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We improve the theoretical estimates of the critical exponents for the three-dimensional Heisenberg univer-
sality class. We findy=1.396(9), »=0.71125), »=0.037%5), «=—0.1336(15),8=0.36893), and§
=4.7833). Weconsider an improved lattic¢* Hamiltonian with suppressed leading scaling corrections. Our
results are obtained by combining Monte Carlo simulations based on finite-size scaling methods and high-
temperature expansions. The critical exponents are computed from high-temperature expansions specialized to
the ¢* improved model. By the same technique we determine the coefficients of the small-magnetization
expansion of the equation of state. This expansion is extended analytically by means of approximate parametric
representations, obtaining the equation of state in the whole critical region. We also determine a number of
universal amplitude ratios.
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I. INTRODUCTION AND SUMMARY For this purpose, we consider an improved lattice Hamil-
tonian that is characterized by the fact that the leading cor-
According to the universality hypothesis, some features ofection to scaling igapproximately absent in the expansion
continuous phase transitions—for instance, critical exponentsf any observable near the critical point. Moreover, we com-
and scaling functions—do not depend on the microscopibdine Monte Carlo(MC) simulations and analyses of high-
details of the systems, but only on a few global propertiestemperaturéHT) series. We exploit the effectiveness of MC
such as the space dimensionality, the range of interactiosimulations and finite-size scalif§S9 techniques to deter-
and the symmetry of the order parameter. These features dstine the critical temperature and the parameters of the im-
fine a universality class. In this paper, we consider the thregproved Hamiltonian$?—*"and the effectiveness of HT meth-
dimensional Heisenberg universality class, which is characeds to determine the critical exponents for improved models,
terized by a three-component order parameté(3) especially when a precise estimate of the critical point is
symmetry, and short-range interactions. available. This approach was already applied to the three-
The Heisenberg universality class describtee critical  dimensional Ising and XY (Refs. 39 and 3Buniversality
behavior of isotropic magnets, for instance the Curie transiclasses, achieving a substantial improvement of the estimates
tion in isotropic ferromagnets such as Ni and EuO, and obf the universal quantities that describe the critical behavior,
antiferromagnets such as RbMpft the Nel transition such as the critical exponents and the scaling equation of
point. In Table | we report some recent experimental resultsstate.
It is not a complete review of published results, but is useful We consider a simple cubic lattice and the nearest-
to give an overview of the experimental state of the art. Inneighbor¢* lattice Hamiltonian
the table we also included results for the well-studied doped
manganese perovskites |LagA,MnO;3, although the nature o ) R
of the ferromagnetic transition in these compounds is still H¢4:—,82 ¢X-¢y+2 [H2+N(PZ-1)2], (D)
uncleart® The Heisenberg universality class also describes o) X
isotropic magnets with quenched disorder. Indeed, siace R
<0, the Harris criterion states that disorder is an irrelevaniwvhere ¢, is a three-component field. As shown in Ref. 37,
perturbation. The only effect is to introduce a correction-to-Hamiltonian (1) is improved forA =\*~4.4(7). Here we
scaling termjt|*ds with A 4= — . The experimental results extend the simulations of Ref. 37, obtaining a more accurate
confirm the theoretical analyst8 as can be seen from Table estimate ofA*, \* =4.6(4), andprecise estimates of the
[l (older experimental results with a critical discussion werecritical 8. for several values ok. The analysis of the MC
reported in Ref. 24 The prediction forA 4 was checked in  FSS results obtained for the improved lattice Hamiltonian
perturbative field theo and experimentall§?-18:1° already provides precise estimates of the critical exponents.
Beside the exponentg, B, and &, there are also a few As shown in Refs. 38, 39, and 36, an additional increase in
estimates of the specific-heat exponentin most of the precision can be obtained by combining improved Hamilto-
cases obtained from resistivity measurements:—0.10 in  nians and HT methods. For this purpose, by using the linked-
Fe and NP’ a=-0.12(2) in Eu0® «=-0.11(1) in cluster expansion technique, we computed HT expansions of
FeNigy_«B1oSi,t” anda=—0.11(1) in RbMnk.® several quantities and analyzed them using the MC results
The aim of this paper is to substantially improve the pre-for A* and 3.. The final results significantly improve those
cision of the theoretical estimates of the critical exponentsobtained from the MC simulation. Moreover, they substan-
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TABLE |. Recent experimental estimates of the critical exponents for Heisenberg systems.

Material y B S
Ref. 2(1980 Ni 0.35414)
Ref. 3(1981) Fe 0.3675)
Ref. 4(1995 Ni 1.34510) 0.39510) 4.356)
Ref. 5(1995 Gd,BrC 1.3928) 0.3655) 4.8025)
Ref. 5(1995 Gd,IC 1.3708) 0.3758) 4.6825)
Ref. 6(1999 TI,Mn,04 1.315) 0.446) 4.6515)
Ref. 7(2000 Lag gL 1gMN0O; 0.3839)
Ref. 8(2000 Lag 9:=C& ogMNO; 1.395) 0.367) 4.7515)
Ref. 9(2000 Gd(0001 0.37615)
Ref. 10(2000 Gd,CuQ, 1.322) 0.341)
Ref. 11(2000 CaPho (liq) 1.425)
Ref. 11(2000 CgoPhy (s0)) 1.408)
Ref. 12(2000) GdS 0.382)
Ref. 13(200)) Cro, 1.431) 0.3715)
Ref. 14(2002) Lay Ca MnO; 1.45 0.36

tially improve those obtained using long@1 order$ series In Table Il we compare our results with the most precise
for the standard Heisenberg mod®2l. theoretical estimates obtained in recent years. A more com-
In Table Il we report our results for the critical expo- plete list of results can be found in Ref. 56. The results we
nents. We give the estimates obtained from the analysis ajuote have been obtained by Monte Carlo simulations, from
the MC data alone and those obtained by combining MC anthe analysis of the HT series for the standard Heisenberg
HT techniques—they are denoted by MTHT, where the model, or by field-theory method&T). The MC results
“1” refers to the fact that we are considering an improved were obtained by applying FSS techniques to different
model. The exponent can be derived using the hyperscal- Hamiltonians. References 42-44 studied the standard
ing relation a=2—3v, obtaining a=—0.1336(15). We O(3)-vector Heisenberg model, Ref. 37 the improvét
would like to stress that the good agreement between the M@odel, and Ref. 41 an isotropic ferromagnet with double-
and HT estimates is not trivial, since the critical exponentsexchange interactiom$.The HT results of Ref. 40 were ob-
are determined from different quantities and limits. Indeedtained analyzing the 21st-order HT expansions for the stan-
the MC estimates are obtained from the analysis of the finitedard O(3)-vector model on the simple cubisc) and on the
size behavior for the sizé —« at the critical pointg3 body-centered cubi¢bco) lattice. The FT results of Refs.
= B., While the HT results are derived from the singular 46—-51 were derived by analyzing perturbative expansions in
behavior of infinite-volume quantities g&— .. different frameworks: fixed-dimension expansi@ixth- and

TABLE II. Recent experimental estimates of the critical exponents for Heisenberg systems with quenched

disorder.
Material y B )

Ref. 17(1994 FeyoNioBi1oSi 1.38712) 0.37§15) 4.50(5)
Ref. 17(1994 FesNig/Bi1oSi 1.38612) 0.36715) 4.50(5)
Ref. 17(1994 FegNig Bi;oSi 1.38614) 0.36Q15) 4.864)
Refs. 18 and 191995 Fe,gNigP14Bs 1.38610) 0.36710) 4.775)
Refs. 18 and 191995 FeyoNisP14Bs 1.38510) 0.3645) 4.795)
Ref. 20(1997 FeyZrg 1.3834) 0.3664) 4.755)
Ref. 20(1997) FeyCoZryg 1.3855) 0.3686) 4.80(4)
Ref. 20(1997) FeyC0,Zr10 1.3896) 0.3635) 4.81(5)
Ref. 20(1997) Fe3CogZry 1.3866) 0.3705) 4.845)
Ref. 21(1999 Fe, gMny 1Si 1.54320) 0.40860) 4.747)
Ref. 21(1999 Fe, sMn; S 1.27460) 0.38310) 4.4519)
Ref. 22(2000 FegeMn,Zrio 1.381 0.361

Ref. 22(2000 FesoMngZrg 1.367 0.363

Ref. 23(2001) Fey,MngZryo 1.373) 0.359 4.814)
Ref. 23(2001) Fe,,Mn, 2t 1.395) 0.361 4.863)
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TABLE lIl. Estimates of the critical exponents. See the text for the explanation of the symbols in the second column. We indicate with
an asterisk ) the estimates that were obtained using the relatiprg2— ) v, 2B8=v(1+ ), and8(1+ »)=5— 7.

