spin gap in the electronic energy spectrum. As argued by

FIG. 6. Behavior of the charge and spin stiffness across th
BOW-CDW boundary fotJ =4. The uppsdftower) panel shows the
chargéspin) stiffness. The vertical dashed lines indicate the posi-
tion of the phase boundaries according to Nakamura.

C. SDW-BOW transition
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0.95 ‘
0 0.1 0.2 0.3 0.4 0.5
4+ J q
E FIG. 9. Sgpw(q)/q vs g for U=4 and 4 different values o¥
5 around the SDW-BOW boundary.
=
=2+ : . -
. 7Sspw(d)/q<1 asq—0 in any(large system is an indica-
-/ tion of the presence of a spin gap in the thermodynamic
limit. This allows us to detect the presence of very small spin
0 . . ‘ ‘ . gaps. Figure 9 shows the behavior #65p(q)/q for U
2 3 4 5 =4 and different values 0¥. In the gapless region, logarith-
In(N) mic correction® make it difficult to observe the approach to

1 asq—0. In analogy with spin systenis,we expect the
FIG. 7. Ifxcow(m)] and Ifxgow(m)] vs In(N) for U=4 and  |eading log corrections to vanish at the point where the spin

different values ol near the critical point. The dashed lines are fits gap opens, and therefore exactly at the critical point there
to theV=2.16 data. should be a clear scaling to 1. An apparent reduction of the

log correction is indeed seen in Fig. 9 ¥sis increased
Nakamura, it is a quantum phase transition of the Kosterlitztowards~1.88. Based on the results, we estimate the SDW-
Thouless type and therefore the gap opens up exponentialfOW boundary to be a¥=1.89+0.01 atU=4. This is
slowly. This makes it difficult to determine the phase bound-slightly higher than Nakamura’s critical valué=1.82 for
ary numerically. The numerical data is affected by largethis U. We believe the difference is due to nonasymptotic
finite-size effects that persist up to very large system sizedinite-size effects in the exact diagonalization calculation,
As discussed in Sec. Il A, the most reliable evidence of thewhich used system sizes only up tb=14. Hence, we find
existence of a spin gap is obtained from the behavior othat the BOW phase exists in a slightly smaller, while still
Sspw(9)/g as q—0. In practice, an asymptotic value of significant, region of the phase space.

117 ' a’¢ 1 D. First-order SDW-CDW transition
oo U=4,0,V=2.16 ? ForU>U,,, the transition is a discontinuourst-orde)
e—a U=3.0,V=1.65 g, direct SDW-CDW transition with no intervening BOW
0.8 1 iy | phase. Figure 10 shows thedependence of the CDW order
EE' P parameter, the total energy, and the kinetic energy across the
o phase boundary fotJ=8, which according to previous
) studie§~**should be well within the regime of first-order
e transitions. The characteristics of a first-order transition are
) indeed quite apparent. The order parameter and the kinetic
05 | M..-" | energy change rapidly at the transition poift~4.14. The
’ finite-size effects diminish with increasing as the results
approach the limiting behavior of a discontinuity in the order
parameter and the kinetic energy in the thermodynamic limit.
0.30.0 012 014 0‘_6 018 1o The tqtal energy remalns'qontlnuous, but there is a clear
break in slope at the transition.
The size dependence of the BOW order parameter is
FIG. 8. wScpw(a)/q vs g/ for two points on the BOW-CDW  shown in Fig. 11. It becomes considerably smaller inside the
boundary. CDW phase than before the transition. This is expected,

7S cpw(@/q
o
~
*s
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' namic value from above fo¥ <V and from below fotV just
0.60 : .
aboveV.. The curves for different system sizes cross one
another in the neighborhood &=V, and then once again
p 0.40 for a higherV. The second crossing point moves down to-
~E8 wards the first one a increases, whereas the first crossing
0.20 does not change much witii and appears to be a good
criterion for locating the transition point.
0.00 | The two curve crossings can be understood as follows: In
—0.80 a transition caused by an avoided level crossing, a crossing
of the order-parameter curves close to the critical coupling
-0.85 (approaching the critical coupling &— ) can be expected
“ since the low-energy levels corresponding to an ordered and
-0.90 disordered state swap characters within a parameter range
V=Ay(N), with Ay, (N)—0 asN—oe. This behavior is seen
—095 clearly in Fig. 10. The finiteN ground state starts to develop
_1.00 CDW characteristics a¥ —Ay(N) and thus, for a fixed/
<V., the CDW order parameter decreases with increasing
355 N. An analogous argument for fixed>V, close toV. sug-
gests that, in this case, the CDW order must increase with
o 250 increasingN. Qn the other hand, fov>V, the_z rea!-space
CDW correlations are enhanced at short distan@eshe
3.45 same way as the BOW correlations shown in Figadd for
T small system sizes there is also some enhancement of the
3.40 J J , \ ‘ long-distance correlations due to the periodic boundary
" 4.00 4.05 4.10 415 4.20 4.25 conditions®® Hence, one can expect the CDW order param-

v eter, when defined and measured in terms of its squared ex-
FIG. 10. Behavior of the CDW order parameter, the kinetic pectation Eq(5), to againdecreasewith N for V>V, and

energy, and the ground-state energy across the SDW-CDW trans‘ihIS explalns. the. second crossing of the order-parameter
tion for various system sizes am=8. curves seen in Fig. 10.

