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Critical exponents and equation of state of the three-dimensional Heisenberg universality class
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We improve the theoretical estimates of the critical exponents for the three-dimensional Heisenberg univer-
sality class. We findg51.3960(9), n50.7112(5), h50.0375(5), a520.1336(15),b50.3689(3), andd
54.783(3). Weconsider an improved latticef4 Hamiltonian with suppressed leading scaling corrections. Our
results are obtained by combining Monte Carlo simulations based on finite-size scaling methods and high-
temperature expansions. The critical exponents are computed from high-temperature expansions specialized to
the f4 improved model. By the same technique we determine the coefficients of the small-magnetization
expansion of the equation of state. This expansion is extended analytically by means of approximate parametric
representations, obtaining the equation of state in the whole critical region. We also determine a number of
universal amplitude ratios.
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I. INTRODUCTION AND SUMMARY

According to the universality hypothesis, some features
continuous phase transitions–for instance, critical expon
and scaling functions—do not depend on the microsco
details of the systems, but only on a few global propert
such as the space dimensionality, the range of interac
and the symmetry of the order parameter. These features
fine a universality class. In this paper, we consider the th
dimensional Heisenberg universality class, which is char
terized by a three-component order parameter,O(3)
symmetry, and short-range interactions.

The Heisenberg universality class describes1 the critical
behavior of isotropic magnets, for instance the Curie tran
tion in isotropic ferromagnets such as Ni and EuO, and
antiferromagnets such as RbMnF3 at the Néel transition
point. In Table I we report some recent experimental resu
It is not a complete review of published results, but is use
to give an overview of the experimental state of the art.
the table we also included results for the well-studied do
manganese perovskites La12xAxMnO3, although the nature
of the ferromagnetic transition in these compounds is s
unclear.15 The Heisenberg universality class also descri
isotropic magnets with quenched disorder. Indeed, sinca
,0, the Harris criterion states that disorder is an irrelev
perturbation. The only effect is to introduce a correction-
scaling termutuDdis with Ddis52a. The experimental result
confirm the theoretical analysis,16 as can be seen from Tab
II ~older experimental results with a critical discussion we
reported in Ref. 24!. The prediction forDdis was checked in
perturbative field theory25 and experimentally.26,18,19

Beside the exponentsg, b, and d, there are also a few
estimates of the specific-heat exponenta, in most of the
cases obtained from resistivity measurements:a'20.10 in
Fe and Ni,27 a520.12(2) in EuO,28 a520.11(1) in
FexNi802xB19Si,17 anda520.11(1) in RbMnF3.29

The aim of this paper is to substantially improve the p
cision of the theoretical estimates of the critical exponen
0163-1829/2002/65~14!/144520~21!/$20.00 65 1445
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For this purpose, we consider an improved lattice Ham
tonian that is characterized by the fact that the leading c
rection to scaling is~approximately! absent in the expansio
of any observable near the critical point. Moreover, we co
bine Monte Carlo~MC! simulations and analyses of high
temperature~HT! series. We exploit the effectiveness of M
simulations and finite-size scaling~FSS! techniques to deter
mine the critical temperature and the parameters of the
proved Hamiltonians,30–37and the effectiveness of HT meth
ods to determine the critical exponents for improved mod
especially when a precise estimate of the critical point
available. This approach was already applied to the thr
dimensional Ising38 and XY ~Refs. 39 and 36! universality
classes, achieving a substantial improvement of the estim
of the universal quantities that describe the critical behav
such as the critical exponents and the scaling equation
state.

We consider a simple cubic lattice and the neare
neighborf4 lattice Hamiltonian

H f452b(̂
xy&

fW x•fW y1(
x

@fW x
21l~fW x

221!2#, ~1!

wherefW x is a three-component field. As shown in Ref. 3
Hamiltonian ~1! is improved forl5l* '4.4(7). Here we
extend the simulations of Ref. 37, obtaining a more accu
estimate ofl* , l* 54.6(4), andprecise estimates of th
critical bc for several values ofl. The analysis of the MC
FSS results obtained for the improvedf4 lattice Hamiltonian
already provides precise estimates of the critical expone
As shown in Refs. 38, 39, and 36, an additional increase
precision can be obtained by combining improved Hamil
nians and HT methods. For this purpose, by using the link
cluster expansion technique, we computed HT expansion
several quantities and analyzed them using the MC res
for l* andbc . The final results significantly improve thos
obtained from the MC simulation. Moreover, they substa
©2002 The American Physical Society20-1
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TABLE I. Recent experimental estimates of the critical exponents for Heisenberg systems.

Material g b d

Ref. 2 ~1980! Ni 0.354~14!

Ref. 3 ~1981! Fe 0.367~5!

Ref. 4 ~1995! Ni 1.345~10! 0.395~10! 4.35~6!

Ref. 5 ~1995! Gd2BrC 1.392~8! 0.365~5! 4.80~25!

Ref. 5 ~1995! Gd2IC 1.370~8! 0.375~8! 4.68~25!

Ref. 6 ~1999! Tl2Mn2O7 1.31~5! 0.44~6! 4.65~15!

Ref. 7 ~2000! La0.82Ca0.18MnO3 0.383~9!

Ref. 8 ~2000! La0.95Ca0.05MnO3 1.39~5! 0.36~7! 4.75~15!

Ref. 9 ~2000! Gd~0001! 0.376~15!

Ref. 10~2000! Gd2CuO4 1.32~2! 0.34~1!

Ref. 11~2000! C80Pd20 ~liq! 1.42~5!

Ref. 11~2000! C80Pd20 ~sol! 1.40~8!

Ref. 12~2001! GdS 0.38~2!

Ref. 13~2001! CrO2 1.43~1! 0.371~5!

Ref. 14~2001! La0.8Ca0.2MnO3 1.45 0.36
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tially improve those obtained using longer~21 orders! series
for the standard Heisenberg model.40

In Table III we report our results for the critical expo
nents. We give the estimates obtained from the analysi
the MC data alone and those obtained by combining MC
HT techniques—they are denoted by MC1IHT, where the
‘‘I’’ refers to the fact that we are considering an improve
model. The exponenta can be derived using the hypersca
ing relation a5223n, obtaining a520.1336(15). We
would like to stress that the good agreement between the
and HT estimates is not trivial, since the critical expone
are determined from different quantities and limits. Inde
the MC estimates are obtained from the analysis of the fin
size behavior for the sizeL→` at the critical pointb
5bc , while the HT results are derived from the singul
behavior of infinite-volume quantities asb→bc .
14452
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In Table III we compare our results with the most prec
theoretical estimates obtained in recent years. A more c
plete list of results can be found in Ref. 56. The results
quote have been obtained by Monte Carlo simulations, fr
the analysis of the HT series for the standard Heisenb
model, or by field-theory methods~FT!. The MC results
were obtained by applying FSS techniques to differ
Hamiltonians. References 42–44 studied the stand
O(3)-vector Heisenberg model, Ref. 37 the improvedf4

model, and Ref. 41 an isotropic ferromagnet with doub
exchange interactions.57 The HT results of Ref. 40 were ob
tained analyzing the 21st-order HT expansions for the s
dardO(3)-vector model on the simple cubic~sc! and on the
body-centered cubic~bcc! lattice. The FT results of Refs
46–51 were derived by analyzing perturbative expansion
different frameworks: fixed-dimension expansion~sixth- and
nched
TABLE II. Recent experimental estimates of the critical exponents for Heisenberg systems with que
disorder.

Material g b d

Ref. 17~1994! Fe10Ni70Bi19Si 1.387~12! 0.378~15! 4.50~5!

Ref. 17~1994! Fe13Ni67Bi19Si 1.386~12! 0.367~15! 4.50~5!

Ref. 17~1994! Fe16Ni64Bi19Si 1.386~14! 0.360~15! 4.86~4!

Refs. 18 and 19~1995! Fe20Ni60P14B6 1.386~10! 0.367~10! 4.77~5!

Refs. 18 and 19~1995! Fe40Ni40P14B6 1.385~10! 0.364~5! 4.79~5!

Ref. 20~1997! Fe91Zr9 1.383~4! 0.366~4! 4.75~5!

Ref. 20~1997! Fe89CoZr10 1.385~5! 0.368~6! 4.80~4!

Ref. 20~1997! Fe88Co2Zr10 1.389~6! 0.363~5! 4.81~5!

Ref. 20~1997! Fe84Co6Zr10 1.386~6! 0.370~5! 4.84~5!

Ref. 21~1999! Fe1.85Mn1.15Si 1.543~20! 0.408~60! 4.74~7!

Ref. 21~1999! Fe1.50Mn1.50Si 1.274~60! 0.383~10! 4.45~19!

Ref. 22~2000! Fe86Mn4Zr10 1.381 0.361
Ref. 22~2000! Fe82Mn8Zr10 1.367 0.363
Ref. 23~2001! Fe84Mn6Zr10 1.37~3! 0.359 4.81~4!

Ref. 23~2001! Fe74Mn16Zr10 1.39~5! 0.361 4.86~3!
0-2
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TABLE III. Estimates of the critical exponents. See the text for the explanation of the symbols in the second column. We indic
an asterisk (* ) the estimates that were obtained using the relationsg5(22h)n, 2b5n(11h), andd(11h)552h.

Ref. Method g n h b d

this work MC1IHT 1.3960~9! 0.7112~5! 0.0375~5! 0.3689(3)* 4.783(3)*
this work MC 1.3957(22)* 0.7113~11! 0.0378~6! 0.3691(6)* 4.781(3)*
37 ~2000! MC 1.393(4)* 0.710~2! 0.0380~10! 0.3685(11)* 4.780(6)*
41 ~2000! MC 1.3909~30! 0.6949~38! 0.3535~30!

