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We discuss possible patterns of electron fractionalization in strongly interacting electron systems. A popular
possibility is one in which the charge of the electron has been liberated from its Fermi statistics. Such a
fractionalized phase contains in it the seed of superconductivity. Another possibility occurs when the spin of
the electron, rather than its charge, is liberated from its Fermi statistics. Such a phase contains in it the seed of
magnetism, rather than superconductivity. We consider models in which both of these phases occur and study
possible phase transitions between them. We describe other fractionalized phases, distinct from these, in which
fractions of the electron themselves fractionalize, and discuss the topological characterization of such phases.
These ideas are illustrated with specific modelgpafave superconductors, Kondo lattices, and coexistence
betweend-wave superconductivity and antiferromagnetism.
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[. INTRODUCTION effect is the enormously rich number of exotic phases which
display different patterns of fractionalization of the electron
Electron fractionalization in strongly interacting electron and associated topological orders. In view of the similarity
systems in dimensions larger than 1 has been an importabetween the theoretical characterization of quantum Hall
subject of study since spin-charge separation was suggeststhtes and fractionalized states in zero magnetic field, it is
as a mechanism of high; superconductivity? in the cu-  tempting to investigate a similar possibility of a variety of
prates. In particular, it was suggested that the electron ifractionalization patterns in other strongly correlated sys-
splintered into a spin-carrying neutral excitatiispinon”)  tems. We explore this possibility in this paper. We describe
and a charge-carrying spinless excitatigtholons” or  theoretically a few of the several different possible fraction-
“chargons”). There have been different proposals in regardalized phases that may exist in various different models of
to this possibility, but the existence of such phases in thetrongly interacting electron systems.
cuprates is still controversial. Following the introduction of the Schwinger boson de-
On the other hand, there exist clear experimental exscription of the Heisenberg model of quantum
amples of phases in the quantum Hall regime of two-antiferromagnets slave fermiofi formulations of doped an-
dimensional electron systems where quantum number fradiferromagnets were introduced. In these formulations, it is
tionalization has been well established. The low-energyassumed that the electron decays into a Bosonic, spin-1/2
excitations(quasiparticlesin these two-dimensional strongly spinonand a fermionic, charge-holon We will call this
interacting electron systems carry fractions of the quantunphase CFSBcharged fermion, spinful bospn
numbers of the original electrons. Different quantum Hall On the other hand, a phase with Bosonic holons and fer-
liquid states can be characterized by different varieties omionic spinons — which we will call CBSFcharged boson,
topological order The transitions between different quantum spinful fermion—naturally leads to superconductivity
Hall states can be understood as topological-order-changintprough the Bose condensation of Bosonic holons in the
transitions which occur even in the absence of conventiongbresence of Fermionic spinon pairing. Consequently, much
broken symmetries. The Hall conductance is but one of thattention has been focused on the description of such a frac-
topological quantum numbers which characterize a givertionalized phase, especially in the context of the slave boson
phase. Another important property of a topologically ordereddescription of thet-J model. The pairing symmetry of the
state is the ground-state degeneracy of the system on highersulting superconductor is dictated by the underlying sym-
genus manifolds such as tori. For each topologically orderedetry of the spinon pairing.
state, there are corresponding sets of characteristic excita- A Z, gauge theory of Fermionic spinons and Bosonic ho-
tions with different quantum numbers. lons was developed in the context of superconductivity in the
It has become cledf that the notion of topological order cuprate$ (see also Refs. 8—10Spinons and holons are
also provides a precise characterization of spin-charge sepeeupled by an Ising gauge field. The deconfined phase of this
rated and other fractionalized phases in spatial dimensionheory corresponds to the CBSF phase. Most importantly, the
higher than one even in situations of zero or weak magnetideconfinement-confinement transition of spinons and holons
fields. One of the remarkable features of the quantum Halbccurs through the condensation of vortices in Zhegauge
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field, or visons In the deconfined phase, the visons exist adifferent models:p-wave superconductors, Kondo lattices,
gapped excitations; when visons condense, the spinons amehd XY magnets coupled td-wave superconductors.
holons are confined within electrons. The existence of The main results can be summarized as follows.
gapped visons is crucial for the robustness of the topological (i) Both CBSF and CFSB phases can arise in a variety of
order of the deconfined fractionalized phaséAlthough  different models.
this formalism was introduced in the context of cuprate su- (ii) Upon accepting the possibility of electron fractional-
perconductivity, it is sufficiently flexible to permit a descrip- ization, one is led to consider a wide variety of fractionalized
tion of other types of fractionalized phases including CFSBphases. In the higher-level fractionalized phases, electrons
These ideas have a physical manifestation in the contextan be fractionalized in many different ways. For example,
of quantum disordered magnets and superconductors. In thipinons and holons can be further fractionalized. Apart from
picture, one visualizes fractionalized states in terms othe CBSF and CFSB phases, we discuss two others. One is
nearby ordered states. In a brok&ontinuoug symmetry  the CSBNF(charge- and spin-carrying boson, neutral fer-
state, Goldstone modes can screen the associated quantumion) phase, in which the electron breaks up into a boson
numbers).*? Thus it is possible for quasiparticles to be which carries both the spin and charge quantum numbers and
stripped of some of their quantum numbers. One mighta neutral fermion. This phase is at the first level of fraction-
imagine that the destruction of order by quantum fluctuationslization along with the CBSF and CFSB phases. The other
can preserve this screening of quasiparticle quantum nunmis the CBSBNF phase, in which there exist spin-carrying
bers. This occurs when those topological defects of the omeutral bosons, charge-carrying spinless bosons, and
dered state which braid nontrivially with the quasiparticles“statistics-carrying” neutral spinless fermions. The CBSBNF
persist as gapped excitations even after the demise of thghase is at the second level of fractionalization. In principle,
order*® Indeed, this is precisely what happens when the stathigher-level fractionalized phases exist.
is topologically ordered. The neutral, spin-1/2 fermion of the  (iii) We demonstrate the existence of some of these exotic
CBSF state is viewed as the descendent of thghases in the context of the three different systems men-
Bogoliubov—de Gennes quasiparticle; the vison, oftth®e  tioned above—Kondo latticep;wave superconductors, and
vortex. When considered in the context of spin-triplet supermodels with both strong spin andiwave pairing fluctua-
conductors and their rich order-parameter structure, this imtions. For thep-wave superconductor, the four fractionalized
mediately suggests exotic phases such as CBSF, CFSB, apHases discussed here arise naturally and the order parameter
even a third phase CBSBNharged boson, spinful boson, has a rich spectrum of topological defects which can con-
neutral fermion, in which the charge- and spin-carrying ex- dense in a variety of ways, thereby giving rise to an array of
citations are bosons and there is a neutral, spinless Fermionifiactionalized nonsuperconducting phases.
excitation. Since these superconductors can break both (iv) The question of whether CBSF and CFSB are
charge and spin symmetries—as do states in which singlemoothly connected to one another or whether they are nec-
superconductivity and magnetism coexist — one can envisiosssarily separated by a phase transition is a subtle and deli-
the screening of both quantum numbers of a quasiparticle. ifate issue for reasons that will be discussed at length later.
(the minima) topological defects in the charge sector surviveWhile we do not provide a definitive conclusion, we outline
into a disordered state, then this disordered state has neutral,possible scenario in which the distinction between CBSF
spin-1/2 Fermionic excitation€BSH; if topological defects and CFSB is similar to that between liquid and gas phases.
in the spin sector survive into a disordered state, then thi¥hese phases are separated by a first-order transition line
disordered state has chargespinless Fermionic excitations which terminates at a critical point. In principle, one can go
(CFSB); if topological defects in théboth sectors survive around the critical point from one phase to the other without
into a disordered state, then this disordered state has neutrahcountering a phase transition. This scenario is supported
spinless Fermionic excitatiof€BSBNB. by a number of suggestiiéghough certainly not conclusiye
The analysis of quantum dimer modebsnd resonating arguments.
valence-bont'*!® ground states led to conflicting claims  On the other hand, the transition between the two phases
that the CBSKRef. 15 or CFSB(Refs. 16 and 1)7scenario  can occur through another fractionalized phase with a higher-
is realized in these models. These models ha¥g sortex level fractionalization pattern. In this case, each transition in
excitatiort’*®—which are precisely thevisons described the process could be a continuous transition. We demonstrate
above—which are relative semions with spinons and holonghat the transition between CBSF phase and CFSB phase can
Thus a spinon or holon can change between Bosonic andccur through the CBSBNF phase.
Fermionic statistics by forming a bound state with a vison. (v) In order to examine whether one can go from CBSF to
This begs the question whether the CBSF phase discussed @SB through further fractionalized phases like CBSBNF,
the context of superconductivity is the same as the CFSBne can design gedankerflux trapping experiment similar
phase considered in relation to magnetism. We reconsiddgo the one proposed in Ref. 19. Thigdankenexperiment
this question in the context of recent progress in the underlearly demonstrates the existence of a phase boundary be-
standing of fractionalized phases described above. Oneveen CBSF and CFSB when these phases are close to
might worry that the apparent differences between thes€BSBNF.
phases is an artifact of the formalisms employed. One might Topological order is robust against local perturbations
also wonder if there are any further fractionalized phases. Isuch as impurities. Thus we will concentrate on general uni-
this paper, we discuss the questions raised above using threersal properties of the fractionalized phases. One of our
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goals will be to give a precise characterization of these

phases which is independent of the underlying microscopic He=— 2 to (¢, ptH.C), 2
models where they may occur. We believe that these exotic (rr’)
phases could play a role in the physics®sfe (Ref. 20 and
the ruthenatés as well as the cupraté$, organic He=Jk> (S'cl cri+H.c, ©)
superconductors heavy fermion superconductdtsspinor r
Bose-Einstein condensat&s,and the crusts of neutron
stars?® J §
The rest of the paper is organized as follows. In Sec. I, HEXZE N E(Sr Sr'+H'C')+JZSrSf’ ' )

we consider a Kondo lattice model and how the CFSB frac- i

tionalized phase can occur in this model using the languagelere thec; , represent “conduction” electrons with spin at

of aZ, gauge theory. Some details are given in Appendix Asitei. The operators, are spin operators representing mag-
In Sec. lll, we suggest how this analysis can be generalizegletic moments localized at the lattice sites. The first term is
and discuss a hierarchy of fractionalized phases. Here whe usual conduction electron hopping, described in a tight-
provide an overview of our results. In Sec. 1V, we discusshinding approximation. The second term is a “Kondo” cou-
how this hierarchy can be realized pawave superconduct- pling between the conduction electrons and the local mo-
ing systems when the superconducting and spin order af@ents. The third term is an explicit exchange interaction
quantum disordered. This is done using the vortex conderpetween the local moments. For simplicity, we have assumed
sation formalism. In Appendix B, the same ideas are showihat system only has a (ll) spin symmetry for rotations

to apply to anXY magnet which is coupled to éwave  about thez axis of spin[we will comment on situations with
superconductor. In Sec. V, the fractionalized phases of Segull SU(2) spin symmetry latdr We are interested not so
IV are further discussed in the framework oEZgx Z, gauge  much in establishing the exact phase diagram of this particu-
theory. In Sec. VI, we consider the question of the distinctionar model; rather our main interest here is in establishing the
in principle between the putatively different fractionalized possible existence and stability in models of this kind of
phases constructed in this paper. In Appendix C, we givgiuantum phases where the electron is fractionalized. To that
some technical details of an argument usfig<Z, gauge end, we will think more generally about a class of models
theory which supports our picture of the phase diagram. I'which may be obtained from the model above by adding
Sec. VI, we show how flux-trapping experimensf the  other local interactions which share its symmetries. If the
variety suggested by Senthil and Fistfercan be used to  system is in a quantum phase in which both the symmetry of
shed further light on the phase boundaries between thesetations about the direction of spin and the charge conser-
phases and could be used to detect them. We conclude ¥ation symmetry is unbroken, the excitations may be labeled
Sec. VII. Appendix D contains an aside in which we discusspy theirS, and charg€Q) quantum numbers. Clearly, we can
various interesting properties of unfractionalized phases odsisualize two qualitatively different possibilities. First, the

curring in the models considered in this paper. system may be in a phase in which the excitations are elec-
For other perspectives on fractionalization, see Refstrons (Q=1,S,=3) or composite objects made from elec-
1-4,7,8,12,13,15,17-19, and 27-33. trons (such as, for instance, a magnon which lxs 0,S,
=1). This is a conventional phase of the kind familiar from
Il. FRACTIONALIZATION IN SPIN MODELS: textbooks(for instance, a Fermi liquid or a band insulgtor
SPIN-STATISTICS SEPARATION On the other hand, one could also imagine phases in which

In principle, there are several possible ways in which thethere are excitations which carry quantum numbers which

electron can fractionalize in a strongly correlated system. Ifre fractions of those of an electron. The simplest possibility

the context of the cuprates, attention has been focused on t t@e one we will focus ohis that there are excitations which

situation in which the electron splinters into two separateCarry S,=1/2Q=0 (spinong and others which camg,

excitations—a charged spinless boson, and a neutral spinf:IO’Qzl.(hdons' In such a phasez th_e electron has been
fermion. In this case, the charge of the electron is liberate ractl_on_allzed. In what follows, we will d'SCUS.S several ways
from its Eermi statistfcs of thinking about such phases. Our focus will be on general

In this section, we will briefly discuss another possible.L"f“Vers"Jll properties of such phases. In particular, we will be

fractionalization pattern in which the spin, rather than themterested in obtaining robust precise characterizations of

charge, of the electron is liberated from its Fermi sta’tistics.fr"’mt'on""“zed phases that are independent of the particular

