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Fractionalization patterns in strongly correlated electron systems:
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We discuss possible patterns of electron fractionalization in strongly interacting electron systems. A popular
possibility is one in which the charge of the electron has been liberated from its Fermi statistics. Such a
fractionalized phase contains in it the seed of superconductivity. Another possibility occurs when the spin of
the electron, rather than its charge, is liberated from its Fermi statistics. Such a phase contains in it the seed of
magnetism, rather than superconductivity. We consider models in which both of these phases occur and study
possible phase transitions between them. We describe other fractionalized phases, distinct from these, in which
fractions of the electron themselves fractionalize, and discuss the topological characterization of such phases.
These ideas are illustrated with specific models ofp-wave superconductors, Kondo lattices, and coexistence
betweend-wave superconductivity and antiferromagnetism.
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I. INTRODUCTION

Electron fractionalization in strongly interacting electro
systems in dimensions larger than 1 has been an impo
subject of study since spin-charge separation was sugge
as a mechanism of high-Tc superconductivity1,2 in the cu-
prates. In particular, it was suggested that the electro
splintered into a spin-carrying neutral excitation~‘‘spinon’’ !
and a charge-carrying spinless excitation~‘‘holons’’ or
‘‘chargons’’!. There have been different proposals in rega
to this possibility, but the existence of such phases in
cuprates is still controversial.

On the other hand, there exist clear experimental
amples of phases in the quantum Hall regime of tw
dimensional electron systems where quantum number f
tionalization has been well established. The low-ene
excitations~quasiparticles! in these two-dimensional strongl
interacting electron systems carry fractions of the quan
numbers of the original electrons. Different quantum H
liquid states can be characterized by different varieties
topological order. The transitions between different quantu
Hall states can be understood as topological-order-chan
transitions which occur even in the absence of conventio
broken symmetries. The Hall conductance is but one of
topological quantum numbers which characterize a gi
phase. Another important property of a topologically orde
state is the ground-state degeneracy of the system on h
genus manifolds such as tori. For each topologically orde
state, there are corresponding sets of characteristic ex
tions with different quantum numbers.

It has become clear3,4 that the notion of topological orde
also provides a precise characterization of spin-charge s
rated and other fractionalized phases in spatial dimens
higher than one even in situations of zero or weak magn
fields. One of the remarkable features of the quantum H
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effect is the enormously rich number of exotic phases wh
display different patterns of fractionalization of the electr
and associated topological orders. In view of the similar
between the theoretical characterization of quantum H
states and fractionalized states in zero magnetic field,
tempting to investigate a similar possibility of a variety
fractionalization patterns in other strongly correlated s
tems. We explore this possibility in this paper. We descr
theoretically a few of the several different possible fractio
alized phases that may exist in various different models
strongly interacting electron systems.

Following the introduction of the Schwinger boson d
scription of the Heisenberg model of quantu
antiferromagnets,5 slave fermion6 formulations of doped an-
tiferromagnets were introduced. In these formulations, i
assumed that the electron decays into a Bosonic, spin
spinon and a fermionic, charge-e holon. We will call this
phase CFSB~charged fermion, spinful boson!.

On the other hand, a phase with Bosonic holons and
mionic spinons – which we will call CBSF~charged boson,
spinful fermion!—naturally leads to superconductivit
through the Bose condensation of Bosonic holons in
presence of Fermionic spinon pairing. Consequently, m
attention has been focused on the description of such a f
tionalized phase, especially in the context of the slave bo
description of thet-J model. The pairing symmetry of the
resulting superconductor is dictated by the underlying sy
metry of the spinon pairing.

A Z2 gauge theory of Fermionic spinons and Bosonic h
lons was developed in the context of superconductivity in
cuprates7 ~see also Refs. 8–10!. Spinons and holons ar
coupled by an Ising gauge field. The deconfined phase of
theory corresponds to the CBSF phase. Most importantly,
deconfinement-confinement transition of spinons and hol
occurs through the condensation of vortices in theZ2 gauge
©2002 The American Physical Society03-1
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field, or visons. In the deconfined phase, the visons exist
gapped excitations; when visons condense, the spinons
holons are confined within electrons. The existence
gapped visons is crucial for the robustness of the topolog
order of the deconfined fractionalized phase.11,4 Although
this formalism was introduced in the context of cuprate
perconductivity, it is sufficiently flexible to permit a descrip
tion of other types of fractionalized phases including CFS

These ideas have a physical manifestation in the con
of quantum disordered magnets and superconductors. In
picture, one visualizes fractionalized states in terms
nearby ordered states. In a broken~continuous! symmetry
state, Goldstone modes can screen the associated qua
number~s!.12 Thus it is possible for quasiparticles to b
stripped of some of their quantum numbers. One mi
imagine that the destruction of order by quantum fluctuati
can preserve this screening of quasiparticle quantum n
bers. This occurs when those topological defects of the
dered state which braid nontrivially with the quasipartic
persist as gapped excitations even after the demise of
order.13 Indeed, this is precisely what happens when the s
is topologically ordered. The neutral, spin-1/2 fermion of t
CBSF state is viewed as the descendent of
Bogoliubov–de Gennes quasiparticle; the vison, of thehc/2e
vortex. When considered in the context of spin-triplet sup
conductors and their rich order-parameter structure, this
mediately suggests exotic phases such as CBSF, CFSB
even a third phase CBSBNF~charged boson, spinful boson
neutral fermion!, in which the charge- and spin-carrying e
citations are bosons and there is a neutral, spinless Ferm
excitation. Since these superconductors can break
charge and spin symmetries—as do states in which sin
superconductivity and magnetism coexist – one can envi
the screening of both quantum numbers of a quasiparticl
~the minimal! topological defects in the charge sector surv
into a disordered state, then this disordered state has ne
spin-1/2 Fermionic excitations~CBSF!; if topological defects
in the spin sector survive into a disordered state, then
disordered state has charge-e spinless Fermionic excitation
~CFSB!; if topological defects in theboth sectors survive
into a disordered state, then this disordered state has ne
spinless Fermionic excitations~CBSBNF!.

The analysis of quantum dimer models2 and resonating
valence-bond1,14,15 ground states led to conflicting claim
that the CBSF~Ref. 15! or CFSB~Refs. 16 and 17! scenario
is realized in these models. These models have aZ2 vortex
excitation17,18—which are precisely thevisons described
above—which are relative semions with spinons and holo
Thus a spinon or holon can change between Bosonic
Fermionic statistics by forming a bound state with a viso
This begs the question whether the CBSF phase discuss
the context of superconductivity is the same as the CF
phase considered in relation to magnetism. We recons
this question in the context of recent progress in the und
standing of fractionalized phases described above.
might worry that the apparent differences between th
phases is an artifact of the formalisms employed. One m
also wonder if there are any further fractionalized phases
this paper, we discuss the questions raised above using
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different models:p-wave superconductors, Kondo lattice
andXY magnets coupled tod-wave superconductors.

The main results can be summarized as follows.
~i! Both CBSF and CFSB phases can arise in a variety

different models.
~ii ! Upon accepting the possibility of electron fractiona

ization, one is led to consider a wide variety of fractionaliz
phases. In the higher-level fractionalized phases, elect
can be fractionalized in many different ways. For examp
spinons and holons can be further fractionalized. Apart fr
the CBSF and CFSB phases, we discuss two others. On
the CSBNF~charge- and spin-carrying boson, neutral fe
mion! phase, in which the electron breaks up into a bos
which carries both the spin and charge quantum numbers
a neutral fermion. This phase is at the first level of fractio
alization along with the CBSF and CFSB phases. The ot
is the CBSBNF phase, in which there exist spin-carryi
neutral bosons, charge-carrying spinless bosons,
‘‘statistics-carrying’’ neutral spinless fermions. The CBSBN
phase is at the second level of fractionalization. In princip
higher-level fractionalized phases exist.

~iii ! We demonstrate the existence of some of these ex
phases in the context of the three different systems m
tioned above—Kondo lattices,p-wave superconductors, an
models with both strong spin andd-wave pairing fluctua-
tions. For thep-wave superconductor, the four fractionalize
phases discussed here arise naturally and the order para
has a rich spectrum of topological defects which can c
dense in a variety of ways, thereby giving rise to an array
fractionalized nonsuperconducting phases.

~iv! The question of whether CBSF and CFSB a
smoothly connected to one another or whether they are
essarily separated by a phase transition is a subtle and
cate issue for reasons that will be discussed at length la
While we do not provide a definitive conclusion, we outlin
a possible scenario in which the distinction between CB
and CFSB is similar to that between liquid and gas phas
These phases are separated by a first-order transition
which terminates at a critical point. In principle, one can
around the critical point from one phase to the other with
encountering a phase transition. This scenario is suppo
by a number of suggestive~though certainly not conclusive!
arguments.

On the other hand, the transition between the two pha
can occur through another fractionalized phase with a high
level fractionalization pattern. In this case, each transition
the process could be a continuous transition. We demons
that the transition between CBSF phase and CFSB phase
occur through the CBSBNF phase.

~v! In order to examine whether one can go from CBSF
CFSB through further fractionalized phases like CBSBN
one can design agedankenflux trapping experiment similar
to the one proposed in Ref. 19. Thisgedankenexperiment
clearly demonstrates the existence of a phase boundary
tween CBSF and CFSB when these phases are clos
CBSBNF.

Topological order is robust against local perturbatio
such as impurities. Thus we will concentrate on general u
versal properties of the fractionalized phases. One of
3-2
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goals will be to give a precise characterization of the
phases which is independent of the underlying microsco
models where they may occur. We believe that these ex
phases could play a role in the physics of3He ~Ref. 20! and
the ruthenates21 as well as the cuprates,22 organic
superconductors,23 heavy fermion superconductors,24 spinor
Bose-Einstein condensates,25 and the crusts of neutro
stars.26

The rest of the paper is organized as follows. In Sec.
we consider a Kondo lattice model and how the CFSB fr
tionalized phase can occur in this model using the langu
of a Z2 gauge theory. Some details are given in Appendix
In Sec. III, we suggest how this analysis can be general
and discuss a hierarchy of fractionalized phases. Here
provide an overview of our results. In Sec. IV, we discu
how this hierarchy can be realized inp-wave superconduct
ing systems when the superconducting and spin order
quantum disordered. This is done using the vortex cond
sation formalism. In Appendix B, the same ideas are sho
to apply to anXY magnet which is coupled to ad-wave
superconductor. In Sec. V, the fractionalized phases of S
IV are further discussed in the framework of aZ23Z2 gauge
theory. In Sec. VI, we consider the question of the distinct
in principle between the putatively different fractionalize
phases constructed in this paper. In Appendix C, we g
some technical details of an argument usingZ23Z2 gauge
theory which supports our picture of the phase diagram
Sec. VII, we show how flux-trapping experiments~of the
variety suggested by Senthil and Fisher19! can be used to
shed further light on the phase boundaries between th
phases and could be used to detect them. We conclud
Sec. VII. Appendix D contains an aside in which we discu
various interesting properties of unfractionalized phases
curring in the models considered in this paper.

For other perspectives on fractionalization, see R
1–4,7,8,12,13,15,17–19, and 27–33.

II. FRACTIONALIZATION IN SPIN MODELS:
SPIN-STATISTICS SEPARATION

In principle, there are several possible ways in which
electron can fractionalize in a strongly correlated system
the context of the cuprates, attention has been focused o
situation in which the electron splinters into two separ
excitations—a charged spinless boson, and a neutral sp
fermion. In this case, the charge of the electron is libera
from its Fermi statistics.

In this section, we will briefly discuss another possib
fractionalization pattern in which the spin, rather than t
charge, of the electron is liberated from its Fermi statist
The electron splinters into a charged spinless fermion, an
spinful boson. As we will see, this phenomenon also requ
the presence of a gapped topologicalZ2 vortex excitation.
The issue of whether such a fractionalized phase isdistinct
from one in which the charge is liberated from the Fer
statistics is a delicate one, and shall be discussed in Sec

To motivate the discussion, consider a ‘‘Kondo lattic
model with the Hamiltonian

H5Ht1HK1Hex , ~1!
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Ht52 (
^rr 8&

t rr 8~cra
† cr 8a1H.c.!, ~2!

HK5JK(
r

~Sr
1cr↓

† cr↑1H.c.!, ~3!

Hex5(
rr 8

2
J

2
~Sr

1Sr 8
2

1H.c.!1JzSr
zSr 8

z . ~4!

Here thecia represent ‘‘conduction’’ electrons with spina at
site i. The operatorsSW i are spin operators representing ma
netic moments localized at the lattice sites. The first term
the usual conduction electron hopping, described in a tig
binding approximation. The second term is a ‘‘Kondo’’ co
pling between the conduction electrons and the local m
ments. The third term is an explicit exchange interact
between the local moments. For simplicity, we have assum
that system only has a U~1! spin symmetry for rotations
about thez axis of spin@we will comment on situations with
full SU~2! spin symmetry later#. We are interested not s
much in establishing the exact phase diagram of this part
lar model; rather our main interest here is in establishing
possible existence and stability in models of this kind
quantum phases where the electron is fractionalized. To
end, we will think more generally about a class of mod
which may be obtained from the model above by add
other local interactions which share its symmetries. If t
system is in a quantum phase in which both the symmetr
rotations about thez direction of spin and the charge conse
vation symmetry is unbroken, the excitations may be labe
by theirSz and charge~Q! quantum numbers. Clearly, we ca
visualize two qualitatively different possibilities. First, th
system may be in a phase in which the excitations are e
trons (Q51,Sz5

1
2 ) or composite objects made from ele

trons ~such as, for instance, a magnon which hasQ50,Sz
51). This is a conventional phase of the kind familiar fro
textbooks~for instance, a Fermi liquid or a band insulato!.
On the other hand, one could also imagine phases in wh
there are excitations which carry quantum numbers wh
are fractions of those of an electron. The simplest possib
~the one we will focus on! is that there are excitations whic
carry Sz51/2,Q50 ~spinons! and others which carrySz
50,Q51 ~holons!. In such a phase, the electron has be
fractionalized. In what follows, we will discuss several wa
of thinking about such phases. Our focus will be on gene
universal properties of such phases. In particular, we will
interested in obtaining robust precise characterizations
fractionalized phases that are independent of the partic
microscopic models in which they possibly occur.