42 ~1996! MC 1.396(3)* 0.7128~14! 0.0413~16! 0.3711(9)* 4.762(9)*
43 ~1993! MC 1.389(14)* 0.704~6! 0.027~2! 0.362(3)* 4.842(11)*
44 ~1991! MC 1.390(23)* 0.706~9! 0.031~7! 0.364(5)* 4.82(4)*
40 ~1997! HT sc 1.406~3! 0.716~2! 0.036(7)* 0.3710(13)* 4.79(4)*
40 ~1997! HT bcc 1.402~3! 0.714~2! 0.036(7)* 0.3700(13)* 4.79(4)*
45 ~1993! HT 1.40~1! 0.712~10! 0.03(3)* 0.368(6)*
46 ~2001! FT d53 exp 1.3882~10! 0.7062~7! 0.0350~8! 0.3655(5)* 4.797(5)*
47 ~1998! FT d53 exp 1.3895~50! 0.7073~35! 0.0355~25! 0.3662~25! 4.794~14!

48 ~1991! FT d53 exp 1.3926~13!@39# 0.7096~8!@22# 0.0374~4!

49 ~1977! FT d53 exp 1.386~4! 0.705~3! 0.033~4! 0.3645~25! 4.808~22!

47 ~1998! FT e-exp 1.382~9! 0.7045~55! 0.0375~45! 0.3655~35! 4.783~25!

50 ~1998! FT e-exp 1.39* 0.708 0.037 0.367* 4.786*
51 ~2000! FT (d22)-exp 0.695~10!

52 ~1984! SFM 1.40~3! 0.715~20! 0.044~7! 0.373~11! 4.75(4)*
53 ~2001! CRG 0.74 0.038 0.37 4.78
54 ~2001! CRG 1.374 0.704 0.049 0.369 4.720
55 ~1996! CRG 1.465 0.747 0.038 0.388 4.78
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seventh-order series; see Refs. 58 and 48!, e expansion@to
O(e5), see Refs. 59 and 60#, and (d22) expansion„to
O@(d22)4#; see Refs. 61–63…. We quote two errors for the
results of Ref. 48: the first one~in parentheses! is the resum-
mation error, and the second one~in brackets! takes into
account the uncertainty of the fixed-point valueg* of the
coupling, which was estimated to be approximately 1%
Ref. 48. To estimate the second error we use the result
Ref. 47, where the dependence of the exponents ong* is
given. The results of Ref. 52 were obtained by using
so-called scaling-field method~SFM!. References 53–55 an
64 presented results obtained by approximately solving c
tinuous renormalization-group~CRG! equations for the aver
age action, which is approximated to lowest and first orde
the derivative expansion. We also mention the HT results
Ref. 65: they performed a direct determination of the ex
nenta obtaininga520.11(2) and20.13(2) on the sc and
bcc lattices. Reference 66 computed the critical expone
for a Heisenberg fluid by a canonical-ensemble simulati
Depending on the analysis method, they found 1n
51.40(1), 1.31(1), b/n50.54(2), 0.52(1), and g/n
51.90(3), 1.87(3). Overall, all estimates are in substanti
agreement with our MC1IHT results. We only note the ap
parent discrepancies with the MC estimates ofh of Refs. 42
and 43, and with the FT results of Ref. 46. However,
reliability of the error bars reported in Ref. 46 is unclea
indeed, Ref. 47 analyzed the same perturbative series,
reported much more cautious error estimates.

We also present a detailed study of the equation of st
We first consider its expansion in terms of the magnetiza
in the HT phase. The coefficients of this expansion are
14452
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rectly related to the zero-momentumn-point renormalized
couplings, which are determined by analyzing their HT e
pansion. These results are used to construct parametric
resentations of the critical equation of state which are va
in the whole critical region, satisfy the correct analytic pro
erties~Griffiths’ analyticity!, and take into account the Gold
stone singularities at the coexistence curve. From our
proximate representations of the equation of state we de
estimates of several universal amplitude ratios. Moreover,
present several results and different forms of the equatio
state that can be compared directly with experiments. In p
ticular, we can compare with the experimental results
Refs. 17, 20, and 6, finding good agreement.

The paper is organized as follows. In Sec. II we pres
our MC results. In Sec. III we present our results for t
critical exponents obtained from the analysis of the HT se
for the improved Hamiltonian@Eq. ~1!#. The equation of state
is discussed in Sec. IV. We determine the sma
magnetization expansion coefficients in Sec. IV A, give
approximate parametric representation of the equation
state in Secs. IV B and IV C, compute several amplitu
ratios in Sec. IV D, and compare the theoretical results w
experimental data in Sec. IV E. Details are reported in
Appendixes. In Appendix A we present an analysis of t
MC results and in Appendix B an analysis of the HT seri
The expressions of several amplitude ratios in terms of
parametric representations are reported in Appendix C.

II. MONTE CARLO SIMULATIONS

The present MC simulations extend those of Ref. 37. H
we have considerably enlarged the statistics and added la
0-3
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TABLE IV. Final results forbc andR* from fits with ansatz~2!. In parentheses we give the statistic
error, and in brackets the error due to the corrections to scaling.

R Za /Zp j2nd/L U4 U6

R* 0.1944~1!@4# 0.5644~1!@2# 1.1394~1!@2# 1.4202~2!@10#

bc 0.6862390~10!@12# 0.6862386~11!@6# 0.6862365~17!@12# 0.6862369~17!@19#
n
er

h-

x
m

n-

s
f
,

re
ta
H

.

re

n

.

in
e
.

o

n

-

lattice sizes. Moreover, we have considered an additio
quantity in order to improve the control over systematic
rors. This way, we can increase the accuracy ofl* and give
precise estimates of the criticalbc for three values ofl in a
neighborhood ofl* . For a detailed discussion of our met
ods, see Ref. 36. Details are reported in Appendix A.

We simulated theO(3)-symmetricf4 model ~1! at l
54.0, 4.5, and 5.0 on a simple cubic lattice with linear e
tensionL in all directions. We measured the Binder para
eter U4, its sixth-order generalizationU6, the second-
moment correlation lengthj2nd, and the ratioZa /Zp , where
Za is the partition function with antiperiodic boundary co
ditions in one of the three directions andZp the correspond-
ing one with periodic boundary conditions in all direction
The number of iterations for each lattice size and value ol
was approximately 107 for L56, 7, 8, 9, 10, 11, 12, 14, 16
18, 20, and 22, approximately 106 for L524, 28, 32, 36, 40,
and 48, and (1 –4)3105 for L556, 64, 80, and 96. With
respect to Ref. 37, we have added lattice sizes for all th
values ofl and considerably increased the statistics. In to
the whole study took about four years on a single 450-M
Pentium III CPU.

In the first step of the analysis, we computebc and the
fixed-point value of the dimensionless ratiosR* for l54.5,
using the standard cumulant crossing method of Binder
particular, we fit our data with the ansatz

R* 5R~L,bc!, ~2!

where R* and bc are free parameters. Our results are
ported in Table IV. Note that the four results forbc are
consistent within error bars. The statistical error ofbc ob-
tained fromZa /Zp and j2nd/L is considerably smaller tha
that from U4 and U6. As our final estimate we takebc
50.6862385(20), which is consistent with all four results

In addition, we determinebc for l54.0 and 5.0. For this
purpose, we use ansatz~2!, fixing L596 and taking the val-
ues of R* from Table IV. Our results are summarized
Table V. For both values ofl, the results obtained from th
four different choices ofR* are consistent within error bars
As our final result we take that obtained fromZa /Zp , since
it has the smallest statistical error.
14452
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Then we locatel* by studying the scaling corrections t
a quantityR̄ defined in terms of two dimensionless ratiosR1

andR2. To defineR̄, we fix a numberR1,f which should be a
good approximation toR1* ; see Ref. 36. Then, for a give
value ofl andL, we determineb f(L,l) from

R1~L,l,b f !5R1,f . ~3!

In our analysis,b f is determined by taking either (Za /Zp) f
50.1944 or (j2nd/L) f50.5644. Note thatb f approachesbc
as

b f5bc1CfL
21/n1•••, ~4!

where the prefactorCf depends on the choice ofR1,f . In
particular, if R1,f5R1* , thenCf50 and the leading correc
tions are proportional toL21/n2v.

Next we defineR̄ by

R̄~L,l![R2~L,l,b f !. ~5!

Here we take eitherU4 or U6 asR2. Below, we often refer to
R̄ asR2 at R1,f . Up to subleading corrections,R̄ behaves as

R̄~L,l!'R̄* 1 c̄~l!L2v. ~6!

The optimal valuel* is obtained by solvingc̄(l)50.
We obtainl* 54.6(4), 4.7(8), 4.7(8), and4.6(8) fromU4
at (Za /Zp) f50.1944, U4 at (j2nd/L) f50.5644, U6 at
(Za /Zp) f50.1944 andU6 at (j2nd/L) f50.5644, respec-
tively. As our final result we quote

l* 54.6~4! ~7!

from U4 at (Za /Zp) f50.1944.
Finally, we compute the critical exponentsn andh using

standard FSS methods. Usually, the exponentn is computed
from the slope of a dimensionless ratioR at bc . Here, fol-
lowing Ref. 42, we replacebc by b f , which simplifies the
error analysis, and determinen from the relation

]R

]b U
b f

5āL1/n. ~8!
to the

TABLE V. Results forbc at l54.0 and 5.0 using onlyL596 and the ansatzR(bc)5R* , whereR* is

taken from Table IV. In parentheses we give the statistical error, and in brackets the error due
uncertainty onR* .

l Za /Zp j2nd/L U4 U6

4.0 0.6843895~20!@15# 0.6843887~21!@14# 0.6843898~31!@20# 0.6843898~31!@26#

5.0 0.6875638~21!@16# 0.6875633~26!@15# 0.6875655~34!@20# 0.6875646~34!@26#
0-4



i-

em

r

ta

d
on
te
rd

e
w
o

se

ta

-
e
re
ad
e
h
or
ar

x
e

f
nt
’s
a

rie
ola
a

en

ly-

d of

er-

alue
for

ree

an
g

e

nd
.

CRITICAL EXPONENTS AND EQUATION OF STATE OF . . . PHYSICAL REVIEW B 65 144520
We study the derivative of all four quantitiesU4 , U6 ,
j2nd/L, and Za /Zp , and fix b f by using either (j2nd/L) f
50.5644 or (Za /Zp) f50.1944. We arrive at the final est
mate

n50.7113~11!, ~9!

where the error includes both the statistical and the syst
atic uncertainty.

