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Phase coherence phenomena in superconducting films
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Superconducting films subject to an in-plane magnetic field exhibit a gapless superconducting phase. We
explore the quasiparticle spectral properties of the gapless phase and comment on the transport properties. Of
particular interest is the sensitivity of the quantum interference phenomena in this phase to the nature of the
impurity scattering. We find that films subject to columnar defects exhibit a ‘‘Berry-Robnik’’ symmetry that
changes the fundamental properties of the system. Furthermore, we explore the integrity of the gapped phase.
As in the magnetic impurity system, we show that optimal fluctuations of the random impurity potential
conspire with the in-plane magnetic field to induce a band of localized subgap states. Finally, we investigate the
interplay of the proximity effect and gapless superconductivity in thin normal-metal–superconductor bilayers.
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I. INTRODUCTION

It is well established both theoretically and experime
tally that bulk s-wave superconductivity is robust with re
spect to the addition of nonmagnetic impurities~Anderson
theorem1!. By contrast, magnetic impurities affect a mech
nism of pair breaking on the system which suppresses
eventually destroys the superconducting phase. Remark
in such systems, the quasiparticle energy gap vanishes m
rapidly than the order parameter, admitting the existence
gapless superconducting phase. The~mean-field! theory of
the gap suppression was explored in a classic work by A
kosov and Gor’kov.2 Since this pioneering work, it is now
realized that this scheme applies more widely, encompas
general time-reversal~T ! symmetry-breaking perturbation
~for a review see, e.g., Refs. 3 and 4!. In the following, we
will consider the general phenomenology of a disordered
perconducting thin film subject to a homogeneous in-pla
magnetic field.

Generally, a bulk superconductor subject to a weak m
netic field of magnitudeH,Hc2 enters a Meissner phase5

the field is expelled from the bulk, penetrating only a th
surface layer down to the London penetration depth. In
Meissner phase, the quasiparticle properties of the bulk st
are not affected by the magnetic field and, thus, are larg
insensitive to disorder. However, if the dimensions of t
superconductor are diminished to a scale comparable to
penetration depth, field lines enter the sample and the su
conductivity becomes strongly suppressed. Here the qu
particle properties deviate significantly from those of the u
perturbed system: in particular, the system can exhib
gapless phase. At the level of the mean field, the prope
of the thin-film superconductor mirror those of the magne
impurity system and are described by the Abrikoso
Gor’kov ~AG! phenomenology.3 However, beyond the leve
of the mean field, phase coherence effects due to nor
disorder strongly influence the long-range properties of
system. In the following, we will investigate the properties
the gapless phase in the thin-film superconducting sys
focusing on two situations: in the first case, we will consid
an arrangement of normal impurities drawn at random from
0163-1829/2002/65~14!/144518~12!/$20.00 65 1445
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d-correlated distribution. In the second case, we will co
sider the superconducting system subject to a disordered
ray of columnar defects, i.e., an impurity potential that do
not depend on the coordinate perpendicular to the plane.
two arrangements are depicted schematically in Fig. 1.

When applied to a superconductor, a magnetic field
two effects: first, it induces a Zeeman splitting and, second
couples to the orbital motion of the electrons. Both have
effect of suppressing the superconductivity. Whereas, i
bulk system, the orbital effect usually dominates, in very th
films the opposite situation arises. The crossover can be
timated in the following way6: the critical magnetic field
associated with the orbital effect is roughly determined
the condition that the flux threading an area spanned by
coherence length is of the order of one flux quantu
Hc2j2.f0, wherej5AD/(2D) is the coherence length in
the dirty system with order parameterD and diffusion con-
stantD. Now, if the width of the filmd becomes smaller than
the coherence length,d!j, this has to be replaced by th
condition Hc2

i jd.f0, where Hc2
i represents the in-plan

field; i.e., the orbital critical field increases. The critical fie
HZ associated with the Zeeman splitting is independent
the width of the system.HZ is obtained from the condition
that the energy splitting between up~↑!- and down~↓!-spins is
roughly of the size of the order parameter,gLmBHZ.D,
wheregL is the Lande´ g factor andmB5e/(2m) the Bohr
magneton. Comparing the two, one concludes that the orb
effect is dominant in suppressing the superconductivity wh

d.dc[gL

lFj

l
,

where lF is the Fermi wavelength andl the elastic mean
free path.