The electron splinters into a charged spinless fermion, and Hicroscopic modgls n W.h'Ch they _p055|_bly oceur.
spinful boson. As we will see, this phenomenon also requires It IS extremely instructive to begin by just C(_)nS|der|ng the
the presence of a gapped topologiZal vortex excitation. physics of the local moments alone as described by the ex-

The issue of whether such a fractionalized phasgistinct change_ part_ of the HamiltoniaHe?(. This. Hamiltonian'is
from one in which the charge is liberated from the FermiCIearl.y invariant un.der a.glot-)a-l spin rotgtlon about #fis
f spin. For technical simplicity, we will assumkJ,=0.

statistics is a delicate one, and shall be discussed in Sec. he DhvSi £ thi icular Hamiltonian | I und
To motivate the discussion, consider a “Kondo lattice” ' '€ PNYSICS © this particular Hamiltonian is we uf er
stood: whenJ,/J is small, there is long-range order 81 .

model with the Hamiltonian . )
WhenJ,/J is large, the system breaks translational symme-
H=H+Hy+Hg,, (1)  try with (S*) being larger in one sublattice of the square
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lattice than the other, but the(l) spin rotation symmetry is of states wheré\, is even. Therefore we need to impose the
unbroken. The pointl,=J can be mapped to the nearest- operator constraint{ 1)Nr=1 at each site of the lattice. For-
neighbor antiferromagnetic Heisenberg model with fullmally this may be implemented through the projection op-
SU(2) spin symmetry on a bipartite lattice by rotating the erator

spins on one sublattice by about thez axis. In the specific

case of a square lattioggvhich we assume through out our _H

discussioi, this is known to develop N# long-range order P= : Pr, (10

in two spatial dimensions. Our interest here is not so much in

the properties of thiparticular Hamiltonian as in the prop- 1

erties of an entirelassof systems with the same symmetry, Pr=§[1+ (—1)N. (11
and with short-ranged interactions between the spins. In par-

tiCUIar, we will be interested in fractionalized phases in Note that[’P,H]:O It is now convenient to pass to a func-
which the excitations are spinons with quantum numBger  tional integral formulation. We follow Refs. 7 and 27 closely
=1/2. To that end, we will reformulate the Hamiltonian di- to obtain for the partition function

rectly in terms of spinon fields which carry spBf=1/2.

This naturally introduces 2, gauge symmetry. The result is s

a theory of Bosonic spinon fields coupled t&@agauge field Z= z Dge >, (12)
which can then be used to analyze the possibility of fraction- i

alized phases and their universal properties.

We may think ofS*,S™ as the creation and destruction
operators, respectively, of a hard-core boson on the sites of
the lattice. Specifically, Writes:’EbL, S,_,Ebsr, and §f sT=Z 3,010 by i = Prr), (14)
=1/2-b{ bs,. Note that there is half a boson for each site ot
on average. Now imagine relaxing the hard-core constraint
on the bosons, and instead add a term S=¢ >, Jcog2¢,—2¢;:.,), (19

(rr'yr

U
> Z (2n,—1)? () whereo,,= +1 may be interpreted as the time component of
a Z, gauge field that imposes the constraint on the Hilbert

at each lattice site. Hemg is the boson number at each site. space, and is the lattice spacing along the time direction.
In the limit U—o, we recover the spin model exactly. For The constant], is determined by the original interaction
large but finiteU, however, relaxing the hard-core constraint strengthU. The term in the actiors, involving the spatial
is expected to be innocuous. It is now convenient to go to @oupling may be decoupled by a Hubbard-Stratanovich
number-phase representation for the bosons: we viagte  transformation:
~e'?r with [ ¢, ,n,,]=i6,, . For simplicity, we also special-
ize to the limit wherel,= 0. The Hamiltonian then becomes e‘5r=f DXe_dzm,MX”,(T)z+2€JX”,(T)[Z;(T)Zr,(ﬂﬂ_c_].

S=S,+S+Sg, (13)

U
H= 3 —Jcose—gn)t5 3 (1-2n)% (6 19
(re’) ' Here x,,+(7) is a real-valued field. We have omitted an un-
This is clearly closely related to the original spin Hamil- important overall constant.
tonian in Eq.(4). Now consider a formathange of variables We now proceed exactly as in Refs. 7 and 27, and replace
which involves splitting the boson operatbg, into two  the integral over theontinuousvariable y by a sum over a
pieces: discrete fieldo,,,(7)=£1. As discussed in Refs. 7 and 27,
_ this approximation respects all the symmetries of the action,
by, =¢e'¢r= zrz, (7) and is expected to be innocuous. The resulting partition func-
tion becomes
z=e'%r=5e 2 (g=+1). (8)
We will refer to z, as the spinon destruction operator. Note Z=>, | Dge S, 17)
that with these definitions, both, and ¢, are defined in the 7ij
interval [0,27). It is also convenient to define a number
operator for the spinonl,=2n, which is conjugate tap, . S=Ss+Ss, (18)
In terms of the spinon operator, the Hamiltonian becomes
U Se=—2, Jjjoi;cod i — ;). (19
H=2 —Jcos2¢,—2¢)+5 2 (N—1)% (9 v
U ' Here thei,j label the sites of a space-time lattice in three

The change of variables above must be supplemented withdmensions. The constanty;=J, for temporal links, and
constraint—clearly the physical Hilbert space consists onlyequalseJ for spatial links.Sg is the Berry phase action
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i net is therefore expected to develop spin-Peierls order. We
Se=7% 2 (-0, (200 will not discuss such conventional phases very much in this
ij=i+r paper.
Note that the action18)—(20) respects all the symmetries of ~ Much further insight into the physics of the fractionalized
the original model. The discrete field;;=+1 may be phases may be obtained by the following considerations. We
viewed as &, gauge field. At this stage, this field does not begin by first considering ordered phases in which the sym-
have any dynamics. However, it is natural to expect thainetry of rotations about the direction of spin has been
upon coarse graining, some dynamics will be generated. Thgroken spontaneously. For simplicity, we consider a phase in

simplest such term allowed by symmetry is which the spins have all lined up along some direction in the
Xy plane. The general properties of such a phase are well
sc=—-K> |1 aij - (21)  known. There are two distinct kinds of excitations. First,
o O

there is a gapless spin-wave mode with linear dispersion.
Apart from these, there are also topological vortex excita-
tions. On moving along any circuit that encloses a vortex, the
S=S+S«+S;. (22) direction of the spin in thexy plane winds by an integer
multiple of 2. This integer winding number—the
a\'/orticity—is conserved, and may be used to label the spec-
rum of excited states. States with different total vorticity
elong to different topological sectors and are not mixed by

in obtaining this reformulation are severe enough that it isﬁe dynamics generated by the Hamiltonian. Note that in this

not easy to see which one of these allowed phases will b@dered phase we can no longer label states by Sfejuan-

obtained in any particular microscopic model. tum number. _

Consider the possible phases when the parantétes These fam|I|ar properties of th€Y ordered phase must_
very large. Wherk =, the Z, flux through each plaquette be cgntrasted with .those of the qgantum paramagnet. First
is constrained to be 1. We may then choose a gauge in whicgPnsider a conventional paramagiet., one with no frac-
oi;=1 on every link. In this limit therefore, the action re- tionalization. Clearly in this phas&* is conserved, and is a
duces to good quantum number to label the excitation spectrum. On

the other hand, the vorticity loses its meaning in the para-
S_—E 3,008 &~ ) (23 mggnetic phase, and is no Iopger a good quantum number.
- = i i~ @) This suggests that one may view the paramagnet as a phase
in which the vortex excitations have themselves condensed.
This simply describes a quantuXlY model in two spatial Condensation of the vortices implies that the vorticity is no
dimensions. Note that the Berry phase term simply vanishel®nger a good quantum numbégust like condensation of
when all the oj;=1. There clearly are two possible spin implies thatS? is no longer a good quantum numper
phases—arXY ordered phase in whick;=€e'¢ has con- Indeed, these observations may be formalized precisely by
densed, and a paramagnetic phase in which the excitatiomseans of a duality transformation which reformulates the
created byz; are gapped. Note that these excitations in thesystem in terms of the vortex fields rather than the spins. In
paramagnetic phase carry spg#i=1/2. Thus the spin has this dual formulation, the paramagnet is described as a vor-
been fractionalized in this phase. tex condensate, and th€Y-ordered phase as a vortex insu-

Now consider moving away from the limit=c by mak- lator (in which the vortices are gappedrhe physical exci-
ing K large but finite. For finiteK, as can be seen from the tations of the paramagnet which carry tl8 quantum
arguments advanced in Ref. 7, tk& ordered phase where number appear as dual flux tubes of the vortex condensate in
the spinon field has condensed is indistinguishable from #his language.
conventionalXY orderedXXZ magnet. The paramagnetic =~ How are we to view the fractionalized quantum paramag-
phase in which the spinons are uncondensed and deconfineeét in this dual language? As the phase in question is a para-
survives for large but finit&k. WhenK is finite, it becomes magnet, it is clear that the vorticity has no meaning, imply-
clear that this phase has another distinct excitation whicling that the vortices must have condensed. As pointed out in
carries the flux of theZ, gauge field. ThisZ, vortex—  Ref. 13, we may view the fractionalized phase as a conden-
dubbed the vison—does not carry any physical spin, and hasate ofpaired vortices. This has the immediate consequence
an energy gap of ordef for large K. It has the important of halving the dual flux tube, i.e., of fractionalizing as
property that when a spinon is taken around it, the waveequired. Furthermore, note that the unpaifedd uncon-
function of the system acquires a phasenof densedl single vortex is still an excitation in the system. Its

Upon decreasing, at some critical value, the vison gap vorticity is screened by th&double strengthvortex conden-
goes to zero. For smallé€, the visons condense leading to sate as is required in the paramagnet. However, its parity is
confinement of the spinons. The resulting phase is a converstill a good quantum number. Thus the unpaired vortex,
tional quantum paramagnet with gapp8g=1 excitations. though a legitimate excitation of the fractionalized paramag-
In this phase, the Berry phase term becomes important amkt, carries only &, quantum number—it is clear that it is
leads to a breaking of translational symmetry—the paramagthe vison excitation discussed previously.

We will therefore consider the full action

tion of spin models witiXXZ symmetry. This reformulation
is extremely useful to explore the various possible allowe
phases in such models. However, the approximations ma
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The discussion above provides a description of a fractionThe other terms of the action are as given before.
alized quantum paramagnet in the context of spin models Following the discussion above, for large we expect to
with XXZ symmetry. We now return to the full model which have a phase in which the holons and spinons are liberated
includes coupling to the “conduction” electron degrees offrom each other. In such a phase, the electron is fractional-
freedom. As above, we first replace the oper&prin the ized. However, in contrast to the fractionalized phase that is
Kondo coupling at each site by the boson operatoys most popular in the context of the cuprates, here the spin of
~e'?r (and similarly forsj). The Kondo coupling term then the electron has been liberated from its Fermi statistics. Are
becomes these two phases actually the same? We will address this
issue in subsequent sections.
_ M Though we have based our discussion on models with
HK_JKZ (bgier iyt H.C) (24 xxZ symmetry, we expect the fractionalized quantum para-
magnetic phase to exist even in systems with ful(&pin
symmetry. Indeed, in the context of frustrated quantum
—JKE (z2'c] ¢+ H.c). (25 Sp(n) spin models in the large-limit, Read and Sachd@v
have argued for the stability of fractionalized paramagnetic
In going to the second equation’ we have introduced th@hases with properties similar to that discussed above.
spinon operatorg, defined in Eq.7). The Kondo coupling

can be further Slmpllfled by another Change of variables, IIl. A HIERARCHY OF ERACTIONALIZED PHASES
M1=2%Cryp (26) In Sec. Il, we primarily discussed fractionalized phases in
which the electron splinters into a spin-1/2 neutral boson and
n,lzzfcw. (27) a charged spinless fermion. For future convenience, we will

refer to this as the CFSBcharged fermion, spinful bospn
phase. This is to be contrasted with the fractionalized phases
which are popular in the context of cuprate physics in which
the electron splinters into a spin-1/2 neutfatmion and a
HK=JKE (U:T 7 +H.C). (28 charged spinlesboson(see also Secs. IV and)VWe will

r refer to this as the CBSF phase. In both cases, there is, in
addition, aZ, vortex excitation(the vison such that taking
either the holon or spinon around it produces a phase change

We will call the » operators the holon operators. In terms of
the holons, the Kondo coupling becomes

Note that the holons are actualgpinlesschargee fields
despite the presence of the laldel . This is obvious from
their definition in terms of the spinon and electron operatoré)f .
above: the holon operators do not transform under spin rota- Having accepted the possibility of quantum number frac-
tions about thez axis. Explicitly, the Kondo term mixes up

and down holons so that their labg]| is changed by the
dynamics. Therefore their spin label has no great signifi-
condense

cance, and they are correctly viewed as spinless fermions.
condcnse \ @

We may use the following physical picture: the Kondo spins
screen the spin of the conduction electrons.
condense \indense

Under these changes of variables, the electron hopping
term becomes

2 Crpr [Z Z (77r T77r’T+77rl7]r L)+H cl.
(rr’)

(29

We now make approximations very similar to those used
above for the exchange part of the Hamiltonian. They allow
us to reformulate the system in terms of the spinons, holons,
and aZ, gauge field. Some of the details are outlined in the
Appendix. The resulting action can essentially be guessed on
symmetry grounds, and takes the form