Ref. Method y v 7 B )
this work MC+ IHT 1.396Q9) 0.71125) 0.03785) 0.3689(3) 4.783(3)
this work MC 1.3957(22) 0.711311) 0.03786) 0.3691(6) 4.781(3)
37 (2000 mMC 1.393(4) 0.71Q02) 0.038@10) 0.3685(11f 4.780(6)
41 (2000 mMC 1.390930) 0.694938) 0.353%30)

42 (1996 MC 1.396(3) 0.712814) 0.041316) 0.3711(9¥ 4.762(9)
43 (1993 MC 1.389(14f 0.7046) 0.0272) 0.362(3) 4.842(11¥
44 (1991 mMC 1.390(23f 0.7049) 0.0317) 0.364(5) 4.82(4)
40 (1997 HT sc 1.4063) 0.7162) 0.036(7) 0.3710(13§ 4.79(4)
40 (1997 HT bcc 1.4023) 0.7142) 0.036(7) 0.3700(13§ 4.79(4)
45 (1993 HT 1.401) 0.71210) 0.03(3)" 0.368(6)

46 (2001 FT d=3 exp 1.388210) 0.70627) 0.035@8) 0.3655(5) 4.797(5)f
47 (1998 FT d=3 exp 1.38980) 0.707335) 0.0355%25) 0.366225) 4.79414)
48 (1991 FT d=3 exp 1.392613)[39] 0.70968)[22] 0.03744)

49 (1977 FT d=3exp 1.3864) 0.7053) 0.0334) 0.3645%25) 4.80822)
47 (1998 FT e-exp 1.3829) 0.704555) 0.037%45) 0.365%35) 4.78325)
50 (1998 FT e-exp 1.39 0.708 0.037 0.367 4.786
51 (2000 FT (d—2)-exp 0.69510)

52 (19849 SFM 1.4Q@3) 0.71520) 0.0447) 0.37311) 4.75(4)
53 (2001 CRG 0.74 0.038 0.37 4.78
54 (2001 CRG 1.374 0.704 0.049 0.369 4.720
55 (1996 CRG 1.465 0.747 0.038 0.388 4.78

seventh-order series; see Refs. 58 any] é&xpansionto  rectly related to the zero-momentumpoint renormalized
O(€®), see Refs. 59 and $0and d—2) expansion(to  couplings, which are determined by analyzing their HT ex-
O[(d—2)*]; see Refs. 61-83We quote two errors for the pansion. These results are used to construct parametric rep-
results of Ref. 48: the first onén parentheseds the resum- resentations of the critical equation of state which are valid
mation error, and the second ofii@ brackets takes into  iN the wh.olle critical rggion, satisfy th_e correct analytic prop-
account the uncertainty of the fixed-point valgé of the  erties(Griffiths’ analyticity), and take into account the Gold-
coupling, which was estimated to be approximately 1% inStone singularities at 'the coexistence curve. From our ap-
Ref. 48. To estimate the second error we use the results doximate representations of the equation of state we derive
Ref. 47, where the dependence of the exponents/oris estimates of several universal_ amplitude ratios. Moreovgr, we
given. The results of Ref. 52 were obtained by using thdPresent several results and d|_fferent fprms of the equation of
so-called scaling-field methd$FM). References 53—55 and State that can be compared directly with experiments. In par-
64 presented results obtained by approximately solving corficular, we can compare with the experimental results of
tinuous renormalization-grou{€RG) equations for the aver- Refs. 17, 20, and 6, finding good agreement.

age action, which is approximated to lowest and first order of "€ Paper is organized as follows. In Sec. Il we present

the derivative expansion. We also mention the HT results oPUr MC results. In Sec. Il we present our results for the
Ref. 65: they performed a direct determination of the expo_crmcal exponents obtained from the analysis of the HT series

nenta obtaininga=—0.11(2) and—0.13(2) on the sc and for the improved HamiltoniapEqg. (1)]. The equation of state

bee lattices. Reference 66 computed the critical exponentS discussed in Sec. V. We determine the small-

for a Heisenberg fluid by a canonical-ensemble simulationMagnetization expansion coefficients in Sec. IV A, give an

Depending on the analysis method, they foundy 1/ approximate parametric representation of the equation of
=1.401), 1.3%1), B/v=0.542) 05'2(1) and /v state in Secs. IVB and IV C, compute several amplitude
_ 1:9(13)’ 1_é7(3)_ Overall. all estimates are in substantial atios in Sec. IV D, and compare the theoretical results with

agreement with our ME& IHT results. We only note the ap- experimental data in Sec. IV E. Details are reported in the

parent discrepancies with the MC estimatesaff Refs. 42 ﬁ;lré?endiTtes. Ig Apxendixd_A éve preselnt_an fir;alyﬁil:_; of _the
and 43, and with the FT results of Ref. 46. However, the'~ '€SU'S and in Appendix  an analysis of the SEres.

reliability of the error bars reported in Ref. 46 is unclear: | "€ expressions of several amplitude ratios in terms of the

indeed, Ref. 47 analyzed the same perturbative series, afgrametric representations are reported in Appendix C.

reported much more cautious error estimates. Il. MONTE CARLO SIMULATIONS

We also present a detailed study of the equation of state.
We first consider its expansion in terms of the magnetization The present MC simulations extend those of Ref. 37. Here
in the HT phase. The coefficients of this expansion are diwe have considerably enlarged the statistics and added larger
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TABLE V. Final results for3. andR* from fits with ansat2). In parentheses we give the statistical
error, and in brackets the error due to the corrections to scaling.

R Z,1Z, EonglL Uy Us
R* 0.19441)[4] 0.56441)[2] 1.13941)[2] 1.42072)[10]
Be 0.686239010)[12]  0.686238611[6]  0.686236517)[12]  0.686236917)[19]

lattice sizes. Moreover, we have considered an additional Then we locate.* by studying the scaling corrections to

quantity in order to improve the control over systematic er-5 quantityR defined in terms of two dimensionless ratRs
rors. This way, we can increase the accuracy bfand give andR,. To defineR, we fix a numbeR, ; which should be a

e e O . 0000 cppromaton 8 s Ref. 3o, Then, or a gven
9 i value of A andL, we determineg3;(L,\) from

ods, see Ref. 36. Details are reported in Appendix A.
We simulated theO(S)—_symmetric_qb4 model_(l)_at N Ry(L,\,B1)=Ry;. (3)

=4.0, 4.5, and 5.0 on a simple cubic lattice with linear ex- ) ) ) ) ]

tensionL in all directions. We measured the Binder param-In our analysis g is determined by taking eitheZ(/Z,)

eter U,, its sixth-order generalizatioys, the second- = 0.1944 or €;n4/L);=0.5644. Note thap; approacheg .

moment correlation length,,g, and the raticz,/Z,,, where @S

Z, is the partition function with antiperiodic boundary con- _ —1

ditions in one of the three directions aig the correspond- Bi=Bet Gl @

ing one with periodic boundary conditions in all directions. where the prefactoC; depends on the choice &;¢. In

The number of iterations for each lattice size and valuk of particular, ifR;¢=R? , thenC;=0 and the leading correc-

was approximately 10for L=6, 7, 8, 9, 10, 11, 12, 14, 16, tions are proportional th. ~ "~ .

18, 20, and 22, approximately 46or L=24, 28, 32, 36, 40, Next we defineR by

and 48, and (1-4Y10° for L=56, 64, 80, and 96. With

respect to Ref. 37, we have added lattice sizes for all three E(L,)\)ERZ(L,)\,I[;f)_ (5)

values of\ and considerably increased the statistics. In total .

the whole study took about four years on a single 450-MHZHere we take eithed, or Ug asR,. Below, we often refer to

Pentium Il CPU. R asR; atR; ;. Up to subleading correction® behaves as
In the first step of the analysis, we compydg and the _ _ -
fixed-point value of the dimensionless rati@% for A =4.5, R(L,M)~R*+c(M)L™. (6)

using the standard cumulant crossing method of Binder. |

particular, we fit our data with the ansatz Yhe optimal value\* is obtained by solving?()\)=0.

We obtain\* =4.6(4),4.7(8),4.7(8), and4.6(8) fromU,
R*:R(L,,Bc), (2) at (Za/Zp)f2019441 U4 at (§2nd/L)f=0.5644, U6 at
(Za1Z,)1=0.1944 andUg at (§,,4/L);=0.5644, respec-
where R* and B, are free parameters. Our results are re-tively. As our final result we quote
ported in Table IV. Note that the four results f@. are
consistent within error bars. The statistical error&f ob- A" =4.6(4) (7)
tained fromZ,/Z, and &,,4/L is considerably smaller than from U, at (Z,/Z,);=0.1944.
that from U, and Ug. As our final estimate we takg. | a pf
=0.6862385(20), which is consistent with all four results.
In addition, we determing, for A=4.0 and 5.0. For this
purpose, we use ansaf), fixing L=96 and taking the val-
ues of R* from Table IV. Our results are summarized in
Table V. For both values aof, the results obtained from the

Finally, we compute the critical exponenisand » using
standard FSS methods. Usually, the exponeist computed
from the slope of a dimensionless raf®at 3.. Here, fol-
lowing Ref. 42, we replac@. by B;, which simplifies the
error analysis, and determinefrom the relation

four different choices oR* are consistent within error bars. IR —
As our final result we take that obtained frafy/Z,, since % =aL™". 8
it has the smallest statistical error. By

TABLE V. Results forg, at A\=4.0 and 5.0 using onl{. =96 and the ansat®(3.)=R*, whereR* is
taken from Table IV. In parentheses we give the statistical error, and in brackets the error due to the
uncertainty orR*.