It is extremely instructive to begin by just considering t
physics of the local moments alone as described by the
change part of the HamiltonianHex . This Hamiltonian is
clearly invariant under a global spin rotation about thez axis
of spin. For technical simplicity, we will assumeJ,Jz>0.
The physics of this particular Hamiltonian is well unde
stood: whenJz /J is small, there is long-range order inS1.
WhenJz /J is large, the system breaks translational symm
try with ^Sz& being larger in one sublattice of the squa
3-3
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DEMLER, NAYAK, KEE, KIM, AND SENTHIL PHYSICAL REVIEW B 65 155103
lattice than the other, but the U~1! spin rotation symmetry is
unbroken. The pointJz5J can be mapped to the neares
neighbor antiferromagnetic Heisenberg model with f
SU~2! spin symmetry on a bipartite lattice by rotating th
spins on one sublattice byp about thez axis. In the specific
case of a square lattice~which we assume through out ou
discussion!, this is known to develop Ne´el long-range order
in two spatial dimensions. Our interest here is not so muc
the properties of thisparticular Hamiltonian as in the prop
erties of an entireclassof systems with the same symmetr
and with short-ranged interactions between the spins. In
ticular, we will be interested in fractionalized phases
which the excitations are spinons with quantum numberSz
51/2. To that end, we will reformulate the Hamiltonian d
rectly in terms of spinon fields which carry spinSz51/2.
This naturally introduces aZ2 gauge symmetry. The result i
a theory of Bosonic spinon fields coupled to aZ2 gauge field
which can then be used to analyze the possibility of fracti
alized phases and their universal properties.

We may think ofS1,S2 as the creation and destructio
operators, respectively, of a hard-core boson on the site
the lattice. Specifically, writeSr

1[bsr
† , Sr 8

2[bsr , and Sr
z

51/22bsr
† bsr . Note that there is half a boson for each s

on average. Now imagine relaxing the hard-core constr
on the bosons, and instead add a term

U

2 (
r

~2nr21!2 ~5!

at each lattice site. Herenr is the boson number at each sit
In the limit U→`, we recover the spin model exactly. F
large but finiteU, however, relaxing the hard-core constra
is expected to be innocuous. It is now convenient to go t
number-phase representation for the bosons: we writebsr
;eiwr with @w r ,nr 8#5 id rr 8 . For simplicity, we also special
ize to the limit whereJz50. The Hamiltonian then become

H5 (
^rr 8&

2J cos~w r2w r 8!1
U

2 (
r

~122nr !
2. ~6!

This is clearly closely related to the original spin Ham
tonian in Eq.~4!. Now consider a formalchange of variables
which involves splitting the boson operatorbsr into two
pieces:

bsr5eiwr5zr
2 , ~7!

zr[eifr5sre
i (wr /2) ~sr561!. ~8!

We will refer to zr as the spinon destruction operator. No
that with these definitions, bothw r andf r are defined in the
interval @0,2p). It is also convenient to define a numb
operator for the spinonsNr52nr which is conjugate tof r .
In terms of the spinon operator, the Hamiltonian become

H5 (
^rr 8&

2J cos~2f r22f r 8!1
U

2 (
r

~Nr21!2. ~9!

The change of variables above must be supplemented w
constraint—clearly the physical Hilbert space consists o
15510
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of states whereNr is even. Therefore we need to impose t
operator constraint (21)Nr51 at each site of the lattice. For
mally this may be implemented through the projection o
erator

P5)
r

Pr , ~10!

Pr5
1

2
@11~21!Nr#. ~11!

Note that@P,H#50. It is now convenient to pass to a func
tional integral formulation. We follow Refs. 7 and 27 close
to obtain for the partition function

Z5(
sr t

E Dfe2S, ~12!

S5St1Sr1SB , ~13!

St5(
t,r

Jts r tcos~f r ,t1e2f r t!, ~14!

Sr5e (
^rr 8&t

J cos~2f r t22f r 8t!, ~15!

wheres r t561 may be interpreted as the time component
a Z2 gauge field that imposes the constraint on the Hilb
space, ande is the lattice spacing along the time directio
The constantJt is determined by the original interactio
strengthU. The term in the actionSr involving the spatial
coupling may be decoupled by a Hubbard-Stratanov
transformation:

e2Sr5E Dxe2eJ(^rr 8&,txrr 8(t)212eJxrr 8(t)[zr
†(t)zr 8(t)1c.c.].

~16!

Herex rr 8(t) is a real-valued field. We have omitted an u
important overall constant.

We now proceed exactly as in Refs. 7 and 27, and rep
the integral over thecontinuousvariablex by a sum over a
discrete fields rr 8(t)561. As discussed in Refs. 7 and 2
this approximation respects all the symmetries of the act
and is expected to be innocuous. The resulting partition fu
tion becomes

Z5(
s i j

E Dfe2S, ~17!

S5Ss1SB , ~18!

Ss52(̂
i j &

Ji j s i j cos~f i2f j !. ~19!

Here thei , j label the sites of a space-time lattice in thr
dimensions. The constantsJi j 5Jt for temporal links, and
equalseJ for spatial links.SB is the Berry phase action
3-4
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SB5
p i

2 (
i , j 5 i 1 t̂

~12s i j !. ~20!

Note that the action~18!–~20! respects all the symmetries o
the original model. The discrete fields i j 561 may be
viewed as aZ2 gauge field. At this stage, this field does n
have any dynamics. However, it is natural to expect t
upon coarse graining, some dynamics will be generated.
simplest such term allowed by symmetry is

SK52K(
h

)
h

s i j . ~21!

We will therefore consider the full action

S5Ss1SK1SB . ~22!

What we have achieved so far is an approximate reform
tion of spin models withXXZ symmetry. This reformulation
is extremely useful to explore the various possible allow
phases in such models. However, the approximations m
in obtaining this reformulation are severe enough that i
not easy to see which one of these allowed phases wil
obtained in any particular microscopic model.

Consider the possible phases when the parameterK is
very large. WhenK5`, the Z2 flux through each plaquett
is constrained to be 1. We may then choose a gauge in w
s i j 51 on every link. In this limit therefore, the action re
duces to

S52(̂
i j &

Ji j cos~f i2f j !. ~23!

This simply describes a quantumXY model in two spatial
dimensions. Note that the Berry phase term simply vanis
when all the s i j 51. There clearly are two possibl
phases—anXY ordered phase in whichzi5eif i has con-
densed, and a paramagnetic phase in which the excita
created byzi are gapped. Note that these excitations in
paramagnetic phase carry spinSz51/2. Thus the spin has
been fractionalized in this phase.

Now consider moving away from the limitK5` by mak-
ing K large but finite. For finiteK, as can be seen from th
arguments advanced in Ref. 7, theXY ordered phase wher
the spinon field has condensed is indistinguishable from
conventionalXY orderedXXZ magnet. The paramagnet
phase in which the spinons are uncondensed and decon
survives for large but finiteK. WhenK is finite, it becomes
clear that this phase has another distinct excitation wh
carries the flux of theZ2 gauge field. ThisZ2 vortex—
dubbed the vison—does not carry any physical spin, and
an energy gap of orderK for large K. It has the important
property that when a spinon is taken around it, the wa
function of the system acquires a phase ofp.

Upon decreasingK, at some critical value, the vison ga
goes to zero. For smallerK, the visons condense leading
confinement of the spinons. The resulting phase is a con
tional quantum paramagnet with gappedSz51 excitations.
In this phase, the Berry phase term becomes important
leads to a breaking of translational symmetry—the param
15510
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net is therefore expected to develop spin-Peierls order.
will not discuss such conventional phases very much in
paper.

Much further insight into the physics of the fractionalize
phases may be obtained by the following considerations.
begin by first considering ordered phases in which the sy
metry of rotations about thez direction of spin has been
broken spontaneously. For simplicity, we consider a phas
which the spins have all lined up along some direction in
xy plane. The general properties of such a phase are
known. There are two distinct kinds of excitations. Fir
there is a gapless spin-wave mode with linear dispers
Apart from these, there are also topological vortex exc
tions. On moving along any circuit that encloses a vortex,
direction of the spin in thexy plane winds by an intege
multiple of 2p. This integer winding number—the
vorticity—is conserved, and may be used to label the sp
trum of excited states. States with different total vortic
belong to different topological sectors and are not mixed
the dynamics generated by the Hamiltonian. Note that in
ordered phase we can no longer label states by theirSz quan-
tum number.

These familiar properties of theXY ordered phase mus
be contrasted with those of the quantum paramagnet. F
consider a conventional paramagnet~i.e., one with no frac-
tionalization!. Clearly in this phaseSz is conserved, and is a
good quantum number to label the excitation spectrum.
the other hand, the vorticity loses its meaning in the pa
magnetic phase, and is no longer a good quantum num
This suggests that one may view the paramagnet as a p
in which the vortex excitations have themselves condens
Condensation of the vortices implies that the vorticity is
longer a good quantum number~just like condensation of
spin implies thatSz is no longer a good quantum number!.
Indeed, these observations may be formalized precisely
means of a duality transformation which reformulates
system in terms of the vortex fields rather than the spins
this dual formulation, the paramagnet is described as a
tex condensate, and theXY-ordered phase as a vortex ins
lator ~in which the vortices are gapped!. The physical exci-
tations of the paramagnet which carry theSz quantum
number appear as dual flux tubes of the vortex condensa
this language.

How are we to view the fractionalized quantum parama
net in this dual language? As the phase in question is a p
magnet, it is clear that the vorticity has no meaning, imp
ing that the vortices must have condensed. As pointed ou
Ref. 13, we may view the fractionalized phase as a cond
sate ofpaired vortices. This has the immediate consequen
of halving the dual flux tube, i.e., of fractionalizingSz as
required. Furthermore, note that the unpaired~and uncon-
densed! single vortex is still an excitation in the system. I
vorticity is screened by the~double strength! vortex conden-
sate as is required in the paramagnet. However, its parit
still a good quantum number. Thus the unpaired vort
though a legitimate excitation of the fractionalized param
net, carries only aZ2 quantum number—it is clear that it i
the vison excitation discussed previously.
3-5
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The discussion above provides a description of a fracti
alized quantum paramagnet in the context of spin mod
with XXZ symmetry. We now return to the full model whic
includes coupling to the ‘‘conduction’’ electron degrees
freedom. As above, we first replace the operatorSr

2 in the
Kondo coupling at each site by the boson operatorsbsr

;eiwr ~and similarly forSr
1). The Kondo coupling term then

becomes

HK5JK(
r

~bsr
† cr↓

† cr↑1H.c.! ~24!

5JK(
r

~zr
2†cr↓

† cr↑1H.c.!. ~25!

In going to the second equation, we have introduced
spinon operatorszr defined in Eq.~7!. The Kondo coupling
can be further simplified by another change of variables,

h r↑[zrcr↑ , ~26!

h r↓[zr
†cr↓ . ~27!

We will call theh operators the holon operators. In terms
the holons, the Kondo coupling becomes

HK5JK(
r

~h r↑
† h r↓1H.c.!. ~28!

Note that the holons are actuallyspinlesschargee fields
despite the presence of the label↑,↓. This is obvious from
their definition in terms of the spinon and electron operat
above: the holon operators do not transform under spin r
tions about thez axis. Explicitly, the Kondo term mixes up
and down holons so that their label↑,↓ is changed by the
dynamics. Therefore their spin label has no great sign
cance, and they are correctly viewed as spinless fermi
We may use the following physical picture: the Kondo sp
screen the spin of the conduction electrons.

Under these changes of variables, the electron hopp
term becomes

Ht52 (
^rr 8&

t rr 8@zr
†zr 8~h r 8↑

† h r 8↑1h r↓
† h r 8↓!1H.c.#.

~29!

We now make approximations very similar to those us
above for the exchange part of the Hamiltonian. They all
us to reformulate the system in terms of the spinons, holo
and aZ2 gauge field. Some of the details are outlined in t
Appendix. The resulting action can essentially be guesse
symmetry grounds, and takes the form

S5Sc1Ss1SB1SK , ~30!

Sc52(̂
i j &

s i j t i j
c ~h i↑

† h j↑1h i↓
† h j↓1c.c.!

1JK(
i

~h i↑
† h j↓1c.c.!. ~31!
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The other terms of the action are as given before.
Following the discussion above, for largeK, we expect to

have a phase in which the holons and spinons are liber
from each other. In such a phase, the electron is fractio
ized. However, in contrast to the fractionalized phase tha
most popular in the context of the cuprates, here the spin
the electron has been liberated from its Fermi statistics.
these two phases actually the same? We will address
issue in subsequent sections.

Though we have based our discussion on models w
XXZ symmetry, we expect the fractionalized quantum pa
magnetic phase to exist even in systems with full SU~2! spin
symmetry. Indeed, in the context of frustrated quant
Sp(n) spin models in the large-n limit, Read and Sachdev8

have argued for the stability of fractionalized paramagne
phases with properties similar to that discussed above.

III. A HIERARCHY OF FRACTIONALIZED PHASES

In Sec. II, we primarily discussed fractionalized phases
which the electron splinters into a spin-1/2 neutral boson
a charged spinless fermion. For future convenience, we
refer to this as the CFSB~charged fermion, spinful boson!
phase. This is to be contrasted with the fractionalized pha
which are popular in the context of cuprate physics in wh
the electron splinters into a spin-1/2 neutralfermion and a
charged spinlessboson~see also Secs. IV and V!. We will
refer to this as the CBSF phase. In both cases, there is
addition, aZ2 vortex excitation~the vison! such that taking
either the holon or spinon around it produces a phase cha
of p.