S=S.+ S5+ Sg+ Sk, (30

condense
c

condense

condense fox v’
— t +
- _<i2j) Uijticj(ﬂiﬂ]nJr 7, Mj| +C.C)

+JK2 (n i, +c.c). (31)

FIG. 1. Hierarchy of fractionalized phases.
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tionalization, one can imagine a wide variety of possible IV. FRACTIONALIZATION OF ELECTRON QUANTUM
phases apart from the two mentioned above. In particular, NUMBERS WITH p-WAVE PAIRING
one may consider exotic possibilities where the fractions of
the electron in any given fractionalized phase themselves
fractionalize. Such phases may be considered to have a Spin-triplet superconductors and their rich order-
higher level of fractionalization. To see how these may beparameter structure offer the prospect of various exotic
described in the same kind of formulation as discussed iphases. Since they break both charge and spin symmetries,
this section, consider the following action: triplet superconductors exhibit features of both singlet super-
conductors and of spin models. In particular, we can envision
the restoration of the the d01) charge symmetry by quan-
tum fluctuations, thereby resulting in a spin-triplet insulating
state. Alternatively, the spin symmetfye will make the
o simplifying assumption that the system has only an easy-
Sf=—_2 crijrij{t{}fiafja+TAaij[fin“—(T—>l)]+c.c.} plane W(1) spin symmetry can be restored, resulting in a
e spin-singlet superconducting state. Finally, both symmetries
o can be restored, leading to a singlet insulating state. We be-
—Z fiafias lieve that the gapped, symmetry-restored states will not be
te very sensitive to the precise symmetry of the spin sector, so
we believe that our results apply to systems with full(3JU
spin symmetry as well. In particular, when the symmetry is
Se=— 2 ti 7ij(bgibe;+c.c), increasedwhile keeping the size of the representation fixed
| fluctuations are enhanced, and a system is more likely to be
in a disordered state. In order for these symmetries to be
restored separately, it will be necessary, as we discuss below,
S= -> tiSj o (zfzj+c.c), for a type of topological ordering to occur. This topological
i ordering is essentially spin-charge separation of the charge
2e, spin-triplet Cooper pairs. Depending on the way in
which the symmetries are restored, it is possible for further
S,.=—K,I1 o) il 7 —K,.11 o7y (32 topological ordering to take place, in which case the quan-
o ] u] tum disordered states may support excitations with exotic
quantum numbers. In such states, the spin and/or charge of

Here b, is a chargee spinless boson and is a spin-1/2 the.quasiparticles is screened by the Goldstone modes
chargeless boson. THefield represents a spinless, neutral (Which are themselves separated from each other by the
fermion (the spin index is just a label with no special signifi- higher-level topological orderingAs we describe in this pa-
cancg. Theo;; and;; are two independerf, gauge fields. per, there are no fewer than nine phase which can result in
The physical electrog;,=b.zf;,. Clearly if the field is  this way. _ _
confining, thef, andb, get confined to form a Fermionic 10 be concrete, let us consider the followipgvave su-
holon—we then recover the action discussed earlier in thi®€rconducting state of electrons on a square lattice:
section. On the other hand, if the field is confining, the
Fermi statistics gets glued to the spinan){the resulting
theory is essentially that introduced in Ref. 7 in the context
of cuprate physics and involvéosonicholons andFermi-
onic spinons coupled to &, gauge field. If both gauge fields This is the most general unitary triplet state in two
o and 7 are deconfining, however, we have an exotic phaselimensiong’ if we assume that there is only the(1) spin
in which the fieldsb,,z,f are all liberated. This phase will symmetry of rotations about treaxis, rather than the full
also have two distinct vison excitations corresponding to thésU(2). In Eq.(33), only A;; andA || are nonzero. The lower
fluxes of the twazZ, gauge fields. We may view this phase assymmetry could be the result of spin-orbit coupling. The
a higher-level fractionalized phase as compared to the ongymmetry-breaking pattern associated with this order param-
discussed in Ref. 7 or that discussed earlier in this sectioreter is: W(1)XUg(1)XDy—2Z,XZ,XD,. The W(1)
The connection between various fractionalized phases isharge symmetry is broken @, by the condensation of a
shown in Fig. 1. We use symbols, andf, to label bosons charge 2 order parameter. Thed(1) spin-rotational sym-
and fermions that carry quantum numbaesn,c,s,cs (neu-  metry is completely broken. The square lattice point group,
tral, charge, spin, charge, and spamd show the existence of Dy, is broken toD, by the orbital symmetry ofA. Finally,
appropriateZ, vortices in each phasgor more details see there is an additionaZ, since the order parameter is left
Sec. V. invariant by o— ¢+, 0— 6+ . As we discuss later, this

In the sections which follow, we will show how an effec- can be understood asZa gauge symmetry. From ¢ ande'?
tive action such as that of E¢B2) can arise in the context of we can construct the following,-invariant order parameters
p-wave superconducting systems and systems which featurehose presence or absence characterizes the phases which
interplay between magnetism and superconductivity. we consider. In the absence of the trippetvave supercon-

A. Order parameters and symmetries

S=5+S.+S+S,;,

A p=A€'¥(cOSO0% 5+ SN S, p)sinkya. (33
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he
D=
Co
~ \//
~ N — -~
composite = ~ VN - X

FIG. 2. mr-disclination-hc/4e vortex composite.

ducting order parametéB3), we can characterize states by
the charge-é order parameter,

de_ (qi@)2
A (€)% (34 FIG. 3. Order parameter for a sip p-wave superconductor.
and the spin nematic order parameter, Gapless excitations exist &t = (*+kg,0).
Q=cos . (39 with constantd,. Alternatively, we can form merons, which

These order parameters define the following quantumgre trivial in the charge sector but not the spin sector,

disordered states of triplgtwave superconductors. Aaﬁ(r,qS)=A(r)ei¢0(cos¢oiﬁ+i sin3,,5)sink,a
« Charge-# singlet superconductos*®+#0, Q=0. (39
* Charge-#& nematic supelg:onductoﬁ“eqto, Q#0. with constant ¢o. Finally, there are various composites
* Spin-nematic msulatorﬁ: =0, Q#0. formed from the above. A composite formed by hc/2e
* Spin-singlet insulatorA*®=0, Q=0. vortices andm merons takes the form
B. Topological defects A p(r—»,¢)=Age"?(cosmepa? s +i sinmed,z)sink,a.
The quantum-disordered and topologically ordered states (40)

which we will consider can be understood in terms of the
condensation or suppression of various topological excita- If flux hc/4e vortex-m disclination composites condense,
tions. The most basic and fundamental topological excitatiothen U;(1) and U(1) are restored. The system will be in a
is a composite formed of a fluxc/4e vortex together with a  singlet insulating state and all excitations will have conven-
a disclination34-3¢ tional quantum numbers. If, on the other hahd/4e vortex-
Along a circuit about such an excitation, boghand ¢ 7 disclination composites are gapped and only complexes
wind by 7 so that anyZ,-invariant combination is single- consisting of multiples ohc/4e vortex-r disclinations(e.qg.,
valued. If such an excitation is at the origin, and¢ are n hcd/2e-m meron compositgsare condensed, then quantum
polar coordinates in the plane, then the order parameter is ¢fumber separation is possible. If complexes consisting of a
the form multiple of fourhc/4e vortex-r disclinations condense, then
we will have the various versions of quantum number sepa-

Ao )=A(r)e1o? cos?afwﬂezsin? 5aﬁ)sinkya, ration summarized in Figs. 3 and 4.

(36) Quantum disordered
p-wave superconductor
whereA (0)=0 andA (=) =A,. The flux is into or out of the P’ R
plane, respectively, fog; = = 1; the spins wind clockwise or Charge 4e singlet| | Spin-singlet Spin-nematic
counterclockwise, respectively, fep=*1. It is instructive Superconductor msulator msulator
to write this as CA™>#0 CA™>=0 <A>=0
Q> =0 Q> =0 Q> #0
Ayi(r,)=A(r)e'“ ?sinkya, -
Merons condensed he :
A (r.d)=— A(r)eif* bsink.a (37) spinons confined vortices condensed
LA y (D D>~ 0,; chargons confined
- - B m
wheree.. =(e,= €,)/2. Hence,m-disclination-hc/4e vortex <e>»0 B
composites are vortices ifi;; or A alone(see Fig. 2 spﬁg;‘;nge%%%l%fge g TR 9
These excitations can be combined to formhai2e vor- <@,>=0 [5] 2¢ VOrtices gappe
tex which is nontrivial in the charge sector but trivial in the = Chmgé"g‘iei’%ﬁmd
spin sector, ¥ 28]
A p(r, )= A(r)€'?(cosboa? z+i sin6p8,p)sinkya
(38 FIG. 4. Phases of quantum-disordemggvave superconductor.
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Spin-slinglet In action(42) we have included the electromagnetic fié\lg
<121seu>at_°§) and spin vector potenti@?, which couple to the conserved
— electric andS, currents.
<Qij> =0 L .
When hc/4e vortex-wm disclination composites are
+ +
121—0 vortices condensed }ﬁ vortices and merons condensed gapped' th622 symmetry (P—> ptm, 00 77. play.s no
€ merons gapped chargons, spinons confined role, and the other terms in E41) may be written in the
chargons confined CDS=0 form
spinons deconfined 2és
<P >=0 he — 2 )2
T % 2¢ Vortex x meron SC—Epcf d XdT(ﬁM(p—AM) (44
(22 >=0 ,ﬁ composites condensed
chargons and spinons bound
e - deconfined from fermions and
% vortices gapped (D> =0
€ v
mierons condensed <D >=0
chargons deconfined m’ _ 1 2 o\ 2
spinons confined (DB > =0 [3D] SO'_EpO' d=x dT(o”MQ—A#) . (45
{@>=0
<P >0 he . .
CHD. % gy YoHessANG.mETONS SApped The conserved electric arf§} currents are given by
v'm 7=V [3c | chargons, spinons deconfined
<®> =0
v
<@ >=0 o OSt
n = . (46)
< (Dvd)m > =0 ,375 M 5A;’U

FIG. 5. Phases of quantum-disordeqesvave superconductor. Conservation of charge and tkecomponent of spin require
Note that the phase in whidmc/2e vortices and merons are con- o
densed may be described as havimg4e-vortex-m composites Il =0. (47)

condensed. ) ) ]
The interactions between the Goldstone fields and the

C. Quantum number separation quasiparticles are highly nonlinear in E42). This interac-

) ] tion can be made more tractable, following Ref. 28, if we
The effective action of @-wave superconductor may be gefine new fermion fields:

written in the form
X= ei qple2ei 002/21)0. (48)

Sor=S+S:+S,, (4D - , _
With this change of variables, we have defined a neutral,
whereS; is the action for the Fermionic quasiparticles andspinless fermiony, which is governed by the action
their interactions with the Goldstone modes, &dand S,
are the actions for the charge and spin Goldstone modes. :f 2 tro o X/
Depending on the topology of the Fermi surface, the low- S dx d7| Yo —veTidvar o (idy) 1y
energy spectrum of @-wave superconductor may include 1
gapless Fermionic quasiparticles. Let us assume that the to- | = 1 25 _oaCZ_ | 5 042y AC
pology is such that the gap has nodes on the Fermi surface. 2 ylroze T VRGP 20eALY
Focusing on the nodes, as shown in Fig. 5. We linearize the

action + zz//T[ 0%0,.0—2Al "= v 7020, 0+ 2 TP AT | |
Sf:f d2x dr x[9,— A —ve 7o+ veAS— A0, (49)

. The couplings between the Goldstone modes and the qua-

+vpAYo,7,— v T€'5¢(Ccosh U§B+ i sing a{kﬁ) siparticles are now either trilinear or biquadratic,

X(idy)]x. (42 1
g S=S+5 J d2x A J5( 3,0 — 2A%) + IS dyp— 2A%)

s=* and y has a particle-hole index, acted on by Pauli

matricess; and a spin index, acted on by Pauli matriees +33(0,.0—2A7)+ I3 (30— 2A7)] (50)
_ with
Cip+k1
X11 CT o ‘]8: lﬂTTZlﬁ, ng _UFlﬂTlﬂ
- X21 —kg—kl (51)
Xaa(K)= = o : (43 7_ gt o? - _youto?
: X12 Cio+kl Jo=¢'oy, Iy ve ot T

X22 PN The price that must be paid is that the change of variables
= ke kT (48) is not single valued about a topological defect. In par-
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ticular, the charge part, exp(r%2), is double valued under where® is a meron creation operator. Analogous topologi-
transport about a fluxic/2e vortex sincee winds by 2, cal objects in the spin sector have been discussed in the
while the spin part, expgo?/2), is double valued under context of quantum Hall systefs*® and quantum

transport about a meron sindewinds by 2. antiferromagnets’ =43
As we will see belowys are weakly coupled quasiparti- ~ Actions (56) and(58) need to be supplemented by Chern-
cles in those quantum disordered phases in whichtiz/2e Simons gauge fields which enforce the minus sign which is
vortices and merons are gapped. acquired when ay encircles a fluxhc/2e vortex or a
meron?844 With these additions, we obtain the following
D. Defect condensation dual action:

A : . 1 2
Defect condensation is now |mple?r’nz§r31;ed with dual repre-Spa=Se (P, ,a;,— a3 ) + Sg(Pmy,a5—a5,)
sentations for the order parametétd32%37|n the dual de-

scription of theXY model?’ the ordering fieldy is replaced +j drd2x i(fc 2+ate. g |AC— i\]c>
by a gauge field which parametrizes the total current, to- 2p. M pERATVL TN T
gether with a vortex field which accounts for the singularities 1
of o. , _ +2ale, 0,0 +akde +f drd?| 5—(f7,)?
We use the conservation of charge to define the dual ” roR 2p, M
gauge field, 1
+a’ o_ " 39| + 2 52+ 2 q0

€2 =30~ po(3, 0= A +IL, (52 aﬂéﬂvx‘?v<’*x p M| T AR AT T

with J% from Eq. (51), and introduce the vortex current, (59
1 wherea;? anda’-*are the gauge fields that perform the flux
juﬂzﬁeﬂw\(})vﬁ)\q), (53  attachement and enforce the minus sign.