FIG. 1. Schematic picture of a thin film withd-correlated dis-
order ~left! and columnar defects~right!.
©2002 The American Physical Society18-1
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In the following, we restrict our attention to system
whered.dc and the Zeeman splitting can be neglected.
be precise, we will consider a thin-film system whe
the relevant length scales are arranged in the follow
hierarchy:

lF!@d,l #!j. ~1!

The inequalitylF! l defines the quasiclassical regime, wh
l !j is the condition for the dirty limit. Finally,lF!d im-
plies that the subband splitting due to size quantization
small, and many subbands are occupied. Thus, from the p
of view of the normal electrons, the system is effective
three dimensional.

Before turning to the theoretical analysis, let us fi
briefly summarize the main results of this investigation.
the level of the mean field, the superconducting system w
an in-plane magnetic field is described by the AG theo2

independent of the nature of the normal disorder poten
~diffusive or columnar!. The parameter governing the su
pression of the quasiparticle energy gap is set by

z;
D~Hd!2

D
;Fdj

2 ,

whereFdj is the flux through an area perpendicular to t
field spanned by the width of the filmd and the supercon
ducting coherence lengthj. As found for the magnetic impu
rity system,7 within the gapped phase, the sharp edge in
quasiparticle density of states~DOS! predicted by the mean
field is softened by the nucleation of localized tail states t
extend into the subgap region. In this sense, the mean-
gap edge becomes a mobility edge separating a regio
bulk ~weakly localized! quasiparticle states from strongly lo
calized tail states. In the following, we will demonstrate th
these subgap states are induced by optimal fluctuations o
random impurity potential and are reflected as inhomo
neous instanton field configurations of the mean-field eq
tions. In the vicinity of the gap edgeEgap, the energy scaling
of these tails is universal7 depending only on the distanc
from Egap, the dimensionless parameterz and dimensional-
ity. In 2D, one obtains the result

n~e,Egap!;expF2a2~z!nhD
Egap2e

D G ~2!

nonperturbative in the inverse dimensionless conducta
1/(nhD), wherenh is the DOS of the system when in th
normal state. Herea2 is a known dimensionless function o
the control parameterz.

At the mean-field level, the choice of the disorder do
not affect the results qualitatively. However, within the ga
less phase, the low-energy physics depends sensitivel
the character of the impurity potential and, in particular,
whether or not it respects inversion symmetry. Within t
diffusive regime 1/t.e.D/L2 the quasiparticle state
exhibit a localized or ‘‘spin-insulator’’ phase with a localiza
tion length j loc , which depends on the fundamental sym
metry of the system.8–10 However, it is within theergodic
regimee,max(D/jloc

2 ,D/L2), where the influence of the in
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version symmetry is most clearly exposed. Here the qu
particle properties become universal, dependent only on
fundamental symmetry class.11,12 A complete classification
scheme of ten symmetry classes,11 corresponding to the ten
large families of symmetric spaces identified by Cartan,
ists; four of these symmetry classes are relevant in the c
text of superconductivity.12 Possible symmetries are time
reversal, spin-rotation, particle-hole, and chiral symme
Now s-wave superconductors possess particle-hole sym
try but, generically, do not exhibit chiral symmetry. Furthe
more, they may or may not possess time-reversal an
spin-rotation symmetry. Here, as one might expect, one fi
that the diffusive film in a magnetic field belongs to ‘‘sym
metry classC’’ ~according to Cartan’s notation!, which cor-
responds to spin-rotation symmetry, but broken time-reve
symmetry. By contrast—despite the presence of the magn
field—the film with columnar defects manifests a hidd
symmetry placing the superconductor in the higher symm
try class CI, which is usually characteristic of systems p
sessing time-reversal invariance. The distinct symme
classes manifest themselves in the energy dependence o
density of states fore→0. Thus, although superficially th
suppression of superconductivity does not respond to g
metrical symmetries, manifestations of the Berry-Robn
symmetry effect can be observed in the gapless phase.
distinct low-energy behavior predicted above is confirmed
numerics.