A 2,12, EonalL U, Us
4.0 0.68438980)[ 15] 0.684388721)[14] 0.684389&31)[20] 0.684389&31)[26]
5.0 0.687563@1)[16] 0.687563%26)[15] 0.687565534)[20] 0.687564634)[26]
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We study the derivative of all four quantitied,, Usg, estimates. The error due to the uncertainty \oh is esti-
éng/L, and Z,/Z,, and fix B; by using either §;,4/L)¢ mated by considering the variation of the results when
=0.5644 or €,/Z,);=0.1944. We arrive at the final esti- changing the values of.

mate Using the results reported in Appendix B 2 for the analy-

sis atA=4.0, 4.5, and 5.0, we obtain
v=0.711311),

where the error includes both the statistical and the system-
atic uncertainty. _
The exponenty is computed from the finite-size behavior »=0.711115)[ 8] +0.00091 - 4.5). (14
of the magnetic susceptibility: The number between parentheses is basically the spread of
the approximants ak =4.5 using the central value @,
while the number between brackets gives the systematic er-
In addition, we also use a fit ansatz that includes a constaP" due to the uncertainty op.. Equations(13) and (14)
. also show the dependence of the results on the chosen value
background term: . : .
of N. The\ dependence is estimated by using the results for
X|ﬁf:C|—2_"+ b. (11 A=4.0 and\=5.0.
Using the MC estimata* =4.6(4), weobtain

vy=1.3958210)[ 18]+ 0.001%\ —4.5), (13

Xlg=cL®". (10

As before, we fixB; by setting either §,,4/L)=0.5644 or
(Za1Z,)¢=0.1944. Our final MC estimate is y=1.3959710)[ 18]{60}, (15

7=0.03786). (12) »=0.711205)[ 8]{36}, (16)

where the error due to the uncertainty afi is reported

Ill. CRITICAL EXPONENTS FROM THE IMPROVED between braces. Thus our final estimates are

HIGH-TEMPERATURE EXPANSION

As shown in the case of the Isiffgand XY universality y=1.396Q9), (17)

classes®®® the analysis of HT expansions for improved
Hamiltonians with suppressed leading scaling corrections v=0.71125), (18)
leads to considerably precise results even for moderatelyhere the uncertainty is estimated by summing the three
long series. In the present paper, the analysis of 20th-ordefrrors reported above.
HT eXpanSionS for the il'TlprOVaﬂ4 lattice Hamiltonian, i.e., Using the above_reported results f-piandv and the scal-
for A\=~\*=4.6(4), allows us to substantially improve the ing relationy=(2— 7) v, we obtainy=0.0372), where the
aCCUt’acy Of the estimates Of the Cl’itical eXponentS. As W%rror iS estimated by Considering the errors ;pmnd v as
shall see, the results turn out to be more precise than thosgdependent, which is of course not true. We can obtain an
obtained in Sec. Il. They also significantly improve thoseestimate of; with a smaller, yet reliable, error by applying
obtained from the analysis of longer seri@d ordergforthe  the so-called critical-point renormalization metfibtb the
standard Heisenberg modathich is recovered in the limit  series ofy and &2 This method provides an estimate for the
report the results of our analyses of the HT series. The details
are reported in Appendix B. 7v=0.0266%18) +0.00035\ —4.5). (19

We determiney and v from the analysis of the HT expan- o . .
sion to O(8%) of the magnetic susceptibility and of the Taking into account that™ =4.6(4), we find
second-moment correlation length. In Appendix B2 we re- _
port some details and intermediate results, so that the reader 7v=0.0266918)[14], (20
can judge the quality of our results without the need of perwhere the first error is related to the spread of the IAs and
forming his own analysis. They should give an idea of thethe second one to the uncertainty xh, evaluated as before.
reliability of our estimates and of the meaning of the errorsThus
we quote, which depend on many somewhat arbitrary
choices and are therefore partially subjective. 7n=0.03783)[ 2]. (22)

We analyze the HT series by means of integral approxi- . . . .
mants(lA's) of first, second, and third order. The most pre_Moreover, using the scaling relations, one obtains
cise results are obtained biasing the valuggfwvith its MC A
estimate. We consider several sets of biased IAs, and for a=2-3v=-0133419), 22
each of them we obtain estimates of the critical exponents. _
These results are reported in Appendix B 2. All sets of IAs 5= —77=4.7833), (23
give substantially consistent results. Moreover, the results are 1+7
also stable with respect to the number of terms of the series,
so that there is no need to perform problematic extrapola- _v _
tions in the number of terms in order to obtain the final p= 2(1+7])_0'368Q3)’ (24

144520-5
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where the error of3 has been estimated by considering theWe mention that the critical equation of state for Mwector

errors ofv and » as independent. model has been computed @& €) in the framework of the
e-expansiof® and to O(1/N) in the framework of the N
H 8
IV. CRITICAL EQUATION OF STATE expansior?

As our starting point for the determination of the critical
In this section we determine the critical equation of stateequation of state, we determine the first few nontrivial coef-
characterizing the Heisenberg universality class. The criticaficients of its small-magnetization expansion, by analyzing
equation of state relates the thermodynamical quantities ithe corresponding HT series for the improved Hamil-
the neighborhood of the critical temperature, in both phasesonian. These results are then used to construct parametric

It is usually written in the form representations of the critical equation of state which are
valid in the whole critical region. Then, from our approxi-
I:|=(Bc)‘5l\7l M2~ 1f(x), (25) mate representations of the equation of state we derive esti-
mates of several universal amplitude ratios. This method was
x=t(M/B)~ e, (26)  already applied to the Ising universality class in thPe@and

two dimensiong/ and to the three-dimensionlY univer-
wheref(x) is a universal scaling function normalized in such sality class’®3°
a way thatf(—1)=0 andf(0)=1, andB, andB are the

amplitudes of the magnetization on the critical isotherm and A. Small-magnetization expansion
on the coexistence curve: of the Helmholtz free energy
; 7829
M—BHY, =0, @7 We write the Helmholtz free energy 8¢
m3
M=B(—t)?, H=0, t<O. (28) AF:f(M)—Freg(MFaA(Z), (34)
Griffiths’ analyticity implies thatf(x) is regular everywhere wherem=1/¢, ¢ is the second-moment correlation length,
for x>—1. It has a regular expansion in powersxof 04 is the zero-momentum four-point coupling, and
- z=k|M|t™ 7, (35
_ 0yn
f(x)= 1+n§=:l fux", (29 where k is an appropriate amplitude ratio. The small-
magnetization expansion of the free energy corresponds to
and a largex expansion of the form the smallz expansion ofA(z),
o 1 1 1 :
— 2, 4 2]
F)=x7S fix 20, (30 A@)= 52+ 2+ 2, oo, (36
n=0
_ . which also fixes the normalizatiok of z. Correspondingly,
Moreover, at the coexistence curve, i.e., for — 15872 for the equation of state we obtain
f(x)~ci(1+x)2. (30 . 0FAM) M
f H=¥1WtB5F(Z), (37)
The nature of the corrections to the leading behavior at the M

coexistence curve is less clear, see, e.g., Refs. 70-73, and §fith F(z)=gA/Jz. Because of Griffiths’ analyticity/(M)

From the scaling functiori(x) one may derive many inter- pas g regular expansion in powerstdbr |M| fixed. There-
esting universal amplitude ratios involving zero-momentumg, o F(2) has the large expansion

guantities, such as specific heat, magnetic susceptibility, etc.
For example, the universal ratld, of the specific-heat am-

plitudes in the two phases can be written(sse, e.g., Ref. F(z)=z‘sk§=‘,0 Frz W (39
74)
The functionF(z) is defined only fort>0. Fort<0 the
AT () equation of state is expressed in terms of a different function
Uo= A o(—1) (32 which is however analytically related #(z) since the free
energy and the equation of state are analytic on the critical
where, in the Heisenberg case for whiell <« <0, isothermt=0 for H#0. The two functionsf (x) and F(z)

are clearly related,
X[X|*7%(0) | [x|*F"(0)

e()=———3 —[X (0 Z F(2)=Fgf(0), z=20x"F, (39
wherezy=KkB.

+ JXdy|y|“‘2[f’(y)—f’(O)—yf”(O)]. (33) In order to estimate the universal quantitigs andr;

0 from the corresponding improved HT expansidsee Ap-
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TABLE VI. Estimates ofg,, rg, andrg, obtained using various approaches.

IHT HT d=3 exp. e-exp. CRG
Ja 19.1310) 19.31(14), 19.2111) (Ref. 80 19.065) (Ref. 47 19.5512) (Refs. 81 and 82  22.35(Refs. 55 and 64
19.3416) (Ref. 82 19.06(Ref. 48
e 1.864) 2.1(6) (Ref. 83 1.880(Ref. 89 1.8679) (Refs. 81 and 8b 1.74 (Ref. 86

1.88432) (Ref. 8)

rg 0.6(2) 0.975(Ref. 89 1.06) (Refs. 81 and 8b 0.84 (Ref. 86

pendix B1, we essentially used the analysis described inn Ref. 73, i.e., for 6= 6,. Mapping (43) is not invertible
Ref. 36. Here we report only the final estimates when its Jacobian vanishes, which occurs when

9,=19.138)[2], (40) Y(9)=(1—62)m’(6)+2B6m(0)=0. (44)

(41) Thus parametric representations based on mapi8gare
acceptable only ifgy< 8, where 6, is the smallest positive
zero of the functionY ().
The functionsm(#) and h(#) are related to the scaling

where the error in parentheses is related to the spread of tfignction f(x) through
approximants and the second one in brackets to the uncer- 5 1
_1-0 {m(ao)} B

re=1.863)[1],

rg=0.6015)[5], (42)

m( 6)

tainty on\*, evaluated as before. Moreover, we obtained the X=
rough estimate ;= —15(10). In Table VI we compare our 0—1
results(denoted by IHJ with the estimates obtained using

other approaches, such as HT expansions for the standard m(6)]~°h( )

O(3)-vector model(HT), field-theoretical fixed-dimension f(x)={m} m (45)
perturbative expansionglE& 3 exp.), e expansions €-exp.),

and approximate solutions of continuous renormalizationThe asymptotic behavidEq. (31)] is reproduced simply by
group equationéCRG). All estimates are in good agreement, requiring that