since in the SDW phase, but not in the CDW phase, there E. Multicritical point

should be power-law decaying BOW correlations. However, Although the existence of the tricritical poifivhich, in
the BOW order parameter decays rapidly with the systemjie\ of the existence of the BOW phase, we refer to as the
size, confirming that there is no long-range BOW for thisyyjticritical point separating the first-order and continuous
U>Up,. . o ) ) o transition to the CDW state has long been known, its location
The behavior with increasingly sharp discontinuities seenp, ihe (U,V) plane has not previously been determined ac-
in Figs. 10 and 11 indicates a first-order transition due to aRyrately using large system sizes. Hirs®estimated a value
avoided level crossing. Note that with increasing chaings U,=3 using world line Monte Carlo. Cannon and
length the CDW order parameter approaches its thermody=44kirt® obtained U,=1.5 using field-theory techniques
and world lines. Later Cannon, Scalettar, and Fratdkir-
tained a value ofU,,=3.5-5 using finite-size scaling of
Lanczos results. Using a combination of bosonization and

025 renormalization-grougRG) techniques, Voif' obtainedU
=4.76. However, as \oit also pointed out, the validity of
0.20 bosonization and RG, which are applicable in the limit
U,V—0, for intermediate values of the parameters igri-
z 0.15 ori questionable.
~Eg By using larger system sizes and an alternative criterion to

distinguish between a continuous transition and a first-order

010 | M . o . ;
level crossing transition, we have obtained an estimate of the
o Ne64 multicritical point that we consider more accurate and reli-
005 ¢ 1 able than the previous estimates. In contrast to most previous

&-© N=32
=& N=16 numerical studies, our method is not based on plotting histo-
0.00 : L : : . grams of the order parameter, although we will also present
4.08 4.10 412 414 416 418

such histograms in the following section. In this section we
first exploit the qualitatively different finite-size dependence

FIG. 11. Behavior of the BOW order parameter across theof the growth of the order parameter close to the transition
SDW-CDW transition for various system sizes dde 8. above and below the multicritical point.

v
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For fixedU, the order-parameter curves for different sys- T ‘ ‘ ‘ '
tem sizes cross each other at or very close to the critical point -
(V=V,) in the case of a first-order transition, as discussed 0.3 I
above in Sec. llID. Such a crossing cannot occur at a con-
tinuous transition, where instead there should be finite-size L
scaling governed by Ed11). This qualitative difference in -
the finite-size dependence of the order parameter close to the 0.2 -
transition point above and below the multicritical point 2
(U, V) leads us to expect that in the neighborhood of this “g
point, curves of the order parameter for different chain L
lengths will closely coincide with one another close Mo 01
=V,., andU,, is the point at which the curves barely touch -
each other. When the system size becomes sufficiently large
one can also directly observe discontinuities developing i |
whenU>U,,, in the order parameter as well as in other 0 ! ! ‘ | ! .
quantities, as in Fig. 10. In practice this criterion, or any 2.24 2.29 2.34 2.39
other criterion known to us, cannot be expected to be useful
very close to the multicritical point, where the transition is
only weakly first order and very large lattices are needed to
detect discontinuities developing from avoided level cross-
ings.

Figure 12 shows the finite-size dependence of the CDW 0.2
order parameter across the transition for three different val-
ues ofU. ForU=4.2, only theN= 16 curve crosses the other z
curves, and this occurs far from the critical poias deter- ~
mined using the peak in the charge stiffness, as discussed in
Sec. Il A). The noncrossing for larger system sizes show 0.1
that the transition must be continuous at thisFor U=5.2,
all curves show a crossing behavior and a discontinuity can
also be seen developing for the largest system size, i.e., the
transition is here of first order. The curves for=4.6 closely
follow the expected behavior at the multicritical point, with
the curves for the largest systems barely touching each other.
Based on data, also for other valueslfwe estimate the L
multicritical point to be U,=4.7+0.1V,,=2.51=0.04). - U=b.2
This agrees very well with Voit's estimateU(,=4.76)* I

0.3

However, it is not clear whether this agreement is fortuitous 03 L i
or whether there is some underlying symmetry that renders - .
bosonization and RQthat assumedJ,V<1) applicable i 7
close to the multicritical point. 502 - i
=3
“EL . _
F. CDW order parameter histograms r . ]
Previous studies of the multicritical point have exploited 0.1 - /ﬁ ! < N=16 -
the existence of a three-peak structure in the distribution of I 1 *-eN=32 7
the CDW order parameter for a discontinuous SDW-CDW i ;ZZ)ZHZ ! :Ezf?‘z‘g
transition in the vicinity of the critical point and its absence - ! - 8
at a continuous transitichOutside the CDW phase, the dis- 7T
tribution of the CDW order parameter is peaked around zero. v