With this action in hand, we can now address the quantum

which is not vanishing for a multivaluegd. With the last two ~ disordered phases and quantum number separation. In es-

equations we can relate the vortex current to the dual gaug%‘le”(;e’ there barmreedqluagttfl_rﬂ numbers: chartge_, spin, _a?d .
- c — electron number modulo 2. These can separate in a variety o
field a¢, and quasiparticle curred, , P y

patterns.
iU -1 Cc C —14cC
Iu= €undilpe “Enapdadpt Ax—pc 1. (B4 o4t (@ )20, flux hc/2e vortices condense. The Meissner
Now a dual action for the charged degrees of freedom is effect associated with this condensate imposes
easily constructed by requiring that its equations of motion a;+ail=0. (60)
reproduce Eq(54), Recalling thate,z0,85=J5"° (e, B=x,y) is the charge
1 density andeaﬁﬁaaz,l= 6 is the quasiparticle density, we
SHua=SeL(P, ,a;)+f d7d?x 2—pc(ffw)2 conclude that in this phase charge is attached tajthe

o If (d,,)#0, merons condense, and the Meissner effect as-
1 sociated with this condensate imposes
+ aZemay( AS - EJi) } (55 aj+a’=0. (61)
As €,50,a5=J5" 7 is the local spin density and
€505 =J3 we find that spin is attached to thgs. Al
Pd _ ) the fermions carry spin.
§|(%—lay)‘p| +V(<I>)) o If (®)=0, (®,)=0, but (®,®,)#0 hc/2e vortex,
(56) meron composites condense. The Meissner effect associ-
ated with this condensate imposes
a;+a;:0. (62
In other words, spin and charge are confined, but the fer-
mion ¢ carries neither sincé does not acquire any phase
. (57 upon encircling this composite object, as evinced by the
fact that® ,®, is not coupled to statistical gauge fields.
An identical construction is now used far with p. re- * The condensation of other composites, suchbgs i.e.,
placed byp, andJS by Jy: skyrmions, <I>5, etc., does not cause the confinement of
any quantum numbers.

where

SGL[QD,aM]:f drd?x

andf} =d,a;—d,a. The field®' may be thought of as a
vortex creation field. The vortex current is given by

=" ®,+H.c.

1
_aC
i—ﬁﬂ a#

o

1
5—(f V)z E. Exotic phases
2p, M . p

SguaIZSGL((DmyaZ)+ J deZX

The order-parameter classification discussed afte(35.
' (58 is incomplete; those states can occur in several varieties,
classified by the allowed quantum numbé&ts.

1
+ a;elw)\&v( A - —J;\’)
Pc
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Charge-4 singlet superconductora*®+0, Q=0: state, we find the exotic phases discussed in the previous
(1A) If (d,)#0, then the Fermionic excitations carry section. These have a simple description as the various de-
spin 1/2. confining phases of th&,xZ, gauge theory. Readers who

(1B) However, if(®,)=0 but((® )% #0 then they’s  are uninterested in the technical details of our derivation may
are spinless. Note that the charge quantum number of thekip directly to Eqs(105), (106), and the subsequent discus-
Fermionic excitation is not really well defined sincé€llis  sion.
broken in the superconducting state; stated differently, the
fermion can always exchange charge with the condensate. A. General formalism

Spin-triplet insulatorA“*¢=0: Q+0:

(2A) If (d,)#0, they’s carry chargee.

(2B) If (®,)=0 but((®,)?)#0, then they's are neutral.
As in the previous case, the spin quantum number of/tee H=H+H,+H,+H, (63)
is not well defined. ]

Spin-singlet insulatorA“¢=0: Q=0: with

(BA) If (®,)#0, (P,,)#0, then they's carry spin 1/2
and chargee: CSF phase. H=-t> cfc.,+H.c.,

(3B) If (®,)=0 but{(®,)?)#0 while (®,)+0, then e
the /s are chargee, spinless Fermionic excitations: CFSB
phase. _ 2
(30) If (®,)=0 but((®,)%)+0 while (®,)#0, then the Hy=u2 (Nr—No)%

J’'s are neutral, spin-1/2 Fermionic excitations: CBSF phase.

(3D) If (d,P,,)#0, then they's are neutral, spinless
Fermionic excitations, but spin and charge are confined into HUZUE (Mp)?,

a bosonic spin-1/2, chargeexcitation: CSBNF phase. '

(3B) Finally, if (®,)=0 but ((®,)?)#0 and(®,)=0
but((P,,)2)#0, then they's are neutral, spinless Fermionic Ha=> [Allcicoi+Ale ¢ ]+He, (64
excitations. Bosonic chargeexcitations g'¢’, and Bosonic '
spin-1/2 excitationse'?? are also liberated: CBSBNF phase. whereArTf, andAf,l, represent the order-parameter fields for

To summarize, we have the following phases with exotic,, Cooper pairs with spin up-up and down-down pairs, re-
guantum numbers:

A charge-4 singlet superconductor with spinless Fermi- spect|vely. Herex=1,] is the spin index. The term.pro.por-
onic excitations tional to u represents the on-site Coulomb repulsibdh.is

SO . . I .. the total number operator of electrons at the sjt; is the
A spin-triplet insulator with neutral Fermionic excita- o
tions. average electron number per siM, is thez component of

*Spin-singlet insulators witti) chargee spinless fermions :Ee to;al spin opergtc&r. Al SQUI|Ib:-IIUH1AH|—|A'u|. dNAc/)\T/t'(Ttah
and spin-1/2 neutral boson§j) spin-1/2 neutral fermions at tl?re are two indepen ent phases associated Al
and spinless chargebosonsjiii) neutral spinless fermions, andA**. We can rewriteH, as
Bosonic charges spinless excitations, and Bosonic spin-1/2 . ‘
neutral excitations; ofiv) neutral spinless Fermionic excita- Hy=AD, a,/[e'¢ric, ¢ +e'ric e ]+ H.C.,
tions and Bosonic chargespin-1/2 excitations. !

These result are summarized in the following diagrams (69
that describe various phases that can result from quantumhereA=|A'"|=|A!!| anda,,. is the form factor that gives
disordering gp-wave superconductor. rise to the particulap-wave symmetry.

The scenario proposed in this section for quantum number The fieldse,; and ¢, are canonically conjugate to the
separation inp-wave superconductors may apply to other Cooper pair number operators of up-up and down-down
systems, provided that they acquire nontrivial topological or-Cooper pairsn,, andn, | :
der in the spin and charge sectors, or in the language of this
section when they have sufficiently strong quantum fluctua- [or Nerp =160, [@r N =160, (66)
tions of spin and charge degrees of freedom simultaneousl
In Appendix B we show that quantum disorderddvave
superconductor with easy-plane antiferromagnetic fluctu
tions may be treated in the same way as we treptacve N, =2n,,+p
superconductors in this section. re e

We consider the following Hamiltonian that describes the
equal spin pairing state of @wave superconductor:

¥he conserved charge densities for the electrons with spin
agndl are given by

er=2nrl+pri, (67)

wherepm=c;racer is the quasiparticle number, which is not
In this section, we derive @,XZ, gauge theory repre- equal to the electron number. It is useful to remind the read-

sentation of a model which gives rise to lopalvave super- ers that the Hamiltoniaf64) does not conserve the quasipar-

conducting fluctuations. In addition to the superconductindgicle number, since it contains terms that annihilate a pair of

V. Z,XZ, LATTICE GAUGE THEORY
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them and create a Cooper pair. Only the total number of
electrons of a given spin, given by E@7), is conserved.

This may be formulated as a conservation of the total charge

)
He=—t> (bjb.zlz ] f, +blb.z,2) 1] f.. ) +H.c.,

rr’

andz component of the total spin,

NI':NFT—}_NFLI MI’:NI‘T_NFL' (68)

Let us define boson operatobs, which carry charges
and spina=1,]:

bl =ttel¢ra/2=¢l¢ra, (69)

wheret/= =1 are Ising variables and, ., are defined in the
interval zero to 2r. Note that the squares &ff, and b/,
create the spin up-up and down-down Cooper pairs via th
following relation:

(b])2=¢l¢re, (70)

One can also see that the canonical conjugates paire the
total densities of electrons with spinand |. They satisfy
the following commutation relations:

[Pra Nirg]=i6.

Similarly, the following commutation relations are also sat-
isfied:

(71)

[bre Ne/ =06, [hrs, M ]=i6/, (72

where ¢,.= (¢ + ¢, )2 and ¢ s= (¢ — ¢, |)/2. At this
stage, it is useful to define the fermion operatdrﬁ,, as
follows:

T fT

C:a:bra ra- (73)

Note thatf creates spinless neutral fermions due to the fact

thatb!, carries both the charge and spin of the electrons.
It is also useful to define,. and ¢,s as follows:

gl¢rt = gl eregl Prs, gl¢r = glPrcgiers, (74
Note that there is @, symmetry associated with these defi-
nitions of phase variablesy,.— ¢+ 7 and ¢,s— ¢+ 7
do not change'¢1 ande'¢rl. Now we define boson opera-
torsh! andz' as

b;r:trei erel2— ei ¢rc'

z/=sel¢rs?=glts. (75

Ha=AY a,(b/b 2]z, f, f+blb. 22, f)+H.c.
rr’
(79

The Hamiltonian is invariant under the following local trans-
formations:

(i) Zyi b= by fra——fra;
(i) Zys: =75 fra——Fra;
(it)  Zy5: 20— =2 bra——byy.

%)nly two of these transformations are independent, any one
of them can be represented as a product of the other two.
Together they fornZ,XZ, gauge symmetry, that has three
Z, subgroups as reflected in three possible transformations
above. These subgroups are distinct, but not independent.
Z,X Z, local gauge symmetry is a consequence of the redun-
dancy in the enlarged Hilbert space bf,, b,, andz .
There is a further redundancy in our description in terms of
b, andz, becausé,—ib,, z,— —iz, also leaves all physi-
cal quantities invariant. This identification allows for the ex-
istence of flux w-disclinationhc/4e vortex composites
which we discussed in Sec. IV B. As before, we assume that
these topological defects are gapped so that we can safely
ignore this identification and take,. and ¢,; as defined
from [0,27).

In order to get the correct Hilbert space of the electrons,
we have to impose two constraints at each site.

N;+p; + p = €ven number,

(80)
M+ pyy — py =€VEN NUMber.
These can be written as
(—D)NeFPrter =1 (—=1)Mrtermer =1, (81)

The constraints can be implemented in the path integral rep-
resentation of the partition function using the following pro-
jection operators:

. . wit
Heret,= =1 ands,= =1 are Ising variables. Note that these

operators satisfy the following identities:

(bh2=¢el¢re, (z])2=¢l¢rs. (76)
Note also thab/, andb, can be rewritten as
bl,=blzl, bl =bz. (77)
Now the total Hamiltonian can be written as
H=H+H,+H,+H, (78)

with

PC:H Prc, /Ps:l:[ Prss (82)
1
Pre=5 1+ (= 1)Nrterten]
1 i(7/2)(1= 7 )(Ne+pry +pr )
_ E Z+1 e r r rt r s
1
Prs=5[1+(= 1) orien]
1 .
=2 S em-a) Mo —pr)), (83
2.0
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Using the projection operators, the partition function can

be written as S[A:_e Z {[2|er | = Xrr( b +tfrafr «
rr’ e
— - BH
Z=Trle g PcPs]- (84) +arr’Afrafr’a)]+[2|77rr’|2_ nrr’(bfabl"a
A Euclidean path-integral representation can be obtained by . f, —aAf )]+c.cl. (91)
ra'r’'a re’ ra ra

splitting the exponential intd! number of time slices,
Rearranging terms, we get

Z=Tr (e HP.PyM], (85)

2 2_
wheree= /M. Now the partition function can be written as Sta= 4‘52 [20xre 124 2] 70/ [ 2= (ke + 7200 ) DTy

I’I’a

Z:f H dTiadfiadd’icdqbis —t(Xrer = W )fra rra= Qe ACX e = e ) frofrrg
e +c.cl. (92
% E E oS (86) Rewriting this in terms ob, andz , we get
N=Z% M=cw g==1 7= =1

2 2
Herei=(r,7) runs over the 2 1-dimensional space-time lat- Sta= 462 Eal [2]xve |2+ 2] 770 /]
tice with 7=1,2, ... M time slices. The actior® has the

following form: =X — ﬂrr’)f_rafr’a_arr’A(er’_ Nre) Frafiral
M th t t T
S=S£+S¢C+S¢S+62 HIN, M e, s Fra o) = et 70 ) (BrbrZ 2z by 2z ) ey
T T = T T 7C) TSy T T
(87) (93
with In order to decoupleb, from z, another Hubbard-