Only the e-expansion estimate aj, is significantly higher )

than the IHT estimatéas already noted in Ref. 81, the error h(6)~(6o—6)= for 6— 6. (46)
may_be underestimatgdThe CRG estimates are much less e scaling functiorF (2) is obtained by

precise than the results of other methods.

z=pm(6)(1-6%)7,
B. Parametric representations of the equation of state

. . . . - _ n2\—B6
In order to obtain approximations of the equation of state F(z(0))=p(1= 6% "*(6), (47)
valid in the whole critical region, we use parametric repre-ynere p may be taken as a free paraméfet 8.5
sentations that implement the expected scaling and analytic

; 48789
properties. We writd C. Approximate polynomial representations

M =myR’m( ), Following Ref. 78, we construct approximate polynomial
parametric representations that have the expected singular
t=R(1- 6?), behavior at the coexistence curi@oldstone singularityand
match the known terms of the smalkexpansion of(z) [cf.
H=h,RPh(6), (43) Egs.(36) and(37)]. We consider two distinct approximation

schemes. In the first one, which we denote byhf\9) is a
whereh, andm, are normalization constants. The variaBle polynomial of fifth order with a double zero &, andm(6)
is non-negative, and measures the distance from the critici$ a polynomial of order (% 2n):
point in the ¢,H) plane, while the variabl® parametrizes

the displacement along the lines of const&nThe functions _ " 5
m(#) and h(6) are odd and normalized so that( )= 0 scheme A: m(0)=6| 1+ ;1 c 67|,
+0(6°% andh(6) =6+ 0(6°. The smallest positive zero of

h(#), which should satisfy9,>1, corresponds to the coex- _ _ 21 p2\2

istence curve, i.e., td<T. andH—0. The parametric rep- h(6)=6(1=6"105)" 48
resentation satisfies the requirements of regularity of thén the second scheme, denoted by B, we set

equation of state. Singularities can appear only at the coex-

istence curvedue, for example, to the logarithms discussed scheme B: m(0)=0,
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FIG. 1. The scaling functioff (z) vs z FIG. 2. The scaling functiofi(x) vs x.

n ing to the schemes A and B far=0,1, using the central
1+, ciGZi). (490  values of the input parameters. The three curves are in sub-
=1 stantial agreement, especially those with 1. Indeed, the
difference between them is within the uncertainty due to the
errors on the input parameters. These approximate paramet-
ric representations are not precise at the coexistence curve;

indeed, as we shall see, the estimates;dtf. Eqg.(31),] are

a2 2 rather imprecise and very sensitive to the value gfwhich
V() =1=6"+2B6", 0 is not known with high precision. We mention that in Ref. 55

independently of, so thatd,=(1—2) . In both schemes, an approximate expression fbfx) was obtained by approxi-

p, 6o, and then coefficientsc; are determined by matching mately solving the continuous renormalization-group equa-

the smallz expansion ofF (z). Thus, in order to fix then ~ tions for the free energyaverage action The results are

coefficientsc; we usen+ 1 values ofr, i.e.,rg, .. .5 2n- quite imprecise, as we shall show |f’ﬂer by comparing t_he
AS input parameters for our ana|ysis we consider the escorrespondlng estimates for some universal amplltude ratios.

timatesa= —0.1336(15),»=0.037%5), re=1.864), and

rg=0.6(2), which are the results of our HT analysis. The D. Universal amplitude ratios

available estimate afq is too imprecise for our purposes. In

Fig. 1 we show the curves obtained in schemes A and B Wit%afégn:)fthsifggafjrﬁggfﬁgna% Tittitgeorn;igaﬁggnvaerfsé;_
n=0,1 and fora=—0.1336, 7=0.0375,r,=1.86, andrs b - 1hey

ressed in terms of the amplitudes of the magnetizdifin

=0.6. The differences among the three approximation . -
should give an indication of the uncertainty. The three apjgzqs.(27) and(28)}, of the singular part of the specific heat,

proximations ofF(z) are practically indistinguishable, and Cot an= AZ|t] (51)
differ at most by approximately 2%he difference between H.sing '

the twon=1 curves is much smallerThus, by using the  f {he magnetic susceptibility in the HT phase,

first two coefficients ,;, one obtains reasonably precise ap-

proximations of the scaling functioR(z) for all positive Y=NC"t7, (52)
values ofz, i.e., for the whole HT phase up te=0. This is

also numerically confirmed by the estimates of the universabf the zero-momentum four-point connected correlation
constantFg , cf. Eq. (38), which is related to the large- function in the HT phase,

behavior of F(z). Indeed, we obtainF{=0.026Z4),

0.026€5), 0.02665) respectively forn=0, n=1 (scheme N(N+2) Y285

A), andn=1 (scheme B, where the reported errors refer X4:TC4 - (53
only to the uncertainty of the input parameters. This fact is

not trivial, since the smalt-expansion has a finite conver- and of the second-moment correlation length in the HT
gence radiu€’ Therefore, the determination &(z) on the  phase,

whole positive real axis from its smatlexpansion requires

h(6)=6(1— 6% 63)?

Here h(6) is a polynomial of order 5 2n with a double
zero atf,. Forn=0 the approximations A and B coincide.
Note that, for scheme B,

an analytical continuation, which turns out to be effectively =117, (54)
performed by the approximate parametric representations we
have considered. whereN=3. We also consider the crossover pseudocriti-

In Fig. 2 we plot the approximations é{x) correspond- cal) line t,,,(H), that is defined as the reduced temperature
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for which the longitudinal magnetic susceptibiligy (t,H) TABLE VII. Results for the parameters and the universal am-
=JM/JH has a maximum aH fixed. The renormalization plitude ratios using the scheme[#f. Eq. (48)], and scheme Bcf.
group predicts Eqg. (49)]. Note that the quantities reported in the first three lines do
not have a physical meaning, but are related to the particular para-
tma,g(H)szHll(”B), (55) metric representation employed. Numbers marked with an asterisk
are inputs, not predictions.
XL(tmaxyH):Cptr;ng' (56)
. . . . n=0 n=1A n=18B
We consider several universal amplitude ratios:
N p 2.142) 2.204) 2.084)
U= 57) 03 3.811) 3.31) 2.72)
AT ¢, 0 —0.016(9) 0.05620)
ctpo-1 Uo 1.61(2) 1.56(3) 1.573)
R=—", (58 R, 4.62) 4.23) 4.32)
(Bc) R, 1.412) 1.288) 1.334)
ATCH Rc 0.1733) 0.191) 0.1846)
Re= @ 59 R 8.2(2) 7.7(3) 7.92)
B> R; 0.4211) 0.4253) 0.4232)
., P 1.2015) 1.172) 1.141)
R—_ CaB 60 P 0.3544) 0.3575) 0.3575)
o (CH¥ Ry 2.0266) 2.0205) 2.0217)
s Zmax 1.2785) 1.2755) 1.2756)
RgE(aA+)l/3f+ — RCR4 , (61) Xmax 8.91) 8.34) 8.52)
94 Winax 1.642) 1.536) 1.574)
Fo 0.02624) 0.02665) 0.02665)
_T4B , s 0.235) *0.6(2) *0.6(2)
Fm="B, " 62y ~11(3) ~6(2) ~7(3)
f9 1.2811) 1.365) 1.333)
T'2)/35C+ p2o 9 0.1815) 0.21(2) 0.201)
=- e (63 19 —-0.102(1) —0.105(2) —0.094(5)
4 X 4 Cs 22(5) 5(3) 8(3)
C+
Rp==. (64) ) ) )
Cp From the results of Table VII we arrive at the final esti-
Morever, we estimate mates Qenoted by IHT—-PR in Table VIII, obtained by taking
the weighted average of the results for 1. The error we
1-U, quote is the sum of the uncertainty induced by the error on
R.= P (65  the input parameters and of one-half of the difference be-

tween the two approximations with=1. In most cases
which, as suggested in Ref. 74, should be less sensitive to thRese estimates include the results of thre0 approxima-
value ofa thanU,. In Appendix C we give their expressions tion. In Table VIII we compare our results with those ob-
in terms of the functionsn(#) andh(#6). tained in other approaches and in experiméfitaVe men-

In Table VII we report the universal amplitude ratios, astion that the field-theoretical estimates bf, have been
derived by the approximate polynomial representations obbtained from the analysis of the fixed-dimension expansion
the equation of state far=0 and 1. The reported errors are in the framework of the minimal renormalization withoeit
only due to the uncertainty of the input parameters and dexpansior?>®® and from the standarde expansion to
not include the systematic error of the procedure, which may(e?).%2 The estimate of), by CRG was obtained using Eq.
be determined by comparing the results of the various ape33) and the approximate expression fifx) reported in
proximations. In Table VII we also show results fog..,  Refs. 55 and 64. See, e.g., Ref. 102 for a more complete
Xmax, andwpa, Which are the values of the scaling variable review of theoretical and experimental estimates of universal
x, andw [w will be defined in Eq(71)] associated with the amplitude ratios.
crossover line,Fy [cf. Eq. (38)], which is related to the In addition, from the approximate parametric representa-
largez behavior ofF(z), rg, andr o [cf. Egs.(36) and(37)],  tions of the equation of state, we obtain the estimates
which are related to the smallexpansion ofF (z), f9, 9,
and f3 [cf. Eq. (29)], which are related to the expansion at 0=1.345)
x=0 of f(x), andc; [cf. Eq. (31)], which is related to the ! '
behavior at the coexistence curve. Note tffat R, * where
fo is related to the large-behavior off(x) [cf. Eq. (30)]. f9=0.202),
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TABLE VIII. Estimates of universal amplitude ratios obtained using different approaches. The numbers marked by asterisks were
obtained by us using the results reported in the corresponding references.