For a continuous transition to a CDW state this peak splits

into two (corresponding to the positive and negative values FIG. 12. CDW order parameter V¢ across the BOW-CDW

of the order parametgrwhich gradually move apart from boundary for several system sizes near the mul_ticritical _po_int. The
each other inside the CDW phase. In a first-order transition‘,jaShed line shows the position\df for the respectivé). Statistical

on the other hand, the order parameter takes a nonzero valGg0rs are smaller than the symbols.

immediately as the CDW phase is entered and hence the two

peaks emerge already separated from each other. Furtheition of the multicritical point can then, in principle, be
more, at the phase boundary the CDW phase coexists witbbtained by locating the point where the three-peak structure
the competing phase, and this is reflected as a central pedikst appears. In practice, the accuracy of this method is lim-
remaining in the CDW order-parameter distribution. The po-ited by the fact that the discontinuity is very small for a

155113-9
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FIG. 14. CDW order-parameter histograms for=64 systems
close to the phase transition.

0.0 0.2 0.4 0.6 the histogram is only slightly more sharply peaked than at
COW B=16 and 32. Most likely, the simulation giving the four-
eak structure was not sufficiently long, as it consisted of
nly 10* Monte Carlo step8.Even with the more efficient
SSE algorithm used in the present work, we find that the
autocorrelation times are quite long close to the first-order
fransition(see Appendix Band short simulation can produce
incorrect order-parameter histograms similar to those shown

. » N _ in Ref. 8. For the histograms shown here, of the order of
first-order transition close to the multicritical point and very 1¢7_1® SSE Monte Carlo steps were used.

large system sizes are then needed to observe the three |y Fig 13 we also show results for several valuesvof
peaks. This problem is, of course, common to all methods fopcross the phase transition. A clear three-peak struéitere
distinguishing between a continuous and weakly first-ordefhree peaks in the rangacpwe [ — 1,1], of which we only
transition. show the positive partwith peaks of almost the same
In his early QMC study, Hirsch observed a three-peakheights can be seen fof=3.165. In Fig. 14 we show results
structure even fold as small as 3 and, therefore, concludedfor N=64. At U=6, the three-peak structure appears \Vor
that the transition there is already of first orf&or largery, ~3.156, i.e., at a value slightly lower than for tihe=32
an unexplained four-peak structure was seen. We have rgystem. The size of the region in which three peaks can be
peated histogram calculations for the lattice dize32 stud-  observed is also significantly smaller, reflecting the sharpen-
ied by Hirsch. In Fig. 13 we show results f&#=6, V  ing of the first-order transition caused by an avoided level
=3.15, where a four-peak structure was seen in the earliezrossing. AtU=5, which we have argued above should be
calculation® We only find a central peak, which shows that close to but above the multicritical point, we do not observe
the system is not in the CDW state for these parametershree peaks. However, the histogram becomes very flat for an
There are, however, already signs of side peaks developingxtended range ofcpy, and the side peak emerges at a
which shows that the system is close to the CDW phase. Thenite value ofmgpy,. This is consistent with the transition
significant differences with the earlier result could partially still being of first order aV=5. Going to still lowerV val-
be errors due to the Trotter decomposition used in the worldues, the peak just becomes narrower, and it is not possible to
line simulation method. Temperature effects are only minordefinitely conclude this way when the transition becomes
as also shown in Fig. 13. A8=8, which was used in Ref. 8, continuous.

FIG. 13. CDW order-parameter distributions for 32-site system%
atU=6. Upper panel: Dependence on the inverse temper@tate
V=3.15. Lower panel: Dependence &haround the first-order
phase transition. Statistical errors are of the order of the size of th
symbols.
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IV. DOPED SYSTEMS
0.8

An interesting question naturally arises from the existence
of the Nakamura BOW phase: Can the EHM model support
a soliton lattice when doped slightly away from half-filling?
Such a state exists in the Su-Schrieffer-Heeger model in th
adiabatic limit(with classical, “frozen” phonons*®~** and
also when electron-electron interactions are taken intog@
account'®*!|n these models, the quantum nature of the pho- 0.4
non field is not taken into account, however. It is known that
the dimerized state at half-filing survives even in the pres-
ence of quantum fluctuations, at least up to a critical value of
the phonon frequend{?. However, to our knowledge, there 1.0
have been no reliable numerical calculations addressing thi
stability of the soliton lattice in the presence of fully
quantum-mechanical phonons. The Nakamura BOW is simi-z
lar to a dimerized lattice with quantum fluctuations, and @;

0.6

o/

08 r

hence a study of its evolution with hole doping can give 2 0.6 *—3=0.0 ]
insights also into the quantum phonon problem. There are® =& 5=0.0234375
also unresolved issues regarding the doped CDW $tdte. — 8=0.0625

&4 3=0.09375

order to investigate the evolution of the long-range-ordered .4 i
states upon doping, we have studied the EHM model alsc , , ,
away from half-filling, focusing on two parameter values in 0.0 0.2 0.4 0.6 0.8
which the half-filled system is in the BOWusingU =4, V q/n