The exponenth is computed from the finite-size behavio
of the magnetic susceptibility:

xub f
5cL22h. ~10!

In addition, we also use a fit ansatz that includes a cons
background term:

xub f
5cL22h1b. ~11!

As before, we fixb f by setting either (j2nd/L) f50.5644 or
(Za /Zp) f50.1944. Our final MC estimate is

h50.0378~6!. ~12!

III. CRITICAL EXPONENTS FROM THE IMPROVED
HIGH-TEMPERATURE EXPANSION

As shown in the case of the Ising38 and XY universality
classes,39,36 the analysis of HT expansions for improve
Hamiltonians with suppressed leading scaling correcti
leads to considerably precise results even for modera
long series. In the present paper, the analysis of 20th-o
HT expansions for the improvedf4 lattice Hamiltonian, i.e.,
for l'l* 54.6(4), allows us to substantially improve th
accuracy of the estimates of the critical exponents. As
shall see, the results turn out to be more precise than th
obtained in Sec. II. They also significantly improve tho
obtained from the analysis of longer series~21 orders! for the
standard Heisenberg model~which is recovered in the limit
l→`) on the cubic and bcc lattices.40 In this section we
report the results of our analyses of the HT series. The de
are reported in Appendix B.

We determineg andn from the analysis of the HT expan
sion to O(b20) of the magnetic susceptibility and of th
second-moment correlation length. In Appendix B 2 we
port some details and intermediate results, so that the re
can judge the quality of our results without the need of p
forming his own analysis. They should give an idea of t
reliability of our estimates and of the meaning of the err
we quote, which depend on many somewhat arbitr
choices and are therefore partially subjective.

We analyze the HT series by means of integral appro
mants~IA’s ! of first, second, and third order. The most pr
cise results are obtained biasing the value ofbc with its MC
estimate. We consider several sets of biased IA’s, and
each of them we obtain estimates of the critical expone
These results are reported in Appendix B 2. All sets of IA
give substantially consistent results. Moreover, the results
also stable with respect to the number of terms of the se
so that there is no need to perform problematic extrap
tions in the number of terms in order to obtain the fin
14452
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estimates. The error due to the uncertainty onl* is esti-
mated by considering the variation of the results wh
changing the values ofl.

Using the results reported in Appendix B 2 for the ana
sis atl54.0, 4.5, and 5.0, we obtain

g51.39582~10!@18#10.0015~l24.5!, ~13!

n50.71111~5!@8#10.0009~l24.5!. ~14!

The number between parentheses is basically the sprea
the approximants atl54.5 using the central value ofbc ,
while the number between brackets gives the systematic
ror due to the uncertainty onbc . Equations~13! and ~14!
also show the dependence of the results on the chosen v
of l. Thel dependence is estimated by using the results
l54.0 andl55.0.

Using the MC estimatel* 54.6(4), weobtain

g51.39597~10!@18#$60%, ~15!

n50.71120~5!@8#$36%, ~16!

where the error due to the uncertainty onl* is reported
between braces. Thus our final estimates are

g51.3960~9!, ~17!

n50.7112~5!, ~18!

where the uncertainty is estimated by summing the th
errors reported above.

Using the above-reported results forg andn and the scal-
ing relationg5(22h)n, we obtainh50.037(2), where the
error is estimated by considering the errors ong and n as
independent, which is of course not true. We can obtain
estimate ofh with a smaller, yet reliable, error by applyin
the so-called critical-point renormalization method67 to the
series ofx andj2. This method provides an estimate for th
combinationhn. Proceeding as before, we obtain

hn50.02665~18!10.00035~l24.5!. ~19!

Taking into account thatl* 54.6(4), we find

hn50.02669~18!@14#, ~20!

where the first error is related to the spread of the IA’s a
the second one to the uncertainty onl* , evaluated as before
Thus

h50.0375~3!@2#. ~21!

Moreover, using the scaling relations, one obtains

a5223n520.1336~15!, ~22!

d5
52h

11h
54.783~3!, ~23!

b5
n

2
~11h!50.3689~3!, ~24!
0-5
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where the error ofb has been estimated by considering t
errors ofn andh as independent.

IV. CRITICAL EQUATION OF STATE

In this section we determine the critical equation of st
characterizing the Heisenberg universality class. The crit
equation of state relates the thermodynamical quantitie
the neighborhood of the critical temperature, in both pha
It is usually written in the form

HW 5~Bc!
2dMW M d21f ~x!, ~25!

x[t~M /B!21/b, ~26!

wheref (x) is a universal scaling function normalized in su
a way that f (21)50 and f (0)51, andBc and B are the
amplitudes of the magnetization on the critical isotherm a
on the coexistence curve:

M5BcH
1/d, t50, ~27!

M5B~2t !b, H50, t,0. ~28!

Griffiths’ analyticity implies thatf (x) is regular everywhere
for x.21. It has a regular expansion in powers ofx,

f ~x!511 (
n51

`

f n
0xn, ~29!

and a large-x expansion of the form

f ~x!5xg (
n50

`

f n
`x22nb. ~30!

Moreover, at the coexistence curve, i.e., forx→21,68–72

f ~x!'cf~11x!2. ~31!

The nature of the corrections to the leading behavior at
coexistence curve is less clear, see, e.g., Refs. 70–73, an
From the scaling functionf (x) one may derive many inter
esting universal amplitude ratios involving zero-moment
quantities, such as specific heat, magnetic susceptibility,
For example, the universal ratioU0 of the specific-heat am
plitudes in the two phases can be written as~see, e.g., Ref.
74!

U0[
A1

A2 5
w~`!

w~21!
, ~32!

where, in the Heisenberg case for which21,a,0,

w~x!5
xuxua22f 8~0!

a21
1

uxua f 9~0!

a
2uxua22f ~x!

1E
0

x

dyuyua22@ f 8~y!2 f 8~0!2y f9~0!#. ~33!
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We mention that the critical equation of state for theN-vector
model has been computed toO(e2) in the framework of the
e-expansion75 and toO(1/N) in the framework of the 1/N
expansion.68

As our starting point for the determination of the critic
equation of state, we determine the first few nontrivial co
ficients of its small-magnetization expansion, by analyz
the corresponding HT series for the improvedf4 Hamil-
tonian. These results are then used to construct param
representations of the critical equation of state which
valid in the whole critical region. Then, from our approx
mate representations of the equation of state we derive
mates of several universal amplitude ratios. This method
already applied to the Ising universality class in three76,38and
two dimensions,77 and to the three-dimensionalXY univer-
sality class.78,36

A. Small-magnetization expansion
of the Helmholtz free energy

We write the Helmholtz free energy as76,79

DF5F~M !2Freg~M !5
m3

g4
A~z!, ~34!

wherem51/j, j is the second-moment correlation lengt
g4 is the zero-momentum four-point coupling, and

z[kuM ut2b, ~35!

where k is an appropriate amplitude ratio. The sma
magnetization expansion of the free energy correspond
the small-z expansion ofA(z),

A~z!5
1

2
z21

1

4!
z41(

j 53

1

~2 j !!
r 2 j z

2 j , ~36!

which also fixes the normalizationk of z. Correspondingly,
for the equation of state we obtain

HW 5
]F~M !

]MW
}

MW

uM u
tbdF~z!, ~37!

with F(z)[]A/]z. Because of Griffiths’ analyticity,F(M )
has a regular expansion in powers oft for uM u fixed. There-
fore, F(z) has the large-z expansion

F~z!5zd(
k50

Fk
`z2k/b. ~38!

The functionF(z) is defined only fort.0. For t,0 the
equation of state is expressed in terms of a different func
which is however analytically related toF(z) since the free
energy and the equation of state are analytic on the crit
isothermt50 for HÞ0. The two functionsf (x) and F(z)
are clearly related,

z2dF~z!5F0
` f ~x!, z5z0x2b, ~39!

wherez05kB.
In order to estimate the universal quantitiesg4 and r 2 j

from the corresponding improved HT expansions~see Ap-
0-6
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TABLE VI. Estimates ofg4 , r 6, andr 8, obtained using various approaches.

IHT HT d53 exp. e-exp. CRG

g4 19.13~10! 19.31~14!, 19.27~11! ~Ref. 80! 19.06~5! ~Ref. 47! 19.55~12! ~Refs. 81 and 82! 22.35~Refs. 55 and 64!
19.34~16! ~Ref. 82! 19.06~Ref. 48!

r 6 1.86~4! 2.1~6! ~Ref. 83! 1.880~Ref. 84! 1.867~9! ~Refs. 81 and 85! 1.74 ~Ref. 86!
1.884~32! ~Ref. 81!

r 8 0.6~2! 0.975~Ref. 84! 1.0~6! ~Refs. 81 and 85! 0.84 ~Ref. 86!
i

f t
c
th
r
g
d

on
t,

or
ss

at
re
ly

tic

f
-

-
th
e
ed

ial
ular

n

pendix B 1!, we essentially used the analysis described
Ref. 36. Here we report only the final estimates

g4519.13~8!@2#, ~40!

r 651.86~3!@1#, ~41!

r 850.60~15!@5#, ~42!

where the error in parentheses is related to the spread o
approximants and the second one in brackets to the un
tainty onl* , evaluated as before. Moreover, we obtained
rough estimater 105215(10). In Table VI we compare ou
results~denoted by IHT! with the estimates obtained usin
other approaches, such as HT expansions for the stan
O(3)-vector model~HT!, field-theoretical fixed-dimension
perturbative expansions (d53 exp.),e expansions (e-exp.),
and approximate solutions of continuous renormalizati
group equations~CRG!. All estimates are in good agreemen
Only the e-expansion estimate ofg4 is significantly higher
than the IHT estimate~as already noted in Ref. 81, the err
may be underestimated!. The CRG estimates are much le
precise than the results of other methods.