IHT-PR d=3 exp. e-exp. CRG HT Experiments
Ug 1.564) 1.51(4) (Ref. 99 1.52122) (Ref. 92  *1.823(Refs. 55 and 6/ 1.505) (Ref. 179
1.544(Ref. 93 1.2709) (Ref. 29
1.4(4) (Ref. 99
R, 4.33) *4.4(4) (Ref. 9)) 4.569) (Ref. 92 *3.41 (Refs. 55 and 64
*4.46 (Ref. 93
R, 1.31(7) 1.33(Ref. 95 1.11 (Refs. 55 and 644
Rc  0.18510) 0.1899) (Ref. 96 0.17 (Ref. 97
0.194(Ref. 93
R, 7.803)
Rg 0.4243) 0.434720) (Ref. 98 0.42 (Ref. 99 0.4315) (Ref. 65
0.431917) (Ref. 100 0.4335) (Ref. 65
fg:_o_lq:]_), which is such that the maximum correspondsute 1l and
satisfiesC(1)=1. In Fig. 3 we plot the scaling function
F2=0.02665), C(u) versusu, as obtained from then=0,1 approximate
parametric representations.
rio=—6(3). (66)
The estimate of ;¢ should be compared with the much less E. Comparison with the experiments
precise HT result ;o= —15(10) obtained in Sec. IV A. Con- In spite of the large number of experiments, at present
cerning the quantities involving amplitudes at the crossovethere is no accurate quantitative study of the equation of state
line, we report the estimates in the critical regime. Here we shall discuss three different
representations that are widely used in the experimental
Pn=1.182), (67 work, and we shall give explicit formulas for them.
A first possibility!®® consists in studying the behavior of
P.=0.3575), (68  h/m=H|t|~"/M versusm?=M?|t| "2, Such a function can
be easily obtained from our approximations fdx), since
R,=2.0206), (69 m?=B?x| %/ and
Zmax= 1.2785). (70 h
_——= -
In order to determine the behavior of the longitudinal mag- m kx| =700 (73

netic susceptibilityy, = dM/JdH as a function of andH, one

may consider the scaling function e e e L R ma e e e e
1.0 ]

- - .I:(X)l—1/6
D(w)=B_'HY Wy =—

1 0.8
Sf(X)— =xf'(x)

B
0.6
w=(B/B)YPtH MBI = xf(x) M8, 7D cw
The functionD(w) has a maximum fow,,,=1.556). In 0.4

order to simplify possible comparisons, it is convenient to
consider the rescaled function
02

c(u) D(w)
uy=——,
D(Wmax) 0.0 P A P I I N PO I P P P VI AN O A
s -4 -3 -2 -1 0 1 2 3 4 5
w u
u= , (72
Wmax FIG. 3. The scaling functio€(u) [cf. Egs.(72) and(71)].
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FIG. 4. Plot ofm™/B vs C"h/m. FIG. 5. The scaling functio€(u) vs the experimental scaling
. i =tH B9,
where the constark can be written as variableue,p=t
R wherec; is defined in Eq(31) and can be estimated roughly
k=(B,) °B"F=—%. (74)  from the results reported in Table VII. Equati¢n?) is in-
C consistent with approximatior{75) near the coexistence
The universal raticR, has been computed in the previous CUrve. due to the presence of Goldstone modes. It would be
section,R,=1.31(7), andB andB, are nonuniversal ampli- COrect only in Ising systems.

tudes defined in Eq$28) and(27). A plot of m?/B? versus Finally, note that fom? large we have

C*h/m is reported in Fig. 4. It agrees qualitatively with the h m\ o-1

analogous experimental ones reported, e.g., in Refs. 17, 20, — =~k _) (78)

and 104. Often, for smali/m one approximates the equation m B

of state by writing A second form that is widely used to analyze the experimen-
H tal data is the Arrott-Noaké® scaling equation
Ezagrb:mz, (75) H o\ 1y

(M) =at+bMYA, (79

wherea. andb. are numerical coefficients depending on
the phase. Such an approximation has a very limited range afherea andb are numerical constants. This approximation is

validity. In the HT phase, we obtain, fon>—0, good in a neighborhood of the critical isothetm 0. Since
2 o n 2\ n H 1/’}’ M l/ﬁ
Do) Rem s Rifnez (0 M) kl’V:(E) 1001, (80)
m C 6 B =2 (2n+1)!\B
2 20 2 using Eq.(29) and the numerical values reported in E8p),
m m !
~or| 1t 1.3Q5)¥+0.94(8)<?) we obtain
H 1/y M 1/8 M -1
m?\3 (—) k‘1’7=<—) +o.9e(4)t—o.o4(2)t2(—)
+0.062)| gz| ++ |, (76) M B B
—-2IB
where we have used the estimate Rf reported in Table —0.012)t3<§) (81
VIIl, and the estimates ofg andrg reported in Table VI.

From Eq.(76) we see that approximatio75) is valid only  Thus, at a 1% level of precision the Arrott-Noakes formula
for very small m? ie., at the 1% level only fom? s valid approximately fot(MB~")~ <25 which is quite
=0.01B?. The quadratic approximation—i.e. the approxima-a large interval.
tion with an additional {1?)? term—has a much wider range  Finally, Ref. 6 reported an experimental study of the be-
of validity because of the smallness of the coefficientn8f  havior of the critical system at the crossover line, and
In the low-temperature phase, H@5) is theoretically in-  showed a plot of the curv€(u) [cf. Eq. (72)], in terms of
correct, since fom?/B2—1 we have the unnormalized variable,,,=tH ~Y#?). We can attempt a
quantitative comparison with the results reported in their Fig.
EN ﬁ 1 ﬂz 2 4. For this purpose, in Fig. 5 we pl@(u) in terms of their
m 4p2 B2/’ variable for the range af,,,;accessible to the experime'it.

(77
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A direct comparison of this figure with Fig. 4 of Ref. 6  TABLE IX. Fits with ansatz(2) of our data forZ,/Z, at
shows a very nice quantitative agreement. =4.5. We included all data with i, <L<Lpna in the fit.

. 2 *
APPENDIX A: MONTE CARLO SIMULATIONS Limin Lmax xd.of. Pe (Za/Z,)

. . . 12 96 5.75 0.6862428) 0.194083)
In this appendix we present some details of the analysef4 96 1.90 0.6862412) 0.194193)
of the MC data. Details on the simulation can be found in : ' :
Ref. 37. 16 96 1.29 0.68624018) 0.194244)
18 96 0.62 0.68624Q0) 0.1943@4)
_ 20 96 0.68 0.68624@8) 0.1943@5)
1. Definitions 22 96 0.75 0.68624@8)  0.194306)
In all our work, considerable importance is played by di-24 96 0.81 0.68623970) 0.194348)
mensionless ratio®r phenomenological couplingR. Inor- 28 96 0.60 0.68623900) 0.1944310)
der to have better control on systematic errors we have stud- 48 5.96 0.68624%90) 0.193994)
ied four dimensionless ratios. We first consider the Binder 4 48 1.92 0.68624320) 0.194134)
cumulantU,,*%” and its generalizatiotd s defined by
<(rﬁ2)i> only measure€,/Z, and does not perform the flip to anti-
Ugj=—=77 (Al)  periodic boundary conditions. For a recent discussion of the
(m?) algorithm, see Ref. 36.
where
2. Determination of R*
rﬁzi E j} (A2) First, we computeB, and the fixed-point value of the
V& dimensionless ratioR* for A =4.5—our best approximation

to \*—using the standard cumulant crossing method of
is the magnetization of the system. The third quantity that wesinder. Forn =4.5 we solve Eq(2), computingR(L,3) by
studied is the second-moment correlation length divided bysing its Taylor expansion up to the third order:
the linear extension of the lattic€,,q/L. The second-

moment correlation length is defined by R(L,8)=R(L,Bs) +d1(L,Bs)(B— Bs)
| xIF-1 +1d L — 2+3d L AN
§2nd: X > (A3) 2 2( !BS)(ﬂ BS) 6 3( rﬂs)(ﬂ BS) .
4 sin(w/L)
(A6)
where

Here B; is the value ofg at which the simulation was per-
1 2 formed, andR, d;, d,, andd; are determined in the MC
=—([> ¢ ) (A4)  simulation. o
X V< ( x As an example, results f@,/Z, are given in Table IX. In
, , . the fits, we include all data with j,=<L=<L;ax. FOr Lnax
is the magnetic susceptibility and

TABLE X. Estimates olR* andc(4.5) from the fit(6) of U,, at

e %< 5 exp<i 27IiX1>(ZX 2> (A5)  (ZalZp)1=0.1944. Here\=4.5.
X

. . . . . L imin L max led.O.f. R* E(4.5)
is the Fourier transform of the two-point correlation function
at the lowest nonvanishing momentum. In order to reducé 96 7.87 1.13932) 0.0007312)
the statistical error, we averaged the results of all three di8 96 1.71 1.1394@) —0.00036(17)
rections of the lattice. 10 96 1.82 1.13943) —0.00022(25)