=2.14) or CDW phaséusingU=4, V=2.5). _ _

We first discuss the effects of doping on the spin and FIG- 15. The static chargeipper pansland spin(lower panel
charge gaps in the half-filled CDW and BOW ground statesStructure factor divided by the wave numispas a function ofj for
As in preceding sections, we make use of the behavior of thé%-snte chains at different doplng_ fractiodsFor these_pa_rameter
static structure factor in the limij— 0. Figures 15 and 16 E%L\'zs tut74’V72'14)’ the half-filled system &=0) is in the
show7Scpw(q)/q and7Sspw(q)/g as a function ofy for a state.
range of doping levels, both for parameters where the half-
filled system is in the BOW phag€ig. 15 and in the CDW
phase(Fig. 16). From the data we conclude that upon doping
away from half-filling, the charge gap vanishes immediately
whereas the spin gap survives. This is true for both the CDW
and BOW parent states. This behavior is characteristic of €
Luther-Emery liquid®” in which the charge sector can be 0.6
described in terms of a Luttinger liquid and the spin sector is<
gapped. The limiting value ofrS;(q)/q asq—0 indicates
that the Luttinger liquid exponet ,~0.5 in both the cases, <«
with only a weak dependence on the doping level for the
parameters considered here. Note the crossover behavior o
curring in the charge structure gt=~2m76=4kg in Fig. 16
(which is accompanied by a peak in the corresponding sus 0.0
ceptibility, as will be shown beloy® reflecting a weak re- 1.0
pulsion between dopant holes. No crossover in the charge
structure is seen in Fig. 15, where the parent state is a BOW 0.8 +

Figure 17 shows the variation of the ground-state static
susceptibilities for several doping levels in a chain of Iength% 0.6
N=128 for the parameterd) =4V=25. For 6>0 the =
charge susceptibility converges to a nonzero valug-a9, % 0.4

0.4

TS epw(d

o0 5=0.0

again showing the absence of a charge gap. Very strépg 2 =—u 5=0.046875
peaks are evident, and weakekg4peaks are also clearly 0.2 = §=0.0625 -
visible. The X peaks diverge with the system size whereas 4—4:3=0.09375

1 1 1 _ 00 1 1 1 1
the 4k peaks are nondivergent, in accord with the Luther 56 o5 4 oiE 6 36

Emery picture. For a Luther-Emery liquid, the charge corre-
lations decay with distance as r X, which gives

xcow(2ke) ~ N2~ for the finite-size scaling of the corre-  FIG. 16. Same as Fig. 15 far=4, V=2.5, where the half-filled
sponding X susceptibility. Figure 18 shows the size depen-system is in the CDW phase.

q/m
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FIG. 17. Static CDW and SDW susceptibilities at different dop- r
ing levels foru=4, V=2.5 for aN=256 chain. The inset shows ) ) )
the xcow(2ke) peaks on a more detailed scale. FIG. 19. Real-space charge correlations vs distance at a doping

level §=0.0625 for system sized=128 and 256 at) =4,V=2.5.

dence for6=0.0625 on a log-log scale. For system sipés is a CDW, and for the doped system we find solitonic fea-
=64, the data is seen to fall on a line with slopel.5, tures with alternatingA and B phases separated by domain
consistent with the valu& ,~0.5 extracted above. walls or kinks. However, the correlation decays with dis-
As a further test of the Luther-Emery liquid nature of the tance, and there is no real soliton lattice. In fact, the decay of
ground state away from half-filling, we have studied the realthe magnitude of the peaks is well approximated by an en-
space charge and bond correlations as a function of distanceglope curve of the forny~x~%% and hence also these data
Figure 19 shows the charge correlation for two different sysare consistent with a Luther-Emery state with~0.5.
tem sizes at a dopant concentration of 6.25% and interaction Figure 20 shows a similar plot of the real-space bond-
parameteré) =4 andV=2.5. The ground state at half-filling order correlation fold =4 andV=2.14 at the same dopant
concentration and for the same system sizes. The ground
. , state of the half-filled system for this choice of parameters is
here a BOW, and away from half-filling, the dominant cor-
relation are still of bond-order type. Once again, the ground
state of the doped system has solitonic features with an al-
gebraic decay of the magnitude of the peaks. As in the pre-
vious case, the decay is consistent with a Luther-Emery lig-
uid with K ,~0.5.

»
T

V. SUMMARY

(3]
T

In[y py(Zkp)]

To summarize, we have studied the 1D EHM using the
SSE method incorporating an efficient operator-loop update
. and a “quantum-parallel-tempering” scheme. Our results
confirm the surprising predictioh of the existence of a
novel long-range-ordered BOW phase between the well-
33 4'{ : known CDW and SDW phases in the ground-state phase

1n(N) diagram for small to intermediate values of the on-site inter-
actionU (U<U,). We have presented several ways to de-

FIG. 18. Finite-size scaling of the static charge susceptibility attect the spin and charge gaps expected in the BOW phase and
g=2ke for a system withU=4, V=25 at a doping level of have also probed directly the BOW correlations and con-
6.25%. A slope of 1.5 is shown by the dashed line. cluded that true long-range order develops. We have studied
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f ‘ true soliton lattices. Based on the fact that the BOW state is
\ N=128 1 very similar to the dimerized ground state of models with
finite-frequency(nonadiabatig phonons, we conjecture that
the soliton lattice is also unstable to arbitrarily weak quan-
tum fluctuations in these models, unless two- or three-
dimensional couplings are taken into account.