Finally, to complete our discussion, we turn to the cons
eration of the influence of an in-plane magnetic field on
spectral properties of a normal-metal–superconductor~NS!
bilayer. Here the interplay of macroscopic quantum coh
ence phenomena in the superconductor and the mesos
metal leads to interesting effects.13 Generally, a supercon
ductor brought into contact with a normal system tends
impact aspects of its superconducting character onto the
ter. At the origin of this phenomenon is the Andree
reflection14 of electrons at the interface: an electron with e
ergy smaller thanD may be retroreflected off the boundary
a hole, and a Cooper pair added to the condensate in
superconductor. The coherent superposition of the incid
electron with the reflected hole leads to a nonvanishing p
amplitude within the normal region. In particular, the dens
of states within the normal region may develop a gap
whose size depends on the couplingg between the two sys
tems. Here we consider the case of weak coupling, where
induced gapEgap

(N)5g (!D). A parallel magnetic field coun-
teracts this phenomenon by suppressing the energy gap
within the superconductor. Below, we will show that the fie
necessary to suppress the induced gap in the normal regi
much smaller than the field required to drive the superc
ductor into the gapless phase. However, the coupling to
normal region also induces a nonvanishing DOS at low
ergiesEgap

(N),e,D in the superconductor. Here we consid
two different geometries, namely, a planar NS bilayer as w
as a NS cylinder with the magnetic field directed along
axis. In the second system the enclosed flux leads to a p
odic modulation of the field effect as observed first in
experiment by Little and Parks.15 Only for small enough cyl-
inders the system reaches the gapless phase in certain ra
8-2
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PHASE COHERENCE PHENOMENA IN . . . PHYSICAL REVIEW B65 144518
of the magnetic field. By further decreasing the radius,
perconductivity is completely suppressed around half-inte
flux quanta threading the cylinder, as predicted by
Gennes16 and very recently verified experimentally by Li
et al.17.

The paper is organized as follows: in Sec. II, we fi
study the suppression of superconductivity due to the par
field at the mean-field level. In Sec. II B we show how t
results for the subgap tail states, recently established for
magnetic impurity system, translate to thin films in paral
fields. Subsequently, in Secs. III and IV, we search for ma
festations of the Berry-Robnik symmetry effect on the pro
erties of the superconducting phase. In Sec. V, we discus
properties of thin disordered NS bilayers. Finally, we co
clude in Sec. VI.

II. DIFFUSIVE FILM

Before turning to the columnar defect system, let us be
with a discussion of the most generic case: a thin film w
just a ‘‘normal’’ d-correlated white-noise disorder potentia
Here we are interested in the limit, where—in addition to t
conditions~1! specified above—l !d, which implies diffu-
sive motion in all three directions.

Building on the field-theory approach to the study
weakly disordered systems18–20 ~for a review see, e.g., Ref
21!, the extension to the consideration of disordered su
conducting systems follows straightforwardly.22–24 There-
fore, here we will only briefly summarize the main elemen
in the construction of the field theory of the disordered
perconductor in the framework of the nonlinears model
(NLsM). Using this formulation, we will hereafter invest
gate the response of the superconducting film to an in-p
magnetic field.

The superconducting system is described by the Gor’
Hamiltonian

H5S H0 D

D* 2H 0
TD

PH

with H05p2/(2m)2eF1V(r ). Here, the matrix structure re
fers to the particle/hole (PH) space,eF denotes the Ferm
energy, andV(r ) represents the quenched random impur
potential whose distribution is characterized by the me
scattering timet. We consider the potential to be draw
from a Gaussian white-noise distribution,^V(r )V(r 8)&V
5(2pn0t)21d (3)(r2r 8), wheren0 is the average DOS o
the normal system.

The starting point of the analysis is the functional fie
integral for the generating functional22–24,9

Z@ j #5E D@C,C̄# expH 2S@C̄,C#1E dr ~C̄ j 1 j̄ C!J ,

where C represent eight-component supervector fields,
corporating a boson/fermion space as well as the part
hole and a charge conjugation space: to properly accoun
all channels of quantum interference, it is standard prac
to affect a doubling of the field space to accommodate
particle-hole symmetryH52s2

PHH Ts2
PH , wheres2

PH is a
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Pauli matrix in particle/hole space. This additional space
referred to as the charge conjugation sector. The introduc
of commuting ~bosonic! as well as anticommuting~fermi-
onic! fields ensures the normalization of the generating fu
tional in the absence of sources,Z @0#51. Following Ref. 9,
the superfields are not independent, but obey the condi
C̄5( is2

PH
^ h C)T, whereh5s1

CC
^ EBB2 is2

CC
^ EFF @and

EBB5diag(1,0)BF ,EFF5diag(0,1)BF are projectors onto the
boson-boson and fermion-fermion block, respectively#. Tak-
ing our notation from Ref. 9, the action assumes the can
cal form

S@C̄,C#5 i E dr C̄~e2s3
CC2H!C,

where s3
CC is a Pauli matrix in charge conjugation spac

e25e2 i0, andH represents the Gor’kov Hamiltonian in
troduced above.