B. Parametric representations of the equation of state

In order to obtain approximations of the equation of st
valid in the whole critical region, we use parametric rep
sentations that implement the expected scaling and ana
properties. We write87–89

M5m0Rbm~u!,

t5R~12u2!,

H5h0Rbdh~u!, ~43!

whereh0 andm0 are normalization constants. The variableR
is non-negative, and measures the distance from the cri
point in the (t,H) plane, while the variableu parametrizes
the displacement along the lines of constantR. The functions
m(u) and h(u) are odd and normalized so thatm(u)5u
1O(u3) andh(u)5u1O(u3). The smallest positive zero o
h(u), which should satisfyu0.1, corresponds to the coex
istence curve, i.e., toT,Tc andH→0. The parametric rep
resentation satisfies the requirements of regularity of
equation of state. Singularities can appear only at the co
istence curve~due, for example, to the logarithms discuss
14452
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in Ref. 73!, i.e., for u5u0. Mapping ~43! is not invertible
when its Jacobian vanishes, which occurs when

Y~u![~12u2!m8~u!12bum~u!50. ~44!

Thus parametric representations based on mapping~43! are
acceptable only ifu0,u l whereu l is the smallest positive
zero of the functionY(u).

The functionsm(u) and h(u) are related to the scaling
function f (x) through

x5
12u2

u0
221Fm~u0!

m~u! G1/b

,

f ~x!5Fm~u!

m~1!G
2d h~u!

h~1!
. ~45!

The asymptotic behavior@Eq. ~31!# is reproduced simply by
requiring that

h~u!;~u02u!2 for u→u0 . ~46!

The scaling functionF(z) is obtained by

z5r m~u!~12u2!2b,

F„z~u!…5r~12u2!2bdh~u!, ~47!

wherer may be taken as a free parameter.76,38,78,56

C. Approximate polynomial representations

Following Ref. 78, we construct approximate polynom
parametric representations that have the expected sing
behavior at the coexistence curve~Goldstone singularity! and
match the known terms of the small-z expansion ofF(z) @cf.
Eqs.~36! and~37!#. We consider two distinct approximatio
schemes. In the first one, which we denote by A,h(u) is a
polynomial of fifth order with a double zero atu0, andm(u)
is a polynomial of order (112n):

scheme A: m~u!5uS 11(
i 51

n

ciu
2i D ,

h~u!5u~12u2/u0
2!2. ~48!

In the second scheme, denoted by B, we set

scheme B: m~u!5u,
0-7
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h~u!5u~12u2/u0
2!2S 11(

i 51

n

ciu
2i D . ~49!

Here h(u) is a polynomial of order 512n with a double
zero atu0. For n50 the approximations A and B coincide
Note that, for scheme B,

Y~u!512u212bu2, ~50!

independently ofn, so thatu l5(122b)21. In both schemes
r, u0, and then coefficientsci are determined by matchin
the small-z expansion ofF(z). Thus, in order to fix then
coefficientsci we usen11 values ofr 2 j , i.e.,r 6 , . . . r 612n .

As input parameters for our analysis we consider the
timatesa520.1336(15),h50.0375(5), r 651.86(4), and
r 850.6(2), which are the results of our HT analysis. Th
available estimate ofr 10 is too imprecise for our purposes. I
Fig. 1 we show the curves obtained in schemes A and B w
n50,1 and fora520.1336, h50.0375, r 651.86, andr 8
50.6. The differences among the three approximati
should give an indication of the uncertainty. The three
proximations ofF(z) are practically indistinguishable, an
differ at most by approximately 2%~the difference between
the two n51 curves is much smaller!. Thus, by using the
first two coefficientsr 2 j , one obtains reasonably precise a
proximations of the scaling functionF(z) for all positive
values ofz, i.e., for the whole HT phase up tot50. This is
also numerically confirmed by the estimates of the unive
constantF0

` , cf. Eq. ~38!, which is related to the large-z
behavior of F(z). Indeed, we obtainF0

`50.0262(4),
0.0266(5), 0.0266~5! respectively forn50, n51 ~scheme
A!, and n51 ~scheme B!, where the reported errors refe
only to the uncertainty of the input parameters. This fac
not trivial, since the small-z expansion has a finite conve
gence radius.90 Therefore, the determination ofF(z) on the
whole positive real axis from its small-z expansion requires
an analytical continuation, which turns out to be effective
performed by the approximate parametric representations
have considered.

In Fig. 2 we plot the approximations off (x) correspond-

FIG. 1. The scaling functionF(z) vs z.
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ing to the schemes A and B forn50,1, using the centra
values of the input parameters. The three curves are in
stantial agreement, especially those withn51. Indeed, the
difference between them is within the uncertainty due to
errors on the input parameters. These approximate para
ric representations are not precise at the coexistence cu
indeed, as we shall see, the estimates ofcf @cf. Eq. ~31!,# are
rather imprecise and very sensitive to the value ofr 8, which
is not known with high precision. We mention that in Ref. 5
an approximate expression forf (x) was obtained by approxi
mately solving the continuous renormalization-group eq
tions for the free energy~average action!. The results are
quite imprecise, as we shall show later by comparing
corresponding estimates for some universal amplitude ra

D. Universal amplitude ratios

From the critical equation of state one may derive e
mates of several universal amplitude ratios. They are
pressed in terms of the amplitudes of the magnetization@cf.
Eqs.~27! and ~28!#, of the singular part of the specific hea

CH,sing5A6utu2a, ~51!

of the magnetic susceptibility in the HT phase,

x5NC1t2g, ~52!

of the zero-momentum four-point connected correlat
function in the HT phase,

x45
N~N12!

3
C4

1t2g22bd, ~53!

and of the second-moment correlation length in the
phase,

j5 f 1t2n, ~54!

whereN53. We also consider the crossover~or pseudocriti-
cal! line tmax(H), that is defined as the reduced temperat

FIG. 2. The scaling functionf (x) vs x.
0-8
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for which the longitudinal magnetic susceptibilityxL(t,H)
5]M /]H has a maximum atH fixed. The renormalization
group predicts

tmax~H !5TpH1/(g1b), ~55!

xL~ tmax,H !5Cptmax
2g . ~56!

We consider several universal amplitude ratios:

U0[
A1

A2 , ~57!

Rx[
C1Bd21

~Bc!
d

, ~58!

RC[
aA1C1

B2 , ~59!

R4[2
C4

1B2

~C1!3 , ~60!

Rj
1[~aA1!1/3f 15S RCR4

g4
D 1/3

, ~61!

Pm[
Tp

bB

Bc
, ~62!

Pc[2
Tp

2bdC1

C4
1

5
Pm

2d

Rx
2R4

, ~63!

Rp[
C1

Cp
. ~64!

Morever, we estimate

Ra[
12U0

a
, ~65!

which, as suggested in Ref. 74, should be less sensitive to
value ofa thanU0. In Appendix C we give their expression
in terms of the functionsm(u) andh(u).

In Table VII we report the universal amplitude ratios,
derived by the approximate polynomial representations
the equation of state forn50 and 1. The reported errors a
only due to the uncertainty of the input parameters and
not include the systematic error of the procedure, which m
be determined by comparing the results of the various
proximations. In Table VII we also show results forzmax,
xmax, andwmax which are the values of the scaling variablez,
x, andw @w will be defined in Eq.~71!# associated with the
crossover line,F0

` @cf. Eq. ~38!#, which is related to the
large-z behavior ofF(z), r 8, andr 10 @cf. Eqs.~36! and~37!#,
which are related to the small-z expansion ofF(z), f 1

0, f 2
0,

and f 3
0 @cf. Eq. ~29!#, which are related to the expansion

x50 of f (x), andcf @cf. Eq. ~31!#, which is related to the
behavior at the coexistence curve. Note thatf 0

`5Rx
21 where

f 0
` is related to the large-x behavior off (x) @cf. Eq. ~30!#.
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From the results of Table VII we arrive at the final es
mates denoted by IHT–PR in Table VIII, obtained by taki
the weighted average of the results forn51. The error we
quote is the sum of the uncertainty induced by the error
the input parameters and of one-half of the difference
tween the two approximations withn51. In most cases
these estimates include the results of then50 approxima-
tion. In Table VIII we compare our results with those o
tained in other approaches and in experiments.101 We men-
tion that the field-theoretical estimates ofU0 have been
obtained from the analysis of the fixed-dimension expans
in the framework of the minimal renormalization withoute
expansion,91,93 and from the standarde expansion to
O(e2).92 The estimate ofU0 by CRG was obtained using Eq
~33! and the approximate expression forf (x) reported in
Refs. 55 and 64. See, e.g., Ref. 102 for a more comp
review of theoretical and experimental estimates of unive
amplitude ratios.

In addition, from the approximate parametric represen
tions of the equation of state, we obtain the estimates

f 1
051.34~5!,

f 2
050.20~2!,

TABLE VII. Results for the parameters and the universal a
plitude ratios using the scheme A@cf. Eq. ~48!#, and scheme B@cf.
Eq. ~49!#. Note that the quantities reported in the first three lines
not have a physical meaning, but are related to the particular p
metric representation employed. Numbers marked with an aste
are inputs, not predictions.

n50 n51 A n51 B

r 2.14~2! 2.20~4! 2.08~4!

u0
2 3.81~1! 3.3~1! 2.7~2!

c1 0 20.016(9) 0.055~20!

U0 1.61~2! 1.56~3! 1.57~3!

Ra 4.6~2! 4.2~3! 4.3~2!

Rx 1.41~2! 1.28~8! 1.33~4!

RC 0.173~3! 0.19~1! 0.184~6!

R4 8.2~2! 7.7~3! 7.9~2!

Rj
1 0.421~1! 0.425~3! 0.423~2!

Pm 1.201~5! 1.17~2! 1.18~1!

Pc 0.354~4! 0.357~5! 0.357~5!

Rp 2.026~6! 2.020~5! 2.021~7!

zmax 1.278~5! 1.275~5! 1.275~6!

xmax 8.9~1! 8.3~4! 8.5~2!

wmax 1.64~2! 1.53~6! 1.57~4!