After our completion of the numerical calculations at half-
filling Tsuchiizu and Furusaft presented a weak-coupling
g-ology calculation taking into account second-order correc-
| tions to the coupling constants. They obtained a phase dia-
-0.10 1 gram in very good quantitative agreement with ours, includ-
0 0 2 20 m 50 pvs ing the location of the multicritical point.

0.05 -

0.00 -

CoonlD)

-0.05 | |,”

N_256 ] ACKNOWLEDGMENTS

\% | We would like to thank R. T. Clay for discussions of the
‘ N operator-loop update for fermions. We thank M. Nakamura
for sending us some of his numerical results for compari-
i i sons. A.W.S. would like to thank O. Sushkov for discussions.
A :ii"/""— This work was supported by the NSF under Grant No. DMR-
~0.05 ,/// ] 97-12765 and by the Academy of Finlafproject 26175
Most of the numerical calculations were carried out on the
i SGI Origin2000 and Condor systems at the NCSA, Urbana,
-0.10 1 . . . . . .
| ‘ lllinois. Some simulations were also carried out on the Ori-
0 20 40 60 80 100 120 gin2000 at CSC - Scientific Computing Ltd. in Helsinki.

T

“T\‘ ol e getes
il

Cpow(D
o
8

FIG. 20. Bond-order correlations a&=0.0625,U=4V=2.14, APPENDIX A: OPERATOR-LOOP UPDATES
for system size®N=128 and 256. IN THE SSE METHOD

. The basic SSE approach has been discussed in several
a few points on the BOW-CDW phase boundary and obypaperst’-19we here start with a brief review as a basis for

tained a very good agreement with Nakamura's levelintroducing the operator-loop updaién the context of fer-
crossing predictiol? for the location of this phase boundary. mion models.

For the SDW-BOW phase boundary, our results indicate @ To jmplement the SSE method, the Hamiltoniéh) is
higher criticalV for fixed U than given by the level crossing yritten, up to an additive constant, in the form

method and thus overall a slightly smaller size of the BOW

phase. Our results are for significantly larger systems than in N

the previous study and it is not surprising that the finite-size H=—=2 (Hip+Hop+Hsgp), (A1)
effects in the level crossings can be large for the SDW-BOW b=1

transition since the spin gap opens exponentially slowly inyhereb is the bond connecting the sitbsandb+ 1, N is the
this Kosterlitz-Thouless transition. An overestimation of thelength of the chain, and the operatéts ,,a=1,2,3 are de-
size of the BOW phase from the level crossings is also apfined as

parent considering that our estimated multicritical point is

well within the BOW phase of Nakamura’s phase diagram. u 1 1\ U 1
Since our BOW-CDW phase boundaries agree, this indicates H1p=C~ E( Mb,1 7~ 5) ( Mo~ 5) (”b+1ﬁ_ 5)
problems with the scaling of the exact SDW-BOW level

crossings close to the multicritical point, as was also men-

2

1
tioned by Nakamura® For large values of) (U>U,,) the X{ Mo+~ 5) ~V(np=1)(Npy1—1),
transition is discontinuou€irst ordey. We have shown that
curves of the CDW order parameter across this boundary for Hz,b:t(cgﬂ,icb,ﬁ H.c),
different system sizes cross each other twice, and explained
this behavior in terms of an avoided level crossing. We have H3,b:t(cg+1,TCb,T+ H.c). (A2)

also used the curve crossings as a means to locate the posi-
tion of the multicritical point with greater accuracy than pre- The constan€ shifts the zero of the energy and is chosen to
viously attained. Our estimate for the multicritical point is ensure a non-negative expectation valueHaqy, (needed in
U,=4.7+x0.1, V,,=2.51*+0.04. order to ensure a positive definite expansion of the partition
We have also studied systems doped slightly away fronfunction). Introducing a basis{|a)}={|{1,{o, - - - .{n)}s
half-filling. We find that both the doped CDW and BOW where{;{0,7,],1|} denotes the electron state at the site
states give rise to ground states of the Luther-Emery typethe partition functionZ=Tr{e #"} can be expanded in a
i.e., the quantum fluctuations do not allow the formation ofTaylor series as
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z=2 é 2%” a|f[ Hap,bp|a>, (A3) @) T—N T—l N¢ N
@ontes e T A A

whereS, denotes a sequence of index pairs defining the op- @ (W (i ®

erator stringlly_;Ha b

Sn:[arb]l[arb]Z' : ~[a,b]n, (A4) () T ¢ e :N ¢ — T ¢ ’ T\lunl ’ N l’
where we use the notatiorja,b],=[a,,b,] and a . . @® e O »
€{1,2,3, be{l,... N}. In order to construct an efficient