Having accepted the possibility of quantum number fra

FIG. 1. Hierarchy of fractionalized phases.
3-6
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FRACTIONALIZATION PATTERNS IN STRONGLY . . . PHYSICAL REVIEW B65 155103
tionalization, one can imagine a wide variety of possib
phases apart from the two mentioned above. In particu
one may consider exotic possibilities where the fractions
the electron in any given fractionalized phase themse
fractionalize. Such phases may be considered to hav
higher level of fractionalization. To see how these may
described in the same kind of formulation as discussed
this section, consider the following action:

S5Sf1Sc1Ss1Sst ,

Sf52(
i j ,a

s i j t i j $t i j
n f̄ ia f j a1 t̃ Dai j @ f i↑ f j↓2~↑→↓ !#1c.c.%

2(
ia

f̄ ia f ia ,

Sc52(
i j

t i j
c t i j ~bci* bc j1c.c.!,

Ss52(
i j

t i j
s s i j ~zi* zj1c.c.!,

Sst52Ks)
h

s i j 2Kt)
h

t i j 2Kst)
h

s i j t i j . ~32!

Here bc is a chargee spinless boson andz is a spin-1/2
chargeless boson. Thef field represents a spinless, neutr
fermion ~the spin index is just a label with no special signi
cance!. Thes i j andt i j are two independentZ2 gauge fields.
The physical electroncia5bcizi f ia . Clearly if thet field is
confining, thef a and bc get confined to form a Fermioni
holon—we then recover the action discussed earlier in
section. On the other hand, if thes field is confining, the
Fermi statistics gets glued to the spinon (zi)—the resulting
theory is essentially that introduced in Ref. 7 in the cont
of cuprate physics and involvesBosonicholons andFermi-
onic spinons coupled to aZ2 gauge field. If both gauge field
s andt are deconfining, however, we have an exotic ph
in which the fieldsbc ,z, f are all liberated. This phase wi
also have two distinct vison excitations corresponding to
fluxes of the twoZ2 gauge fields. We may view this phase
a higher-level fractionalized phase as compared to the
discussed in Ref. 7 or that discussed earlier in this sect
The connection between various fractionalized phase
shown in Fig. 1. We use symbolsba and f a to label bosons
and fermions that carry quantum numbersa5n,c,s,cs ~neu-
tral, charge, spin, charge, and spin! and show the existence o
appropriateZ2 vortices in each phase~for more details see
Sec. V!.

In the sections which follow, we will show how an effec
tive action such as that of Eq.~32! can arise in the context o
p-wave superconducting systems and systems which fea
interplay between magnetism and superconductivity.
15510
r,
f
s
a

e
in

l

is

t

e

e

ne
n.
is

re

IV. FRACTIONALIZATION OF ELECTRON QUANTUM
NUMBERS WITH p-WAVE PAIRING

A. Order parameters and symmetries

Spin-triplet superconductors and their rich orde
parameter structure offer the prospect of various exo
phases. Since they break both charge and spin symme
triplet superconductors exhibit features of both singlet sup
conductors and of spin models. In particular, we can envis
the restoration of the the UC(1) charge symmetry by quan
tum fluctuations, thereby resulting in a spin-triplet insulati
state. Alternatively, the spin symmetry~we will make the
simplifying assumption that the system has only an ea
plane US(1) spin symmetry! can be restored, resulting in
spin-singlet superconducting state. Finally, both symmet
can be restored, leading to a singlet insulating state. We
lieve that the gapped, symmetry-restored states will not
very sensitive to the precise symmetry of the spin sector
we believe that our results apply to systems with full SU~2!
spin symmetry as well. In particular, when the symmetry
increased~while keeping the size of the representation fixe!,
fluctuations are enhanced, and a system is more likely to
in a disordered state. In order for these symmetries to
restored separately, it will be necessary, as we discuss be
for a type of topological ordering to occur. This topologic
ordering is essentially spin-charge separation of the cha
2e, spin-triplet Cooper pairs. Depending on the way
which the symmetries are restored, it is possible for furt
topological ordering to take place, in which case the qu
tum disordered states may support excitations with ex
quantum numbers. In such states, the spin and/or charg
the quasiparticles is screened by the Goldstone mo
~which are themselves separated from each other by
higher-level topological ordering!. As we describe in this pa
per, there are no fewer than nine phase which can resu
this way.

To be concrete, let us consider the followingp-wave su-
perconducting state of electrons on a square lattice:

Dab5D0eiw~cosusab
z 1 i sinudab!sinkya. ~33!

This is the most general unitary triplet state in tw
dimensions20 if we assume that there is only the U~1! spin
symmetry of rotations about thez axis, rather than the full
SU~2!. In Eq.~33!, only D↑↑ andD↓↓ are nonzero. The lowe
symmetry could be the result of spin-orbit coupling. T
symmetry-breaking pattern associated with this order par
eter is: UC(1)3US(1)3D4→Z23Z23D2. The UC(1)
charge symmetry is broken toZ2 by the condensation of a
charge 2e order parameter. The US(1) spin-rotational sym-
metry is completely broken. The square lattice point gro
D4, is broken toD2 by the orbital symmetry ofD. Finally,
there is an additionalZ2 since the order parameter is le
invariant byw→w1p, u→u1p. As we discuss later, this
can be understood as aZ2 gauge symmetry. Fromeiw andeiu

we can construct the followingZ2-invariant order parameter
whose presence or absence characterizes the phases
we consider. In the absence of the tripletp-wave supercon-
3-7
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ducting order parameter~33!, we can characterize states b
the charge-4e order parameter,

D4e5~eiw!2, ~34!

and the spin nematic order parameter,

Q5cos 2u. ~35!

These order parameters define the following quantu
disordered states of tripletp-wave superconductors.

• Charge-4e singlet superconductor:D4eÞ0, Q50.
• Charge-4e nematic superconductor:D4eÞ0, QÞ0.
• Spin-nematic insulator:D4e50, QÞ0.
• Spin-singlet insulator:D4e50, Q50.

B. Topological defects

The quantum-disordered and topologically ordered sta
which we will consider can be understood in terms of t
condensation or suppression of various topological exc
tions. The most basic and fundamental topological excita
is a composite formed of a fluxhc/4e vortex together with a
p disclination.34–36

Along a circuit about such an excitation, bothw and u
wind by p so that anyZ2-invariant combination is single
valued. If such an excitation is at the origin, andr, f are
polar coordinates in the plane, then the order parameter
the form

Dab~r ,f!5D~r !ei e1f/2S cos
f

2
sab

z 1 i e2sin
f

2
dabD sinkya,

~36!

whereD(0)50 andD(`)5D0. The flux is into or out of the
plane, respectively, fore1561; the spins wind clockwise o
counterclockwise, respectively, fore2561. It is instructive
to write this as

D↑↑~r ,f!5D~r !ei e1fsinkya,
~37!

D↓↓~r ,f!52D~r !ei e2fsinkya,

wheree65(e16e2)/2. Hence,p-disclination–hc/4e vortex
composites are vortices inD↑↑ or D↓↓ alone~see Fig. 2!.

These excitations can be combined to form anhc/2e vor-
tex which is nontrivial in the charge sector but trivial in th
spin sector,

Dab~r ,f!5D~r !eif~cosu0sab
z 1 i sinu0dab!sinkya

~38!

FIG. 2. p-disclination–hc/4e vortex composite.
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with constantu0. Alternatively, we can form merons, whic
are trivial in the charge sector but not the spin sector,

Dab~r ,f!5D~r !eiw0~cosfsab
z 1 i sinfdab!sinkya

~39!

with constant w0. Finally, there are various composite
formed from the above. A composite formed byn hc/2e
vortices andm merons takes the form

Dab~r→`,f!5D0einf~cosmfsab
z 1 i sinmfdab!sinkya.

~40!

If flux hc/4e vortex-p disclination composites condens
then UC(1) and US(1) are restored. The system will be in
singlet insulating state and all excitations will have conve
tional quantum numbers. If, on the other hand,hc/4e vortex-
p disclination composites are gapped and only comple
consisting of multiples ofhc/4e vortex-p disclinations~e.g.,
n hc/2e-m meron composites! are condensed, then quantu
number separation is possible. If complexes consisting o
multiple of fourhc/4e vortex-p disclinations condense, the
we will have the various versions of quantum number se
ration summarized in Figs. 3 and 4.

FIG. 3. Order parameter for a sinky p-wave superconductor

Gapless excitations exist atkWF5(6kF,0).

FIG. 4. Phases of quantum-disorderedp-wave superconductor
3-8
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C. Quantum number separation

The effective action of ap-wave superconductor may b
written in the form

Stot5Sf1Sc1Ss , ~41!

whereSf is the action for the Fermionic quasiparticles a
their interactions with the Goldstone modes, andSc andSs

are the actions for the charge and spin Goldstone mode
Depending on the topology of the Fermi surface, the lo

energy spectrum of ap-wave superconductor may includ
gapless Fermionic quasiparticles. Let us assume that th
pology is such that the gap has nodes on the Fermi surf
Focusing on the nodes, as shown in Fig. 5. We linearize
action

Sf5E d2x dt x†@]t2At
ctz2vFtzi ]x1vFAx

c2At
ssz

1vFAx
ssztz2vDtseisw~cosu sab

x 1 i sinu sab
y !

3~ i ]y!#x. ~42!

s56 and x has a particle-hole index, acted on by Pa
matricestW ; and a spin index, acted on by Pauli matricessW ,

xaa~kW !5F x11

x21

x12

x22

G5F ckWF1kW↑

c
2kWF2kW↓
†

ckWF1kW↓

2c
2kWF2kW↑
†

G . ~43!

FIG. 5. Phases of quantum-disorderedp-wave superconductor
Note that the phase in whichhc/2e vortices and merons are con
densed may be described as havinghc/4e-vortex-p composites
condensed.
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In action~42! we have included the electromagnetic fieldAm
c

and spin vector potentialAm
s which couple to the conserve

electric andSz currents.
When hc/4e vortex-p disclination composites are

gapped, theZ2 symmetry w→w1p, u→u1p plays no
role, and the other terms in Eq.~41! may be written in the
form

Sc5
1

2
rcE d2x dt~]mw2Am

c !2 ~44!

and

Ss5
1

2
rsE d2x dt~]mu2Am

s !2. ~45!

The conserved electric andSz currents are given by

j m
c,s5

dStot

dAm
c,s

. ~46!

Conservation of charge and thez component of spin require

]m j m
c,s50. ~47!

The interactions between the Goldstone fields and
quasiparticles are highly nonlinear in Eq.~42!. This interac-
tion can be made more tractable, following Ref. 28, if w
define new fermion fieldsc:

x5eiwtz/2eiusz/2c. ~48!

With this change of variables, we have defined a neut
spinless fermionc, which is governed by the action

Sf5E d2x dtS c†@]t2vFtzi ]x2vDtxsx~ i ]y!#c

1
1

2
c†@tz]tw22At

ctz2vF]xw12vFAx
c#c

1
1

2
c†@sz]tu22At

stz2vFtzsz]xu12vFtzszAx
s#c D .

~49!

The couplings between the Goldstone modes and the
siparticles are now either trilinear or biquadratic,

Sf5Sf
01

1

2E d2x dt@J0
c~]tw22At

c!1Jx
c~]xw22Ax

c!

1J0
s~]tu22At

s!1Jx
s~]xu22Ax

s!# ~50!

with

J0
c5c†tzc, Jx

c52vFc†c

~51!
J0

s5c†szc, Jx
s52vFc†sztzc.

The price that must be paid is that the change of variab
~48! is not single valued about a topological defect. In p
3-9
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DEMLER, NAYAK, KEE, KIM, AND SENTHIL PHYSICAL REVIEW B 65 155103
ticular, the charge part, exp(iwt z/2), is double valued unde
transport about a fluxhc/2e vortex sincew winds by 2p,
while the spin part, exp(iusz/2), is double valued unde
transport about a meron sinceu winds by 2p.

As we will see below,cs are weakly coupled quasipart
cles in those quantum disordered phases in which fluxhc/2e
vortices and merons are gapped.

D. Defect condensation

Defect condensation is now implemented with dual rep
sentations for the order parameters.28,13,29,37In the dual de-
scription of theXY model,37 the ordering fieldw is replaced
by a gauge field which parametrizes the total current,
gether with a vortex field which accounts for the singularit
of w.

We use the conservation of charge to define the d
gauge field,

emnl]nal
c5Jm

tot c5rc~]mw2Am
c !1Jm

c , ~52!

with Jm
c from Eq. ~51!, and introduce the vortex current,

j m
v 5

1

2p
emnl]n]lw, ~53!

which is not vanishing for a multivaluedw. With the last two
equations we can relate the vortex current to the dual ga
field am

c and quasiparticle currentJm
c ,

j m
v 5emnl]n@rc

21elab]aab
c 1Al

c2rc
21Jl

c #. ~54!

Now a dual action for the charged degrees of freedom
easily constructed by requiring that its equations of mot
reproduce Eq.~54!,

SDual
c 5SGL~Fv ,am

c !1E dt d2xF 1

2rc
~ f mn

c !2

1am
c emnl]nS Al

c2
1

rc
Jl

c D G , ~55!

where

SGL@F,am#5E dt d2xS rd

2
u~]m2 iam!Fu21V~F! D

~56!

and f mn
c 5]nam

c 2]man
c . The fieldFv

† may be thought of as a
vortex creation field. The vortex current is given by

j m
v 5

rd

2 FFv
†S 1

i
]m2am

c DFv1H.c.G . ~57!

An identical construction is now used foru with rc re-
placed byrs andJl

c by Jl
s :

SDual
s 5SGL~Fm ,am

s !1E dt d2xF 1

2rs
~ f mn

s !2

1am
semnl]nS Al

s2
1

rc
Jl

sD G , ~58!
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whereFm
† is a meron creation operator. Analogous topolo

cal objects in the spin sector have been discussed in
context of quantum Hall systems38–40 and quantum
antiferromagnets.17,41–43

Actions ~56! and~58! need to be supplemented by Cher
Simons gauge fields which enforce the minus sign which
acquired when ac encircles a fluxhc/2e vortex or a
meron.28,44 With these additions, we obtain the followin
dual action:

SDual5SGL~Fv ,am
c 2am

s1!1SGL~Fm ,am
s2am

s2!