F0
` 0.0262~4! 0.0266~5! 0.0266~5!

r 8 0.23~5! * 0.6(2) * 0.6(2)
r 10 21.1(3) 26(2) 27(3)
f 1

0 1.28~1! 1.36~5! 1.33~3!

f 2
0 0.181~5! 0.21~2! 0.20~1!

f 3
0 20.102(1) 20.105(2) 20.094(5)

cf 22~5! 5~3! 8~3!
0-9
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TABLE VIII. Estimates of universal amplitude ratios obtained using different approaches. The numbers marked by asteris
obtained by us using the results reported in the corresponding references.

IHT–PR d53 exp. e-exp. CRG HT Experiments

U0 1.56~4! 1.51~4! ~Ref. 91! 1.521~22! ~Ref. 92! * 1.823~Refs. 55 and 64! 1.50~5! ~Ref. 17!
1.544~Ref. 93! 1.27~9! ~Ref. 29!

1.4~4! ~Ref. 94!

Ra 4.3~3! * 4.4(4) ~Ref. 91! 4.56~9! ~Ref. 92! * 3.41 ~Refs. 55 and 64!
* 4.46 ~Ref. 93!

Rx 1.31~7! 1.33 ~Ref. 95! 1.11 ~Refs. 55 and 64!

RC 0.185~10! 0.189~9! ~Ref. 96! 0.17 ~Ref. 97!
0.194~Ref. 93!

R4 7.8~3!

Rj
1 0.424~3! 0.4347~20! ~Ref. 98! 0.42 ~Ref. 99! 0.431~5! ~Ref. 65!

0.4319~17! ~Ref. 100! 0.433~5! ~Ref. 65!
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0520.10~1!,

F0
`50.0266~5!,

r 10526~3!. ~66!

The estimate ofr 10 should be compared with the much le
precise HT resultr 105215(10) obtained in Sec. IV A. Con
cerning the quantities involving amplitudes at the crosso
line, we report the estimates

Pm51.18~2!, ~67!

Pc50.357~5!, ~68!

Rp52.020~6!, ~69!

zmax51.275~5!. ~70!

In order to determine the behavior of the longitudinal ma
netic susceptibilityxL5]M /]H as a function oft andH, one
may consider the scaling function

D~w![Bc
21H121/dxL5

f ~x!121/d

d f ~x!2
1

b
x f8~x!

,

w[~B/Bc!
1/btH21/(bd)5x f~x!21/(bd). ~71!

The functionD(w) has a maximum forwmax51.55(6). In
order to simplify possible comparisons, it is convenient
consider the rescaled function

C~u!5
D~w!

D~wmax!
,

u5
w

wmax
, ~72!
14452
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which is such that the maximum corresponds tou51 and
satisfiesC(1)51. In Fig. 3 we plot the scaling function
C(u) versusu, as obtained from then50,1 approximate
parametric representations.

E. Comparison with the experiments

In spite of the large number of experiments, at pres
there is no accurate quantitative study of the equation of s
in the critical regime. Here we shall discuss three differe
representations that are widely used in the experime
work, and we shall give explicit formulas for them.

A first possibility103 consists in studying the behavior o
h/m[Hutu2g/M versusm25M2utu22b. Such a function can
be easily obtained from our approximations forf (x), since
m25B2uxu22b and

h

m
5kuxu2g f ~x! ~73!

FIG. 3. The scaling functionC(u) @cf. Eqs.~72! and ~71!#.
0-10
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where the constantk can be written as

k5~Bc!
2dBg/b5

Rx

C1 . ~74!

The universal ratioRx has been computed in the previo
section,Rx51.31(7), andB andBc are nonuniversal ampli
tudes defined in Eqs.~28! and ~27!. A plot of m2/B2 versus
C1h/m is reported in Fig. 4. It agrees qualitatively with th
analogous experimental ones reported, e.g., in Refs. 17
and 104. Often, for smallh/m one approximates the equatio
of state by writing

h

m
5a61b6m2, ~75!

wherea6 and b6 are numerical coefficients depending o
the phase. Such an approximation has a very limited rang
validity. In the HT phase, we obtain, form2→0,

h

m
5

1

C1 F11
R4

6

m2

B2 1 (
n52

` R4
nr 2n12

~2n11!! S m2

B2 D nG
'

1

C1 F111.30~5!
m2

B2 10.94~8!S m2

B2 D 2

10.06~2!S m2

B2 D 3

1•••G , ~76!

where we have used the estimate ofR4 reported in Table
VIII, and the estimates ofr 6 and r 8 reported in Table VI.
From Eq.~76! we see that approximation~75! is valid only
for very small m2, i.e., at the 1% level only form2

&0.01B2. The quadratic approximation—i.e. the approxim
tion with an additional (m2)2 term—has a much wider rang
of validity because of the smallness of the coefficient ofm6.

In the low-temperature phase, Eq.~75! is theoretically in-
correct, since form2/B2→1 we have

h

m
'

kcf

4b2S 12
m2

B2 D 2

, ~77!

FIG. 4. Plot ofm2/B2 vs C1h/m.
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wherecf is defined in Eq.~31! and can be estimated rough
from the results reported in Table VII. Equation~77! is in-
consistent with approximation~75! near the coexistence
curve, due to the presence of Goldstone modes. It would
correct only in Ising systems.

Finally, note that form2 large we have

h

m
'kS m

B D d21

. ~78!

A second form that is widely used to analyze the experim
tal data is the Arrott-Noakes105 scaling equation

S H

M D 1/g

5at1bM1/b, ~79!

wherea andb are numerical constants. This approximation
good in a neighborhood of the critical isothermt50. Since

S H

M D 1/g

k21/g5S M

B D 1/b

f ~x!1/g, ~80!

using Eq.~29! and the numerical values reported in Eq.~66!,
we obtain

S H

M D 1/g

k21/g5S M

B D 1/b

10.96~4!t20.04~2!t2S M

B D 21/b

20.02~2!t3S M

B D 22/b

•••. ~81!

Thus, at a 1% level of precision the Arrott-Noakes formu
is valid approximately fort(MB21)21/b&25 which is quite
a large interval.

Finally, Ref. 6 reported an experimental study of the b
havior of the critical system at the crossover line, a
showed a plot of the curveC(u) @cf. Eq. ~72!#, in terms of
the unnormalized variableuexpt[tH21/(bd). We can attempt a
quantitative comparison with the results reported in their F
4. For this purpose, in Fig. 5 we plotC(u) in terms of their
variable for the range ofuexpt accessible to the experiment.106

FIG. 5. The scaling functionC(u) vs the experimental scaling
variableuexpt[tH21/(bd).
0-11
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A direct comparison of this figure with Fig. 4 of Ref.
shows a very nice quantitative agreement.

APPENDIX A: MONTE CARLO SIMULATIONS

In this appendix we present some details of the analy
of the MC data. Details on the simulation can be found
Ref. 37.

1. Definitions

In all our work, considerable importance is played by
mensionless ratios~or phenomenological couplings! R. In or-
der to have better control on systematic errors we have s
ied four dimensionless ratios. We first consider the Bin
cumulantU4,107 and its generalizationU6 defined by

U2 j5
^~mW 2! j&

^mW 2& j
, ~A1!

where

mW 5
1

V (
x

fW x ~A2!

is the magnetization of the system. The third quantity that
studied is the second-moment correlation length divided
the linear extension of the latticej2nd/L. The second-
moment correlation length is defined by

j2nd5A x/F21

4 sin~p/L !2
, ~A3!

where

x5
1

V K S (
x

fW xD 2L ~A4!

is the magnetic susceptibility and

F5
1

V K U(
x

expS i
2px1

L DfW xU2L ~A5!

is the Fourier transform of the two-point correlation functi
at the lowest nonvanishing momentum. In order to red
the statistical error, we averaged the results of all three
rections of the lattice.

The fourth quantity is the ratioZa /Zp , whereZa is the
partition function with antiperiodic boundary conditions
one of the three directions andZp the corresponding one
with periodic boundary conditions in all directions. Antip
riodic boundary conditions mean that the term(^xy&fW x•fW y in
the Hamiltonian is multiplied by21 for x5(L1 ,x2 ,x3) and
y5(1,x2 ,x3). This ratio can be measured with the help o
variant of the cluster algorithm, the boundary-flip algorith
It was introduced in Ref. 108 for the Ising model and gen
alized toO(N)-invariant nonlinears models in Ref. 109. As
in Refs. 33 and 36, we use a version of the algorithm t
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only measuresZa /Zp and does not perform the flip to ant
periodic boundary conditions. For a recent discussion of
algorithm, see Ref. 36.

2. Determination of R*

First, we computebc and the fixed-point value of the
dimensionless ratiosR* for l54.5—our best approximation
to l* —using the standard cumulant crossing method
Binder. Forl54.5 we solve Eq.~2!, computingR(L,b) by
using its Taylor expansion up to the third order:

R~L,b!5R~L,bs!1d1~L,bs!~b2bs!

1
1

2
d2~L,bs!~b2bs!

21
1

6
d3~L,bs!~b2bs!

3.

~A6!

Herebs is the value ofb at which the simulation was per
formed, andR, d1 , d2, and d3 are determined in the MC
simulation.

As an example, results forZa /Zp are given in Table IX. In
the fits, we include all data withLmin<L<Lmax. For Lmax

TABLE X. Estimates ofR̄* andc̄(4.5) from the fit~6! of U4 at
(Za /Zp) f50.1944. Herel54.5.

Lmin Lmax x2/d.o.f. R̄* c̄(4.5)

6 96 7.87 1.13931~2! 0.00073~12!

8 96 1.71 1.13944~2! 20.00036(17)
10 96 1.82 1.13942~3! 20.00022(25)
12 96 1.65 1.13937~4! 0.00039~36!

14 96 1.25 1.13930~5! 0.00118~47!

16 96 1.33 1.13932~5! 0.00097~60!

18 96 1.33 1.13928~6! 0.00145~73!

20 96 1.27 1.13923~7! 0.00217~89!