'3 FIG. 21. (a) A few allowed vertices. The solid lines denote the
diagonal Hamiltonian operator, the dashed and dotted lines denote
the hopping operators for the up and down spins, respectively. The
lower legs denote the statég(p—1) and {;,(p—1) while the
upper legs denoté;(p) and ;. 1(p). (b) An example of a vertex

updating scheme, the Taylor series is truncated at a sel
consistently determined powkr large enough to cause only
an exponentially small, completely negligible errot (
~ B|E|, whereE is the total internal energy; for details see
Refs. 17 and 18 We can then ‘?'ef'_”e asampllng_space V_Vher%pdate. The entrance leg is the lower left leg of the vertex, as
the length of the sequences is fixed, by insertingn unit jygicated by the dot. The electron state at the entrance lésy
operators, denoted By, o, into each sequence. The terms in changed tof | in this particular update. Given that, the three pos-
the partition function must be divided by;X in order to  siple resulting vertices are shown. The corresponding exit legs are
compensate for the different ways of inserting the unit op-denoted by open circles. Exit at the upper right leg does not result in
erators. The summation ovaris then implicitly included in  an allowed vertex in this case.

the summation over all sequences of lengthirhe partition

function takes the form encountered during the successive scanning of the operator

L string, the corresponding electron states are updated so that

"(L—n)! ; : . o
z=> > u<a IT H, b > (A5)  the information needed for evaluation of the probabilities
@ S L! p=1 PP (A7) is always available when needed.
where the operator-index paifa,b], now haveae{1,2,3 The operator-loop update has been discussed in detail in
andbe{1,... N} or [a,b],=[0,0]. For convenience, we Ref. 19 in the context of spins. Here we present the construc-
introduce a notation for states obtained by the action of théion of loops for fermions. As explained in Ref. 19, the ma-
first p elements of the operator strirg) trix element in Eq(A5) can be graphically represented by a

set ofn vertices(corresponding to tha nonunit operators in
P S.) connected to one another by the propagated electron
|01(p)>~j1:[1 Ha, bl @)- (AB)  stategsee Fig. 21a)]. Each vertex has four “legs” with elec-
tron states{i(p—1),i+1(p—1)) and|[{i(p),&i+1(p)) be-
For a nonzero contribution to the partition functide(L)) fore and after the action of the associated Hamiltonian op-
=|a(0)). eratorH, . There are 32 allowed vertices—16 diagonal

; : p
~ A Monte Carlo scheme is used to sample the configuragnes and eight each associated with the off-diagbingland
tions (a,S.) according to their relative contributions Hap. A configuration @,S,) is completely specified by the

(weights to Z. The sampling scheme consists of two types ofjeq'states of the vertices—except for sites that do not have

updates,*° referred to as diagonal update and operatorny operators acting on them.

loop updates. The diagonal update involves local substitu- T, carry out the operator-loop update, the linked list of
tions of the form[0,0],<~[1,0], and is attempted consecu- the  vertices is first constructed. In addition to the electron
tively for everype{l,... L} in the sequence for which giates at the legs of each vertex, the list also contains the
[a,b],=[0,0], or [1b],. The updates are accepted with 5qqressef.e., the location ir,) of the next vertex and the

probabilities corresponding leg that each leg is connected to. The loop
NAM (D) construction begins with randomly choosing a vertex and an
P([0,0],—[1b],)= —“3, “entry” leg. The electron state at the entry leg is changed to
L—n one of the three other allowed states chosen at random. Next
an “exit” leg is chosen(following a procedure described
P([Lb],—[0,0],) = L-n+1 (A7) below) and its associated electron state is updated so that the

new leg states constitute an allowed verfsge Fig. 2(b)].

The exit leg will be linked to a leg of another vertéor, if
there is only one operator in the configuration that acts on the
site in question, another leg on the same veréad this will

be the entry leg for the next vertex. The electron state at this
new entry leg is then updated to match the state at the exit
is a matrix element on bonta] which in this case is diagonal leg of the previous vertex. A new exit leg is then chosen
(a=1). Only a single stater(p)) is stored in the computer following the same procedure. This is repeated until the exit
during the diagonal update. When off-diagonal operators arkeg from a vertex points to the starting point of the loop,