1E dt d2xF 1

2rc
~ f mn

c !21am
c emnl]nS Al

c2
1

rc
Jl

c D
12am

1 emnl]nal
s11am

1 Jm
c G1E dt d2xF 1

2rs
~ f mn

s !2

1am
semnl]nS Al

s2
1

rs
Jl

sD12am
2 emnl]nal

s21am
2 Jm

s G ,
~59!

wheream
1,2 andam

s1,2 are the gauge fields that perform the flu
attachement and enforce the minus sign.

With this action in hand, we can now address the quant
disordered phases and quantum number separation. In
sence, there arethree quantum numbers: charge, spin, a
electron number modulo 2. These can separate in a varie
patterns.

• If ^Fv&Þ0, flux hc/2e vortices condense. The Meissn
effect associated with this condensate imposes

am
c 1am

s150. ~60!

Recalling thateab]aab
c 5J0

totc (a, b5x,y) is the charge
density andeab]aab

s15J0
c is the quasiparticle density, w

conclude that in this phase charge is attached to thecs.
• If ^Fm&Þ0, merons condense, and the Meissner effect

sociated with this condensate imposes

am
s1am

s250. ~61!

As eab]aab
s5J0

tot s is the local spin density and
eab]aab

s25J0
s we find that spin is attached to thec ’s. All

the fermions carry spin.
• If ^Fm&50, ^Fv&50, but ^FvFm&Þ0 hc/2e vortex,

meron composites condense. The Meissner effect ass
ated with this condensate imposes

am
c 1am

s50. ~62!

In other words, spin and charge are confined, but the
mion c carries neither sincec does not acquire any phas
upon encircling this composite object, as evinced by
fact thatFvFm is not coupled to statistical gauge fields

• The condensation of other composites, such asFm
2 ~i.e.,

skyrmions!, Fv
2 , etc., does not cause the confinement

any quantum numbers.

E. Exotic phases

The order-parameter classification discussed after Eq.~35!
is incomplete; those states can occur in several varie
classified by the allowed quantum numbers.45
3-10
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Charge-4e singlet superconductors,D4eÞ0, Q50:
~1A! If ^Fm&Þ0, then the Fermionic excitations carr

spin 1/2.
~1B! However, if ^Fm&50 but ^(Fm)2&Þ0 then thec ’s

are spinless. Note that the charge quantum number of
Fermionic excitation is not really well defined since U~1! is
broken in the superconducting state; stated differently,
fermion can always exchange charge with the condensa

Spin-triplet insulator,D4e50: QÞ0:
~2A! If ^Fv&Þ0, thec ’s carry chargee.
~2B! If ^Fv&50 but^(Fv)2&Þ0, then thec ’s are neutral.

As in the previous case, the spin quantum number of thec ’s
is not well defined.

Spin-singlet insulator,D4e50: Q50:
~3A! If ^Fv&Þ0, ^Fm&Þ0, then thec ’s carry spin 1/2

and chargee: CSF phase.
~3B! If ^Fm&50 but ^(Fm)2&Þ0 while ^Fv&Þ0, then

the c ’s are chargee, spinless Fermionic excitations: CFS
phase.

~3C! If ^Fv&50 but^(Fv)2&Þ0 while ^Fm&Þ0, then the
c ’s are neutral, spin-1/2 Fermionic excitations: CBSF pha

~3D! If ^FvFm&Þ0, then thec ’s are neutral, spinless
Fermionic excitations, but spin and charge are confined
a bosonic spin-1/2, chargee excitation: CSBNF phase.

~3E! Finally, if ^Fv&50 but ^(Fv)2&Þ0 and ^Fm&50
but ^(Fm)2&Þ0, then thec ’s are neutral, spinless Fermion
excitations. Bosonic chargee excitations,eiw/2, and Bosonic
spin-1/2 excitations,eiu/2 are also liberated: CBSBNF phas

To summarize, we have the following phases with exo
quantum numbers:

•A charge-4e singlet superconductor with spinless Ferm
onic excitations.

•A spin-triplet insulator with neutral Fermionic excita
tions.

•Spin-singlet insulators with~i! chargee spinless fermions
and spin-1/2 neutral bosons;~ii ! spin-1/2 neutral fermions
and spinless chargee bosons;~iii ! neutral spinless fermions
Bosonic chargee spinless excitations, and Bosonic spin-1
neutral excitations; or~iv! neutral spinless Fermionic excita
tions and Bosonic chargee spin-1/2 excitations.

These result are summarized in the following diagra
that describe various phases that can result from quan
disordering ap-wave superconductor.

The scenario proposed in this section for quantum num
separation inp-wave superconductors may apply to oth
systems, provided that they acquire nontrivial topological
der in the spin and charge sectors, or in the language of
section when they have sufficiently strong quantum fluct
tions of spin and charge degrees of freedom simultaneou
In Appendix B we show that quantum disorderedd-wave
superconductor with easy-plane antiferromagnetic fluct
tions may be treated in the same way as we treatedp-wave
superconductors in this section.

V. Z2ÃZ2 LATTICE GAUGE THEORY

In this section, we derive aZ23Z2 gauge theory repre
sentation of a model which gives rise to localp-wave super-
conducting fluctuations. In addition to the superconduct
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state, we find the exotic phases discussed in the prev
section. These have a simple description as the various
confining phases of theZ23Z2 gauge theory. Readers wh
are uninterested in the technical details of our derivation m
skip directly to Eqs.~105!, ~106!, and the subsequent discu
sion.

A. General formalism

We consider the following Hamiltonian that describes t
equal spin pairing state of ap-wave superconductor:

H5Ht1Hu1Hv1HD ~63!

with

Ht52t (
rr 8,a

cra
† cr 8a1H.c.,

Hu5u(
r

~Nr2N0!2,

Hv5v(
r

~Mr !
2,

HD5(
rr 8

@D rr 8
↑↑ cr↑cr 8↑1D rr 8

↓↓ cr↓cr 8↓#1H.c., ~64!

whereD rr 8
↑↑ andD rr 8

↓↓ represent the order-parameter fields f
the Cooper pairs with spin up-up and down-down pairs,
spectively. Herea5↑,↓ is the spin index. The term propor
tional to u represents the on-site Coulomb repulsion.Nr is
the total number operator of electrons at the siter, N0 is the
average electron number per site.Mr is thez component of
the total spin operator. At equilibrium,uD↑↑u5uD↓↓u. Note
that there are two independent phases associated withD↑↑

andD↓↓. We can rewriteHD as

HD5D(
rr 8

arr 8@eiwr↑cr↑cr 8↑1eiwr↓cr↓cr 8↓#1H.c.,

~65!

whereD5uD↑↑u5uD↓↓u andarr 8 is the form factor that gives
rise to the particularp-wave symmetry.

The fieldsw r↑ and w r↓ are canonically conjugate to th
Cooper pair number operators of up-up and down-do
Cooper pairs,nr↑ andnr↓ :

@w r↑ ,nr 8↑#5 id rr 8 , @w r↓ ,nr 8↓#5 id rr 8 . ~66!

The conserved charge densities for the electrons with sp↑
and↓ are given by

Nr↑52nr↑1r r↑ ,

Nr↓52nr↓1r r↓ , ~67!

wherer ra5cra
† cra is the quasiparticle number, which is no

equal to the electron number. It is useful to remind the re
ers that the Hamiltonian~64! does not conserve the quasipa
ticle number, since it contains terms that annihilate a pai
3-11
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them and create a Cooper pair. Only the total number
electrons of a given spin, given by Eq.~67!, is conserved.
This may be formulated as a conservation of the total cha
andz component of the total spin,

Nr5Nr↑1Nr↓ , Mr5Nr↑2Nr↓ . ~68!

Let us define boson operatorsbra which carry chargee
and spina5↑,↓:

bra
† 5t r

aeiwra /25eifra, ~69!

wheret r
a561 are Ising variables andf ra are defined in the

interval zero to 2p. Note that the squares ofbr↑
† and br↓

†

create the spin up-up and down-down Cooper pairs via
following relation:

~bra
† !25eiwra. ~70!

One can also see that the canonical conjugates off ra are the
total densities of electrons with spin↑ and ↓. They satisfy
the following commutation relations:

@f ra ,Nr 8a#5 id rr 8 . ~71!

Similarly, the following commutation relations are also s
isfied:

@f rc ,Nr 8#5 id rr 8 , @f rs ,Mr 8#5 id rr 8 , ~72!

where f rc5(f r↑1f r↓)/2 and f rs5(f r↑2f r↓)/2. At this
stage, it is useful to define the fermion operators,f ra

† , as
follows:

cra
† 5bra

† f ra
† . ~73!

Note thatf ra
† creates spinless neutral fermions due to the f

that bra
† carries both the charge and spin of the electrons

It is also useful to definew rc andw rs as follows:

eiwr↑5eiwrceiwrs, eiwr↓5eiwrce2 iwrs. ~74!

Note that there is aZ2 symmetry associated with these de
nitions of phase variables;w rc→w rc1p and w rs→w rs1p
do not changeeiwr↑ andeiwr↓. Now we define boson opera
tors br

† andzr
† as

br
†5t re

iwrc/25eifrc, zr
†5sre

iwrs/25eifrs. ~75!

Heret r561 andsr561 are Ising variables. Note that thes
operators satisfy the following identities:

~br
†!25eiwrc, ~zr

†!25eiwrs. ~76!

Note also thatbr↑
† andbr↓

† can be rewritten as

br↑
† 5br

†zr
† , br↓

† 5br
†zr . ~77!

Now the total Hamiltonian can be written as

H5Ht1Hu1Hv1HD ~78!

with
15510
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Ht52t(
rr 8

~br
†br 8zr

†zr 8 f r↑
† f r 8↑1br

†br 8zrzr 8
† f r↓

† f r 8↓!1H.c.,

HD5D(
rr 8

arr 8~br
†br 8zr

†zr 8 f r↑ f r 8↑1br
†br 8zrzr 8

† f r↓ f r 8↓!1H.c.

~79!

The Hamiltonian is invariant under the following local tran
formations:

~i! Z2t : br→2br ; f ra→2 f ra ;
~ii ! Z2s : zr→2zr ; f ra→2 f ra ;
~iii ! Z2s̃ : zr→2zr ; bra→2bra .

Only two of these transformations are independent, any
of them can be represented as a product of the other
Together they formZ23Z2 gauge symmetry, that has thre
Z2 subgroups as reflected in three possible transformat
above. These subgroups are distinct, but not independ
Z23Z2 local gauge symmetry is a consequence of the red
dancy in the enlarged Hilbert space off ra , br , and zr .
There is a further redundancy in our description in terms
br andzr becausebr→ ibr , zr→2 izr also leaves all physi-
cal quantities invariant. This identification allows for the e
istence of flux p-disclination-hc/4e vortex composites
which we discussed in Sec. IV B. As before, we assume
these topological defects are gapped so that we can sa
ignore this identification and takef rc and f rs as defined
from @0,2p).

In order to get the correct Hilbert space of the electro
we have to impose two constraints at each site.

Nr1r r↑1r r↓5even number,
~80!

Mr1r r↑2r r↓5even number.

These can be written as

~21!Nr1rr↑1rr↓51, ~21!Mr1rr↑2rr↓51. ~81!

The constraints can be implemented in the path integral
resentation of the partition function using the following pr
jection operators:

Pc5)
r

Prc , Ps5)
r

Prs , ~82!

with

Prc5
1

2
@11~21!Nr1rr↑1rr↓#

5
1

2 (
sr561

ei (p/2)(12tr )(Nr1rr↑1rr↓),

Prs5
1

2
@11~21!Mr1rr↑2rr↓#

5
1

2 (
tr561

ei (p/2)(12sr )(Mr1rr↑2rr↓). ~83!
3-12
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Using the projection operators, the partition function c
be written as

Z5Tr@e2bHPcPs#. ~84!

A Euclidean path-integral representation can be obtained
splitting the exponential intoM number of time slices,

Z5Tr@~e2eHPcPs!
M#, ~85!

wheree5b/M . Now the partition function can be written a

Z5E )
ia

d f̄ iad fiadf icdf is

3 (
Ni52`

`

(
Mi52`

`

(
s i561

(
t i561

e2S. ~86!

Herei 5(r ,t) runs over the 211-dimensional space-time la
tice with t51,2, . . . ,M time slices. The actionS has the
following form:

S5St
f 1St

fc1St
fs1e(

t51

M

H~Nt ,M t ,ftc ,fts , f̄ ta , f ta!

~87!

with

St
f 5 (

r ,t51

M

(
a

@ f̄ ta~st11tt11f t11,a2 f ta!#,

St
fc5 (

r ,t51

M

NtS ftc2ft21,c1
p

2
~12tt! D , ~88!

St
fs5 (

r ,t51

M

M tS fts2ft21,s1
p

2
~12st! D .

Here the spatial indexr is suppressed for clarity. The Isin
variablesst and tt are defined on the links connecting a
jacent time slices and can be regarded as the time compo
of the Ising gauge fields.

The sum of Ht and HD can be decoupled using th
Hubbard-Stratanovich fieldsx rr 8 andh rr 8 ,

e2e(Ht1HD)5E )
rr 8

)
t

dx rr 8dx rr 8
* dh rr 8dh rr 8

* e2St,D.

~89!

Using the expressions forHt andHD ,

Ht52t (
rr 8,a

~bra
† br 8a f ra

† f r 8a1H.c.!,

~90!

HD5D (
rr 8,a

arr 8~bra
† br 8a f ra f r 8a1H.c.!,

we have
15510
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St,D5
1

4
e (

rr 8,a
$@2ux rr 8u

22x rr 8~bra* br 8a1t f̄ ra f r 8a

1arr 8D f ra f r 8a!#1@2uh rr 8u
22h rr 8~bra* br 8a

2t f̄ ra f r 8a2arr 8D f ra f r 8a!#1c.c.%. ~91!

Rearranging terms, we get

St,D5
1

4
e (

rr 8,a
@2ux rr 8u

212uh rr 8u
22~x rr 81h rr 8!bra* br 8a

2t~x rr 82h rr 8! f̄ ra f r 8a2arr 8D~x rr 82h rr 8! f ra f r 8a

1c.c.#. ~92!