The fourth quantity is the rati@,/Z,, whereZ, is the 12 96 1.65 1.1393%) 0.0003936)
partition function with antiperiodic boundary conditions in 14 96 1.25 1.13938) 0.0011847)
one of the three directions arl, the corresponding one 16 926 1.33 1.13933) 0.0009760)
with periodic boundary conditions in all directions. Antipe- 18 926 1.33 1.13928) 0.0014573)
riodic boundary conditions mean that the tei:a;y@x- ¢3y in 20 96 1.27 1.13923) 0.0021789)
the Hamiltonian is multiplied by-1 for x=(L;,X,,X3) and 24 96 1.54 1.139200 0.00273155
y=(1x5,X3). This ratio can be measured with the help of ag 32 1.00 1.1394B) —0.00060(19)
variant of the cluster algorithm, the boundary-flip algorithm. 8 48 1.26 1.1394®) —0.00045(18)
It was introduced in Ref. 108 for the Ising model and gener-12 48 1.20 1.13939) 0.0001838)
alized toO(N)-invariant nonlineawr models in Ref. 109. As 16 48 0.75 1.13936) 0.0005667)

in Refs. 33 and 36, we use a version of the algorithm that
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TABLE XI. Estimates ofR* andc(4.5) from the fit(6) of U, at 3. Determination of A*

(£20¢/L)1=0.5644. Herer =4.5. In order to computen* we solve the equation(\)=0,

L min Lyax  x2/d.0f. R* <(4.5) ﬂhere c(\) is defined in Eq.(6). In practice, we replace
c(N\) with its first-order Taylor expansion around=4.5,

8 96 9.98 1.13982)  —0.00493(19)  and thus evaluate* from

10 96 5.05 1.13968) —0.00313(31)

12 96 2.32 1.13948) —0.00120(39) dc -1

14 96 1.30 1.13938) 0.0001051) \*~4.5-C(4.5) ( it ) _ (A7)

16 96 1.40 1.13936) 0.0002265) dA N=45

18 96 1.21 1.13929) 0.0011281) . .

20 96 1.24 1.13928) 0.0016799) In order to compute(4.5) we fit our data foR with ansatz

24 96 1.50 1.139231) 0.00209173 (6), where we fixw=0.8. We have checked that the final

8 48 10.41 1.13983) —0.00514(19) result forA* has a very weak dependence on the value of

12 48 1.99 1.13952) —0.00153(42) used in the analysis. If we choose=0.75, the results vary

much less than the quoted error bar, indicating that the error

on w can be neglected.

_ 2 . As an example, the results fat, at (Z,/Z,)=0.1944
96’. X./d'o'f' (d.o.f. is the ””mber of degrees of freedom of are given in Table X. We see that there is a slight drift toward

the fit) is smaller than 1 starting frorh,,;;,=16. Moreover, — o i

the result forB, is stable when further data are discarded. To!2r9€r values ot(4.5) asLy, is increased. The final result

be on the safe side, we take our final estimate from the ﬁgorresponqls 1 yin =16 andLmaX=_96. Systematic errors due
With L. =28 andL ....—96 to subleading corrections to scaling are estimated by compar-
min™— max— .

The systematic error due to corrections to scaling is estit'd with the results obtained fdrn=8 andLma=48. As-

mated by comparing the results correspondind.tg =28  SUMing the errors on(4.5) to decrease ds “2"“~L °
and L ,,=96 with those withL ,=14 andL,,=48. We We arrive atc(4.5)= 0.0010(6) 19], where the systematic
suppose that the error g8, is proportional toL~Y»—«  erroris quoted in brackets.

~L 22 where we assume pessimistically leading and not " Table XI we give the analogous results fok, at
subleading corrections. Hence, we estimate the error on olé2nd/L)=0.5644. Here we see a larger changec(4.5)

final result as the difference between the;, =28, Ly  When L is varied. Also,x?/d.o.f. is larger forl p,<14.
=096 result and thé ,;;=14, L ,,,=48 result multiplied by ~Since corrections are larger than above, we take the final

2722(1-2-2?, The systematic error 0fZ(/Z,)* is esti- estimate from the fit with. ,;,=24 andL ,,,=96. We arrive

mated in a similar fashion, assuming that the error is proporat the estimatec(4.5)=0.002(2]5]. In a similar way we
tional toL ™. arrive atc(4.5)=0.007(5] 15] for Ug at (Z,/Z,)=0.1944
In th_e same way we analyze our data for the remaininganda4_5): 0.003(4] 18] for Ug at (£5nq/L)¢=0.5644.

three dimensionless ratios. Our results are rgported .|n _Table Next, we computej?/d)\ at \=4.5. To estimate the de-
IV. Note that the four results foB. are consistent within
error bars. The statistical error @, obtained fromz,/Z,
and &,,4/L is considerably smaller than that frob, and _
Usg. As our final estimate we take,.=0.6862385(20), which f ~[§(L 5.0~ R(L,4 0)JL® (A8)
is consistent with all four results. dh |, o T '

rivative of?()\), we consider the finite differences

TABLE XII. Estimates of[R(L,5.0)— R(L,4.0)]L“ with »=0.8.

L U4 at (Zalzp)f U4 at (§2nd/|-)f UG at (Za/Zp)f UG at (ond/L)f

6 —0.00957(17) —0.01128(18) —0.03141(53) —0.03674(54)
8 —0.00951(21) —0.01136(22) —0.03111(67) —0.03697(70)
10 —0.00973(25) —0.01174(27) —0.03164(80) —0.03799(85)
12 —0.00972(28) —0.01160(30) —0.03150(88) —0.03747(93)
14 —0.00983(33) —0.01188(36) —0.03201(105) —0.03855(113)
16 —0.00972(37) —0.01181(40) —0.03183(115) —0.03848(123)
18 —0.00972(47) —0.01195(53) —0.03177(148) —0.03884(162)
20 —0.01022(57) —0.01174(63) —0.03392(179) —0.03880(194)
22 —0.00947(68) —0.01176(74) —0.03074(213) —0.03795(231)
24 —0.00962(79) —0.01209(86) —0.03128(249) —0.03915(272)
28 —0.00962(124) —0.01159(135) —0.03208(388) —0.03832(423)
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TABLE XIll. Results for [R(L,5.0)—R(L,\)]/(5.0-\)L®
with @=0.8 forL=12. In the first rowA =4.0, and in the second

row A=4.5.

U4 at (Zalzp)f U4 at (§2nd/|-)f UG at (Za/Zp)f UG at (ond“—)f

—0.00976(16)
—0.00872(27)

—0.01177(17) —0.03184(49) —0.03823(53)
—0.01035(29) —0.02838(86) —0.03356(92)

The results for our four choices & are given in Table XII.
We see that the results, as functiond_pfire constant within

error bars. This nicely confirms the exponent0.8.

The final result for the derivative is obtained by averaging
the results folL=12; see Table XIIl. In order to estimate the

PHYSICAL REVIEW B 65 144520

TABLE XV. Estimates ofv from the fit 0f[¢9(Za/Zp)/é’,8]|ﬁf
with the ansatz8). Bs is fixed by ,/Z,);=0.1944.

L min L max x2/d.of. v

6 96 69.37 0.70666)
8 96 11.95 0.70833)
10 96 3.28 0.7091@81)
12 96 1.91 0.709645)
16 96 1.40 0.710022)
20 96 1.21 0.710580)
24 96 1.46 0.710446)
28 96 1.59 0.7107%8)

discretization error, we additionally compute the derivative, In the case of?U4/(?,B|ﬁf we see thay?/d.o.f. is close to

using R(L,\) for the pairA=5.0 and 4.5. The difference 1, even if all lattice size& =6 are included in the fit. Also,
with the above-reported result is small and in practice neglithe result forv stays rather stable whdr,,;, is increased.

gible, approximately 12% fol, at (Z,/Zp);=0.1944 and
U, at (&,,4/L)=0.5644, and approximately 14% farg at

(Za1Z,)1=0.1944 andJs at (¢¢/L);=0.5644.

Inserting our numerical results fa(4.5) anddc/d\ into
Eq. (A7), we obtain\* =4.6(4),4.7(8),4.7(8), and4.6(8)
from U, at (Z,/2,)1=0.1944,U, at ({2,4/L)1=0.5644,Ug
at (Z,/Zp)1=0.1944 andUg at (§2,4/L)=0.5644, respec-
tively. The errors take into account the uncertaintg ©£.5),
dc/d\|y-45, and w. As our final result we quote\*
=4.6(4) fromU, at (Z,/Z,){=0.1944.

We compute the critical exponentsand » using standard

FSS methods.

The exponenv is determined by fitting the data with Eq.
(8). We study the derivative of all four quantitié$,, Ug,
éong/l, and Z,/Z,, and fix B; by using either €;,4/L)¢

4. Critical exponents

a. Exponentr

=0.5644 or Z,/Z,);=0.1944.

As typical examples, we give fit results fakJ, /| B
[a(Za/Zp)/a,B]|Bf, and[(9(§2nd/L)/(93]|,3f in Tables XIV,

On the other hand, for [a(Z{,l/Zp)/aﬁ]“;f and
[ﬁ(&zhd/L)/aﬂﬂﬁf, x?/d.o.f. comes close to one only start-

ing from L,;,=16. Also, the results fow strongly change,
when L, is increased. It is interesting to notice that the
estimate ofv is decreasing fo[a(gz,m/L)/ﬁ,B]lBf while it is
increasing foff &(Z,.;‘/Zp)/¢9,8]|3f whenL ., is increased. As-
suming that this is already the asymptotic behavior, we can
find lower and upper bounds for.

Taking into account the fit results fdr,,;,=22 we arrive
at the final estimater=0.7113(10). Here the error bar in-
cludes both the statistical and the systematic error.

Finally, we try to determine the effect of leading correc-
tions to scaling on our estimate of For this purpose we fit
our data up td_,5,=28 atA=4.0, 4.5, and 5.0 with ansatz
(8). In Table XVII we give our results for the derivative of
the Binder cumulant with respect at (Z,/Zp);=0.1944.