NBM 5(p)’
where

Mab(P)=(Z(P):Zb+1(P)[HaplZp(P—1),{p+1(P—1))
(A8)
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which implies that the loop is closed and a new allowedtermination length, it has proven useful to carry out a diag-
configuration has been generated. onal update before starting the next loop. The loop termina-
To choose an exit leg—given a vertex, an entry leg andion does not violate detailed balance and does not cause any
the updated electron state at the entry leg—all the legs can Isystematical errors in the results. In most cases, incomplete
considered in turn and attempts made to update the assod@op termination occurs so infrequently that it does not ad-
ated electron state so that the new leg states constitute rsely affect the simulation. In analogy with Ref. 46, where
allowed vertex. Because of spin and charge conservation of Scheméthere called “worm” updatgsimilar to the opera-
the vertices, at a given exit leg there is at most one possibltr loops considered here was first introduced within the con-
update of the electron state that can lead to an allowed vefinuous world-line representation, the end points of the loop
tex. Hence, the exit leg uniquely determines the new verteguring construction can be related to the single-particle
and the probability of choosing a given leg should be pro_Green’s function of the _system and hence the tendency for
portional to the weight of the new vertex, i.e., a matrix ele-100ps to become exceedingly long for some parameter values
ment of the form(A8), which in this case can be either mu.st.be related to some .phyS|caI properties of the system.
diagonal or off-diagonal. In practice, a fast selection of an' Nis issue should be studied further. _
exit leg and updating of the vertex state is achieved using Estimators for the various structure factors and suscepti-
two pregenerated tables. The first one contains the cumulgl'IItIeS have been discussed in previous papéf§Here we
tive probabilities of the four exit legs given an entrance leg,0nly note that the charge and spin stiffness constants/6zg.
the old vertex state, and the new state at the entrance. TI&Nn be expressed in terms of spin and charge current opera-
second table contains the new vertex states corresponding @S in analogy with the spin stiffness of the Heisenberg an-

the updated entrance and exit legs. tiferromagnet previously discussed in Ref. 18, leading to
A special case occurs if the initial update at the entry leg " L2

of the first vertex of a loop is a spin flip, i.e., the electron _Lng=np)=(g—nj)] (A9)

state changes from to | or vice versa. In this case, the Pes NS '

vertex weight does not change when updated and as a con-
sequence the “bounce process,” where the exit leg is tha&vhereng  is the number of kinetic-energy operators in the
same as the entrance leg, does not have to be included in t&&E term propagating spim-particles in the “right” and
loop construction. The loop then becomes deterministic, i.e.;left” direction on the ring. Because of spin and charge con-
there is a unique exit leg given by the entrancelfeghis is  servation, the topological winding numbersg(-n{")/N can
similar to the “loop-exchange” algorithm proposed in the take only integer values.
context of the world-line methot. Although the operator-loop algorithm very significantly
A full Monte Carlo updating cycl¢MC step consists ofa speeds up SSE simulations, in many cases reducing the au-
diagonal update, followed by the construction of a linkedtocorrelation function by orders of magnitude, the dynamics
vertex list. Next a number of operator-loop updates are caris still very slow in some parameter regions. For the ex-
ried out and finally the vertices are mapped back into a cortended Hubbard model studied here, problems with very long
responding sequenc® . The loop update typically also im- autocorrelation times occur in the long-range-ordered BOW
plies changes in the stored stéte =|«(0)), as some of the and CDW phases. The problems are particularly severe for
vertex legs(links) span across the periodic boundary in thelarge systems close to the BOW-CDW phase boundary,
propagation direction. The number of up and down electrongvhere “trapping”in the wrong phase often occurs. The slow
can be changed by the operator-loop update, as can the spglnamics in the BOW phase is illustrated in Fig. 22, which
tial winding numbers, and the algorithm is hence fully grandshows the simulation time dependence S$§ow(7) and
canonical. Note that at high and moderately low temperaxgow(7) during a simulation of a 256-site system At
tures there are typically some sites of the system, which has 512[Sgow has converged at thj8 but ygowis about 20%
no vertices associated with them. The states on these sitérger still at3=1024]. It is evident that the BOW autocor-
can be randomly changed, since they have no effect on theelation time here is tens of thousands of MC steps. The
configuration weight. BOW susceptibility exhibits a behavior where it sometimes
The number of loops constructed for every MC step istakes very small valuegess than 10° of the average valye
determined such that on an average a totat-df vertices  but corresponding large fluctuations upwards do not occur,
(we typically use 2) are visited. The truncatioh and the i.e., the distribution of thegouw(7) estimator for individual
number of loops are adjusted during the equilibration part otonfigurations is very skewed. The structure factor exhibits a
the simulation and are thereafter held fixéds determined more symmetric distribution. This behavior can be under-
by requiring that the highestreached during equilibration is stood as a consequence of the BOW ground state for a finite
at most 70—80 % of. system being a symmetric combination of the two possible
In certain parameter regions, the length of a loop carreal-space symmetry-broken states. The symmetry is not bro-
sometimes become extremely long before it closes—in prad<en in a finite system and the simulation is also not trapped
tice, it may even never close. It is, therefore, necessary ti one of the real-space states. Hence, the wave function that
impose a maximum length, beyond which the loop construcis sampled in the simulation contains both the real-space
tion is terminated and a new starting point is cho$gpi-  states and the behavior seen in Fig. 22 indicates that indi-
cally, we use~50L for this cut-off length. In order to re- vidual configurations also contain both components, in such
duce the likelihood of the next loop also exceeding thea way that transitiong“tunneling”) between the two real-
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method commonly used to equilibrate classical spin glass
simulations. Our implementation amounts to running several
simulations simultaneously on a parallel computer, using a
fixed value ofU and different but closely spaced valuesvof
Along with the usual Monte Carlo updates, we attempt to
swap the configurations for processes with adjacent values of
V at regular intervals, typically after every Monte Carlo step,
according to a scheme that maintains detailed balance in the
extended ensemble of parallel simulations. The probability of
swapping the/ values of runs andi + 1, which are running
atV; andV, 4, respectively, before the swap, is

Wi(Vir )W 1 (Vh)
Wi (Vi)W 1(Vigr)]

Pswa;{vi ,Vip)=min 1 (B1)

where W, (V) is the SSE weight of théth simulation con-
figuration evaluated with the coupling. The swap prob-
abilities for fixedAV=V,;,—V, decreases with increasing
system size and decreasing temperature and h&ktand
the range ofV values(if the number of processes is fixed
must be chosen smaller for larger system sizes.