Stratanovich transformation is necessary. Using similar pro-
cedures, the term

M
Sfr: 2 2 Tuz(0-7+l7-r+lf1'+la Ta)]’

r,r=1 1
_Zez [(Xrrr+ 700 )(b]b, 22+ b0, 2,2] ) +c.c]
rr’
T (94)
S¢°_r2 N(qsm brorot 5<1—TT>), (88)

can be decoupled as

T 2 2 2
S¢s_rz_ M <¢rs b1t 5(1_0.7))' 1662 (Xrrr & e )[Zl)\rr | +2|§rr | +2|prr |

2_ t, _ t
Here the spatial index is suppressed for clarity. The Ising F20Gee = e 610 )Z0200 = (Pre + A1) 202,
variableso . and 7, are defined on the links connecting ad- —(Perr =G+ A — & )bIbL +C.C, (95

jacent time slices and can be regarded as the time component
of the Ising gauge fields. We now make a saddle-point approximation and keep the

The sum ofH, and H, can be decoupled using the Ising fluctuations around this saddle point. The natural
Hubbard-Stratanovich fieldg,,. and 7, , choices are

Xrr? ™ Tee = Orp Trrr X

efe(Ht+HA):J' 1111 Ay dx s dop drt e S,
T Xerr e )N =& P — i) =Trr Xes (96)

(89
* * N\ _
Using the expressions fat; andH, , OXrer 7700 ) (N & P+ 0 ) = 0 X
where o, =*1 and 7, =*1 are Ising fluctuations. We
H=—t> (bf by f1 f,0 4+ H.C), d[)(l)p gll of the constant terms and define the following vari-
R ables:
(%0 1 1 1 A
Ha=A Y ay (bl by ofruf ot H.), =gt Lemgghe LTghs: Ta=z8x
' a (97)
we have to obtain
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_62 E Lo T (L frafr attadr frofirg)
I

+ter/blby +teoyy Z Z +CC]. (98)

Combining all the results, the approximate full partition

function can be written as
IT dfi.dficddicdbic

(99

2 2 > €S
Nj=—o Mj=—-= (ij) gjj = +1 T|J—+1
where g and 7;; are Z, gauge fields living on the nearest
neighbor links of the space-time lattice. The total act®is
given by

S=Sl+8%+ 5%+ 5,+5+5,+5, (100
with
> 2 [fialoimifia—fia)],
=ity @
SfC:_ 2 N[(ﬁm ¢JC+ (1 T”)
ij=i—7
Si’sz— 2 M [d’ls ¢]S+ (1 U”)
ij=i—71
Sa=e€ X a0y 7 (@ fiafjatc.c),
Li=i+x
So=—¢ E 2 [tfo'lelj iofja
ij= i+x @
+tc7ijb;kbj+t30'ij2;k2j+C.C.],
=euD (N=Ng)?,
I
S,=ev> (M)?, (101)
I

where 7 and X represent the time and spatial linkay
=a,,, on the spatial links and zero otherwise.

Using the Poisson resummation formula, one can show

that

S e (st s‘fC) — e%i,j—i- H(1/26W) 7 COS(@ic— bjc) ~Sp.
N

D e—(sv+sf8) — @3 j—i—{(LI2ev) oy cOS(is— bys)

M

(102

with
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Si=—iNy >, (27T|T —(1- T,,)) (103

ij=i— T
Hereli’j is defined as

¢

(104

T—ntl — + =
i} =Int 5 + 5
with ®F = ¢ic— ¢jc+(7/2)(1—7;;) is the gauge invariant
phase difference across the temporal link. Int denotes the
integer part. One can see that the Berry phase termr;fas
absent. This is due to the fact that we have equal amplitudes
for up-up and down-down pairing in the equal spin pairing
state, analogous to particle-hole symmetry in the charge sec-
tor.

Gathering these terms, the final form of the action is given

by

S=Si+Sc+Ss+ S+ Sy (105

with

Si= 2 O-IJTI][t”fIa Ja+tAaijfla ]a+CC] E fiafia
E te i 7ij ( (b b;+c.c),

S= —iEj tf 0j(ziZ;+ C.C). (106)

HeretC is et; on the spatial link and 1 on the temporal
link. S|m|larlyt is etg on the spatial link and 1& on the
temporal Ilnkt = et; on the spatial link andifj =—1 onthe

temporal link. And~tA= et . The last term of Eq(105 cor-
responds to the Maxwell terms for tie gauge fields, that

we assume are generated after we integrate out excitations at
high energies,

Sg=—K12 H Uij_KZZ H Tij_KSE H Tij Tij -
O o o o 0 o

(107
These are the simplest terms providing dynamics of the
gauge fields that are consistent with the gauge symmetries,
fio—tif;

Zy,t bi—tiby; ifia;

Tij*)tithij y

fia—Sif;

Zyy: Z—SiZ; ifia; o= SIS0,

(108
wheret; ands; are= 1. In the future we will call any particle

that transforms under the first and the second transformations
of Eqg. (108 as havingZ,, andZ,,, charges, respectively.

B. Spin singlet insulating phases

Before discussing possible spin singlet insulating phases
of the combined actiof105—(107) it is useful to review
properties of a pur@,Xx Z, gauge theory107). Under dual-
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ity transformation defined in Refs. 7,46 and 47 this modelisons are present in the ground state, the coherent motion of
becomes a generalized Ashkin-Teller motfel, the corresponding particles is highly frustrated and they may
not be considered as elementary excitations. Only the par-
ticles that are neutral with respect to the approprigtsym-
Sat= _Kdl% vivi_KdZGEj) uiui_KCB(izj> Uivilju; - metry may propagate freely in a phase with condensed vi-
(109  sons. And the particles that carry such charges will have
to bind into neutral pairs. This is the essence of the confine-

Hereu; andv; are Ising variables defined on the dual lattice MeNt argument discussed in Refs. 46 and 7.

in d=2+1. We can identify five possible phases of Eq. When we apply the geometrical phase-confinement argu-

(109 ment to the spin singlet insulating states we find the same
phases as discussed in Sec. IV E.

(i)  fully ordered phaséu)+#0, (v)#0, (uv)#0;

(i) partially ordered phas&)#0, (v)=0, (uv)=0; * In a phase of typdi) a_II kinds of Z, vortices are con-
(i) partially ordered phaséu)=0, (v)#0, (Uv)=0; densed. Therefore particles that carry atyycharges will
(iv) partially ordered phas@)=0, (v)=0, (up)+0: be bound. This is a fully confining phase where only fully

neutral composites are allowed. Holons, spinons, and neu-
tral fermions are confine(phase CSE
« In a phase of typéi) we have a condensate olisons. As
a result particles that carr¥,, charges are confined, but
particles that carry¥,, charges are liberated. Spinons are

(v)  disordered phaséu)=0, (v)=0, (uv)=0.

As pointed out in Ref. 7 the Ising variables of E409
correspond to th&, vortices of the original gauge model.
They describe gauge field configurations with plaguette

products equal to-1, i.e., plaquettes pierced B fluxes. free, and holons are bound to the neutral fermi@tgase
Following Ref. 7 we call suclz, vortices “visons.” In fact CFSB.

we have three kinds of visonst visons that describ&, * In aphase of typéiii), that has a condensate efvisons,
vortices of o, 7 visons that describ&, vortices of r, and we have a confinement of particles with,, charges and
[o7] visons that describe a composite @fand r Z, vorti- deconfinement of particles wit#,, charges. Holons are

ces. The three are not independent, any one of them can befree, and spinons are bound to the neutral fermiphase
thought of as a composite object of the other two. However, CBSH.

we should treat all of them on equal footing since they rep» In a phase of typéiv) we do not have individuas and 7
resent distinct topological objects. The appearance of the visons in the ground states, but only their composites,
long range order in the Ashkin-Teller model corresponds to [o7] visons. The geometrical phase argument becomes
the condensation of visons in the original gauge model and somewnhat subtle when we considerr] visons. Particles
describes transition to the confining phase. From these argu-that carry either one of,, or Z,, charges will get ar
ments it follows that there are five distinct phases of the pure phase shift when they circle around such a vortex. How-
gauge model in Eq(107): one fully confining phase, three  eyer, particles that carry both charges acquire no phase. So,
partially confining phases, and one fully deconfining phase, in 3 D-type phase particles that carry one of #he or Z,,

that correspond to the fully ordered, three partially ordered, charges are confined, but particles that carry both charges
and one fully disordered phases of the Ashkin-Teller model. 4.a geconfined. Holons and spinons are bound, and neutral

(i)  Fully confining phases and 7 visons are condensed  fermions are freéphase CSBNE
simultaneously. This also implies condensation of* Finally, in a phase of typév) we have no condensed vi-

[o7] visons. sons, which means that all the particles are liberated. Ho-
(i)  Partially confining phaser visons are condensed and lons, spinons, and neutral fermions are deconfifithse

o and[ o 7] visons are gapped. CBSBNB.
(i)  Partially confining phaser visons are condensed and

7 and[ o 7] visons are gapped. C. Broken-symmetry phases

(iv) Partially confining phasd.o 7] visons are condensed
and o and 7 visons are gapped.
(v)  Deconfining phase. All visons are gapped.

In this section we show using,XZ, theory that even
states with the long-range order in the mo¢&d5—(107),
i.e., p-wave superconductors, spin singlet superconductors,

Condensation of visons has dramatic effects on the mor_lematic insulators, and nematic superconductors may differ
. : ; ; f” their topological ordering and carry the remnants of the
tion of spinons, holons, and neutral fermions in the mode

) . . I spin-charge separation that appears so dramatically in the
(105-(107). We find drastically different excitation spectra insulating phase.

depending on what vortices are condensed. The reason for We begin by reviewing the case ofawave supercon-
this is a geometrical phase factor sfthat particles withz, ductor

charges acquire when they circle around an approp#ate

vortex. For example, spinons and neutral fermions get a geo- The simplesp-wave superconductor that may be deduced
metrical phase factor of when they are transported around from the model(105—(107) is when holons and spinons

a o vison, and holons and neutral fermions get a minus sign condense simultaneously, so the system acquires finite ex-
when they circle around a vison. This means that when pectation values ob and z. The geometrical phase argu-
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ment when applied to this system tells us that an isolated Excitations in this phase will be any pair from the set
hc/2e vortex or a meron are no longer well defined exci- (hc/2e vortex, 7 vison, ¢, z) andb isons.

tations, since they acquire a phase shiftrofvhen circling  * Finally we can have a condensate lof and gappedr
around a holon or a spinon, respectively. However, if we Visons. This gives unconfinelic/2e vortices, 7 visons,
bind anhc/2e vortex with a = vison we find that this ~ neutral fermions, spinons, arisons.

composite can propagate freely. The geometrical phases i

acquired by the two upon encircling a holon add up to 0 OrOf the five phases above, four of the last ones may be con-

2. Equivalently, a meron, when bound tasavison, be- sidered as STphases.
™ =4 Y. N . The construction given above fprwave superconducting
comes a well defined excitation in the presence of spinor

ates and spin singlet superconducting states may be gener-
condensate. ~ alized to the case of spin-nematic insulators and nematic su-
* Another possible phase of p-wave superconductor is perconductors. In those cases, just as in the two discussed
when we condense holon pairs and spinons, b®andz  above, we find five possible states. One of these is a tradi-
In this phase merons are still bounddovisons, however, tional version, whereas the other four are of the unconven-
hc/2e vortices andr visons are now deconfined. The origi- tional * variety that may be thought of as containing traces
nal holons are reduced to Ising variables, which we cardf quantum number separation.
call b isons, following Ref. 7. They carry the leftover of ~ The reader may be worried that we do not find/4e
the charge symmetry, that was broken froifi)to Z,, and ~ Vortices disclinations in our discussion of various phases
are well defined excitations in this phase. of p-wave superconductors. As in the previous sections we

- Analogously to the previous case we can consider a situ2SSUMed that these excitations have been gappegseet
tion with condensed andz?. This phase will have bound discussion after Eq(79)].
hc/2e vortices andr visons and liberated merons and
visons. Spinons become Ising variablessons, that carry VI. DISTINGUISHING DIFFERENT
the residualZ, spin quantum numbers. FRACTIONALIZED PHASES

* A different type of ap-wave superconductor occurs when |, previous sections, we have seen how various fraction-
holon pairs and holon-spinon composites condense simuljized phases can arise in the context of Kondo lattice mod-
taneously, i.e.p? andbz acquire expectation valugthis  els and systems with a tendency towapswave supercon-
also fixes the expectation value faf). In such a phase ductivity or superconductivity coexisting with magnetism.
spinons and holons are reduced to a single Ising variablélhese phases can be described in the language of vortex and
since knowingp automatically giveg. Thisbzison carries  skyrmion condensation or in terms oZax Z, gauge theory.
the residual Spin_charge quantum number of the System_ }xlowever, On-e mlght Won.der if these results are an artifact of
stable topological object in this phase may be constructef€Se formalisms. In particular, one can ask how these phases
by taking any two of the sehic/2e vortex, meron vison, can be dlstlngu_|shed—_both as a matter of principle and as a
o vison). prac'tlcal gxperlmental issue—from each other and from un-

. . fractionalized phases. As WEnand, more recently, Senthil
 Finally, we may have a phase with condensed holon ani

. LS 5 L ) nd Fishet have emphasized recently, their “topological
spinon pairsp® andz®. This gives us separateisons,z qer"_j o the sensitivity of the ground state to changes of

isons,hc/2e vortices, meronsy visons, andr visons. the topology of the system—provides one means of distin-

