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Cluster methods for strongly correlated electron systems
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We develop, clarify, and test various aspects of cluster dynamical mean field methods using a soluble toy
model as a benchmark. We find that the cellular dynamical mean field tt@BMyIFT) converges very rapidly
and compare its convergence properties with those of the dynamical cluster approximation. We propose and
test improved estimators for the lattice self-energy within CDMFT.
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The development of dynamical mean field methods hasity which needs to be estimated from the cluster self-energy,
resulted in significant advances in our understanding o#n auxiliary quantity which enters the dynamical mean field
strongly correlated electron systems, in particular in the aregquations. In this paper we provide improved estimators for
of the Mott transition: This method captures the local effects the lattice self-energy and discuss how they improve the con-
of correlations such as the Kondo effect and the transfer ofergence to the exact answer as a function of the cluster size.
spectral weight between the coherent and the incoherent pdt the third part we explore alternative schemes for estimat-
of the spectral function. It suffers, however, from limitations ing physical quantities from a DCA and a CDMFT cluster.
arising from its single site mean field character such as th&or the DCA clusters we confirm that the original DCA pre-
lack of k dependence of the self-energy. Natural generalizascription gives the best results. Whereas for the CMDFT
tions of statistical mechanical approaches to the area dhethod we find that all estimators give excellent estimates of
quantum interacting systems, such as the Bethe-Peierls af¢ical quantities because of the existence of an underlying
proximation and various cluster mean field theories, havé&avity construction.
been investigated recently*®®This area of investigation is ~ Real space formulation the cluster scheneairly gen-
in its beginning stages, and comparative studies of the varieral model of strongly correlated electrons contains hopping
ous methods are important to increase our understanding @nd interaction terms. It is defined on a latticeLdfsites in
their strengths and their limitations, at a level comparable tél dimensions, and we divide the lattice /()¢ cubic
our present understanding of the single site dynamical meaglusters ofL{ sites(more general forms can also be consid-
field theory. It is worth pointing out that in the context of ered. We denote withe the internal cluster position and
disordered system, the dynamical mean field theory reducesith R, the cluster position in the latticgherefore the po-
to its precursor: the famous coherent potential approximatiosition of theith site of thenth cluster isR,+g). The lattice
(CPA). Cluster extensions of the CRRef. 7) bear the same Hamiltonian is expressed in terms of fermionic operators
relation to CDMFT, while the pair CPA is related to the f;n’a andfgy, s and can be written as
approaches of Refs. 1,3. We focus, here on the CD .

6) and the DCA(Ref. 2 methods, because both have been

proved to be manifestly causal, i.e., the output of an approxi- H= N ;n 8 ta,p(Rn— Rm)f;n ofRm g
mated solution of the cluster equations is causal, as long as a T

causal method is used for the solution of the impurity model.

We test their performance in a simple soluble model that was + 2 Ugpar,pr({R})

introduced by Affleck and Marstohlt has ak dependent, mam,gn’,a’m’,
albeit static, self-energy, and therefore is a simple play-
ground to explore the cluster method without using the heavy
and not very precise quantum Monte Carlo method to solver=i, o, ando is an internal degree of freedofie., a spin,
the impurity problem. This advantage is somewhat balancedpin orbital, or band indexMost cluster schemes neglect the
by the fact that there is n@ dependence in the self-energy interaction terms between different clusters. The effects of
contrary to the usual physical case. those interactions, can be treated using the extended dynami-
Our paper is divided in three parts. In the first part wecal mean field approaftbut we will not discuss these im-
describe the CDMF¥,and introduce a real space formula- provements in this paper. All the different cluster schemes
tion of the DCA equations. The DCA equations were origi-can be formulated as a self-consistent equation for the cluster
nally formulated in momentum space, the real space formuself-energy which consist of the following lodp: Start with
lation is introduced to facilitate the comparison with the a guess of the cluster self-energy, s, (i) from the clus-
CDMFT cluster scheme and to gain further intuition into thister self-energy compute the Weiss function or host cluster
method. Moreover we compare the predictions of DCA andpropagator Go), 5, Which enters in the effective action for
CDMFT for the short distance behavior of correlation func-the cluster degrees of freedofiij) use the effective action
tions for different cluster sizes against the exact solution. Ircompute the cluster Green functioG(), s, (iv) compute
the second part we focus on the lattice self-energy. In théhe new cluster self-energyy) iterate this loop until the
CDMFT approach the lattice self-energy is a derived quaneonvergence is reached. The DCA and CDMFT schemes dif-