24 96 1.54 1.13920~10! 0.00273~155!
8 32 1.00 1.13947~3! 20.00060(19)
8 48 1.26 1.13945~2! 20.00045(18)
12 48 1.20 1.13939~4! 0.00018~38!

16 48 0.75 1.13936~6! 0.00056~67!

TABLE IX. Fits with ansatz~2! of our data forZa /Zp at l
54.5. We included all data withLmin<L<Lmax in the fit.

Lmin Lmax x2/d.o.f. bc (Za /Zp)*

12 96 5.75 0.6862428~6! 0.19408~3!

14 96 1.90 0.6862413~7! 0.19419~3!

16 96 1.29 0.6862406~7! 0.19424~4!

18 96 0.62 0.6862400~7! 0.19430~4!

20 96 0.68 0.6862400~8! 0.19430~5!

22 96 0.75 0.6862400~8! 0.19430~6!

24 96 0.81 0.6862397~10! 0.19434~8!

28 96 0.60 0.6862390~10! 0.19443~10!

12 48 5.96 0.6862459~10! 0.19399~4!

14 48 1.92 0.6862432~10! 0.19413~4!
0-12
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596, x2/d.o.f. ~d.o.f. is the number of degrees of freedom
the fit! is smaller than 1 starting fromLmin516. Moreover,
the result forbc is stable when further data are discarded.
be on the safe side, we take our final estimate from the
with Lmin528 andLmax596.

The systematic error due to corrections to scaling is e
mated by comparing the results corresponding toLmin528
and Lmax596 with those withLmin514 andLmax548. We
suppose that the error ofbc is proportional toL21/n2v

'L22.2, where we assume pessimistically leading and
subleading corrections. Hence, we estimate the error on
final result as the difference between theLmin528, Lmax

596 result and theLmin514, Lmax548 result multiplied by
222.2/(12222.2). The systematic error of (Za /Zp)* is esti-
mated in a similar fashion, assuming that the error is prop
tional to L2v.

In the same way we analyze our data for the remain
three dimensionless ratios. Our results are reported in T
IV. Note that the four results forbc are consistent within
error bars. The statistical error ofbc obtained fromZa /Zp

and j2nd/L is considerably smaller than that fromU4 and
U6. As our final estimate we takebc50.6862385(20), which
is consistent with all four results.

TABLE XI. Estimates ofR̄* andc̄(4.5) from the fit~6! of U4 at
(j2nd/L) f50.5644. Herel54.5.

Lmin Lmax x2/d.o.f. R̄* c̄(4.5)

8 96 9.98 1.13984~2! 20.00493(19)
10 96 5.05 1.13966~3! 20.00313(31)
12 96 2.32 1.13948~4! 20.00120(39)
14 96 1.30 1.13937~5! 0.00010~51!

16 96 1.40 1.13936~6! 0.00022~65!

18 96 1.21 1.13929~7! 0.00112~81!

20 96 1.24 1.13925~8! 0.00167~99!

24 96 1.50 1.13923~11! 0.00209~173!
8 48 10.41 1.13987~3! 20.00514(19)
12 48 1.99 1.13952~4! 20.00153(42)
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3. Determination of l*

In order to computel* we solve the equationc̄(l)50,
where c̄(l) is defined in Eq.~6!. In practice, we replace
c̄(l) with its first-order Taylor expansion aroundl54.5,
and thus evaluatel* from

l* '4.52 c̄~4.5!S dc̄

dl
U

l54.5
D 21

. ~A7!

In order to computec̄(4.5) we fit our data forR̄ with ansatz
~6!, where we fixv50.8. We have checked that the fin
result forl* has a very weak dependence on the value ov
used in the analysis. If we choosev50.75, the results vary
much less than the quoted error bar, indicating that the e
on v can be neglected.

As an example, the results forU4 at (Za /Zp) f50.1944
are given in Table X. We see that there is a slight drift towa
larger values ofc̄(4.5) asLmin is increased. The final resu
corresponds toLmin516 andLmax596. Systematic errors du
to subleading corrections to scaling are estimated by com
ing with the results obtained forLmin58 andLmax548. As-
suming the errors onc̄(4.5) to decrease asL2v21v'L20.8,
we arrive atc̄(4.5)50.0010(6)@19#, where the systematic
error is quoted in brackets.

In Table XI we give the analogous results forU4 at
(j2nd/L) f50.5644. Here we see a larger change ofc̄(4.5)
when Lmin is varied. Also,x2/d.o.f. is larger forLmin,14.
Since corrections are larger than above, we take the fi
estimate from the fit withLmin524 andLmax596. We arrive
at the estimatec̄(4.5)50.002(2)@5#. In a similar way we
arrive atc̄(4.5)50.007(5)@15# for U6 at (Za /Zp) f50.1944
and c̄(4.5)50.003(4)@18# for U6 at (j2nd/L) f50.5644.

Next, we computedc̄/dl at l54.5. To estimate the de
rivative of c̄(l), we consider the finite differences

dc̄

dl
U

l54.5

'@R̄~L,5.0!2R̄~L,4.0!#Lv. ~A8!
TABLE XII. Estimates of@R̄(L,5.0)2R̄(L,4.0)#Lv with v50.8.

L U4 at (Za /Zp) f U4 at (j2nd/L) f U6 at (Za /Zp) f U6 at (j2nd/L) f

6 20.00957(17) 20.01128(18) 20.03141(53) 20.03674(54)
8 20.00951(21) 20.01136(22) 20.03111(67) 20.03697(70)
10 20.00973(25) 20.01174(27) 20.03164(80) 20.03799(85)
12 20.00972(28) 20.01160(30) 20.03150(88) 20.03747(93)
14 20.00983(33) 20.01188(36) 20.03201(105) 20.03855(113)
16 20.00972(37) 20.01181(40) 20.03183(115) 20.03848(123)
18 20.00972(47) 20.01195(53) 20.03177(148) 20.03884(162)
20 20.01022(57) 20.01174(63) 20.03392(179) 20.03880(194)
22 20.00947(68) 20.01176(74) 20.03074(213) 20.03795(231)
24 20.00962(79) 20.01209(86) 20.03128(249) 20.03915(272)
28 20.00962(124) 20.01159(135) 20.03208(388) 20.03832(423)
0-13
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The results for our four choices ofR̄ are given in Table XII.
We see that the results, as functions ofL, are constant within
error bars. This nicely confirms the exponentv50.8.

The final result for the derivative is obtained by averag
the results forL>12; see Table XIII. In order to estimate th
discretization error, we additionally compute the derivati
using R̄(L,l) for the pair l55.0 and 4.5. The difference
with the above-reported result is small and in practice ne
gible, approximately 12% forU4 at (Za /Zp) f50.1944 and
U4 at (j2nd/L) f50.5644, and approximately 14% forU6 at
(Za /Zp) f50.1944 andU6 at (j2nd/L) f50.5644.

Inserting our numerical results forc̄(4.5) anddc̄/dl into
Eq. ~A7!, we obtainl* 54.6(4), 4.7(8), 4.7(8), and4.6(8)
from U4 at (Za /Zp) f50.1944,U4 at (j2nd/L) f50.5644,U6
at (Za /Zp) f50.1944 andU6 at (j2nd/L) f50.5644, respec-
tively. The errors take into account the uncertainty ofc̄(4.5),
dc̄/dlul54.5, and v. As our final result we quotel*
54.6(4) fromU4 at (Za /Zp) f50.1944.

4. Critical exponents

We compute the critical exponentsn andh using standard
FSS methods.

a. Exponentn

The exponentn is determined by fitting the data with Eq
~8!. We study the derivative of all four quantitiesU4 , U6 ,
j2nd/L, and Za /Zp , and fix b f by using either (j2nd/L) f
50.5644 or (Za /Zp) f50.1944.

As typical examples, we give fit results for]U4 /]bub f
,

@](Za /Zp)/]b#ub f
, and @](j2nd/L)/]b#ub f

in Tables XIV,
XV, and XVI, respectively. In all these three cases, we ha
fixed b f by (Za /Zp) f . Fixing b f by (j2nd/L) f leads to simi-
lar results.

TABLE XIII. Results for @R̄(L,5.0)2R̄(L,l)#/(5.02l)Lv

with v50.8 for L>12. In the first rowl54.0, and in the second
row l54.5.

U4 at (Za /Zp) f U4 at (j2nd/L) f U6 at (Za /Zp) f U6 at (j2nd/L) f

20.00976(16) 20.01177(17) 20.03184(49) 20.03823(53)
20.00872(27) 20.01035(29) 20.02838(86) 20.03356(92)

TABLE XIV. Estimates ofn from the fit of ]U4 /]bub f
with

ansatz~8!. b f is fixed by (Za /Zp) f50.1944.

Lmin Lmax x2/d.o.f. n

6 96 1.36 0.71215~16!

8 96 0.72 0.71174~20!

10 96 0.70 0.71179~26!

12 96 0.71 0.71160~34!

16 96 0.79 0.71137~49!

20 96 0.86 0.71167~66!
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In the case of]U4 /]bub f
we see thatx2/d.o.f. is close to

1, even if all lattice sizesL>6 are included in the fit. Also,
the result forn stays rather stable whenLmin is increased.

On the other hand, for @](Za /Zp)/]b#ub f
and

@](j2nd/L)/]b#ub f
, x2/d.o.f. comes close to one only star

ing from Lmin>16. Also, the results forn strongly change,
when Lmin is increased. It is interesting to notice that th
estimate ofn is decreasing for@](j2nd/L)/]b#ub f

while it is

increasing for@](Za /Zp)/]b#ub f
whenLmin is increased. As-

suming that this is already the asymptotic behavior, we
find lower and upper bounds forn.

Taking into account the fit results forLmin>22 we arrive
at the final estimaten50.7113(10). Here the error bar in
cludes both the statistical and the systematic error.

Finally, we try to determine the effect of leading corre
tions to scaling on our estimate ofn. For this purpose we fit
our data up toLmax528 atl54.0, 4.5, and 5.0 with ansat
~8!. In Table XVII we give our results for the derivative o
the Binder cumulant with respect tob at (Za /Zp) f50.1944.
In particular, for smallLmin , we see a clear dependence
the result forn on l. For instance, forLmin58 the difference
between the result forl54.0 andl55.0 is 0.00176(46).