) guishing fractionalized phases.
The last four phases are the triplet analogs of the exotft SC™ s characterization of fractionalized phases is crucial

phase discussed in Ref. 7 in the case of singlet supercondu@acause other heuristic definitions of fractionalized phases
ors. We now consider the case of a spin-singlet supercon:an fail. To see why this is so, consider the intuitively ap-
ductor. pealing statement that a fractionalized phase is distinguished

« The simplest kind of a spin singlet superconductor occurd®M @ conventional phase by asking for the lowest energy

. . xcitation with, for instan in 1/2. In th nventional
when we condense simultaneously holtrmand o visons. € ctatq th, for instance, sp ; / the conve tio al
. . case, this would be an electron which also carries an electric
The former ensures confinement lof/2e vortices andr

visons, whereas the latter gives rise to binding of neutra hargee. In th_e fractionalized phases of the I_<ind di;cu_ssec_j
! . bove, one might expect that the corresponding excitation is

fermions to SpINons. __a spinon which is charge neutral. However, this test for frac-

* Another possibility is to have a condensate of holon pairgjgnajization fails if there is an attractive interaction between

2 . . . . .
b“ and o~ visons. This liberatesic/2e vortices andr vi-  {he holons and spinons which binds them into an electron at
sons, produces isons that carry chargé, number, and |\ energies. This could, in principle, happen without going
leaves neutral fermions bound to spinons. through a phase transitiofUnlike in an unfractionalized

* Another option is to have a condensate of bosbivgith  phase, holons and spinons would still exist as unbound exci-
gappedo visons. This means bourfec/2e vortices andr  tations, but at higher energigghen, the lowest energy ex-
visons, and liberated neutral fermions and spinons. citation with spin 1/2 is an electrofas opposed to a spinpn

» The most intriguing phase in this series is obtained whenhough the system is adiabatically connected to a fractional-
we condense holon paib€ and holono vison composites. ized phasdsee Refs. 13, 28, and 29 for a discussion of this
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effect). Furthermore, other tests such as the vanishing of theesulting bound state will be Bosonic. Hence, as a result of
guasiparticle residue at some point of the Brillouin zone alsdhe seemingly innocuous formation of bound states, the
fail in this situation. Hence we turn to the characterization inCBSF and CFSB states appear to metamorphose into each
terms of the topological properties of the system. other. Thus one is instead tempted to conclude that the CBSF
Topologically ordered systems are partially characterize@nd CFSB phases can be adiabatically connected to each
by their ground-state degeneracy on the annulus, the torus, 8¢her. o o _
higher-genus manifolds, over and above any degeneracy This contention is supported by considering the singlet
which may be due to broken symmetry. Consider the CBSPUperconducting state which results if holons co_ndense in
phase. It has a twofold degenerate ground state on the ann&@BSF or if holone vison composites condense in CFSB
lus. The two ground states correspond to periodic and antisee Fig. 1 It is easy to see that the superconducting states
periodic boundary conditions for holons and spinons as then either case are conventional and are smoothly connected
encircle the center of the annulus. In either case, electror® @ BCS state. The superconducting state can be disordered
themselves have periodic boundary Conditions’ as they mué?y vortex condensation. This will y|e|d a fractionalized state
In an unfractionalized phase, spinons and holons are corWith a twofold degenerate ground state on an annulus
fined within an electron so the two states are identical; th&/ortex pairs condense but individual vortices are uncon-
excitations which could distinguish them are not part of thedensed. Since the result could be either CBSF or CFSB, this
spectrum. By the same reasoning, the CFSB and CSBN@Ppears to support the possibility that there is no phase
phases also have two degenerate ground states on the anR@undary between these phases in the part of the phase dia-
lus. By extension, all of these states have ground-state d@ram near the singlet superconducting phase.
generacy 4 on a genusg surface. On the other hand, However, there is a quu_:ally p053|_ble alternative, nam_ely
CBSBNF has four degenerate ground states. We can indébat an operator which is irrelevant in the superconducting
pendently choose periodic or antiperiodic boundary condiPhase and at the critical point becomes relevant at the fixed
tions for the charge and spin bosons. The boundary condpoints characterizing the fractionalized phases. In that case,
tions for the neutral fermions are then determined by thdhe actual nature of the resulting fractionalized phase de-
requirement that electrons must have periodic boundary cori?énds on short distance physics—the value of the coupling
ditions. On a genug surface, it has degeneracy?16 which is formglly irrelevant |n.the superconductor.—and. is
These degeneracies can be interpreted in terms of the \ifot uniquely dictated by knowing that there is proliferation
son spectra of the fractionalized states. The two ground staté$ hc/e and withhc/2e vortices remaining gapped.
of CBSF on an annulus correspond to the presence or ab- Despite this caveat, a scenario in which CBSF and CFSB
sence of ar vison(i.e., av) in the center of the annulus; the are smoothly connected to each other in the vicinity of their
two ground states of CFSB correspond to the presence dfansition to the superconducting state is appealing and plau-
absence of a vison(av'); the two ground states of CSBNF Sible. This does not necessarily mean that CBSF and CFSB
correspond to the presence or absence ofravison in the  are not distinct phas_es. Their relatlons_,hlp could be similar to
center of the annulus. The four ground states of CBSBNEhat between a liquid and a gas, which are separated by a
correspond to the presence or absence @ind 7 visons in f|r§t—order phase t_ran5|t|.on_lme which terminates a; a cr_ltlcal
the center of the annulus. The interpretation of these grounB0int, beyond which a liquid and a gas can be adiabatically
states in terms of visons forms the basis for an experiment&onnected without crossing a phase-transition line. In Appen-
probe of topological order proposed by Senthil and Fisher. d_lx C, we show that preusely such a scenario does occur in
We will return to this issue later but let us, in the meantime Simpler (though somewhat differenZ,xZ, gauge theory
continue to pursue the question of the distinction in principlenodels. Thus we tentatively suggest that the first-order phase
between different fractionalized phases. transition between the CBSF and CFSB phases terminates at
Different states at the same level of fractionalization haved critical point. Beyond this critical point, there is no distinc-
the same ground-state degeneracy; CBSF, CFSB, ardipn between these phase_s, and it is in thl_s region of the
CSBNF all have two degenerate ground states on the ann@hase diagram that there is a phase transition to the super-
lus. In order to distinguish them, we must consider theirconducting phase.
guantum number spectra. CSBNF does not have spin-charge
separation, i.e., it is not possible to isolate a charge-0, spin-
1/2 excitation at finite-energy cost. Furthermore it is possible
to isolate a neutral Fermionic excitation. Both of these stand Let us now consider the practical issue of how we can
in contrast to CBSF and CFSB which exhibit spin-chargeidentify whether a given system in an unknown phase is
separation but do not support neutral Fermionic excitationsfractionalized or not and, if it is fractionalized, then what its
Hence, we conclude that CSBNF is distinct from the otherfractionalization pattern is. To proceed, note first that the
two states despite having the same ground state degeneraG@BSF phase contains in it the seed of superconductivity. As
One might be tempted to conclude that CBSF and CFSBirgued in Ref. 7, condensing the charged boson provides a
are distinct because the lowest-energy charged excitation isretural nonpairing route to superconductivigf a conven-
boson in one phase and a fermion in another phase. Howional kind). Similarly, the CFSB phase contains in it the
ever, if a holon in CBSF forms a bound state with @ison,  seed of magnetism—simply condensing the spinon leads to a
the resulting bound state will be Fermionic; similarly, if a conventional state with some kind of magnetic long-range
spinon in CBSF forms a bound state withravison, the order. However, it is possible to imagine a transition between

VIl. FLUX-TRAPPING EXPERIMENTS
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the CFSB phase and a superconductor which occurs when a Now consider a conventional BCS superconductor. This is
composite formed by a holon andravison condenses. Simi- obtained from CBSF by condensing the holon. The flux-
larly, it is possible to imagine a transition between the CBSHrapping experiment performed by moving between the su-
phase and a magnetic phase which occurs when a composperconductor and CBSF gives a positive result. Now con-
formed by a holon and & vison condenses. sider a modification of the experiment so that we start in the

The feature of most interest to the following discussion issuperconducting phase, move first to CBSF, then to
simply that a direct phase transition should be possible beCBSBNF, then back into CBSF before finally going back
tween the CBSF and CFSB phases and a conventional supdpto the superconductor. This again gives a positive result
conductor. Upon going through such a phase transition, théincev is trapped in the annulus and it can never escape.
visons of these phases acqulie/2e units of electromag- Upon making the transition between the CBSF and CBSBNF
netic flux to become thdic/2e vortices of the supercon- Phases, @’ will be generated with probability 1/2 since the
ductor. This may be exploited to devise a sensitive test foground state of CBSF with one will make a transition to
the topological order in the CBSF phase, as argued in Ref&ither of the corresponding ground states of CBSBNF with
19 and 4. equal probability. However, this’ will escape upon the

The test proceeds as follows. Consider an annular sampféansition from CBSBNF back to CBSF. Now consider a
of a material which is in a conventional superconductingfurther modification in which we go all the way from the
phase and let us suppose that we can tune the sample paraghperconductor to the CFSB phase through the CBSF and
eters adiabatically so that the sample makes transitions b&BSBNF phases and then return by the same route to the
tween the superconducting phase and the CBSF and CFSBIperconductor. The result of this experiment will be nega-
phases. Suppose that/2e units of electromagnetic flux are tive half of the time This is because in going from CBSBNF
trapped in the annulus when the system is in its supercorfo CFSB, the visow condenses. Thus which was trapped
ducting phase. There must also be a vison trapped in thi& the hole until the phase CBSBNF was reached can escape
annulus so that the holon condensate can have period®@n moving into the CFSB phase. In going from CFSB back
boundary conditiongwithout which it would cost infinite to CBSBNF, av is generated with probability 1/2—the two
energy: the antiperiodicity caused by the flinc/2e is can- ~ ground states are obtained with equal proability. Thig it
celled by the antiperiodicity due to the vison. If the system isis generated, will lead to the generation of flug/2e in the
taken into the CBSF phase, the flux escapes since there is soperconducting state.
holon condensate trapping it, but a vison will remain since it Hence, there appears to be a difference between the CBSF
will cost energy(the vison gapto unwind the antiperiodic and CFSB which can be detected in this experiment. It ap-
boundary conditions of th@eutra) spinons. If the system is pears that these phases cannot be continuously connected—
returned to the superconducting state, then it must generagénce the probability of a negative result for the flux-trapping
flux +hc/2e so that the holon condensate can again havexperiment of the previous paragraph must jump from 0 to
periodic boundary conditions. The same analysis holds if wé/2—at least in the vicinity of the CBSBNF phase. This can
take the system into the CFSB phase except that we have te understood in the following terms. In the CBSBNF phase,
replace “holon” in the above description by “holon-vison there are two distinct types of visonsanduv’. If one or the
composite.” On the other hand, if the system undergoes ather condensed, a transition occurs to CFSB or CBSF. The
transition to an unfractionalized phase, then the vison canemaining vison in CBSF “remembers” that it istavison.
escape since there are no deconfined spinons or holomdeanwhile the vison in CFSB remembers that it iw @
whose boundary conditions would be affected by its escapevison. However, if we take the system far from CBSBNF so

Of course, this experiment would simply be confirming that a bound state can form between and a holon and also
the result which we arrived at in the previous section: thabetween a and a spinon, then now looks like av’ and the
the CBSF and CFSB phases can be adiabatically continuatistinction between the two phases is blurred. Combining
into each other, particularly in the neighborhood of a conventhis reasoning with that of the previous section, we propose
tional singlet superconducting phase. the phase diagram of Fig. 6.

Let us now consider a more complicated flux-trapping
experiment in which, as an intermediate step, we take the
system through the higher-level fractionalized phase,
CBSBNF(see Fig. 1 This phase has two distinct vison ex-  When electrons interact strongly, a number of interesting
citations. One of these visons can be envisioned as a descgshenomena are known to occur, including unconventional
dent of ther vison of the CBSF phase; we will refer to this superconductivity and magnetism. As we have seen in this
asv. The other can be envisioned as a descendent ofrthe paper, many of the physical settings which give rise to these
vison of the CFSB phase or as a by-product of the furthephenomena also have the potential to exhibit electron frac-
fractionalization of the fermionic spinon of CBSF; we will tionalization. Different theoretical approaches, adapted to
refer to this aw’. A direct transition from CBSBNF to the these specific systems, suggest seemingly different fraction-
CBSF phase occurs when the visariscondense while that alized phases. It is natural to ask if these phases are truly
from CBSBNF to CFSB occurs when the visansondense. different and, if so, what their organizing principle is.

The presence of two distinct visons in the CBSBNF phase In this paper, we have pursued the itiéthat a crisp and
distinguishes it from the CBSF and CFSB phases—indeed itoherent way of understanding quantum number fractional-
will have a ground-state degeneracy of 16 on a torus. ization is provided by the concept tfpological orderintro-

VIIl. DISCUSSION
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Singlet SC We have also discussed the possibility of quantum disordered
\_/ phases in which the condensed topological objects are the
hc/2e vortex—meron composites, but nlot/2e vortices or
merons separately. Such phases have spinons and holons
bound together but deconfined from the neutral Fermionic
quasiparticles.