)
xf;n’ame'ﬁfRn,ya,me, - (1)
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fer in the way stegii) is carried out. Within the CDMFT one

obtains the Weiss function from the cluster self-energy by the H= —tE (fiT,o—fi +101 fiT+ 10fi0)
equation e
J
t t
=T Y | e @ -
< (ontmI=tHK)— 2 T SO OO A @
Ko O el o/
wheret(K), ; is the Fourier transform of the hopping matrix wherei=1,... L ando=1, ... N and we take the large

in Eq. (1) with respect tdR,,— R, (k is a wave vector in the

Brillouin zone reduced b3L.° in each d|_rect|oiq @n 1S the temperature and therefore we plt1 and we rescale the
Matsubara frequency, and is the chemical potentlail. Once hopping termt—t/J. The thermodynamics of this model can
the Weiss function has been computed one can olaiby  pe solved exactly since in the largé limit the quantity

and N limits. In the following we will useJ as the unit of

func.tional integration of -th.e. single site action. Sl(ép)Ais :(1/N)20fi1:0(t)fi+1’0(t) does not fluctuate. Indeed Eg)
carried out using the definition of the cluster self-ene¥gy reduces to a free-fermion Hamiltonian with a “renormal-
=G,1-G,t. ized” hopping termt—t+ y and a self-consistent condition

To facilitate the comparison with the CDMFT, in the fol- 0On x:
lowing we shall derive the DCA scheme using the real space
formulation of the cluster. To lighten the notation we will 1
assume that the variable is conserved to make all the X=L ; f(BEWcosk,  Ey=—2(t+y)cosk+p, (5)
cluster matrices diagonal im and subsequently we will drop
this index. We take periodic boundary condition on the cluswherepu is the chemical potentiaf( BE,) is the Fermi func-
ter and we define the matril; j(K) =exp(-iK-&)d, ¢  tion, andg is the inverse temperature.
It is crucial for the following to note that the matrixXK) We now apply the DCA approximation to the Hamiltonian
has the following representation:  t(K), | (4). As prewou;ly, gg computat|oTn is simplified by the.fact
= (1/Lg)2kcei(K+kc)(q—ej)t(K+ k.), wherek, are the cluster that the quantityxg "= (1IN)Z,f] (1)fi;1,(t), wherei

“ - ~t o andi +1 belong to the same cluster, does not fluctuate in the
momenta. Therefore the mattix(K)t(K)U'(K) is diagonal 546N limit. As a consequence the functional integral on

with respect to cluster momentaU(K)t(K)U'(K)]i;  the cluster degrees of freedom reduces to a simple Gaussian
=(1/L§)Ekce'k°(q’ei)t(K+kc). Using this property one can integral. Thus, imposing periodic boundary condition on the
write the (i) DCA equation in real space as cluster, the equatior ~*(k.)=G_ *(ko) + (k) implies
S (k) =2x2cosk,. Using the second DCA equation
L\d 1 -t which expresses the cluster Green function as a function of
Gy 1= (—C) S - +3.. S (ke), we obtain the self-consistent DCA relation fgff " :
L) K (iwg+w)Z-0t01(K)-3,
3

1
N ) XBCA:[ g f(BEk k )COSKc,
Since the matrice&)tU'(K) and 3, are diagonal with re- e
spect tok,., this equation coincides with the DCA equations DCA
of Jarrell et al? after a Fourier transformation with cluster EK,kC: — 2t cogk.+K)—2xg "cosk.+ . (6)

momenta. Onc&, is known,G, is computed by functional
integration of the cluster effective action and the new cluste

; : _~-1 -1
Sell];eﬂgtr%ﬁg)O:Iﬁiwgdabﬁrce(:lc(;)fgr(r;noulgt(ig)n ch;CD ékAC)iﬁ real Now we focus on the CDMFT approximate solution. As
q the DCA case, since the quantity 3°MF"),

space and a detailed comparison with CDMFT. We also not T .
this real space formulation can be used to defined many (YN)Zof; fr,\ggf“rlﬂ(t) doCeDsMqut fluctuate, one obtains
causal cluster schemes, by introducing a different matrid=c)ii=(Xc Jidij-1t(xa ~ )jéij+1- Thisis the gen-
U(K) in the previous equation. eralization of the corresponding DCA expression to a case

A simplified one-dimensional large-N model: comparisonWithout pegé?vlq:l‘? boundary condition. Note that now the
between the exact solution and the predictions of the clustefuantity (x i may depend on the cluster index. Denot-
schemes In the following we focus on a simple one- ing the eigenvectors and the eigenvalues of the madtrix
dimensional model, originally introduced and studied by Af- .5 respectivelyy’(K) and\*(K) (v=1,... L), the (i)
fleck and Marstohin two dimensions. We compare the DCA CDMFT equation,l which expresses the cluster Green-
and CDMFT schemes to its exact solution. This model is Function in terms of the cluster self-energy, reads
generalization of the Hubbard-Heisenberg model where the
SU(2) spins are replaced by a SN spin, the on site repul- L
ﬂgnmi:?or?igﬂerga?jss i/ and the large N limit is taken. Its (GC)”:TC Kz ‘”iV(K)(‘/’iV(K))*i ——.

g wnt+u—N(K)

Plote that in the infinite cluster limit one recovers the exact
equation(b).