To explore the low-energy properties of the supercondu
ing system, after ensemble averaging over the random im
rity distribution, the functional integral over the supervect
fields C can be traded for an integral involving supermat
fields Q. Physically, the fieldsQ, which vary slowly on the
scale of the mean free pathl, describe the soft modes o
density relaxation—the diffusion modes. In the quasiclas
cal limit (eF@1/t), the action forQ is dominated by the
saddle-point field configuration. In the dirty limit~1/t@D!,
the saddle-point equation admits the solutionQ05s3

PH

^ s3
CC. However, in the limite→0, the saddle point is no

unique but spans an entire manifold parametrized by the
tary transformationsQ5TQ0T21. Taking into account slow
spatial and temporal fluctuations of the fields, the low-ene
long-range properties of the weakly disordered superc
ducting system are described by an action of the nonlineas
model type21–24,9

S@Q#52
pn0

8 E dr Str@D~]Q!2

24~ i e2s3
PH

^ s3
CC2Ds2

PH!Q#, ~3!

where the supermatrix field obeys the nonlinear constr
Q251. Furthermore, the matricesQ obey the the symmetry
relationQ5s1

PH
^ h QT(s1

PH
^ h)T, reflecting the symmetry

properties of the dyadic productC ^ C̄s3
PH . Finally, due to

gauge invariance properties of the action, the incorpora
of a magnetic field amounts to replacing the derivatives
Eq. ~3! by their covariant counterpart]̃5]2 iA@s3

PH ,.#.
This completes the formulation of the disordered superc
ducting system as a functional field integral involving t
supersymmetric NLsM action. Our interest here is in th
thermodynamic DOS obtained as

n~e!5p21E dr

V
Im@G~r ,r ;e2!#.

Making use of the generating functional, it is straightforwa
to show that the impurity averaged DOS can be obtain
from the identity
8-3
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J. S. MEYER AND B. D. SIMONS PHYSICAL REVIEW B65 144518
^n~e!&5
n0

8 E dr

V
Rê Str@s3

BF
^ s3

PH
^ s3

CCQ#&Q , ~4!

where^•••&Q5*DQ . . . e2S[Q] .
Thus, the starting point of our analysis is the conventio

NLsM, Eq. ~3!, for a three-dimensional superconductin
system subject to a magnetic field,21,24 where the vector po-
tential readsA52Hzey . The typical scale of variation o
theQ fields is set by the coherence lengthj. Therefore, since
d!j, the matricesQ are constant along thez direction, al-
lowing integration alongz to be performed explicitly. Mak-
ing use of the identities

1

dE2d/2

d/2

dzA50,
1

dE2d/2

d/2

dzA25
1

12
~Hd!2,

one finds that

S52
pnh

8 E d2rStrH D~]Q!22
k

2
@s3

PH ,Q#2

24~ i e2s3
PH

^ s3
CC2Ds2

PH!QJ , ~5!

where k5D(Hd)2/6 and nh is the DOS of the two-
dimensional system, i.e., herenh5n0d. In this planar geom-
etry, the paramagnetic term, which is crucial for the Meiss
effect, vanishes from the action.

Note that the choice of gauge is important here:
physical gauge to choose is the London gauge,“•A50 and
Az(6d/2)50. Both conditions are fulfilled byA52Hzey .
The above requirements originate from the fact that, in
superconductor, the vector potential is associated with a
percurrentj s5nsA/m, where ns is the density of Coope
pairs. The first condition tells us that no net current is g
erated while the second condition does not allow a super
rent to flow through the superconductor-vacuum bound
Thus, when integrating alongz, we have fixed the gauge, i.e
the resulting action is not gauge invariant. Therefore,
magnetic field does not appear within a covariant derivat
but as an additional diamagnetic term;k@s3

PH ,Q#2. This
distinguishes the ‘‘thick’’ film, d@lF , from the single-
channel case~i.e., the truly two-dimensional system!, where
the magnetic field can be gauged out and, thus, has no i
ence.