An important issue discussed in this paper is whether one
can distinguish the phases obtained by quantum disordering
the spin and charge sectors of the system, for example, the
phases CFSB and CBSF of the quantum disorderedve
superconductor. The simplest choice seems to be the identi-
fication of the spin excitation as a Fermionic or Bosonic
particle. This, however, is not a reliable tool. In tAgX Z,

FIG. 6. A schematic phase diagram indicating how the CBSFgauge theory formulation, both spinons and holons casry
CFSB, CSBNF, CBSBNF, and conventional singlet superconducteharges, so a bound state oZ a vortices with either one of
ing phases might fit together. The thick lines are first-order phaseghem (this can also be thought of as attaching Wilson loops
transitions and the thin lines are second-order phase transitions. tg the particleswill change its statistics from Fermionic to
Bosonic or vice vers&.*24352n the deconfining phase such

anyon superfluid&® chiral spin state&! and short-range vortices are gapped. However, if a bound state betwegyn a

resonating valence bond spin staf®¥Ve presented two ap- Charge carrying particle and 2, vortex forms, this bound
proaches for understanding such topological order. The firstt@t® may have a lower energy than the original particle. This
one relies on the recently developgsigauge theory of spin-  Means that in both CFSB and CBSF phases the lowest en-
charge separation, originally suggested for the Higreu- ~ €rgy spin- or charge-carrying excitations can exist as either
prates, and generalizes it taZax Z, theory to include pos- Posons or fermions. The subtleties discussed above lead us to
sible fractionalization of spin and charge quantum numbersconsider flux-trapping experiments of the type discussed in
Some of the interesting fractionalized phases are: CBsBec. VII. Combining all of these considerations, we outlined
(Bosonic holons and Fermionic spingn€FSB (Fermionic  one scenario in which CBSF and CFSB phases can be sepa-
holons and Bosonic spinopsCSBNF (bound Bosonic ho- rated by a first-order transition which terminates at a critical
lons and spinons and neutral fermignsand CBSBNF point. On the other hand, one can go from CBSF to CFSB
(Bosonic holons and spinons and neutral fermjoAsy one  through CBSBNF phase by two continuous transitions. Thus,
of these phases can be further characterized by possible brib-this scenario is correct, the relation between CBSF and
ken symmetries with conventional order parameters. Each a€FSB is somewhat similar to that between liquid and gas
the fractionalized phases corresponds to a different deconfipphases. We, however, defer offering any definitive conclu-
ing phase of the pur@,XxZ, gauge theory and will have sion.
appropriate topologicalZ, vortices, visons, as finite-energy  Spin charge separation in one-dimensional systems is fun-
excitations. damentally different from its two-dimensional counterpart,
An alternative picture of fractionalization which is also since it does not involve topological order. Another non-
presented in this paper uses the language of quantum disdrivial realization of electron number fractionalization which
dered superconductors and magnets. When topologicé analogous to that presented here can occur in multicom-
ordering—defined by the suppression of certain defects—ponent quantum Hall systems and was discussed in Refs. 40
occurs, the Goldstone modes associated with various brokeand 53.
symmetries can screen the corresponding quantum numbers Another avenue for further research is the investigation of
of the Fermionic quasiparticles. In this way, these quasiparquantum-disordered states of triplet superconductors with
ticles can be bleached of some or all of their quantum nummore complicated spin structures appearing in some of the
bers. This may be implemented mathematically wittl)U superfluid phases ofHe. We expect that these will share
particle-vortex duality in both the charge and spin sectorssome features of noncollinear spin-density waveSurther
We arrive at essentially the same picture as that ofahe exotic phases are likely to occur upon quantum-disordering
X Z, gauge theory. In those insulating phases in wiiicte ~ states with multiple order parameters. We have considered
vortices are condensed, charge is bound to the Fermionigne of the simplest cases of this—antiferromagnetism and
quasiparticles. Wheic/2e vortices are gapped andc/e  superconductivity—but there are more complicated possibili-
vortices are condensed, charge carrying holons can propagdies, involving incommensurate charge and/or spin order.
separately from the electrically neutral Fermionic quasiparti- In addition to the phases CBSF and CFSB that have ap-
cles. In the spin sector, we can consider either meron opeared in the literature before, we proposed the possibility of
skyrmion (which carry twice the topological charge of two additional quantum number separated phases in these
meron$ condensation, with gapped merons in the latter casesystems: phase CSBNF in which the excitations are a spin-
In the former case, spin is confined to the Fermionic quasid/2, chargee boson, a neutral spinless fermion and a vison
particles, and in the latter case spinons will exist as indeperand phase CBSBNF with a chargepinless boson, a neutral
dent objects, deconfined from the Fermionic quasiparticlesspin 1/2 boson, a neutral spinless fermion, &nd distinct

CbSbNf

duced in the context of fractional quantum Hall liqufds,
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visons, simultaneously condensed e vortices and skyrmi- that the quantum disordered phases may have separated

ons. guantum numbers, depending on the topological order, which
The possibility of a higher S@) symmetry which unifies can be characterized by specifying the nature of the finite-

d-wave superconductivity and antiferromagnetism has beeRnergyZ, visons.

suggested for the highz cuprates and organic supercon-

ductors in Ref. 55. In the SRuQ, materials, a similar sym- ACKNOWLEDGMENTS

metry has been proposed in Ref. 56 which combjnesve

superconductivity and ferromagnetism. An effective model _ *: ; ) ;

for the coupling of quasiparticles to a fluctuating Gorder ~ Pitality during the Winter 2000 Conference 50 Years of

parameter has been derived in Ref. 57. In this model holon§ondensed Matter Physics,” where some parts of this work

and spinons are not segregated into independent quasipaff€'® initiated. H.Y.K. and Y.B.K. thank ITP, University of
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SQ(5). Such spinors are spin doublets and carry char§&® ter for Physics for its hospitality during the summer Work_-
There are also neutral fermions which carry no quantunplOP in 2000. We also thank Aspen Center for Physics for its
numbers. One can see a striking resemblance between thd&@sPitality during the winter workshop in 2001. Useful dis-
excitations and the excitations in the phase CBSBNF. Thi§ussions with M.P.A. Fisher, E. Fradkin, S. Kivelson, and M.
suggests the interesting possibility that the restoration of the'drist are gratefully acknowledged. This work was sup-
SO(5) symmetry in models with strong quantum fluctuationsPOrted by the Harvard Society of Fellow.D.); NSF under
manifests itself not in the existence of a bicritical point on9rant Nos. DMR-9983544(C.N) and DMR-9983783
the phase diagram, but in the appearance of a specific forfyY-B-K.); the Alfred P. Sloan Foundatiof€.N. and Y.B.K);
of quantum number separation of the electrons. A detailed’® Department of Energy, supportgd pary by funds pro-
discussion of quantum disordering phenomena in modelg'de_d by the University of California for the_ conduct of dis-
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Abelian Berry’s phases involved in the description of(S0O (H.Y.K.). The work of T.S. at the ITP, Santa Barbara, was
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complicated ones alluded to above, have potential applica-
tion to a variety of materials, including not only the APPENDIX A: KONDO LATTICE MODEL

cuprates? but also SyRuQy;?! heavy fermion superconduct-

ors, such as Celf* and organic superconductors, such as In this appendix, we p_rovide some of the d_etails ofme_
K-(ET)ZCL{N(Csz]C| 23 All of these compound,s have dauge theory reformulation of the Kondo lattice model dis-
magnetic(in come cases incommensurgpdases in proxim- cusse_d n S_ec. ll. Consider the Hamiltonian n Et) As In .
ity to p-wave ord-wave superconducting states. It is possiblethe discussion of the pure exchange Hamiltonian, we first

that pressure, chemical substitution, magnetic field, etC_r'eplace the spin operatd8, by the boson operatobs,

might drive a transition into one of the phases described here € *'- The exchange Hamiltonian takes the form of E&).

in which the magnetism and the superconductivity are disor2nd the Kondo coupling takes the form of EQ4). The

dered by quantum fluctuations. electron hqpplng term is unaffected. Wg now change vari-
Ideas presented in this paper should also apply to BoséP!es to spinon and holon operators as in Egk.(26), and

Einstein condensates of spinor bosons, such as alkali atonjg”)- The termsH;,Hy, andH,, are now given by Eq429),

23Na and 87Ru which have a hyperfine spi=1. For ex- (25), _and (9), respectively. In the presence of the Kond_o

ample, when restricted dimensionality or quantum fluctuaouPling between the local moments and the conduction

tions destroy the spin ordering we expect to find condensa€'€Ctrons, the total2 component of thespin at each site is

tion of pairs of atoms into a global spin singlet state, and

when quantum fluctuations in the charge sector destroy the n,+ Ec;ro_zcr. (A1)

E.D. and C.N. thank Aspen Center for Physics for its hos-

U(1) phase ordering we can find states characterized by a 2
spin nematic order. Some of these phenomena have been i )
discussed in Ref. 25. We therefore define the total spinon number
To summarize, we have studied the possibility of fraction- tot + 5
alization in systems with ordering tendencies in the charge N,"=2n,+c, oC;. (A2)

and spin sectors, including Kondo latticgsywave supercon- tot - i )
ductors, and systems with simultanectisvave supercon- NOté thatN,™is conjugate to the phasé, c:ftthe spinon
ducting and antiferromagnetic fluctuations. In the case ofield. We will work with the operatorsz(,Nr‘z e r)
p-wave superconductors we find that the rich internal strucinstead of the original electron and local si8p operators.
ture of their order parameter allows for the existence of thelhis change of variables, however, introduces some
following quantum disordered phases: a chargesihglet redundancy—the Hilbert space of states on which the holon
superconductor, a spin singlet insulator, and a spin nematiand spinon fields operate is larger than the physical set of
insulator. For both thep wave superconductors and the states. This may be seen by noting that with the definition
d-wave superconductor/antiferromagnet systems, we findbove, the operatch:lﬁOt must satisfy
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N°t—clo?c, =even. A3 €J t, 2
' ( ) S|+S||:? Z (Z:Zr/+%7]:nr/+H.C.)
From the definition of the holons, it follows thaf o’c, (rr’)
Zﬂ:UZﬂr Furthermorenro 7, has the same parity as t, 2
7! m, . Thus we have the constraint +(z?z,,—5 7 e — H.c.) . (A10)
NI°'— "7, =even. (A4)

We may now decouple each of these two terms witleal
The Hamiltonian needs to be supplemented with this conHubbard-Stratanovich field to write
straint to correctly represent the original mode&fore the
change of variablgs

It is useful to rewrite the exchange and Kondo parts of the e (StS= J [DxDple” Gx+S), (A11)
Hamiltonian as follows:

T el T,/
HK+Hex_JKE (77r177r¢+H c)— J(;) (22 22+H o SX=? z szr,—Zer,(z;rzr,-F%n;rr;r,—kH.C.),
(")
U 2 Ttz (A12
7 2 (N=D)?=U2 Ne(n0"7)

el t,/
Sp=7 2 przr,—Zp”r<Z:rer—% ﬂ:ﬂrr_H.C.).
+ E (77r0- 77!’ (AS) (') (A13)

The last term is an interaction between the holons. Clearl\ote thaty,, = x,/, while p,,»=—p,,,. We now consider
this term cannot affect issues of confinement of the holongvaluating they,p integrals in a saddle-point approximation.
with the spinons. We will therefore drop it for the presentLooking for uniform saddle points, we write
discussion. The last but one term represents an interaction
between the spinon (_jen_sny and th_e holons. We_ again expect (X1} =Xo; {ps')=po. (A14)
that such an interaction is also unimportant for issues of the

stability of fractionalized phases. We will therefore drop thisnote that a nonzero value @f, requires specifying direc-

too. tions for all the links of the lattice. The saddle-point equa-
We may now derive a functional-integral representation oftlons are

the system, proceeding as in Ref. 7. The resulting action is

S ST"FS.,,"'SB- | (A6) X0:<Z;rzr’ 2J 7, 77r’+H C> (A15)
Here S, represents terms involving coupling along the
(imaginary time direction. This and the Berry phaSg are
exactly the same as in Ref. 7. The spatial part of the action is N ter 4
Po= ZrZ,/—E e —H.C.) . (A16)
S=S+S+S,, (A7)
Note thatp, must be pure imaginary as it is the expectation
S= —52 trs [z z,,+(77r 17t 77r177r'1)+H cl, value of an anti-Hermitian operator. With nonzesg, the
(rr’) saddle-point action therefore beconwsnplex—this breaks
time-reversal symmetrgand possibly various lattice symme-
Sc=+eJ > (,7;rT 7, +C.C), tries due to the need to specify directions to the link¥e
restrict ourselves to time-reversal invariant saddle-point so-
lutions, and therefore sety=0. The resulting saddle-point
S = — el 2 (Zrzfzr2+ H.c). (A8) action then preserves all the global symmetries of the origi-

(e nal model. However, it does break the lo@&l symmetry
) . introduced by the change of variables to the holons and the
We now combine the term§, andS,, and rewrite them as  gpinons, This can be remedied by keeping a particular set of

2 fluctuations about the saddle point, namely those associated
—eJ 2) vl 7+ 2J (”r et 77r177r )| +H.c. +0O(n%). with a change in the sign of the fields, :
re

A9

(A9) Xrr’ = X0Orr’ (A17)
The last term is a four-holon interaction which we will ig-
nore on the grounds that it cannot affect issues of fractionalwith o,,,==*1. The o,» may be identified as the spatial
ization. It is convenient to further rewrite the expressioncomponents of @, gauge field. We thus finally arrive at the
above as follows: action in Eq.(30).