)
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05 ' [ — S — SPCAK) =3 (ko) =2x0 " cosk, (9)
T S~ DCA
yid Lc =2 L CDMFT_S
04+ A e T where k belongs to[ — w/L .+ k¢ ket 7/L.]. Whereas for
S L =2 / - CDMFT an estimator for the lattice self-energy is con-
L. =4 . . .
03 | / //,ﬂ_,,.ﬁ~.~.- SO o structed using the matri$g,, ,.i= Srn+«,i Where « is the
’ | 555a08008085000000000000000000000000 000 internal cluster index and denotes a lattice site. The sim-
X TR iim— L %210 noi CDMFT, |y _ =t <z
& " plest fornt is 2" (k)=Z, sS,(K)Z, sSs(k), where
02+ 1 &7 | ~ . . ' —_
) / L5 S,(K) is the Fourier transform of the matr&with respect to
! the original lattice index. ~Sa(k) can be easily written in
0.1 ¢ 1 terms of the matrix U(k) defined before: $(k),,
=U, .(K)/\/L.. Therefore the relationship between the lat-
0 . . , , tice and the cluster self-energy read oM (k)
0 2 4 B 6 8 10 =3, slUT(K)ZU(K) ], p/Lc. For example, in the case of

the two site cluster we find®oMFT(k) = xSPMFTcos(),

FIG. 1. x as a function ofg for =1 andt=1. The points are Whereas the exact solution giv&s, (k) =2x,,c0s(). As a

the exact solution. The lines apg& " for L,=2,5,10 andySPMFT  consequence, even if the value ypfs well predicted by the
for L,.=2,3,4. CDMFT there is a factor 2 between the two self-energies.
The reason of this discrepancy may be understood writing

Using this expression we finally get the self-consistenthe simple estimator of the lattice self-enetdy real space
CDMFT equation on ¢SPMFT), (Cla)i-j=2a,pa—p=i-(¥c)a,p/Lc- This means that the
lattice self energy for a certain value of-j is obtained
L averaging over all the cluster self-energy elements corre-
(XSPVFT) = >y (K[, 1 (K)T* F(BEx L), sponding toa—B=i—j. In the limit of an infinite cluster
L & ’ translation invariance implies that the cluster self-energy co-
incides with the lattice self-energy in the bulk. Therefore the
factor 1L cancels and we get the exact solution. However,
for a finite lattice there are only.—1 factors fori—j=1,

Notice that Eq.(8) corresponds to the exact solution of a Lc—2 factors fori—j=2,... L.~k factors fori—j=k.
model defined by a Hamiltonian similar to E@) in which Therefore it is highly desirable to have improved estimators

Jii+q equals 1 ifi andi+1 belong to the same cluster and for smaller size clusters in which the formula in which the
[ . _ . .
zero otherwise. This implies in particular that in the infinite 2V€rage over all the factors haviag- S=k is weighted by

cluster limit the CDMFT approximation gives back the exacttn€ir number 1/, —k). One could also think to put an extra
solution. We have numerically solved the self-consistentVeight to extract the lattice self-energy only from the sites in

equations(5), (6), (8) to compare the DCA and CDMFT the bulk, for which the CDMFT result should be better. We
predictions for different cluster sizes to the exact solution. ProPose new general class of estimators for the lattice self-

In Fig. 1 we plot the result of this analysis for1, x  €N€roy in terms of the cluster self-energy, that inherit its

—1 as a function of3 and for different cluster sizes. The two Causality property:
methods convergéthe convergence is not uniform if)
toward the exact solution for high enough but CDMFT
converges better that DCA. Indeed the CDMFT results are Sadi-j= 2 Wes(Edap (10
already surprisingly good fok.=2. However, as we shall «pra=f=i-]
discuss below, there are two different ways to compute
within the cluster methods. The one used here is based onwhere the matrix w,; is positive definite and
real space cluster intuition. The second one, relies on a M@, 4., g=i-jW,,—1 for Lc—o (this guarantees a good
mentum space intuition and computes the correlation funcbehavior in the infinite cluster limit Using that the trace of
tions from thek-dependent lattice Green’s function. This pro- the product of two positive definite matrices is positive, one
cedure is the one proposed in Ref. 2 and we will show thatan easily prove that if the cluster self-energy is causal this
indeed it gives accurate results for small clusters. formula produces a lattice self-energy which is also causal.
The lattice self-energyVe now address the computation Note that Eq(10) does not change the behavior for an infi-
of the lattice self-energy. In DCA a discretized form of the nite cluster, but can really improve the results for finite clus-
lattice self energy in momentum space enters directly in theer sizes. For example, in Fig. 2 we compare the exact lattice
evaluation ofG,. On the other hand, CDMFT focuses on self-energy to the DCA and the CDMFT predictionssing
estimating the cluster Green function, and the lattice selfthe initial estimator proposed in Ref. 6 and the simple im-
energy does not participate in the mean field equations, angrovementw,, ;=1/(L.—1) which weights in the right way
has to be estimated later from the cluster self-energy. For that least the terms witlhe— 8=1] for f=u=t=1. We re-
simplified largeN one-dimensional model studied in this pa- mark that there is an excellent agreement between CDMFT
per the DCA prediction for the lattice self-energy reads and the exact solution after that our simple improvement has