Rewriting this in terms ofbr andzr , we get

St,D5
1

4
e(

rr 8
H(

a
@2ux rr 8u

212uh rr 8u
2

2t~x rr 82h rr 8! f̄ ra f r 8a2arr 8D~x rr 82h rr 8! f ra f r 8a#

2~x rr 81h rr 8!~br
†br 8zr

†zr 81br
†br 8zrzr 8

†
!1c.c.J .

~93!

In order to decouplebr from zr , another Hubbard-
Stratanovich transformation is necessary. Using similar p
cedures, the term

2
1

4
e(

rr 8
@~x rr 81h rr 8!~br

†br 8zr
†zr 81br

†br 8zrzr 8
†

!1c.c.#

~94!

can be decoupled as

2
1

16
e(

rr 8
~x rr 81h rr 8!@2ul rr 8u

212uj rr 8u
212uprr 8u

2

12uqrr 8u
22~l rr 81j rr 8!zr

†zr 82~prr 81qrr 8!zrzr 8
†

2~prr 82qrr 81l rr 2j rr 8!br
†br 81c.c.#, ~95!

We now make a saddle-point approximation and keep
Ising fluctuations around this saddle point. The natu
choices are

x rr 82h rr 85s rr 8t rr 8x f ,

~x rr 81h rr 8!~l rr 82j rr 81prr 82qrr 8!5t rr 8xc , ~96!

~x rr 81h rr 8!~l rr 81j rr 81prr 8
* 1qrr 8

* !5s rr 8xs ,

where s rr 8561 and t rr 8561 are Ising fluctuations. We
drop all of the constant terms and define the following va
ables:

t f5
1

4
tx f , tc5

1

16
xc , ts5

1

16
xs , tD5

1

4
Dx f

~97!

to obtain
3-13
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St,D
eff 52e(

rr 8
(
a

@s rr 8t rr 8~ t f f̄ ra f r 8a1tDarr 8 f ra f r 8a!

1tct rr 8br
†br 81tss rr 8zr

†zr 81c.c.#. ~98!

Combining all the results, the approximate full partitio
function can be written as

Z̃5E )
ia

d f̄ iad fiadf icdf is

3 (
Ni52`

`

(
Mi52`

`

)̂
i j &

(
s i j 561

(
t i j 561

e2S, ~99!

wheres i j and t i j are Z2 gauge fields living on the neare
neighbor links of the space-time lattice. The total actionS is
given by

S5St
f 1St

fc1St
fs1SD1S01Su1Sv ~100!

with

St
f 52 i (

i , j 5 i 1 t̂
(
a

@ f̄ ia~s i j t i j f j a2 f ia!#,

St
fc52 i (

i , j 5 i 2 t̂

NiFf ic2f jc1
p

2
~12t i j !G ,

St
fs52 i (

i , j 5 i 2 t̂

MiFf is2f js1
p

2
~12s i j !G ,

SD5e (
i , j 5 i 1 x̂

tDs i j t i j ~ai j f ia f j a1c.c.!,

S052e (
i , j 5 i 1 x̂

(
a

@ t fs i j t i j f̄ ia f j a

1tct i j bi* bj1tss i j zi* zj1c.c.#,

Su5eu(
i

~Ni2N0!2,

Sv5ev(
i

~Mi !
2, ~101!

where t̂ and x̂ represent the time and spatial links.ai j
5arr 8 on the spatial links and zero otherwise.

Using the Poisson resummation formula, one can sh
that

(
Ni

e2(Su1S
t

fc)5e( i , j 5 i 2 t̂(1/2eu)t i j cos(f ic2f jc)2SB
s
,

(
Mi

e2(Sv1S
t

fs)5e( i , j 5 i 2 t̂(1/2ev)s i j cos(f is2f js) ~102!

with
15510
w

SB
t 52 iN0 (

i , j 5 i 2 t̂
S 2p l i j

t 2
p

2
~12t i j ! D . ~103!

Here l i j
t is defined as

l i j
t 5IntFF i j

c

2p
1

1

2G ~104!

with F i j
c 5f ic2f jc1(p/2)(12t i j ) is the gauge invarian

phase difference across the temporal link. Int denotes
integer part. One can see that the Berry phase term fors i j is
absent. This is due to the fact that we have equal amplitu
for up-up and down-down pairing in the equal spin pairi
state, analogous to particle-hole symmetry in the charge
tor.

Gathering these terms, the final form of the action is giv
by

S5Sf1Sc1Ss1SB
s1Sg ~105!

with

Sf52(
i j ,a

s i j t i j @ t i j
f f̄ ia f j a1 t̃ Dai j f ia f j a1c.c.#2(

ia
f̄ ia f ia ,

Sc52(
i j

t i j
c t i j ~bi* bj1c.c.!,

Ss52(
i j

t i j
s s i j ~zizj1c.c.!. ~106!

Here t i j
c is etc on the spatial link and 1/4eu on the temporal

link. Similarly t i j
s is ets on the spatial link and 1/4ev on the

temporal link.t i j
f 5et f on the spatial link andt i j

f 521 on the

temporal link. Andt̃ D5etD . The last term of Eq.~105! cor-
responds to the Maxwell terms for theZ2 gauge fields, that
we assume are generated after we integrate out excitatio
high energies,

Sg52K1(
h

)
h

s i j 2K2(
h

)
h

t i j 2K3(
h

)
h

s i j t i j .

~107!

These are the simplest terms providing dynamics of
gauge fields that are consistent with the gauge symmetr

Z2t : bi→t ibi ; f ia→t i f ia ; t i j →t i t jt i j ,

Z2s : zi→sizi ; f ia→si f ia ; s i j →sisjs i j ,
~108!

wheret i andsi are61. In the future we will call any particle
that transforms under the first and the second transformat
of Eq. ~108! as havingZ2t andZ2s charges, respectively.

B. Spin singlet insulating phases

Before discussing possible spin singlet insulating pha
of the combined action~105!–~107! it is useful to review
properties of a pureZ23Z2 gauge theory~107!. Under dual-
3-14
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ity transformation defined in Refs. 7,46 and 47 this mo
becomes a generalized Ashkin-Teller model,48

SAT52Kd1(̂
i j &

v iv j2Kd2(̂
i j &

uiuj2Kd3(̂
i j &

uiv iujv j .

~109!

Hereui andv i are Ising variables defined on the dual latti
in d5211. We can identify five possible phases of E
~109!:

~i! fully ordered phasêu&Þ0, ^v&Þ0, ^uv&Þ0;
~ii ! partially ordered phasêu&Þ0, ^v&50, ^uv&50;
~iii ! partially ordered phasêu&50, ^v&Þ0, ^uv&50;
~iv! partially ordered phasêu&50, ^v&50, ^uv&Þ0;
~v! disordered phasêu&50, ^v&50, ^uv&50.

As pointed out in Ref. 7 the Ising variables of Eq.~109!
correspond to theZ2 vortices of the original gauge mode
They describe gauge field configurations with plaque
products equal to21, i.e., plaquettes pierced byZ2 fluxes.
Following Ref. 7 we call suchZ2 vortices ‘‘visons.’’ In fact
we have three kinds of visons:s visons that describeZ2
vortices ofs, t visons that describeZ2 vortices oft, and
@st# visons that describe a composite ofs andt Z2 vorti-
ces. The three are not independent, any one of them ca
thought of as a composite object of the other two. Howev
we should treat all of them on equal footing since they r
resent distinct topological objects. The appearance of
long range order in the Ashkin-Teller model corresponds
the condensation of visons in the original gauge model
describes transition to the confining phase. From these a
ments it follows that there are five distinct phases of the p
gauge model in Eq.~107!: one fully confining phase, thre
partially confining phases, and one fully deconfining pha
that correspond to the fully ordered, three partially order
and one fully disordered phases of the Ashkin-Teller mod

~i! Fully confining phase.s andt visons are condense
simultaneously. This also implies condensation
@st# visons.

~ii ! Partially confining phase.t visons are condensed an
s and @st# visons are gapped.

~iii ! Partially confining phase.s visons are condensed an
t and @st# visons are gapped.

~iv! Partially confining phase.@st# visons are condense
ands andt visons are gapped.

~v! Deconfining phase. All visons are gapped.

Condensation of visons has dramatic effects on the
tion of spinons, holons, and neutral fermions in the mo
~105!–~107!. We find drastically different excitation spectr
depending on what vortices are condensed. The reason
this is a geometrical phase factor ofp that particles withZ2
charges acquire when they circle around an appropriateZ2
vortex. For example, spinons and neutral fermions get a g
metrical phase factor ofp when they are transported aroun
a s vison, and holons and neutral fermions get a minus s
when they circle around at vison. This means that whe
15510
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visons are present in the ground state, the coherent motio
the corresponding particles is highly frustrated and they m
not be considered as elementary excitations. Only the
ticles that are neutral with respect to the appropriateZ2 sym-
metry may propagate freely in a phase with condensed
sons. And the particles that carry suchZ2 charges will have
to bind into neutral pairs. This is the essence of the confi
ment argument discussed in Refs. 46 and 7.

When we apply the geometrical phase-confinement ar
ment to the spin singlet insulating states we find the sa
phases as discussed in Sec. IV E.

• In a phase of type~i! all kinds of Z2 vortices are con-
densed. Therefore particles that carry anyZ2 charges will
be bound. This is a fully confining phase where only fu
neutral composites are allowed. Holons, spinons, and n
tral fermions are confined~phase CSF!.

• In a phase of type~ii ! we have a condensate oft visons. As
a result particles that carryZ2t charges are confined, bu
particles that carryZ2s charges are liberated. Spinons a
free, and holons are bound to the neutral fermions~phase
CFSB!.

• In a phase of type~iii !, that has a condensate ofs visons,
we have a confinement of particles withZ2s charges and
deconfinement of particles withZ2t charges. Holons are
free, and spinons are bound to the neutral fermions~phase
CBSF!.

• In a phase of type~iv! we do not have individuals andt
visons in the ground states, but only their composit
@st# visons. The geometrical phase argument becom
somewhat subtle when we consider@st# visons. Particles
that carry either one ofZ2t or Z2s charges will get ap
phase shift when they circle around such a vortex. Ho
ever, particles that carry both charges acquire no phase
in a D-type phase particles that carry one of theZ2t or Z2s

charges are confined, but particles that carry both cha
are deconfined. Holons and spinons are bound, and ne
fermions are free~phase CSBNF!.

• Finally, in a phase of type~v! we have no condensed v
sons, which means that all the particles are liberated.
lons, spinons, and neutral fermions are deconfined~phase
CBSBNF!.

C. Broken-symmetry phases

In this section we show usingZ23Z2 theory that even
states with the long-range order in the model~105!–~107!,
i.e., p-wave superconductors, spin singlet superconduct
nematic insulators, and nematic superconductors may d
in their topological ordering and carry the remnants of t
spin-charge separation that appears so dramatically in
insulating phase.

We begin by reviewing the case of ap-wave supercon-
ductor.

• The simplestp-wave superconductor that may be deduc
from the model~105!–~107! is when holons and spinon
condense simultaneously, so the system acquires finite
pectation values ofb and z. The geometrical phase argu
3-15
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ment when applied to this system tells us that an isola
hc/2e vortex or a meron are no longer well defined ex
tations, since they acquire a phase shift ofp when circling
around a holon or a spinon, respectively. However, if
bind an hc/2e vortex with a t vison we find that this
composite can propagate freely. The geometrical pha
acquired by the two upon encircling a holon add up to 0
2p. Equivalently, a meron, when bound to as vison, be-
comes a well defined excitation in the presence of spi
condensate.

• Another possible phase of ap-wave superconductor i
when we condense holon pairs and spinons, i.e.,b2 andz.
In this phase merons are still bound tos visons, however,
hc/2e vortices andt visons are now deconfined. The orig
nal holons are reduced to Ising variables, which we c
call b isons, following Ref. 7. They carry the leftover o
the charge symmetry, that was broken from U~1! to Z2, and
are well defined excitations in this phase.

• Analogously to the previous case we can consider a si
tion with condensedb andz2. This phase will have bound
hc/2e vortices andt visons and liberated merons ands
visons. Spinons become Ising variables,z isons, that carry
the residualZ2 spin quantum numbers.

• A different type of ap-wave superconductor occurs whe
holon pairs and holon-spinon composites condense sim
taneously, i.e.,b2 andbz acquire expectation values~this
also fixes the expectation value forz2). In such a phase
spinons and holons are reduced to a single Ising varia
since knowingb automatically givesz. Thisbz ison carries
the residual spin-charge quantum number of the system
stable topological object in this phase may be construc
by taking any two of the set (hc/2e vortex, meron,t vison,
s vison!.

• Finally, we may have a phase with condensed holon
spinon pairs,b2 and z2. This gives us separateb isons,z
isons,hc/2e vortices, merons,t visons, ands visons.

The last four phases are the triplet analogs of the exotic S*
phase discussed in Ref. 7 in the case of singlet supercond
ors. We now consider the case of a spin-singlet superc
ductor.

• The simplest kind of a spin singlet superconductor occ
when we condense simultaneously holonsb ands visons.
The former ensures confinement ofhc/2e vortices andt
visons, whereas the latter gives rise to binding of neu
fermions to spinons.

• Another possibility is to have a condensate of holon pa
b2 and s visons. This liberateshc/2e vortices andt vi-
sons, producesb isons that carry chargeZ2 number, and
leaves neutral fermions bound to spinons.

• Another option is to have a condensate of bosonsb with
gappeds visons. This means boundhc/2e vortices andt
visons, and liberated neutral fermions and spinons.

• The most intriguing phase in this series is obtained wh
we condense holon pairsb2 and holons vison composites.
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Excitations in this phase will be any pair from the s
(hc/2e vortex, t vison,c, z) andb isons.

• Finally we can have a condensate ofb2 and gappeds
visons. This gives unconfinedhc/2e vortices, t visons,
neutral fermions, spinons, andb isons.

Of the five phases above, four of the last ones may be c
sidered as SC* phases.