155103-21



DEMLER, NAYAK, KEE, KIM, AND SENTHIL PHYSICAL REVIEW B 65 155103
”s=f d2x d7 '[9, —vpriidx—vaT(i,) ¢
+f d*x dr Paa(X) 5ab530');ﬁl//bﬁ(x)

1
+ EJ A2 dr( [ 70,0 — 2AST — v dyp+ 20 AS]

+ l,bT[O'Z&TG— 2AI = v T 0%, 0+ 20 TP 0PAL ] ).
(B5)

This describes the same coupling of the quasiparticle cur-

rents to the fluctuations of charge and spin as in (&),
FIG. 7. Order parameter for dewave superconductor. Gapless

excitations exist akp = (+kg,0), (0Kg).

S-S+ [ axdragae-A)+ 3 e A

APPENDIX B: QUANTUM NUMBER SEPARATION a5t T gt I
+ —AY)+ -
IN SYSTEMS WITH d-WAVE SUPERCONDUCTING JO(Z 9+ AT) Yz 02— AC)] (B6)
AND ANTIFERROMAGNETIC FLUCTUATIONS with
by2lglodal fermions in a-wave superconductor are described W=y 'y, I=—vey'y,
I =ytoty, IT=—veyto?y. (B7)
NSf:J’ d2x dr x'[9,— A 72— v i 9X+UFAX—A0F‘5 Quantum disordering of the superconducting and antiferro-
’ magnetic orders in EqB6) may now be achieved by con-

densing vortices and merons with the possibility of five
phases similar to phases 3A-3E in Sec. IV D:

(A) Spinons and holons confined. No quantum number
where the electron operatoxs, are defined as separation.
(B) Spinons unbound and holons glued to fermions.
(C) Holons free and spinons bound to fermions.

+va;’ﬁ(;'TZ—vATS eis¢}(i&y)]x, (B1)

Ch ki

X11 (D) Spinons and holons bound together, decoupled from
N ', & fermions.
Yaa(K)= Gl F (B2) (E) All excitations decoupled. Free holons, spinons, neu-
X12 Cke+kl tral fermions.
X22 —cr.
L ke kT APPENDIX C: ADIABATIC CONTINUATION
BETWEEN DIFFERENT PHASES OF A Z,XZ,
and the coordinate system was rotated in such a way that the GAUGE MODEL WITH MATTER FIELDS.
X axis goes along the nodal direction that we are considering

In the pureZ,X Z, gauge theory there are five phases that
are distinct and separated by phase transitions. A question
that we address in this section is whether this distinction
survives in the presence of matter fields.

(see Fig. 7.
Antiferromagnetic fluctuations are introduced via

- 21, 22 T) oz ..
Saf_J' de d°kd™ange_¢_ (o0 apChp+k+apt H-C. 1. Toy models

. . Let us begin with a simple model,
= f d®X d7 N(X) Xaa(X) €ab€ 1T ,pX0p(X), (B3)
s=-k. 2 I Uij_Kzz 11 Tij—ﬁz Tij TijUiVj
- . o o 0o 0O i
wheren=(cos#,sin6). (C1)
Spin and charge may again be decoupled by rotating the
fermions as in Eq(49), wherev;= =1 is an Ising matter field. To construct the full
phase digram of this model we consider several limiting
o cases. WherB=0 we have two independent gauge fields,
Xaa=€¢7"€"" g, (B4)  each of which has confining and deconfining phases. When
bothK, andK, are small we have a confining phase for both
with the result o and r, that has no extra degeneracy on topologically non-
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FIG. 8. Phase diagram of EqC1). Plane
ABCD corresponds tg8=0, EFGH to g=,
ADHE to K;=0, BCFG toK;=«, ABFE toK,
=0, and DCGH toK,=o. The pure gauge
model (3=0) has only two partially confining
phases (2 and 2') because not all the possible
lattice Maxwell terms are present. They are sepa-
rated by one first-order or two second-order

phase transitions for sma#l, but may be continu-
H 2 F ously connected for larges.

trivial manifolds and is labeled 1 in Fig. 8. Whéq is large  confining phases which appeared to be distinct for 0
andK, is small we have a phase that is confining folbut  (phases 2 and 2' in the ABCD plan¢ may be continuously
deconfining foro (phase 2 in Fig. 8). There is an analogous connected through a path that takes advantage of the finite
phase folK, large andK; small(phase 2 in Fig. 8 whichis  region of the phase diagram. It is important to realize that
confining for o and deconfining forr. When bothK’s are  our argument for the existence of a path connecting phases
large, we have a fully deconfining phase with degeneracy 2’ and 2’ does not depend on the details of how the phase
on a cylinder. WhetK ;=% (BCGF plane in Fig. Bthere are  boundaries in Fig. 8 are connected. One can always find a
no frustrated plaquettes far, so we can choose a gauge path which begins in phas€ 2approaches face ABFE, goes
where alloj;=1. The model is then the same as in Ref. 46up to EFGH, crosses to EHDA, and finally comes down to
and its phase diagram can be easily constructed. Vhen 2" without crossing the phase boundari#ss path does not
=0 (ADHE plane in Fig. 8 we find that integrating outr;; have to actually be on any of the faces and it may be suffi-
andv; only adds a constant to the action feland does not cient to be in their vicinity. It is interesting to note that in
affect the confinement-deconfinement transition which takethe cross section DBFH in Fig. 8 the phase diagram looks
place for the same value &f,, regardless of the value ¢. similar to a liquid-gas phase diagram, where the two phases
When B=« (EFGH plane in Fig. 8 we must have 2’ and 2 may be separated by a first-order transition or
[Inojj7;=1 on every plaquette, so we can choose a gaugeontinuously connected arond the critical point which termi-
whereaj ;=1 on every link. The fieldsr and = are iden-  nates the first-order line.

tical and there are only two phases, a confiriplgase 1and The real reason why phases@&nd 2 of the gauge theory

a deconfining(phase 2 with the transition determined by (C1) may be connected to each other is that both of them are
K;+K,. The full phase diagram may now be obtained byrelated to the Higgs phagehase 2 for the v; matter field.
connecting the lines on the faces of the cube in Fig. 8. It isThis may be explained by noting that in such a Higgs phase
immediately clear from this picture that the two partially visons of eithero or = are forbidden, but their composite is
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and Sk. Shaded figure shows a phase boundary
of the superfluid and insulating phases. Diagonal
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""""" horizontal shading to a boundary of SFhere is
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ing phases 2and 2’ without crossing the phase
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H F logical excitation: a bound state of and = visons that does
SF, not interact with the matter field. This has interesting impli-
T cation that we havéc/2e vortices that are bound to either
M / or 7 visons, and the two kinds of vortices are distinct.
D| 2 » |B // i We do not at this stage know what the generic phase

diagram for Eq(C2) in the K;K,3 cube is. One possibility
FIG. 10. Another scenario for a phase diagram of @) when  is shown in Fig. 9. As in the Ising case there is a way to
the pointM is exactly on the superfluid-insulator phase boundary.connect phases’2and 2’ continuously by going to finites.

As before, the shaded figure shows a phase boundary of the super- There is another qualitatively different phase diagram
fluid and insulating phases with diagonal and horizontal striping(ithout introducing new phasgwhere the poinM is at the

that correspond to Sfand Sk, respectively. In this case there is N0 phase boundary with the superfluid phase. This will remove
continuous path connecting phasesahd 2’ without crossing the e possibility of a continuous path between phasesud
phase boundaries.

2" (see Fig. 10

At this point we are unable to make a definite comment

not, so this phase should be related to the phases where these ot the validity of either of the scenarios shown in Fig. 9 or
visons are condensed separatéyt not simultaneously Fig. 10. We note, however, that this issue is amenable to

_ Note that this argument may no longer apply if the mattergy,qy by numerical or other means. Thus future work should
field carries a quantum number, and a Higgs phase breaks, -hje to settle this satisfactorily.

some continuous symmetry. Let us, for example, explore the - Anqther important model to consider is one in which the
model where the matter field is a6Y order parameter, matter field is Fermionic. An appropriate model is

S=—-K ij—K ij
l% 1;1[ 7ii 2% 1;[ i S=—K1§D: 1;[ oij—Kz%: 1;[ Tij—ﬁz O'ijTiji//illfj,
ij

C3
_’Biij: 0 7i;COS i — ¢;). (C2 (C3

where they’s are real fermions. Following the same kind of
In this case, the Higgs phase has superfluid order, and therarguments as before we find the phase diagram shown in Fig.

fore is fundamentally distinct from confined insulating 11. There is no Higgs phase for the fermions which leads to
phases. Thus we can no longer easily claim the equivalengghases 2 and 2' being distinct even for finites.
of the two phases in which either or 7 (though not both
fields are confining. ]

We can again attempt to construct a phase diagram fol- 2. Full Action
lowing construction on each of the outside faces of the cube. Let us now consider the actidi05 and ask how many
The ABCD plane is the same as in Fig 8. The BCGF planeruly distinct phases it has. The phase space of this model is
(Ky=92) will now have three phases: a confining and a dedarge and an explicit construction of the full phase diagram is
confining phases without brokeXY symmetry(phases 2  difficult. We note, however, that the charge sector of the
and 4, and a phase with brokexY symmetry’® WhenK; theory is precisely the same as EG2). Consequently, if in
=0 (ADEH plang we have four phases. This is obvious Eqg. C2, the two phases 2 and are smoothly connected to
from the fact that when we integrate omf we find thatr;; each other, they will necessarily be so for the full action as
and cosp; are decoupled from each other, and we have sepawell. If on the other hand, in EqC2), the two phases are
rate order-disorder and confinement-deconfinement trans#listinct, then that is evidendéhough not proofthat they are
tions. We therefore find two superfluid phases 8Rd Sk distinct in the full theory as well. Thus unambiguous deter-
that differ in their degeneracy on the nontrivial manifolda ~ mination of the phase diagram of E@2) will shed consid-
the cylinder it is 1 for SFand 2 for Sk). The origin of this  erable light on the important conceptual issue of whether
extra degeneracy for $Hs that it has a finite energy topo- CBSF and CFSB are distinct or not.
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While the distinction between CBSF and CFSB, if any, is 2K
subtle, it is very clear that they are both distinct from O+:J—ZC$(k)CI(—k+Q)- (D2)
CSBNF. One cannot find any vison attachment that would (2m)
map the spectrum of CSBNF to either CBSF or CFSB, whichin other words, the triplep, density wave and thp-wave
proves rigorously that it is a phase fundamentally distinctsuperconductor are related in precisely the same way as a
from the other two. charge-density wave and awave superconductor. In par-
To summarize the discussion in this section, we arguedicular, Hamiltonians with short-ranged interactions can be
that studies, numerical or otherwise, of simple models of th&onstructed for which both states are exactly degenerate;
form of Eq.(C2) should be extremely useful in deciding on Such Hamiltonians could describe a critical point between
the issue of whether CBSF and CFSB are distinct quanturf€Se two states. _ _ _
phases. One can, however, prove rigorously that CBSF and [N the tripletp, density wave state, there is no spin mo-
CFSB are fundmentally different from the other partially Ment(at any wave vector since the right-hand side of Eq.
confining phase of Eq(105 CSBNF. The other phases of (D1) vanishes upon integration ovér However, the spin-
Eq. (105): the fully confining phaséCSP and the fully de- nematic order parameter, which may be calculated from Eq.
confining phaséCBSBNR, will be distinct from any of the (D), is nonvanishing:
partially confining ones and from each other as may be seen 1 1 .
from their degeneracy on nontrivial manifolds. <SiSJ- - §5ij82> = §|<I>Q|2diaq2/3,— 1/3-1/3),

(D3)

whereS; is theith component of the total spin of the system.

In this paper, we have, for the most part, focused on stateldence this is the natural spin-nematic state which results
in which the electron is fractionalized. However, even thewhen ap-wave superconductor is quantum disordered by
transitions which do not lead to electron fractionalization areflux-hc/2e vortex condensation. The possibility of spin nem-
rather interesting. One would ordinarily assume that strongutic states in the context of highs cuprates has been pro-
quantum fluctuations will completely disordempavave su- posed in Ref. 62.
perconductor. However, as we pointed out in Sec. IV B, if When the spin degrees of freedom are disordered, but the
hc/4e vortex-r disclination composites are gapped, then thecharge remains ordered, the tripfetvave superconducting
spin symmetry can be restored without affecting the chargedrder parameter and the spin-nematic order parameter van-

alternatively, the superconductivity can be destroyed withoutShes; only the chargeetorder parameter is left. The con-
affecting the spin ordering. densation of merons causes the Fermionic quasiparticles to

Let us consider, first, what happens when fho(2e vor- be confined to spin. Once the merons have condensed, the

tices condense, but no other topological defects condensEOpOIOg'C"’II quantum number in the spin sector is no longer

Then the charged degrees of freedom are disordered, but tP{\ée” defined, so the flwhc/e vortex-r disclination com-

spin nematic order parameter should be undisturbed. Follow0S!eS become simple flixc/de vortices, as we would ex-

. . . . .pect for a charge-d superconductor. Said differently, the
ing the arguments of Ref. 61, a possible unfractionalized spi ; X

" . . : . meron condensate screens the spin topological charge of the
nematic insulating state {gn the notation of Ref. 6)la trip-

let b. density wave: flux hc/de vortex-r disclination composites, thereby making
Px y ' rendering them simple flukc/4e vortices. Remarkably, by
o — & cac . quantum disordering thepin sectorof a p-wave supercon-
(P (kT QD gp(k, D)= B agsink,a (01) ductor, we have changed tlhargeof its order parameter,
This state is related to thewave superconducting state by a which may, for example, lead to some unusual critical behav-
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