In particular, for smallL,,, we see a clear dependence of
the result forv on \. For instance, fot ,;,=8 the difference
between the result fax=4.0 and\ =5.0 is 0.00176(46).

In Table XVIII we give the corresponding analysis for
Z,y1Z, at (Z,1Z,)1=0.1944. In this case we see a much
smaller dependence of the results foon \. ForL ;=8 the
difference between the results fax=4.0 and 5.0 is
—0.00065(18). The behavior in the casefgfy/L (which is

XV, and XVI, respectively. In all these three cases, we havenot shown hergis much the same: the dependence of the fit

fixed Bs by (Za/Zp) . Fixing B¢ by (§2n4/L)+ leads to simi-

lar results.

TABLE XIV. Estimates of v from the fit of U, /9B, with
ansatz(8). By is fixed by (Z,/Z,);=0.1944.

L min L max x2ld.o.f. v

6 96 1.36 0.712136)
8 96 0.72 0.711720)
10 96 0.70 0.711726)
12 96 0.71 0.711684)
16 96 0.79 0.711349)
20 96 0.86 0.7116B6)

TABLE XVI. Estimates ofv from the fit of[ﬁ(§2,1d/L)/¢7B]|Bf
with ansatz(8). B; is fixed by (,/Z,);=0.1944.

L min L max x2/d.of. v

6 96 68.10 0.718248)
8 96 18.76 0.716131)
10 96 7.72 0.714894)
12 96 4.35 0.713949)
16 96 1.32 0.712627)
20 96 1.43 0.712487)
24 96 1.27 0.711686)
28 96 1.39 0.711960)

144520-14



CRITICAL EXPONENTS AND EQUATION OF STATE® . .. PHYSICAL REVIEW B 65 144520

TABLE XVII. Estimates of v computed from the derivative of TABLE XIX. Estimates of# from fits of the magnetic suscep-
the Binder cumulant at3;, where B; is fixed by (Z,/Z,) tibility at A=4.5 with Eq.(10). s is fixed by €,/Z,);=0.1944.
=0.1944.

5 L min L max XZ/d-O-f- n
i b \ X 4/g'°'f' ' 12 96 32.55 0.03553)
: 16 96 6.36 0.03647)
6 28 0.91 0.7130R24) 20 96 1.73 0.03682)
8 28 0.75 0.712633) 24 96 1.00 0.0371@3)
10 28 0.83 0.7129@84) 28 96 0.81 0.037286)
12 28 1.07 0.712784) 32 96 0.81 0.0374@4)
A=45
6 28 1.64 0.712287) Fits for A=4.5 with the ansat#10) are given in Tables
8 28 0.74 0.711823 XIX [B fixed by (Z,/Zp)¢=0.1944] and XX[ B; fixed by
10 28 0.67 0.711932) (é2na/L)1=0.5644. In both casesy?/d.o.f. becomes close
12 28 0.74 0.7117@6) to 1 starting fromL ,;y=24. Moreover, in both cases the fit
A=5.0 results fory are strongly increasing ds,;, is increased. For
L win=32 we have a consistent result &= 0.03742).
6 28 L.27 0.711523 Next, we checked the dependence of the resulgfon \.
8 28 0.76 0.710932) In Table XXI we give results fon =4.0, 4.5, and 5.0 for
10 28 0.44 0.710343) _ =z o ctro, '
Lmin=16 andL,,,=28. We see a rather strong dependence
12 28 0.51 0.7101480)

on \. The difference between the results for=4.0 and 5.0

is 0.00080(25). Taking into account the range of lattice sizes
result forv on )\ is much smaller than for the Binder cumu- used to obtain our final estimate, we arrive at an error of
lant. 0.0002 onz due to the error on*.

Taking into account the range the lattice sizes that are Finally, we performed fits with ansa(21). The results are
used to obtain the final result for, we arrive at a possible summarized in Tables XXII and XXIll. We observe that a
uncertainty of 0.0001 for from the derivative oZ,/Z, and X ?/d.o.f. close to 1 is already reached fof;,=10. More-
of &,,4/L due to the uncertainty in*. The systemauc error over, the result for; changes little with increasingyy,, . For
is clearly dominated by subleading corrections. Our final MCLmin=16 the results obtained by fixing; by Z,/Z, and

estimate ofy is &g/l agree. Therefore, as our final result we give
=0.03786). Theerror bar is such that it includes the result
v=0.711311). (A9)  of the fits with ansat£10).
b. Exponenty APPENDIX B: ANALYSIS OF THE HIGH-TEMPERATURE
We determine the exponemtby using Eq.(10), and also EXPANSIONS

a fit ansatz that includes a constant background tem . . . .

(11)]. We fix B; by setting either £&4/L);=0.5644 or In this appendix we report a discussion of our HT analy-

(Z1Z,)1=0.1944, ses. It should allow the reader to understand how we deter-

mined our estimates and the reliability of the errors we re-
TABLE XVIII. Estimates of » computed from the derivative of port, which are to some extent subjective. More details on

Z,1Z, at B¢, wherep is fixed by (Z,/Z,);=0.1944. the methods we use are reported in Ref. 36.
L min L max x?ld.of. v 1. Definitions and HT series
A=4.0 . .
We computed the HT expansion of several quantities for
8 28 8.97 0.7076@.3) the ¢* lattice Hamiltonian[Eq. (1)] for generic values ok
10 28 1.63 0.7087118)
12 28 1.58 0.709027) TABLE XX. Estimates of» from fits of the magnetic suscepti-
N=45 bility at A=4.5 with Eq.(10). B is fixed by ¢,nq/L);=0.5644.
8 28 14.38 0.70808) L min L max x2/d.of. 7
10 28 2.84 0.708903
12 o8 157 0 709i19; 12 96 33.81 0.03592)
N=5 O ' 16 96 8.24 0.03656)
i 20 96 2.35 0.0369%)
8 28 8.52 0.708313) 24 96 0.77 0.037230)
10 28 2.89 0.709188) 28 96 0.59 0.0373832)
12 28 2.40 0.709625) 32 96 0.65 0.037428)
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TABLE XXI. Estimates of from fits of the magnetic suscep-
tibility at N\=4.0, 4.5, and 5.0 with Eq(10). B; is fixed by
(ZalZ,)1=0.1944.

TABLE XXIII. Estimates of  from fits of the magnetic suscep-
tibility at A=4.5 with Eq.(11). B; is fixed by ¢,nq/L)s=0.5644.

L imin Lmax  x2/d.o.f. 7 b
A L i L 2/d.o.f.
min max X 7 8 96 0.80 0.03756) —0.379(6)
4.0 16 28 4.75 0.036108) 10 96 0.68 0.0376%) —0.396(11)
4.5 16 28 2.96 0.035623) 12 96 0.64 0.03779) —0.416(20)
5.0 16 28 8.53 0.035308) 16 96 0.53 0.037803) —0.454(39)

by using the linked-cluster expansion technique. A general
introduction to this technique can be found in Refs. 110-112. rg=280-
We calculated the 20th-order HT expansion of the magnetic

35N+2)2  xsx3
9(N+4)(N+6) X2 '

280 N+2) xex2
3(N+4) Xﬁ

susceptibility and of the second moment of the two-point (B4)
function, 5 2
770QN+2) xex,  350N+2)% X5x5
o= A0 T T T TN
X=2 ($a(0)a(x), M= 2 xH(bo(0)bo(X)), X :
2
(B1) 1400 N+2) )(8)3(2
3(N+4)(N+6) xa
and therefore, the second-moment correlation length
=m,/(6x). Moreover, we computed the HT expansion of 35N+2)3 meg

the zero-momentum connected point Green’s functions

C3(N+4)(N+6)(N+8) 4

X2j -

The formulas relevant for the Heisenberg universality class
are obtained settinfyl=3.

Xoj= 2 (a,(0)da,(Xo) - . o (Xoj-1) ba (Xa)))c
X2j

(B2) 2. Critical exponents

(x=x2)- More precisely, we computeg, to 18th order, and In order to estimatey and v, we analyzed the 20th-order

X6 Xg» andyqoto 15th order. In Table XXIV we report the HT expansion of the magnetic susceptibility and the 19th-

series for theg* Hamiltonian with A =4.5. We chose this order HT expansion of?/3. We analyzed the HT series by

value because it is very close to the best estimate*ofand  means of integral approximants (IA's) of first, second, and

because for this value af we have a precise MC estimate of third order(IAl’s, IA2’s and IA3’s, respectively Since the

Bc, B.=0.6862385(20). most precise results are obtained by using the MC estimates
The HT series of the zero-momentum four-point couplingof B, to bias the approximants, we shall only report the

g, and of the coefficients,; that parametrize the small- results of the biased analyses. We used the valueg.of

magnetization expansion of the equation of state can be conebtained in Appendix A2, i.e.,

puted using their definitions in terms gb; and £ e,

B:(A=4.00=0.684389535), (B5)
_ 3N x4
9=~ Nv2 28 (B3) Bo(\=4.5) = 0.686238520), (B6)
and Bo(\=5.0=0.687563837). (B7)
B 5(N+2) xsx2 We considered several sets of biased IAs, and for each of
re=10- 3(N+4) X42 ' them we obtained estimates of the critical exponents. In the

analysis we closely followed Ref. 36. Thus, in the following
we shall heavily refer to it for notations and a more detailed
description of the analyses. _

Given annth-order series(B8)=={_,c;8', its kth-order

TABLE XXII. Estimates of  from fits of the magnetic suscep-
tibility at A=4.5 with Eq.(11). B; is fixed by (Z,/Z,);=0.1944.