In Table XVIII we give the corresponding analysis fo
Za /Zp at (Za /Zp) f50.1944. In this case we see a mu
smaller dependence of the results forn on l. ForLmin58 the
difference between the results forl54.0 and 5.0 is
20.00065(18). The behavior in the case ofj2nd/L ~which is
not shown here! is much the same: the dependence of the

TABLE XV. Estimates ofn from the fit of @](Za /Zp)/]b#ub f

with the ansatz~8!. b f is fixed by (Za /Zp) f50.1944.

Lmin Lmax x2/d.o.f. n

6 96 69.37 0.70660~6!

8 96 11.95 0.70837~8!

10 96 3.28 0.70918~11!

12 96 1.91 0.70969~15!

16 96 1.40 0.71009~22!

20 96 1.21 0.71054~30!

24 96 1.46 0.71044~46!

28 96 1.59 0.71071~58!

TABLE XVI. Estimates ofn from the fit of @](j2nd/L)/]b#ub f

with ansatz~8!. b f is fixed by (Za /Zp) f50.1944.

Lmin Lmax x2/d.o.f. n

6 96 68.10 0.71826~8!

8 96 18.76 0.71613~11!

10 96 7.72 0.71489~14!

12 96 4.35 0.71394~18!

16 96 1.32 0.71261~27!

20 96 1.43 0.71246~37!

24 96 1.27 0.71169~56!

28 96 1.39 0.71196~70!
0-14
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result forn on l is much smaller than for the Binder cumu
lant.

Taking into account the range the lattice sizes that
used to obtain the final result forn, we arrive at a possible
uncertainty of 0.0001 forn from the derivative ofZa /Zp and
of j2nd/L due to the uncertainty inl* . The systematic erro
is clearly dominated by subleading corrections. Our final M
estimate ofn is

n50.7113~11!. ~A9!

b. Exponenth

We determine the exponenth by using Eq.~10!, and also
a fit ansatz that includes a constant background term@Eq.
~11!#. We fix b f by setting either (j2nd/L) f50.5644 or
(Za /Zp) f50.1944.

TABLE XVII. Estimates ofn computed from the derivative o
the Binder cumulant atb f , where b f is fixed by (Za /Zp) f

50.1944.

Lmin Lmax x2/d.o.f. n
l54.0

6 28 0.91 0.71301~24!

8 28 0.75 0.71269~33!

10 28 0.83 0.71296~44!

12 28 1.07 0.71275~64!

l54.5

6 28 1.64 0.71226~17!

8 28 0.74 0.71181~23!

10 28 0.67 0.71193~32!

12 28 0.74 0.71170~46!

l55.0

6 28 1.27 0.71153~23!

8 28 0.76 0.71093~32!

10 28 0.44 0.71034~43!

12 28 0.51 0.71014~60!

TABLE XVIII. Estimates ofn computed from the derivative o
Za /Zp at b f , whereb f is fixed by (Za /Zp) f50.1944.

Lmin Lmax x2/d.o.f. n
l54.0

8 28 8.97 0.70766~13!

10 28 1.63 0.70871~18!

12 28 1.58 0.70902~27!

l54.5

8 28 14.38 0.70804~9!

10 28 2.84 0.70890~13!

12 28 1.57 0.70941~19!

l55.0

8 28 8.52 0.70831~13!

10 28 2.89 0.70916~18!

12 28 2.40 0.70965~25!
14452
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Fits for l54.5 with the ansatz~10! are given in Tables
XIX @b f fixed by (Za /Zp) f50.1944] and XX@b f fixed by
(j2nd/L) f50.5644#. In both cases,x2/d.o.f. becomes close
to 1 starting fromLmin524. Moreover, in both cases the fi
results forh are strongly increasing asLmin is increased. For
Lmin532 we have a consistent result ofh50.0374(2).

Next, we checked the dependence of the result forh on l.
In Table XXI we give results forl54.0, 4.5, and 5.0 for
Lmin516 andLmax528. We see a rather strong dependen
on l. The difference between the results forl54.0 and 5.0
is 0.00080(25). Taking into account the range of lattice si
used to obtain our final estimate, we arrive at an error
0.0002 onh due to the error onl* .

Finally, we performed fits with ansatz~11!. The results are
summarized in Tables XXII and XXIII. We observe that
x2/d.o.f. close to 1 is already reached forLmin510. More-
over, the result forh changes little with increasingLmin . For
Lmin516 the results obtained by fixingb f by Za /Zp and
j2nd/L agree. Therefore, as our final result we giveh
50.0378(6). Theerror bar is such that it includes the resu
of the fits with ansatz~10!.

APPENDIX B: ANALYSIS OF THE HIGH-TEMPERATURE
EXPANSIONS

In this appendix we report a discussion of our HT ana
ses. It should allow the reader to understand how we de
mined our estimates and the reliability of the errors we
port, which are to some extent subjective. More details
the methods we use are reported in Ref. 36.

1. Definitions and HT series

We computed the HT expansion of several quantities
the f4 lattice Hamiltonian@Eq. ~1!# for generic values ofl

TABLE XIX. Estimates ofh from fits of the magnetic suscep
tibility at l54.5 with Eq.~10!. b f is fixed by (Za /Zp) f50.1944.

Lmin Lmax x2/d.o.f. h

12 96 32.55 0.03557~5!

16 96 6.36 0.03641~7!

20 96 1.73 0.03682~9!

24 96 1.00 0.03710~13!

28 96 0.81 0.03725~16!

32 96 0.81 0.03740~24!

TABLE XX. Estimates ofh from fits of the magnetic suscepti
bility at l54.5 with Eq.~10!. b f is fixed by (j2nd/L) f50.5644.

Lmin Lmax x2/d.o.f. h

12 96 33.81 0.03592~4!

16 96 8.24 0.03656~5!

20 96 2.35 0.03695~7!

24 96 0.77 0.03725~10!

28 96 0.59 0.03735~12!

32 96 0.65 0.03742~18!
0-15
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by using the linked-cluster expansion technique. A gene
introduction to this technique can be found in Refs. 110–1
We calculated the 20th-order HT expansion of the magn
susceptibility and of the second moment of the two-po
function,

x5(
x

^fa~0!fa~x!&, m25(
x

x2^fa~0!fa~x!&,

~B1!

and therefore, the second-moment correlation lengthj2

5m2 /(6x). Moreover, we computed the HT expansion
the zero-momentum connected 2j point Green’s functions
x2 j :

x2 j5 (
x2 , . . . ,x2 j

^fa1
~0!fa1

~x2! . . . fa j
~x2 j 21!fa j

~x2 j !&c

~B2!

(x5x2). More precisely, we computedx4 to 18th order, and
x6 , x8, andx10 to 15th order. In Table XXIV we report the
series for thef4 Hamiltonian with l54.5. We chose this
value because it is very close to the best estimate ofl* , and
because for this value ofl we have a precise MC estimate
bc , bc50.6862385(20).

The HT series of the zero-momentum four-point coupli
g4 and of the coefficientsr 2 j that parametrize the smal
magnetization expansion of the equation of state can be c
puted using their definitions in terms ofx2 j andj2, i.e.,

g452
3N

N12

x4

x2j3 , ~B3!

and

r 65102
5~N12!

3~N14!

x6x2

x4
2 ,

TABLE XXI. Estimates ofh from fits of the magnetic suscep
tibility at l54.0, 4.5, and 5.0 with Eq.~10!. b f is fixed by
(Za /Zp) f50.1944.

l Lmin Lmax x2/d.o.f. h

4.0 16 28 4.75 0.03610~18!

4.5 16 28 2.96 0.03562~13!

5.0 16 28 8.53 0.03530~18!

TABLE XXII. Estimates ofh from fits of the magnetic suscep
tibility at l54.5 with Eq.~11!. b f is fixed by (Za /Zp) f50.1944.

Lmin Lmax x2/d.o.f. h b

8 96 2.18 0.03832~8! 20.657(9)
10 96 1.22 0.03811~10! 20.617(17)
12 96 0.72 0.03790~12! 20.555(26)
16 96 0.66 0.03782~17! 20.528(54)
14452
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r 852802
280~N12!

3~N14!

x6x2

x4
2 1

35~N12!2

9~N14!~N16!

x8x2
2

x4
3 ,

~B4!

r 105154002
7700~N12!

~N14!

x6x2

x4
2 1

350~N12!2

~N14!2

x6
2x2

2

x4
4

1
1400~N12!2

3~N14!~N16!

x8x2
2

x4
3

2
35~N12!3

3~N14!~N16!~N18!

x10x2
3

x4
4

.

The formulas relevant for the Heisenberg universality cl
are obtained settingN53.

2. Critical exponents

In order to estimateg andn, we analyzed the 20th-orde
HT expansion of the magnetic susceptibility and the 19
order HT expansion ofj2/b. We analyzed the HT series b
means of integral approximants113 ~IA’s ! of first, second, and
third order~IA1’s, IA2’s and IA3’s, respectively!. Since the
most precise results are obtained by using the MC estim
of bc to bias the approximants, we shall only report t
results of the biased analyses. We used the values obc
obtained in Appendix A 2, i.e.,

bc~l54.0!50.6843895~35!, ~B5!

bc~l54.5!50.6862385~20!, ~B6!

bc~l55.0!50.6875638~37!. ~B7!

We considered several sets of biased IA’s, and for each
them we obtained estimates of the critical exponents. In
analysis we closely followed Ref. 36. Thus, in the followin
we shall heavily refer to it for notations and a more detai
description of the analyses.

Given annth-order seriesf (b)5( i 50
n cib

i , its kth-order
integral approximant@mk /mk21 /•••/m0 / l # IAk is a solu-
tion of the inhomogeneouskth-order linear differential equa
tion

Pk~b! f (k)~b!1Pk21~b! f (k21)~b!1•••1P1~b! f (1)~b!

1P0~b! f ~b!1R~b!50, ~B8!