The construction given above forp-wave superconducting
states and spin singlet superconducting states may be g
alized to the case of spin-nematic insulators and nematic
perconductors. In those cases, just as in the two discu
above, we find five possible states. One of these is a tr
tional version, whereas the other four are of the unconv
tional * variety that may be thought of as containing trac
of quantum number separation.

The reader may be worried that we do not findhc/4e
vorticesp disclinations in our discussion of various phas
of p-wave superconductors. As in the previous sections
assumed that these excitations have been gapped out@see
discussion after Eq.~79!#.

VI. DISTINGUISHING DIFFERENT
FRACTIONALIZED PHASES

In previous sections, we have seen how various fracti
alized phases can arise in the context of Kondo lattice m
els and systems with a tendency towardsp-wave supercon-
ductivity or superconductivity coexisting with magnetism
These phases can be described in the language of vortex
skyrmion condensation or in terms of aZ23Z2 gauge theory.
However, one might wonder if these results are an artifac
these formalisms. In particular, one can ask how these ph
can be distinguished—both as a matter of principle and a
practical experimental issue—from each other and from
fractionalized phases. As Wen11 and, more recently, Senth
and Fisher4 have emphasized recently, their ‘‘topologic
order’’—i.e., the sensitivity of the ground state to changes
the topology of the system—provides one means of dis
guishing fractionalized phases.

This characterization of fractionalized phases is cruc
because other heuristic definitions of fractionalized pha
can fail. To see why this is so, consider the intuitively a
pealing statement that a fractionalized phase is distinguis
from a conventional phase by asking for the lowest ene
excitation with, for instance, spin 1/2. In the convention
case, this would be an electron which also carries an elec
chargee. In the fractionalized phases of the kind discuss
above, one might expect that the corresponding excitatio
a spinon which is charge neutral. However, this test for fr
tionalization fails if there is an attractive interaction betwe
the holons and spinons which binds them into an electro
low energies. This could, in principle, happen without goi
through a phase transition.~Unlike in an unfractionalized
phase, holons and spinons would still exist as unbound e
tations, but at higher energies.! Then, the lowest energy ex
citation with spin 1/2 is an electron~as opposed to a spinon!
though the system is adiabatically connected to a fractio
ized phase~see Refs. 13, 28, and 29 for a discussion of t
3-16
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effect!. Furthermore, other tests such as the vanishing of
quasiparticle residue at some point of the Brillouin zone a
fail in this situation. Hence we turn to the characterization
terms of the topological properties of the system.

Topologically ordered systems are partially characteri
by their ground-state degeneracy on the annulus, the toru
higher-genus manifolds, over and above any degene
which may be due to broken symmetry. Consider the CB
phase. It has a twofold degenerate ground state on the a
lus. The two ground states correspond to periodic and a
periodic boundary conditions for holons and spinons as t
encircle the center of the annulus. In either case, elect
themselves have periodic boundary conditions, as they m
In an unfractionalized phase, spinons and holons are c
fined within an electron so the two states are identical;
excitations which could distinguish them are not part of
spectrum. By the same reasoning, the CFSB and CSB
phases also have two degenerate ground states on the
lus. By extension, all of these states have ground-state
generacy 4g on a genusg surface. On the other hand
CBSBNF has four degenerate ground states. We can i
pendently choose periodic or antiperiodic boundary con
tions for the charge and spin bosons. The boundary co
tions for the neutral fermions are then determined by
requirement that electrons must have periodic boundary c
ditions. On a genusg surface, it has degeneracy 16g.

These degeneracies can be interpreted in terms of th
son spectra of the fractionalized states. The two ground st
of CBSF on an annulus correspond to the presence or
sence of at vison ~i.e., av) in the center of the annulus; th
two ground states of CFSB correspond to the presenc
absence of as vison~a v8); the two ground states of CSBN
correspond to the presence or absence of ast vison in the
center of the annulus. The four ground states of CBSB
correspond to the presence or absence ofs andt visons in
the center of the annulus. The interpretation of these gro
states in terms of visons forms the basis for an experime
probe of topological order proposed by Senthil and Fishe19

We will return to this issue later but let us, in the meantim
continue to pursue the question of the distinction in princi
between different fractionalized phases.

Different states at the same level of fractionalization ha
the same ground-state degeneracy; CBSF, CFSB,
CSBNF all have two degenerate ground states on the a
lus. In order to distinguish them, we must consider th
quantum number spectra. CSBNF does not have spin-ch
separation, i.e., it is not possible to isolate a charge-0, s
1/2 excitation at finite-energy cost. Furthermore it is possi
to isolate a neutral Fermionic excitation. Both of these sta
in contrast to CBSF and CFSB which exhibit spin-char
separation but do not support neutral Fermionic excitatio
Hence, we conclude that CSBNF is distinct from the oth
two states despite having the same ground state degene

One might be tempted to conclude that CBSF and CF
are distinct because the lowest-energy charged excitation
boson in one phase and a fermion in another phase. H
ever, if a holon in CBSF forms a bound state with at vison,
the resulting bound state will be Fermionic; similarly, if
spinon in CBSF forms a bound state with at vison, the
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resulting bound state will be Bosonic. Hence, as a resul
the seemingly innocuous formation of bound states,
CBSF and CFSB states appear to metamorphose into
other. Thus one is instead tempted to conclude that the C
and CFSB phases can be adiabatically connected to
other.

This contention is supported by considering the sing
superconducting state which results if holons condense
CBSF or if holon-s vison composites condense in CFS
~see Fig. 1!. It is easy to see that the superconducting sta
in either case are conventional and are smoothly conne
to a BCS state. The superconducting state can be disord
by vortex condensation. This will yield a fractionalized sta
~with a twofold degenerate ground state on an annulus! if
vortex pairs condense but individual vortices are unc
densed. Since the result could be either CBSF or CFSB,
appears to support the possibility that there is no ph
boundary between these phases in the part of the phase
gram near the singlet superconducting phase.

However, there is a logically possible alternative, nam
that an operator which is irrelevant in the superconduct
phase and at the critical point becomes relevant at the fi
points characterizing the fractionalized phases. In that c
the actual nature of the resulting fractionalized phase
pends on short distance physics—the value of the coup
which is formally irrelevant in the superconductor—and
not uniquely dictated by knowing that there is proliferatio
of hc/e and withhc/2e vortices remaining gapped.

Despite this caveat, a scenario in which CBSF and CF
are smoothly connected to each other in the vicinity of th
transition to the superconducting state is appealing and p
sible. This does not necessarily mean that CBSF and CF
are not distinct phases. Their relationship could be simila
that between a liquid and a gas, which are separated b
first-order phase transition line which terminates at a criti
point, beyond which a liquid and a gas can be adiabatic
connected without crossing a phase-transition line. In App
dix C, we show that precisely such a scenario does occu
simpler ~though somewhat different! Z23Z2 gauge theory
models. Thus we tentatively suggest that the first-order ph
transition between the CBSF and CFSB phases terminate
a critical point. Beyond this critical point, there is no distin
tion between these phases, and it is in this region of
phase diagram that there is a phase transition to the su
conducting phase.

VII. FLUX-TRAPPING EXPERIMENTS

Let us now consider the practical issue of how we c
identify whether a given system in an unknown phase
fractionalized or not and, if it is fractionalized, then what
fractionalization pattern is. To proceed, note first that
CBSF phase contains in it the seed of superconductivity.
argued in Ref. 7, condensing the charged boson provid
natural nonpairing route to superconductivity~of a conven-
tional kind!. Similarly, the CFSB phase contains in it th
seed of magnetism—simply condensing the spinon leads
conventional state with some kind of magnetic long-ran
order. However, it is possible to imagine a transition betwe
3-17
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DEMLER, NAYAK, KEE, KIM, AND SENTHIL PHYSICAL REVIEW B 65 155103
the CFSB phase and a superconductor which occurs wh
composite formed by a holon and as vison condenses. Simi
larly, it is possible to imagine a transition between the CB
phase and a magnetic phase which occurs when a comp
formed by a holon and as vison condenses.

The feature of most interest to the following discussion
simply that a direct phase transition should be possible
tween the CBSF and CFSB phases and a conventional su
conductor. Upon going through such a phase transition,
visons of these phases acquirehc/2e units of electromag-
netic flux to become thehc/2e vortices of the supercon
ductor. This may be exploited to devise a sensitive test
the topological order in the CBSF phase, as argued in R
19 and 4.

The test proceeds as follows. Consider an annular sam
of a material which is in a conventional superconduct
phase and let us suppose that we can tune the sample pa
eters adiabatically so that the sample makes transitions
tween the superconducting phase and the CBSF and C
phases. Suppose thathc/2e units of electromagnetic flux ar
trapped in the annulus when the system is in its superc
ducting phase. There must also be a vison trapped in
annulus so that the holon condensate can have peri
boundary conditions~without which it would cost infinite
energy!: the antiperiodicity caused by the fluxhc/2e is can-
celled by the antiperiodicity due to the vison. If the system
taken into the CBSF phase, the flux escapes since there
holon condensate trapping it, but a vison will remain sinc
will cost energy~the vison gap! to unwind the antiperiodic
boundary conditions of the~neutral! spinons. If the system is
returned to the superconducting state, then it must gene
flux 6hc/2e so that the holon condensate can again h
periodic boundary conditions. The same analysis holds if
take the system into the CFSB phase except that we hav
replace ‘‘holon’’ in the above description by ‘‘holon-viso
composite.’’ On the other hand, if the system undergoe
transition to an unfractionalized phase, then the vison
escape since there are no deconfined spinons or ho
whose boundary conditions would be affected by its esca

Of course, this experiment would simply be confirmin
the result which we arrived at in the previous section: t
the CBSF and CFSB phases can be adiabatically contin
into each other, particularly in the neighborhood of a conv
tional singlet superconducting phase.

Let us now consider a more complicated flux-trappi
experiment in which, as an intermediate step, we take
system through the higher-level fractionalized pha
CBSBNF ~see Fig. 1!. This phase has two distinct vison e
citations. One of these visons can be envisioned as a des
dent of thet vison of the CBSF phase; we will refer to th
asv. The other can be envisioned as a descendent of ths
vison of the CFSB phase or as a by-product of the furt
fractionalization of the fermionic spinon of CBSF; we w
refer to this asv8. A direct transition from CBSBNF to the
CBSF phase occurs when the visonsv8 condense while tha
from CBSBNF to CFSB occurs when the visonsv condense.
The presence of two distinct visons in the CBSBNF ph
distinguishes it from the CBSF and CFSB phases—indee
will have a ground-state degeneracy of 16 on a torus.
15510
a

F
ite

s
e-
er-
e

r
fs.

le

am-
e-

SB

n-
he
ic

s
no
it

te
e
e
to

a
n
ns
e.

t
ed
-

e
,

en-

r

e
it

Now consider a conventional BCS superconductor. Thi
obtained from CBSF by condensing the holon. The flu
trapping experiment performed by moving between the
perconductor and CBSF gives a positive result. Now c
sider a modification of the experiment so that we start in
superconducting phase, move first to CBSF, then
CBSBNF, then back into CBSF before finally going ba
into the superconductor. This again gives a positive re
since v is trapped in the annulus and it can never esca
Upon making the transition between the CBSF and CBSB
phases, av8 will be generated with probability 1/2 since th
ground state of CBSF with onev will make a transition to
either of the corresponding ground states of CBSBNF w
equal probability. However, thisv8 will escape upon the
transition from CBSBNF back to CBSF. Now consider
further modification in which we go all the way from th
superconductor to the CFSB phase through the CBSF
CBSBNF phases and then return by the same route to
superconductor. The result of this experiment will be ne
tive half of the time. This is because in going from CBSBN
to CFSB, the visonv condenses. Thusv which was trapped
in the hole until the phase CBSBNF was reached can esc
on moving into the CFSB phase. In going from CFSB ba
to CBSBNF, av is generated with probability 1/2—the tw
ground states are obtained with equal proability. Thisv, if it
is generated, will lead to the generation of fluxhc/2e in the
superconducting state.

Hence, there appears to be a difference between the C
and CFSB which can be detected in this experiment. It
pears that these phases cannot be continuously connec
since the probability of a negative result for the flux-trappi
experiment of the previous paragraph must jump from 0
1/2—at least in the vicinity of the CBSBNF phase. This c
be understood in the following terms. In the CBSBNF pha
there are two distinct types of visons,v andv8. If one or the
other condensed, a transition occurs to CFSB or CBSF.
remaining vison in CBSF ‘‘remembers’’ that it is av vison.
Meanwhile the vison in CFSB remembers that it is av8
vison. However, if we take the system far from CBSBNF
that a bound state can form between av and a holon and also
between av and a spinon, thenv now looks like av8 and the
distinction between the two phases is blurred. Combin
this reasoning with that of the previous section, we prop
the phase diagram of Fig. 6.

VIII. DISCUSSION

When electrons interact strongly, a number of interest
phenomena are known to occur, including unconventio
superconductivity and magnetism. As we have seen in
paper, many of the physical settings which give rise to th
phenomena also have the potential to exhibit electron fr
tionalization. Different theoretical approaches, adapted
these specific systems, suggest seemingly different fract
alized phases. It is natural to ask if these phases are t
different and, if so, what their organizing principle is.

In this paper, we have pursued the idea3,4 that a crisp and
coherent way of understanding quantum number fraction
ization is provided by the concept oftopological orderintro-
3-18
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FRACTIONALIZATION PATTERNS IN STRONGLY . . . PHYSICAL REVIEW B65 155103
duced in the context of fractional quantum Hall liquids49

anyon superfluids,50 chiral spin states,51 and short-range
resonating valence bond spin states.30 We presented two ap
proaches for understanding such topological order. The
one relies on the recently developedZ2 gauge theory of spin-
charge separation, originally suggested for the high-Tc cu-
prates, and generalizes it to aZ23Z2 theory to include pos-
sible fractionalization of spin and charge quantum numb
Some of the interesting fractionalized phases are: CB
~Bosonic holons and Fermionic spinons!, CFSB ~Fermionic
holons and Bosonic spinons!, CSBNF ~bound Bosonic ho-
lons and spinons and neutral fermions!, and CBSBNF
~Bosonic holons and spinons and neutral fermions!. Any one
of these phases can be further characterized by possible
ken symmetries with conventional order parameters. Eac
the fractionalized phases corresponds to a different deco
ing phase of the pureZ23Z2 gauge theory and will have
appropriate topologicalZ2 vortices, visons, as finite-energ
excitations.