A. Mean-field analysis

As usual, at the mean-field level, the density of state
obtained by subjecting the action~5! to a saddle-point analy
sis. Varying the action with respect toQ, subject to the non-
linear constraintQ251, one obtains the saddle-point equ
tion

D]~Q]Q!2
k

2
@s3

PHQs3
PH ,Q#

2@ i e2s3
PH

^ s3
CC2Ds2

PH ,Q#50. ~6!

The latter can be identified as the Usadel equation25 for the
average quasiclassical Green function, supplemented b
14451
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additional term due to the parallel magnetic field. With t
ansatz Q5coshû s3

PH
^s3

CC1 i sinhû s2
PH , whereû5uBEBB

1 iuFEFF , one obtains

D]2û22i ~e sinhû2D coshû !2k sinh~2û !50. ~7!

Taking u to be homogeneous in space, and defining

ẽ5e2
i

2
k coshû, D̃5D1

i

2
k sinhû,

the equations forẽ andD̃ take the BCS form and, thus, adm
the diagonal solutionẽ/D̃5cothu. Then, in terms of the
‘‘bare’’ parameterse andD, the saddle-point Eq.~7! can be
brought to the conventional AG form2

e

D
5uS 12z

1

A12u2D , ~8!

whereu[cothu. Following, for example, Ref. 3, by extrem
izing this equation and definingz5k/D, one obtains the qua
siparticle energy gap

Egap5D~12z2/3!3/2.

When combined with the self-consistency equation for
order parameter3

D5
pgnh

b (
n

1

A11un

,

where we have shifted to Matsubara frequencies,i e2→en
5(2n11)p/b, one finds that, atT50, superconductivity is
destroyed whenkD5D0/2, whereD0 is the order paramete
in the absence of a magnetic field. The gapless phase se
at the smaller valuekg5D0exp(2p/4). In the following, we
will be able to determine the order parameter se
consistently, andD will be understood as the renormalize
order parameter, even if not stated explicitly. The suppr
sion of the energy gapEgap and the order parameterD is
shown in Fig. 2.

Finally, in the mean-field approximation, the DOS tak
the form

FIG. 2. Dependence of the energy gapEgap and the order pa-
rameterD on k. Gapless superconductivity occurs in the narro
rangeD0 exp(2p/4)<k<D0/2.
8-4
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n~e!5
nh

8 E d2r

V
Re Str@s3

BF
^ s3

PH
^ s3

CCQ~r !# ~9!

5nhRe@coshu#.

Inserting the solution determined by Eq.~8!, this yields the
characteristic AG DOS, exhibiting a square-root edge in
gapped phase.

B. Subgap states

According to the mean-field AG theory, the supercondu
ing system is expected to exhibit a gapped phase over a
range of parameters with the DOS varying as a square roo
the energy differencee2Egap in the vicinity of the gap edge
Egap. Recently, studies in the related context of a superc
ducting system perturbed by magnetic impurities have sho
that the hard edge predicted by the AG theory
untenable.26,7 In particular, in the diffusive system, it ha
been shown that optimal fluctuations of the random impu
potential lead to the nucleation of localized subgap quasi
ticle states that soften the gap edge.7

Within the framework of the supersymmetric field theo
the precise mechanism of sub-gap state formation has
elucidated in Ref. 7. There, it was shown that, in addition
the homogeneous AG solution, the saddle-point Eq.~7! ac-
commodates a degenerate manifold of spatially inhomo
neous instanton or bounce solutions. Referring to Ref. 7
details, to exponential accuracy, the subgap DOS takes
form

n~e!;expF2c2nhD z22/3~12z2/3!21/2
Egap2e

D G , ~10!

where c2 is a numerical constant. Within the same theo
one finds that the subgap states are confined to drople
size

r drop~e!561/4jS D

Egap
D 1/12S Egap2e

D D 21/4

diverging upon approaching the gap edge. The mean-fi
gap edgeEgap, therefore, assumes the significance of a m
bility edge separating localized subgap states from exten
bulk states.

Being confined to a region of sizer drop*j@ l @lF , it is
evident that the physical mechanism of subgap state for
tion is quasiclassical in origin, relying on optimal fluctu
tions of the random impurity potential. Moreover, in contra
to Lifshitz semiconductor band-tail states,27 each droplet
leads to the nucleation of an entire band of localized sta
Qualitatively, the physical mechanism of subgap state form
tion is connected to mesoscopic fluctuations in the ph
sensitivity of the electron wave function. In regions whe
the sensitivity is high, the impact of a time-reversal symm
try breaking, such as that imposed by the magnetic imp
ties or parallel magnetic field, is stronger, and the effect
scattering ratez is enhanced.