TABLE XXIII. Estimates ofh from fits of the magnetic suscep
tibility at l54.5 with Eq.~11!. b f is fixed by (j2nd/L) f50.5644.

Lmin Lmax x2/d.o.f. h b

8 96 0.80 0.03756~6! 20.379(6)
10 96 0.68 0.03765~7! 20.396(11)
12 96 0.64 0.03772~9! 20.416(20)
16 96 0.53 0.03780~13! 20.454(39)
0-16
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TABLE XXIV. Coefficients of the HT expansion ofm2 , x, x4 , x6, x8, andx10, for thef4 Hamiltonian withl54.5.

i m2 x2 x4

0 0 0.95784805390722532625540 20.10220686631889066464185

1 0.61164859624923922306340 1.83494578874771766919200 20.78318918399604286311017

2 2.34346567036967995931352 3.02570526555699314952643 23.40993303251195614433724

3 6.12631563804734885224064 4.91084272357011167693574 211.4547261149387426111654

4 13.7411678013148223984708 7.72413685583625911405950 232.8622857609807070588938

5 28.1806907736271607364126 12.0696651111374510782698 284.8703770522664536068131

6 54.6110112231156495979858 18.5898743639602203433897 2203.048391944861326183480

7 101.601106321810555490226 28.5129469684875374524852 2458.487070991901596469076

8 183.444896900967255568497 43.3910414400431056256283 2989.113871576954399902821

9 323.515763329983708761073 65.8457097219033943862880 22056.80132192600410402482

10 560.008592676223985571196 99.4318415601856883686915 24148.88336851312159356144

11 954.596109677157386424652 149.842255361185424824490 28158.09343927729005801740

12 1606.62254117132464855356 225.053071205898843291857 215696.1032586702224741180

13 2674.82852285795544112124 337.491827618915172447234 229637.6862646277928041257

14 4412.16935517377929559254 504.872666999718714410906 255053.5845813513443015904

15 7219.36840082433737483629 754.353044416651842398902 2100803.117025457078176935

16 11729.5598928466629681760 1125.02916338959766441444 2182227.804691700019121686

17 18938.5632727811981324466 1676.21770934179961650320 2325689.103869085626575337

18 30408.8505644977121915813 2493.83291987123696064787 2576156.574987690512078391

19 48583.1353446096892196268 3707.29637073719901187394

20 77271.9486733817666941548 5504.79157669035824056791

i x6 x8 x10

0 0.168561977829196181908019 20.61605090918722894152663 3.9032386342583869894575

1 2.564255760481036314377282 215.2300029871348773005564 141.58906041775351791516

2 19.75833949883362663601629 2178.372137615950383513749 2318.7855476688637370972

3 107.6153442827461300177955 21404.03404775262637194221 24643.885403412199020449

4 470.3177686849044939915090 28533.18422765821528578124 196815.47283682596695650

5 1762.676494500452240334969 243117.7286797414375624292 1278183.9341471533646514

6 5892.468315770018895075220 2189462.996356270457135473 7085909.4389747170272525

7 18026.10606034742588181350 2745826.772293316301527782 34639336.498589165193807

8 51364.40898933529517266700 22685696.43890603392620130 152792638.17919653685509

9 138079.9439575146969655288 28982884.52144712077544905 618543549.84410198285747

10 353553.4243627006337358070 228231531.3374765513159336 2328085189.9729050614957

11 868613.6815956677724696610 284122578.3791382746491922 8229819042.5329108343506

12 2059460.213048375196521201 2239356596.354404154637789 27546203927.241820671411

13 4734189.661963741454010320 2654084831.403386579980857 87876514492.488146144646

14 10591072.53372872753915110 21724768015.94141791734955 268647512699.59541771163

15 23130642.47447337362164738 24405965912.50799258526090 790611696518.86710091431
e ,

nal
ac-

-

where the functionsPi(b) andR(b) are polynomials of or-
ders mi and l, respectively, which are determined by th
knownnth-order small-b expansion off (b). We considered
two types of biased IAk’s:

~i! The first type of biased IAk’s, which will be denoted
by bIAk’s, is obtained by setting

Pk~b!5~12b/bc!pk~b!, ~B9!

wherepk(b) is a polynomial of ordermk21.
14452
~ii ! Since on bipartite latticesb52bc is also a singular
point associated to the antiferromagnetic critical behavior114

we consider IAk’s with

Pk~b!5~12b2/bc
2!pk~b!, ~B10!

wherepk(b) is a polynomial of ordermk22. We shall de-
note them by b6IAk’s.

In our analyses we considered diagonal or quasidiago
approximants, since they are expected to give the most
curate results. For each set of IAk’s we calculated the aver
age of the values corresponding to all nondefective IAk’s.
0-17
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Approximants are considered defective when they have
gularities close to the realb axis near the critical point. We
also discarded some nondefective IA’s—we call the
outliers—whose results are far from the average of the o
approximants. All details can be found in Appendix B
Ref. 36.

In Tables XXV and XXVI we report the results forg and
n, respectively, obtained by analyzing the series forl54.0,
4.5, and 5.0. There, we also quote the ‘‘approximant rat
r a[(g2 f )/t, wheret is the total number of approximants i
the given set,g is the number of nondefective approximan
and f is the number of outliers which are discarded using
algorithm described in Appendix B of Ref. 36;g2 f is the
number of ‘‘good’’ approximants used in the analysis. No
that g@ f , and g2 f is never too small. For each analys
besides the corresponding estimate, we report two numb
The number in parentheses,e1, is basically the spread of th
approximants forbc fixed at its MC estimate. It is the stan
dard deviation of the results obtained from all ‘‘good’’ IA’
divided by the square root ofr a , i.e., e15s/Ar a. The num-
ber in brackets,e2, is related to the uncertainty on the valu
of bc , and is estimated by varyingbc in the range@bc
2Dbc ,bc1Dbc#.

APPENDIX C: UNIVERSAL AMPLITUDE RATIOS FROM
THE PARAMETRIC REPRESENTATION

In the following we report the expressions of the univer
amplitude ratios in terms of the parametric representa
@Eq. ~43!# of the critical equation of state. The singular pa
of the free energy per unit volume can be written as

Fsing5h0m0R22ag~u!, ~C1!

whereg(u) is the solution of the first-order differential equ
tion

~12u2!g8~u!12~22a!ug~u!5Y~u!h~u!, ~C2!

that is regular atu51. The functionY(u) has been defined
in Eq. ~44!. The longitudinal magnetic susceptibility can b
written as

TABLE XXV. Results for g obtained from the analysis of th
20th-order HT series ofx.

l Approximants r a g

4.0 bIA1 (3523)/48 1.39508~6!@32#

bIA2 (7727)/115 1.39503~16!@33#

4.5 bIA1 (3623)/48 1.39585~4!@18#

b6IA1 (2121)/48 1.39583~4!@18#

bIA2 (93211)/115 1.39580~10!@18#

b6IA2 (8427)/100 1.39579~18!@18#

bIA3 (5626)/61 1.39582~5!@19#

5.0 bIA1 (3423)/48 1.39652~6!@32#

bIA2 (107213)/115 1.39648~7!@34#
14452
n-

er

’’

,
n

rs.

l
n

t

xL
215

h0

m0
Rgg2~u!, g2~u!5

2bduh~u!1~12u2!h8~u!

Y~u!
.

~C3!

The functiong2(u) must vanish atu0 in order to reproduce
the predicted behavior at the coexistence curvexL;H21/2,
according to

g2~u!;u02u for u→u0 . ~C4!

From Eq.~C3! we see thatg2(u) satisfies this condition if
h(u);(u02u)2 for u→u0.

From the equation of state one can derive universal a
plitude ratios of zero-momentum quantities. We consider

U0[A1/A25~u0
221!22a

g~0!

g~u0!
, ~C5!

Rx[
C1Bd21

Bc
d

5~u0
221!2g@m~u0!#d21@m~1!#2dh~1!,

~C6!

RC[
aA1C1

B2 52a~12a!~22a!~u0
221!2b

3@m~u0!#22g~0!, ~C7!

R4[2
C4

1B2

~C1!3 5r2@m~u0!#2~u0
221!22b. ~C8!

Using Eqs.~45! and ~47! one can easily derive the expre
sions of the various coefficients that characterize
asymptotic behavior of the scaling functionsf (x) andF(z),
such ascf , f i

0 for f (x) andFi
` ,r 2 j for F(z). Concerning the

ratios involving amplitudes along the crossover line, o
finds

Pm[
Tp

bB

Bc
5xmax

b f ~xmax!
21/d, ~C9!

Pc[2
Tp

2bdC1

C4
5F~zmax!

22, ~C10!

TABLE XXVI. Results for n obtained from the analysis of th
19th-order series ofj2/b.

l Approximants r a n

4.0 bIA1 (3726)/37 0.71061~1!@14#

bIA2 (6523)/70 0.71055~17!@14#

4.5 bIA1 (3724)/37 0.71110~3!@8#

b6IA1 (3123)/36 0.71111~2!@8#

bIA2 (6722)/70 0.71108~6!@7#

b6IA2 (5423)/55 0.71114~3!@8#

bIA3 (2622)/34 0.71110~10!@10#

5.0 bIA1 (3624)/37 0.71151~5!@15#

bIA2 (6725)/70 0.71154~6!@14#
0-18
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Rp[
C1

Cp
5F8~zmax!. ~C11!

Herexmax andzmax are the values of the scaling variablesx
e
a

h
p

n

y

.

-

-

-

.

th
e

n

o
t
f
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and z computed atumax, where umax is the solution of
the equation

bdF@z~u!#F9@z~u!#2gF8@z~u!#250. ~C12!
of

e
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71L. Schäfer and H. Horner, Z. Phys. B: Condens. Matter29, 251

~1978!.
72I.D. Lawrie, J. Phys. A14, 2489~1981!.
73A. Pelissetto and E. Vicari, Nucl. Phys. B540, 639 ~1999!.
14452
e-

.
.

74M. Barmatz, P.C. Hohenberg, and A. Kornblit, Phys. Rev. B12,
1947 ~1975!.
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