An alternative picture of fractionalization which is als
presented in this paper uses the language of quantum d
dered superconductors and magnets. When topolog
ordering—defined by the suppression of certain defect
occurs, the Goldstone modes associated with various bro
symmetries can screen the corresponding quantum num
of the Fermionic quasiparticles. In this way, these quasip
ticles can be bleached of some or all of their quantum nu
bers. This may be implemented mathematically with U~1!
particle-vortex duality in both the charge and spin secto
We arrive at essentially the same picture as that of theZ2
3Z2 gauge theory. In those insulating phases in whichhc/2e
vortices are condensed, charge is bound to the Fermi
quasiparticles. Whenhc/2e vortices are gapped andhc/e
vortices are condensed, charge carrying holons can propa
separately from the electrically neutral Fermionic quasipa
cles. In the spin sector, we can consider either meron
skyrmion ~which carry twice the topological charge o
merons! condensation, with gapped merons in the latter ca
In the former case, spin is confined to the Fermionic qua
particles, and in the latter case spinons will exist as indep
dent objects, deconfined from the Fermionic quasipartic

FIG. 6. A schematic phase diagram indicating how the CB
CFSB, CSBNF, CBSBNF, and conventional singlet supercond
ing phases might fit together. The thick lines are first-order ph
transitions and the thin lines are second-order phase transition
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We have also discussed the possibility of quantum disorde
phases in which the condensed topological objects are
hc/2e vortex–meron composites, but nothc/2e vortices or
merons separately. Such phases have spinons and h
bound together but deconfined from the neutral Fermio
quasiparticles.

An important issue discussed in this paper is whether
can distinguish the phases obtained by quantum disorde
the spin and charge sectors of the system, for example,
phases CFSB and CBSF of the quantum disorderedp-wave
superconductor. The simplest choice seems to be the id
fication of the spin excitation as a Fermionic or Boson
particle. This, however, is not a reliable tool. In theZ23Z2

gauge theory formulation, both spinons and holons carryZ2

charges, so a bound state of aZ2 vortices with either one of
them ~this can also be thought of as attaching Wilson loo
to the particles! will change its statistics from Fermionic t
Bosonic or vice versa.17,42,43,52In the deconfining phase suc
vortices are gapped. However, if a bound state betweenZ2

charge carrying particle and aZ2 vortex forms, this bound
state may have a lower energy than the original particle. T
means that in both CFSB and CBSF phases the lowest
ergy spin- or charge-carrying excitations can exist as eit
bosons or fermions. The subtleties discussed above lead
consider flux-trapping experiments of the type discussed
Sec. VII. Combining all of these considerations, we outlin
one scenario in which CBSF and CFSB phases can be s
rated by a first-order transition which terminates at a criti
point. On the other hand, one can go from CBSF to CF
through CBSBNF phase by two continuous transitions. Th
if this scenario is correct, the relation between CBSF a
CFSB is somewhat similar to that between liquid and g
phases. We, however, defer offering any definitive conc
sion.

Spin charge separation in one-dimensional systems is
damentally different from its two-dimensional counterpa
since it does not involve topological order. Another no
trivial realization of electron number fractionalization whic
is analogous to that presented here can occur in multic
ponent quantum Hall systems and was discussed in Refs
and 53.

Another avenue for further research is the investigation
quantum-disordered states of triplet superconductors w
more complicated spin structures appearing in some of
superfluid phases of3He. We expect that these will shar
some features of noncollinear spin-density waves.54 Further
exotic phases are likely to occur upon quantum-disorder
states with multiple order parameters. We have conside
one of the simplest cases of this—antiferromagnetism
superconductivity—but there are more complicated possib
ties, involving incommensurate charge and/or spin order.

In addition to the phases CBSF and CFSB that have
peared in the literature before, we proposed the possibility
two additional quantum number separated phases in th
systems: phase CSBNF in which the excitations are a s
1/2, chargee boson, a neutral spinless fermion and a vis
and phase CBSBNF with a chargee spinless boson, a neutra
spin 1/2 boson, a neutral spinless fermion, andtwo distinct
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DEMLER, NAYAK, KEE, KIM, AND SENTHIL PHYSICAL REVIEW B 65 155103
visons, simultaneously condensedhc/e vortices and skyrmi-
ons.

The possibility of a higher SO~5! symmetry which unifies
d-wave superconductivity and antiferromagnetism has b
suggested for the high-Tc cuprates and organic superco
ductors in Ref. 55. In the Sr2RuO4 materials, a similar sym-
metry has been proposed in Ref. 56 which combinesp-wave
superconductivity and ferromagnetism. An effective mo
for the coupling of quasiparticles to a fluctuating SO~5! order
parameter has been derived in Ref. 57. In this model ho
and spinons are not segregated into independent quasip
cles from the very beginning but are naturally combined i
composite quasiparticles which transform as spinors
SO~5!. Such spinors are spin doublets and carry chargee.58,59

There are also neutral fermions which carry no quant
numbers. One can see a striking resemblance between
excitations and the excitations in the phase CBSBNF. T
suggests the interesting possibility that the restoration of
SO~5! symmetry in models with strong quantum fluctuatio
manifests itself not in the existence of a bicritical point
the phase diagram, but in the appearance of a specific f
of quantum number separation of the electrons. A deta
discussion of quantum disordering phenomena in mod
with SO~5! symmetry requires a detailed analysis of the no
Abelian Berry’s phases involved in the description of SO~5!
spinors and will be presented in subsequent publications

The states which we have discussed, as well as the m
complicated ones alluded to above, have potential appl
tion to a variety of materials, including not only th
cuprates,22 but also Sr2RuO4;21 heavy fermion superconduc
ors, such as CeIn3;24 and organic superconductors, such
k-(ET)2Cu@N(CN)2#Cl.23 All of these compounds hav
magnetic~in come cases incommensurate! phases in proxim-
ity to p-wave ord-wave superconducting states. It is possib
that pressure, chemical substitution, magnetic field, e
might drive a transition into one of the phases described h
in which the magnetism and the superconductivity are dis
dered by quantum fluctuations.

Ideas presented in this paper should also apply to Bo
Einstein condensates of spinor bosons, such as alkali a
23Na and 87Ru which have a hyperfine spinF51. For ex-
ample, when restricted dimensionality or quantum fluct
tions destroy the spin ordering we expect to find conden
tion of pairs of atoms into a global spin singlet state, a
when quantum fluctuations in the charge sector destroy
U~1! phase ordering we can find states characterized b
spin nematic order. Some of these phenomena have
discussed in Ref. 25.

To summarize, we have studied the possibility of fractio
alization in systems with ordering tendencies in the cha
and spin sectors, including Kondo lattices,p-wave supercon-
ductors, and systems with simultaneousd-wave supercon-
ducting and antiferromagnetic fluctuations. In the case
p-wave superconductors we find that the rich internal str
ture of their order parameter allows for the existence of
following quantum disordered phases: a charge 4e singlet
superconductor, a spin singlet insulator, and a spin nem
insulator. For both thep wave superconductors and th
d-wave superconductor/antiferromagnet systems, we
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that the quantum disordered phases may have sepa
quantum numbers, depending on the topological order, wh
can be characterized by specifying the nature of the fin
energyZ2 visons.
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APPENDIX A: KONDO LATTICE MODEL

In this appendix, we provide some of the details of theZ2
gauge theory reformulation of the Kondo lattice model d
cussed in Sec. II. Consider the Hamiltonian in Eq.~1!. As in
the discussion of the pure exchange Hamiltonian, we fi
replace the spin operatorSr

2 by the boson operatorbsr

;eiwr. The exchange Hamiltonian takes the form of Eq.~6!
and the Kondo coupling takes the form of Eq.~24!. The
electron hopping term is unaffected. We now change v
ables to spinon and holon operators as in Eqs.~7!, ~26!, and
~27!. The termsHt ,Hk , andHex are now given by Eqs.~29!,
~25!, and ~9!, respectively. In the presence of the Kond
coupling between the local moments and the conduc
electrons, the total (z component of the! spin at each site is

nr1
1

2
cr

†szcr . ~A1!

We therefore define the total spinon number

Nr
tot52nr1cr

†szcr . ~A2!

Note thatNr
tot is conjugate to the phasef r of the spinon

field. We will work with the operators (zr ,Nr
tot ,h↑r ,h↓,r)

instead of the original electron and local spinSW r operators.
This change of variables, however, introduces so
redundancy—the Hilbert space of states on which the ho
and spinon fields operate is larger than the physical se
states. This may be seen by noting that with the definit
above, the operatorNr

tot must satisfy
3-20
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Nr
tot2cr

†szcr5even. ~A3!

From the definition of the holons, it follows thatcr
†szcr

5h r
†szh r . Furthermoreh r

†szh r has the same parity a
h r

†h r . Thus we have the constraint

Nr
tot2h r

†h r5even. ~A4!

The Hamiltonian needs to be supplemented with this c
straint to correctly represent the original model~before the
change of variables!.

It is useful to rewrite the exchange and Kondo parts of
Hamiltonian as follows:

HK1Hex5JK(
r

~h r↑
† h r↓1H.c.!2J (

^rr 8&
~zr

2†zr
21H.c.!

1
U

4 (
r

~Nr21!22U(
r

Nr~h r
†szh r !

1
U

4 (
r

~h r
†szh r !

2. ~A5!

The last term is an interaction between the holons. Cle
this term cannot affect issues of confinement of the hol
with the spinons. We will therefore drop it for the prese
discussion. The last but one term represents an interac
between the spinon density and the holons. We again ex
that such an interaction is also unimportant for issues of
stability of fractionalized phases. We will therefore drop th
too.

We may now derive a functional-integral representation
the system, proceeding as in Ref. 7. The resulting action

S5St1Sr1SB . ~A6!

Here St represents terms involving coupling along t
~imaginary! time direction. This and the Berry phaseSB are
exactly the same as in Ref. 7. The spatial part of the actio

Sr5SI1SK1SII , ~A7!

SI52e (
^rr 8&

t rr 8@zr
†zr 81~h r 8↑

† h r↑1h r↓
† h r 8↓!1H.c.#,

SK51eJK(
r

~h r↑
† h r↓1c.c.!,

SII 52eJ (
^rr 8&

~zr
2†zr

21H.c.!. ~A8!

We now combine the termsSI andSII and rewrite them as

2eJ (
^rr 8&

Fzr
†zr 81

t rr 8
2J

~h r 8↑
† h r↑1h r↓

† h r 8↓!G2

1H.c.1O~h4!.

~A9!

The last term is a four-holon interaction which we will ig
nore on the grounds that it cannot affect issues of fractio
ization. It is convenient to further rewrite the expressi
above as follows:
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SI1SII 5
eJ

2 (
^rr 8&

F S zr
†zr 81

t rr 8
2J

h r
†h r 81H.c.D 2

1S zr
†zr 82

t rr 8
2J

h r
†h r 82H.c.D 2G . ~A10!

We may now decouple each of these two terms with areal
Hubbard-Stratanovich field to write

e2(SI1SII )5E @DxDr#e2(Sx1Sr), ~A11!

Sx5
eJ

2 (
^rr 8&

x rr 8
2

22x rr 8S zr
†zr 81

t rr 8
2J

h r
†h r 81H.c.D ,

~A12!

Sr5
eJ

2 (
^rr 8&

r rr 8
2

22r rr 8S zr
†zr 82

t rr 8
2J

h r
†h r 82H.c.D .

~A13!

Note thatx rr 85x r 8r while r rr 852r r 8r . We now consider
evaluating thex,r integrals in a saddle-point approximatio
Looking for uniform saddle points, we write

^x rr 8&5x0 ; ^r rr 8&5r0 . ~A14!

Note that a nonzero value ofr0 requires specifying direc-
tions for all the links of the lattice. The saddle-point equ
tions are

x05 K zr
†zr 81

t rr 8
2J

h r
†h r 81H.c.L , ~A15!

r05 K zr
†zr 82

t rr 8
2J

h r
†h r 82H.c.L . ~A16!

Note thatr0 must be pure imaginary as it is the expectati
value of an anti-Hermitian operator. With nonzeror0, the
saddle-point action therefore becomescomplex—this breaks
time-reversal symmetry~and possibly various lattice symme
tries due to the need to specify directions to the links!. We
restrict ourselves to time-reversal invariant saddle-point
lutions, and therefore setr050. The resulting saddle-poin
action then preserves all the global symmetries of the or
nal model. However, it does break the localZ2 symmetry
introduced by the change of variables to the holons and
spinons. This can be remedied by keeping a particular se
fluctuations about the saddle point, namely those associ
with a change in the sign of the fieldsx rr 8 :

x rr 85x0s rr 8 ~A17!

with s rr 8561. The s rr 8 may be identified as the spatia
components of aZ2 gauge field. We thus finally arrive at th
action in Eq.~30!.
3-21



ed

t t
rin

th

ur-

rro-
-
ve

ber

om

u-

at
tion
ion

ll
ng
s,
hen
th
n-

s

DEMLER, NAYAK, KEE, KIM, AND SENTHIL PHYSICAL REVIEW B 65 155103
APPENDIX B: QUANTUM NUMBER SEPARATION
IN SYSTEMS WITH d-WAVE SUPERCONDUCTING

AND ANTIFERROMAGNETIC FLUCTUATIONS

Nodal fermions in ad-wave superconductor are describ
by28

S̃f5E d2x dt x†@]t2Att
z2vFtzi ]x1vFAx2At

snW sW

1v fAx
snW sW tz2vDts$eisw%~ i ]y!#x, ~B1!

where the electron operatorsxaa are defined as

xaa~kW !5F x11

x21

x12

x22

G5F ckWF1kW↑

c
2kWF2kW↓
†

ckWF1kW↓

2c
2kWF2kW↑
†

G ~B2!

and the coordinate system was rotated in such a way tha
x axis goes along the nodal direction that we are conside
~see Fig. 7!.