Ex,=n—\"(K). ®
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FIG. 2. Lattice self-energy predicted by the different methods FIG. 3. y as a function of8 for =1 andt=1. The points are
compared with the exact solutidiriangles for t=8=u=1. The  the exact solution. The lines are, from top to bottofR°" (dashed
dotted line is the result of the CDMFT estimator in Ref. 6, whereasjine), XPaCA (long-dashed ling XcC|DMFT (dot-dashed ling XgDMFTZ
the continuous line is the result of the first improvement discussegcontinuous ling xS°M*™ (dotted ling. yS°VF™ is the result ob-
in this paper. The dashed, long dashed, and dot dashed lines akgined using the CDMFT estimator for the lattice self-energy in Ref.
respectively, the DCA results fdr.=2,5,10. 6 whereasy 2>V "2 corresponds to the first improvement discussed

in this paper.

been taken into account already for=2. Whereas the pre-

diction of the corresponding estimator from the DCA cluster

becomes accurate far.=5. answer in terms of accuracy and convergence with respect to
Relation between lattice and cluster observabl@sce cluster size. This is perhaps due to the smoothness of the

the lattice self-energy has been obtained within a clusteself-energy in the CDMFT case.

method, the lattice Green function can be straightforwardly It would be nice to eliminate the cluster self-energy alto-

computed. This offers a different way of estimating the firstgether from the CDMFT approach or to use a self-energy

neighbor correlation functiog, using the lattice Green func- without discontinuities in DCA, in the spirit of the work of

tion. This quantity can be computed inside the clusje)(  Katsnelson and LichtenstefnHowever, we were unable to

or using the lattice Green function, obtained by the latticeprove manifest causality of this approach.

self-energy, ) and the two results do not coincide in gen-  |n summary, in this short paper we compared the perfor-

eral. In.the case of CDMFT one can u_nderstand what are thgance of the DCA method with that of the cellular DMFT, in

approximations responsible for this (_jlﬁerence and why thgya very simple toy model. We have also proposed new esti-

are small. The CDMFT approach is based on the cavity,aiqrs for the lattice self-energy within CDMFT, which are

procedur&which, if it was carried QUt exactly, it would give more efficient. Our study shows that a direct application of

back the same answer for the lattice and cluster observablesny et i o without exploiting the flexibility inherent in the

However, in the approximated cavity procedure adopted N4 oice of basigpresent in its most general formulatiois

the CDMFT, one assumes that the contribution to the effec\_/ery efficient in converging to the correct solution already

tive action coming from tracing out all the degrees of free—);Or a two site cluster, Comparing the DCA and the CDMFT

dom outside the cluster is purely Gaussian. This is clearl . ; . . .
not the case in general an% it |ys the main reason for tm;é)redlctlons we find that CDMFT ones are a little bit better in
nencoincidence of lattice and cluster observables. terms of accuracy and convergence with respect to cluster

In Fig. 3 we compare the DCA and CDMFT predictions size. DCA estimates of physical quantities, are most accu-

for the lattice and cluster values gfto the exact solution for rately carried out using the lattice Green function, and not
a two site cluster, fot=1,.=1 as a function ofg. These from the real space cluster correlation functions. This is
curves display the typical behavior found also for other val-stressed in Ref. 2, where DCA is viewed as a momentum

ues of the control parametergl“” is quite better than its Space method. Concerning local quantities, CDMFT is not so

cluster counterpart, whereas the CDMFT prediction is quitésensitive to the choice of cluster or lattice estimators, be-
stable. This is probably the result of having an approximatéause of the underlying cavity construction present in its
cavity construction for the CDMF¥.Moreover we remark derivation® These results are very encouraging, and warrant

that ySMPT2 | obtained using the first improvement for the further applications of these methods to more realistic and

self-energy discussed above, almost coincides with the exagifficult problems. Since the most glaring deficiency of the
solution. Comparing the CDMFT and the DCA lattice valuesCDMFT method is that it does not attempt to take into ac-
of x we note that CDMFT gives usually a little bit better count in a direct fashion the translation invariance of the
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