Lo Lona v2id.of. ” b integral approximanfmy/m,_/---/mg/l] 1Ak is a solu-
tion of the inhomogeneough-order linear differential equa-

8 96 2.18 0.03833) —-0.657(9) tion

10 96 1.22 0.038110) —0.617(17)

12 96 0.72 0.037902) —0.555(26) P B TR(B)+P _1(BFR DB+ .- +P(B)TI(B)

16 96 0.66 0.037827) —0.528(54)

+Po(B)f(B)+R(B)=0, (B8)
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TABLE XXIV. Coefficients of the HT expansion ah,, x, x4, Xs Xs andyio, for the ¢* Hamiltonian withx =4.5.

[ my X2 Xa

0 0 0.95784805390722532625540 —0.10220686631889066464185

1 0.61164859624923922306340 1.83494578874771766919200 —0.78318918399604286311017

2 2.34346567036967995931352 3.02570526555699314952643 —3.40993303251195614433724

3 6.12631563804734885224064 4.91084272357011167693574 —11.4547261149387426111654

4 13.7411678013148223984708 7.72413685583625911405950 —32.8622857609807070588938

5 28.1806907736271607364126 12.0696863.374510782698 —84.8703770522664536068131

6 54.6110112231156495979858 18.5898743639602203433897 —203.048391944861326183480

7 101.601106321810555490226 28.5129469684875374524852 —458.487070991901596469076

8 183.444896900967255568497 43.3910414400431056256283 —989.113871576954399902821

9 323.515763329983708761073 65.8457097219033943862880 —2056.80132192600410402482
10 560.008592676223985571196 99.4318415601856883686915 —4148.88336851312159356144
11 954.596109677157386424652 149.842255361185424824490 —8158.09343927729005801740
12 1606.62254117132464855356 225.053071205898843291857 —15696.1032586702224741180
13 2674.82852285795544112124 337.491827618915172447234 —29637.6862646277928041257
14 4412.16935517377929559254 504.872666999718714410906 —55053.5845813513443015904
15 7219.36840082433737483629 754.353044416651842398902 —100803.117025457078176935
16 11729.5598928466629681760 1125.02916338959766441444 —182227.804691700019121686
17 18938.5632727811981324466 1676.21770934179961650320 —325689.103869085626575337
18 30408.8505644977121915813 2493.83291987123696064787 —576156.574987690512078391
19 48583.1353446096892196268 3707.29637073719901187394

20 77271.9486733817666941548 5504.79157669035824056791

i X6 X8 X10

0 0.168561977829196181908019 —0.61605090918722894152663 3.90323863425838698945752
1 2.564255760481036314377282 —15.2300029871348773005564 141.589060417753517915167
2 19.75833949883362663601629 —178.372137615950383513749 2318.78554766886373709723
3 107.6153442827461300177955 —1404.03404775262637194221 24643.8854034121990204490
4 470.3177686849044939915090 —8533.18422765821528578124 196815.472836825966956507
5 1762.676494500452240334969 —43117.7286797414375624292 1278183.93414715336465143
6 5892.468315770018895075220 —189462.996356270457135473 7085909.43897471702725255
7 18026.10606034742588181350 —745826.772293316301527782 34639336.4985891651938076
8 51364.40898933529517266700 —2685696.43890603392620130 152792638.179196536855095
9 138079.9439575146969655288 —8982884.52144712077544905 618543549.844101982857471
10 353553.4243627006337358070 —28231531.3374765513159336 2328085189.97290506149579
11 868613.6815956677724696610 —84122578.3791382746491922 8229819042.53291083435060
12 2059460.213048375196521201 —239356596.354404154637789 27546203927.2418206714112
13 4734189.661963741454010320 —654084831.403386579980857 87876514492.4881461446469
14 10591072.53372872753915110 —1724768015.94141791734955 268647512699.595417711632
15 23130642.47447337362164738 —4405965912.50799258526090 790611696518.867100914318

where the function®;(8) andR(B) are polynomials of or- (i) Since on bipartite lattice=— B, is also a singular
dersm; and |, respectively, which are determined by the point associated to the antiferromagnetic critical behaVfor,
known nth-order smallg expansion off (8). We considered we consider 1A’s with

two types of biased IK's: i 2102
(i) The first type of biased IKs, which will be denoted PlB)=(1= BT B)PB). (810
wherepy(B) is a polynomial of ordem,—2. We shall de-

by blAK’s, is obtained by setting
note them by bIAK’s.

_ In our analyses we considered diagonal or quasidiagonal
Pu(B)=(1=BIBc)Pc(B), (BY) approximants, since they are expected to give the most ac-

curate results. For each set ofkA we calculated the aver-
wherep,(B) is a polynomial of ordem,—1. age of the values corresponding to all nondefectivi&’sA
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TABLE XXVI. Results for v obtained from the analysis of the
19th-order series of?/3.

TABLE XXV. Results for y obtained from the analysis of the
20th-order HT series of.

N Approximants ra vy N Approximants ra v

4.0 blA1 (35-3)/48 1.395085)[32] 4.0 blAl (37-6)/37 0.710611)[14]
blA2 (77-7)/115 1.39508L6)[33] blA2 (65—3)/70 0.71058L7)[14]

45 bIA1 (36-3)/48 1.3958&4)[18] 45 blA1 (37-4)/37 0.7111()[8]
b. 1Al (21-1)/48 1.395884)[18] b. 1AL (31-3)/36 0.7111(2)[8]
blA2 (93-11)/115 1.3958(.0)[18] blA2 (67—2)/70 0.71108)[7]
b.1A2 (84—7)/100 1.3957018)[18] b. A2 (54—3)/55 0.71113)[8]
bIA3 (56—6)/61 1.3958%5)[19] bIA3 (26—2)/34 0.7111010)[10]

5.0 blA1 (34-3)/48 1.39656)[32] 5.0 blAl (36-4)/37 0.711515)[15]
blA2 (107—-13)/115 1.3964)[34] blA2 (67—5)/70 0.711546)[14]

Approximants are considered defective when they have sin- _, hg y 2B66h(60)+(1—6*)h’(0)

gularities close to the rea axis near the critical point. We XL :m—OR 92(0), 92(0)= Y0)

also discarded some nondefective IAs—we call them (C3)

outliers—whose results are far from the average of the otherh ¢ . ish .
approximants. All details can be found in Appendix B of Ihe functiong,(6) must vanish at, in order to repr(zdlyzce
Ref. 36. the predicted behavior at the coexistence cupye-H™ -4,

In Tables XXV and XXVI we report the results forand ~ according to
v, respectively, obtained by analyzing the seriesXer4.0,
4.5, and 5.0. There, we also quote the “approximant ratio”
r,=(g—f)/t, wheret is the total number of approximants in From Eq.(C3) we see thag,(¢) satisfies this condition if
the given setg is the number of nondefective approximants, h(68) ~ (6o~ 6)* for 6— 6.
andf is the number of outliers which are discarded using an From the equation of state one can derive universal am-
algorithm described in Appendix B of Ref. 3§—f is the  plitude ratios of zero-momentum quantities. We consider
number of “good” approximants used in the analysis. Note

9,(0)~60,—6 for 6—6,. (C4)

that.g>f, andg—f is never too small. For each analysis, UOEA+/A7:(9(2)_ 1)2« 9(0) ' (C5)
besides the corresponding estimate, we report two numbers. 9(6o)
The number in parentheses,, is basically the spread of the
approximants for3, fixed at its MC estimate. It is the stan- cB>t 51 s
dard deviation of the results obtained from all “good” IAs ~ Ry= B0 =(6=1) "Im(60)]” Im(1)]"°h(1),
divided by the square root of,, i.e.,e;= o/ ,. The num- ¢ (C6)
ber in bracketse,, is related to the uncertainty on the value
of B., and is estimated by varyin@. in the range[ 8. aATCT
—ABe, B+ ABL. Re=—gz =~ a(l-a)(2-a)(6—1)*
APPENDIX C: UNIVERSAL AMPLITUDE RATIOS FROM x[m(68o)]1 ?g(0), (C7)
THE PARAMETRIC REPRESENTATION c+g2
In the following we report the expressions of the universal Ry=— (S—+)3 =p?[m(6o)1%(05—1) %~ (Cy)

amplitude ratios in terms of the parametric representation

[Eq. (43)] of the critical equation of state. The singular part Using Egs.(45) and (47) one can easily derive the expres-
of the free energy per unit volume can be written as sions of the various coefficients that characterize the
asymptotic behavior of the scaling functiohsx) andF(z),
such asc; ,fi0 for f(x) andF; ,I9j for F(2). Concerning the
ratios involving amplitudes along the crossover line, one
whereg( 6) is the solution of the first-order differential equa- finds

]:sing: h0m0R27 “g(0), (Cy

tion
TlgB B =16
—0°)9'(0)+ —a)0g(0)=Y(0)h(0), m= = Xmax! X ma; )
(1-6%)9'(6)+2(2—a)0g(0)=Y(6)h(6), (C2) Pm= 5~ = Xmax (Xmax) (C9
C
that is regular ab=1. The functionY(6) has been defined T285C+
in Ea. (44). The longitudinal magnetic susceptibility can be P.=— p =F(Zma) 2, (C10
written as Cy
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ct and z computed até,., Where 6. IS the solution of
Ro= 1 =F'(Zmax- (C1)  the equation
p

Here Xmax and z,,4¢ are the values of the scaling variabbes BSF[z(6)F"[z(6)]— yF'[z(6)]?>=0. (C12
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