Antiferromagnetic fluctuations are introduced via

Sa f5E dtE d2kd2qnW qWc2kWF1kWa
†

sW abckWF1kW1qW b1H.c.

5E d2x dt nW ~x!xaa~x!eabea
gsW gbxbb~x!, ~B3!

wherenW 5(cosu,sinu).
Spin and charge may again be decoupled by rotating

fermions as in Eq.~48!,

xaa5eiwtz/2eiusz/2cab , ~B4!

with the result

FIG. 7. Order parameter for ad-wave superconductor. Gaples

excitations exist atkWF5(6kF,0), (0,6kF).
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S̃5E d2x dt c†@]t2vFtzi ]x2vDtx~ i ]y!#c

1E d2x dt caa~x!eabea
gsgb

x cbb~x!

1
1

2E d2x dt~c†@tz]tw22At
ctz2vF]xw12vFAx

c#c

1c†@sz]tu22At
stz2vFtzsz]xu12vFtzszAx

s#c!.

~B5!

This describes the same coupling of the quasiparticle c
rents to the fluctuations of charge and spin as in Eq.~50!,

S̃f5S̃f
01E d2x dt@J0

c~]tw2At!1Jx
c~]xw2Ax!

1J0
s~z†]tz2At

s!1Jx
s~z†]xz2Ax

s!# ~B6!

with

J0
c5c†tzc, Jx

c52vFc†c,

J0
s5c†szc, Jx

s52vFc†sztzc. ~B7!

Quantum disordering of the superconducting and antife
magnetic orders in Eq.~B6! may now be achieved by con
densing vortices and merons with the possibility of fi
phases similar to phases 3A–3E in Sec. IV D:

~A! Spinons and holons confined. No quantum num
separation.

~B! Spinons unbound and holons glued to fermions.
~C! Holons free and spinons bound to fermions.
~D! Spinons and holons bound together, decoupled fr

fermions.
~E! All excitations decoupled. Free holons, spinons, ne

tral fermions.

APPENDIX C: ADIABATIC CONTINUATION
BETWEEN DIFFERENT PHASES OF A Z2ÃZ2

GAUGE MODEL WITH MATTER FIELDS.

In the pureZ23Z2 gauge theory there are five phases th
are distinct and separated by phase transitions. A ques
that we address in this section is whether this distinct
survives in the presence of matter fields.

1. Toy models

Let us begin with a simple model,

S52K1(
h

)
h

s i j 2K2(
h

)
h

t i j 2b(
i j

s i j t i j v iv j ,

~C1!

wherev i561 is an Ising matter field. To construct the fu
phase digram of this model we consider several limiti
cases. Whenb50 we have two independent gauge field
each of which has confining and deconfining phases. W
bothK1 andK2 are small we have a confining phase for bo
s andt, that has no extra degeneracy on topologically no
3-22
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FIG. 8. Phase diagram of Eq.~C1!. Plane
ABCD corresponds tob50, EFGH to b5`,
ADHE to K150, BCFG toK15`, ABFE to K2

50, and DCGH to K25`. The pure gauge
model (b50) has only two partially confining
phases (28 and 29) because not all the possibl
lattice Maxwell terms are present. They are sep
rated by one first-order or two second-ord
phase transitions for smallb, but may be continu-
ously connected for largerb.
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trivial manifolds and is labeled 1 in Fig. 8. WhenK1 is large
andK2 is small we have a phase that is confining fort, but
deconfining fors ~phase 28 in Fig. 8!. There is an analogou
phase forK2 large andK1 small~phase 29 in Fig. 8! which is
confining for s and deconfining fort. When bothK ’s are
large, we have a fully deconfining phase with degenerac
on a cylinder. WhenK15` ~BCGF plane in Fig. 8! there are
no frustrated plaquettes fors, so we can choose a gaug
where alls i j 51. The model is then the same as in Ref.
and its phase diagram can be easily constructed. WhenK1
50 ~ADHE plane in Fig. 8! we find that integrating outs i j
andv i only adds a constant to the action fort and does not
affect the confinement-deconfinement transition which ta
place for the same value ofK2, regardless of the value ofb.
When b5` ~EFGH plane in Fig. 8! we must have
)hs i j t i j 51 on every plaquette, so we can choose a ga
wheres i j t i j 51 on every link. The fieldss andt are iden-
tical and there are only two phases, a confining~phase 1! and
a deconfining~phase 2! with the transition determined b
K11K2. The full phase diagram may now be obtained
connecting the lines on the faces of the cube in Fig. 8. I
immediately clear from this picture that the two partia
15510
4

s

e

s

confining phases which appeared to be distinct forb50
~phases 28 and 29 in the ABCD plane! may be continuously
connected through a path that takes advantage of the finib
region of the phase diagram. It is important to realize t
our argument for the existence of a path connecting pha
28 and 29 does not depend on the details of how the ph
boundaries in Fig. 8 are connected. One can always fin
path which begins in phase 28, approaches face ABFE, goe
up to EFGH, crosses to EHDA, and finally comes down
29 without crossing the phase boundaries~this path does not
have to actually be on any of the faces and it may be su
cient to be in their vicinity!. It is interesting to note that in
the cross section DBFH in Fig. 8 the phase diagram lo
similar to a liquid-gas phase diagram, where the two pha
28 and 29 may be separated by a first-order transition
continuously connected arond the critical point which term
nates the first-order line.

The real reason why phases 28 and 29 of the gauge theory
~C1! may be connected to each other is that both of them
related to the Higgs phase~phase 2! for the v i matter field.
This may be explained by noting that in such a Higgs ph
visons of eithers or t are forbidden, but their composite i
of

ry
al

n-
FIG. 9. One scenario for the phase diagram
Eq. ~C2! with two kinds of superfluid phases SF1

and SF2. Shaded figure shows a phase bounda
of the superfluid and insulating phases. Diagon
shading corresponds to the boundary of SF1 and
horizontal shading to a boundary of SF2. There is
a continuous path to go between partially confi
ing phases 28 and 29 without crossing the phase
boundaries.
3-23
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not, so this phase should be related to the phases where
visons are condensed separately~but not simultaneously!.

Note that this argument may no longer apply if the mat
field carries a quantum number, and a Higgs phase bre
some continuous symmetry. Let us, for example, explore
model where the matter field is anXY order parameter,

S52K1(
h

)
h

s i j 2K2(
h

)
h

t i j

2b(
i j

s i j t i j cos~f i2f j !. ~C2!

In this case, the Higgs phase has superfluid order, and th
fore is fundamentally distinct from confined insulatin
phases. Thus we can no longer easily claim the equivale
of the two phases in which eithers or t ~though not both!
fields are confining.

We can again attempt to construct a phase diagram
lowing construction on each of the outside faces of the cu
The ABCD plane is the same as in Fig 8. The BCGF pla
(K15`) will now have three phases: a confining and a d
confining phases without brokenXY symmetry~phases 29
and 4!, and a phase with brokenXY symmetry.60 WhenK1
50 ~ADEH plane! we have four phases. This is obviou
from the fact that when we integrate outs i j we find thatt i j
and cosfi are decoupled from each other, and we have se
rate order-disorder and confinement-deconfinement tra
tions. We therefore find two superfluid phases SF1 and SF2
that differ in their degeneracy on the nontrivial manifolds~on
the cylinder it is 1 for SF1 and 2 for SF2). The origin of this
extra degeneracy for SF2 is that it has a finite energy topo

FIG. 10. Another scenario for a phase diagram of Eq.~C2! when
the pointM is exactly on the superfluid-insulator phase bounda
As before, the shaded figure shows a phase boundary of the s
fluid and insulating phases with diagonal and horizontal strip
that correspond to SF1 and SF2, respectively. In this case there is n
continuous path connecting phases 28 and 29 without crossing the
phase boundaries.
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logical excitation: a bound state ofs andt visons that does
not interact with the matter field. This has interesting imp
cation that we havehc/2e vortices that are bound to eithers
or t visons, and the two kinds of vortices are distinct.

We do not at this stage know what the generic ph
diagram for Eq.~C2! in the K1K2b cube is. One possibility
is shown in Fig. 9. As in the Ising case there is a way
connect phases 28 and 29 continuously by going to finiteb.

There is another qualitatively different phase diagra
~without introducing new phases! where the pointM is at the
phase boundary with the superfluid phase. This will remo
the possibility of a continuous path between phases 28 and
29 ~see Fig. 10!.

At this point we are unable to make a definite comme
on of the validity of either of the scenarios shown in Fig. 9
Fig. 10. We note, however, that this issue is amenable
study by numerical or other means. Thus future work sho
be able to settle this satisfactorily.

Another important model to consider is one in which t
matter field is Fermionic. An appropriate model is

S52K1(
h

)
h

s i j 2K2(
h

)
h

t i j 2b(
i j

s i j t i j c ic j ,

~C3!

where thec ’s are real fermions. Following the same kind
arguments as before we find the phase diagram shown in
11. There is no Higgs phase for the fermions which leads
phases 28 and 29 being distinct even for finiteb.

2. Full Action

Let us now consider the action~105! and ask how many
truly distinct phases it has. The phase space of this mod
large and an explicit construction of the full phase diagram
difficult. We note, however, that the charge sector of t
theory is precisely the same as Eq.~C2!. Consequently, if in
Eq. C2, the two phases 2 and 28 are smoothly connected t
each other, they will necessarily be so for the full action
well. If on the other hand, in Eq.~C2!, the two phases are
distinct, then that is evidence~though not proof! that they are
distinct in the full theory as well. Thus unambiguous det
mination of the phase diagram of Eq.~C2! will shed consid-
erable light on the important conceptual issue of whet
CBSF and CFSB are distinct or not.

.
er-
g

n

FIG. 11. Phase diagram of Eq.~C3!. When the

matter field is Fermionic distinction betwee
phases 28 and 29 survives for allb.
3-24



is
m
ul
ic
nc

ue
th
n
tu
a
lly
f

e

at
he
ar
n

, i
th
rg
ou

ns
t
ow
p

a

as a
-
be
ate;
en

o-
.

Eq.

.
ults
by
-

-

the

van-
-
s to
, the
ger

e
f the
g

,
av-
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While the distinction between CBSF and CFSB, if any,
subtle, it is very clear that they are both distinct fro
CSBNF. One cannot find any vison attachment that wo
map the spectrum of CSBNF to either CBSF or CFSB, wh
proves rigorously that it is a phase fundamentally disti
from the other two.

To summarize the discussion in this section, we arg
that studies, numerical or otherwise, of simple models of
form of Eq. ~C2! should be extremely useful in deciding o
the issue of whether CBSF and CFSB are distinct quan
phases. One can, however, prove rigorously that CBSF
CFSB are fundmentally different from the other partia
confining phase of Eq.~105! CSBNF. The other phases o
Eq. ~105!: the fully confining phase~CSF! and the fully de-
confining phase~CBSBNF!, will be distinct from any of the
partially confining ones and from each other as may be s
from their degeneracy on nontrivial manifolds.

APPENDIX D: UNFRACTIONALIZED PHASES

In this paper, we have, for the most part, focused on st
in which the electron is fractionalized. However, even t
transitions which do not lead to electron fractionalization
rather interesting. One would ordinarily assume that stro
quantum fluctuations will completely disorder ap-wave su-
perconductor. However, as we pointed out in Sec. IV B
hc/4e vortex-p disclination composites are gapped, then
spin symmetry can be restored without affecting the cha
alternatively, the superconductivity can be destroyed with
affecting the spin ordering.

Let us consider, first, what happens when fluxhc/2e vor-
tices condense, but no other topological defects conde
Then the charged degrees of freedom are disordered, bu
spin nematic order parameter should be undisturbed. Foll
ing the arguments of Ref. 61, a possible unfractionalized s
nematic insulating state is~in the notation of Ref. 61! a trip-
let px density wave:

^ca†~k1Q,t !cb~k,t !&5FW Q•sW b
asinkxa. ~D1!

This state is related to thep-wave superconducting state by
‘‘rotation’’ generated by
v.
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O15E d2k

~2p!2
c↑

†~k!c↓
†~2k1Q!. ~D2!

In other words, the tripletpx density wave and thep-wave
superconductor are related in precisely the same way
charge-density wave and ans-wave superconductor. In par
ticular, Hamiltonians with short-ranged interactions can
constructed for which both states are exactly degener
such Hamiltonians could describe a critical point betwe
these two states.

In the triplet px density wave state, there is no spin m
ment ~at any wave vector!, since the right-hand side of Eq
~D1! vanishes upon integration overkW . However, the spin-
nematic order parameter, which may be calculated from
~D1!, is nonvanishing:

K SiSj2
1

3
d i j S

2L 5
1

2
uFW Qu2diag~2/3,21/3,21/3!,

~D3!

whereSi is thei th component of the total spin of the system
Hence this is the natural spin-nematic state which res
when a p-wave superconductor is quantum disordered
flux-hc/2e vortex condensation. The possibility of spin nem
atic states in the context of high-Tc cuprates has been pro
posed in Ref. 62.

When the spin degrees of freedom are disordered, but
charge remains ordered, the tripletp-wave superconducting
order parameter and the spin-nematic order parameter
ishes; only the charge-4e order parameter is left. The con
densation of merons causes the Fermionic quasiparticle
be confined to spin. Once the merons have condensed
topological quantum number in the spin sector is no lon
well defined, so the fluxhc/4e vortex-p disclination com-
posites become simple fluxhc/4e vortices, as we would ex-
pect for a charge-4e superconductor. Said differently, th
meron condensate screens the spin topological charge o
flux hc/4e vortex-p disclination composites, thereby makin
rendering them simple fluxhc/4e vortices. Remarkably, by
quantum disordering thespin sectorof a p-wave supercon-
ductor, we have changed thechargeof its order parameter
which may, for example, lead to some unusual critical beh
ior of the superconducting transition.
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