The computational effort required for the swapping pro-
cess is very minor compared to the actual quantum Monte
Carlo simulations. It is, therefore, useful to carry out several
o ~ swap attempts of all pairs of neighboring simulations be-
FIG. 22. BOW structure factor apd susceptibility for a 256-site yyeen every MC step. Histograms containing the number of
system withU=4 andV=2.14 at inverse temperatuil=512.  imag each of the current configurations has “occupied” each
RY bin can then be constructed and used for adding the con-

Xpow(™)

resents an average over a bin consisting df @nte Carlo steps.

space states can occur during the SSE propagatitich 0.6
can be simply relatéd to a propagation in imaginary time
at least for some configurations. Tunneling can be inferred
from the qualitatively different evolutions of the structure
factor and the susceptibility in MC time. The susceptibility is
an integral of the bond-order correlation, as in Ef, which 2
in configurations where tunneling occurs can be much's
smaller than in configurations with no tunneling, since cor- 0.2
relations between states with the same real-space configur:
tion contributes positively but correlations between different
states give a negative contribution. The structure factor, or
the other hand, is an equal time correlation function and g |
would not be reduced much by tunneling if the tunneling
times are short. This explains the qualitatively different dis-
tributions of thexgow and Sgow measurements in Fig. 22.
Evidently, the updating process is very slow in adding and 04
removing tunneling events in the configurations, which, ?g
maybe, is not that surprising considering that the tunneling is"g
between two states with a discrete broken symmetry. Thest g5 |
problems do not occur in SSE simulations of systems with a
broken continuous symmetry, such as the two-dimensiona
Heisenberg model.
The trapping and tunneling problems can be significantly ~ 99,7~ 415 4.20 4.05
reduced by using the parallel tempering schéarexchange ’ ’ v ' '
Monte Carlg,?°~??which is discussed below in Appendix B.

04 -

o
o

FIG. 23. CDW order parameter across the SDW-CDW phase

APPENDIX B: QUANTUM PARALLEL TEMPERING boundary forU=8 (N=64, 8=64). The upper panel shows data
from individual runs. The lower panel shows the same data obtained
The “quantum-parallel-tempering” scheme is a straight-using quantum parallel tempering, with two independent runs as

forward generalization of the thermal-parallel-tempefing  indicated by the open and solid circles.
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was 16 MC steps for allV values, and this was also the

number of steps performed by each process in the tempering
runs. The improvement in the quality of the tempering data is
evident, especially close to the transition point where two of
the individual simulations have relaxed into the wrong
phases. The statistical errors are hence severely underesti-
mated due to the failure to equilibrate properly within the
simulation time. The tempering error bars are also large at
the phase transition, but in contrast to those of the individual
simulations they are accurate error estimates. The errors rap-
idly become much smaller as one moves away from the tran-
sition point. The effects of tempering are also favorable fur-
ther inside the CDW phase, where several of the individual
simulations are apparently affected by trapping in configura-
tions with defects, where the order is reduced.

The tempering acceptance rate during the run spanning
across the phase transition in Fig. 23 is shown in Fig. 24.

FIG. 24. Tempering acceptance rate during the simulation acros¥here is a sharp reduction in the acceptance rate at the tran-

the first-order SDW-CDW phase boundary.

tributions of each configuration to all thé bins. This can

sition. This reflects the rapid change in the SSE configura-
tions across the phase boundary, which implies that the con-
figuration weights evaluated withv values from the

contribute to reducing the statistical error of measured quaniwrong” phase are likely to decrease and the swap according

tities.

To illustrate the advantage of quantum parallel tempering,

to the probability(B1) will be rejected.
Finally, we note that tempering, in general, is an applica-

we show two sets of data—obtained with and without the us¢ion where a superlinear speed-up can be achieved in practice
of tempering—for a system undergoing a first-order transi-on parallel computers. In addition to doubling the density of
tion. Figure 23 shows the CDW order parameter across thdata points when the number of processes is doubled, the

first-order SDW-CDW phase boundary @t=8. The upper

statistical errors are also reduced. Sometimes the error reduc-

panel shows the data obtained from individual runs; thdion can be dramatic, but even in cases where there are no
lower panel shows data for the same parameters obtaingdal problems with the dynamics of individual simulations
using tempering. The length of the individual simulationsthe effects of tempering are often very favorable.
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