Note that, instead of applying a magnetic field, one mi
consider driving a supercurrent through the system. As
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phasized in Ref. 3, this leads to the same AG mean-fi
results. However, in this case, due to the presence of a p
magnetic term in the action, the mean-field gap edge is
bust, i.e., no subgap states are generated.

III. COLUMNAR DEFECTS

In the normal system, previous studies28 have shown that
the properties of a thin film in an in-plane magnetic fie
depend sensitively on the nature of the impurity potent
Do the quasiparticle properties of the disordered superc
ductor exhibit a similar sensitivity?

In the normal system,z-inversion symmetry effectively
compensates for the time-reversal symmetry breaking of
magnetic field, driving the system into the orthogonal sy
metry class.29 As such, one might expect that the inversio
symmetry restores the validity of the Anderson theorem, r
dering the superconducting phase insensitive to the diso
potential. In fact, constraints imposed by self-consistency
the order parameter prevent the existence of a mechan
that could cancel the effect of the magnetic field. The rea
is that here we are dealing with an interacting problem: w
the formation of Cooper pairs, it is not possible to repla
time-reversal symmetry by any other symmetry. Indeed
the level of the mean-field AG theory, the influence of c
lumnar defects is indistinguishable from that of the diffusi
scatterers—only the parameterz is modified.

However, as we will see in Sec. IV, the Berry-Robn
phenomenon described in Ref. 29 is not completely ineff
tive in the superconducting phase. Taking into account fl
tuations in the gapless phase, we will show that, while
diffusive film belongs to the fundamental symmetry classC
~corresponding to a disordered superconductor in a magn
field!, with columnar defects, the system belongs to
higher symmetry class CI~characteristic of the time-reversa
invariant superconductor!. The result is a substantial modifi
cation of the low-energy behavior: in the diffusive film
quantum interference phenomena in the particle/hole cha
induce a microgap structure with a DOS varying asn(e)
;e2, while in the film with columnar defectsn~e!;e.

To be specific, let us consider a model of a thin-film s
perconductor subject to a random~impurity! potential that
varies only along the in-plane directions. In the absence
magnetic field or superconducting order parameter, the q
siparticle Hamiltonian can be subdivided into different su
bands labeled by an indexk. The spectral properties of eac
subband are described by a two-dimensional NLsM action
of conventional type. The derivation of an effective low
energy action follows closely the normal case in Ref. 28. T
Gor’kov Hamiltonian of the system now reads

H5S 2
]̃2

2m
1W~z!2V~x,y! Ds3

PH1D~z!s2
PH , ~11!

where]̃5]1 iHzeys3
PH , W is the confining potential, andV

represents an impurity potential drawn at random from
white-noised-correlated distribution with zero mean, an
correlation ^V(r )V(r 8)&5(2pnht)21d (2)(r2r 8), where
r (8) are ‘‘in-plane’’ two-component vectors.
8-5
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Diagonalizing the z-dependent part of the problem
and representingH in the basis of the~real! eigenfunctions
$fk%, i.e., Hkk85*dzfk H fk8 where @2]z

2/(2m)1W(z)
2ek#fk50, the vector potentialA52Hzey as well as the
order parameter become matrices ink space,

Akk852HeyE dzfk~z!zfk8~z!,

Dkk85E dzfk~z!D~z!fk8~z!.

Let us emphasize that, if the system possesses inver
symmetryz→2z, the matrix elementAkk8 differs from zero
only if k1k8 is odd; in particular,Akk50. For simplicity,
here we only consider the fully symmetric case.30

Under the further assumption that the subband spa
uek2ek8u is larger than the scattering rate,31 one finds that
only the diagonal components of the order parameter
nonvanishing. Starting from the conventional supercondu
ing 2D NLsM action for thek subbands and turning on a
in-plane magnetic field, it is straightforward to show that t
total effective action assumes the form

S52
pnh

8 E d2r(
k

StrFDk~]Qk!
224~ i e2s3

PH
^ s3

CC

2Dkks2
PH!Qk22(

kk8
Xkk8s3

PHQks3
PHQk8G , ~12!

where Xkk85Dkk8Akk8Ak8k /@11(Ekk8t)2#. Furthermore,
Dkk85(Dk1Dk8)/2 ~with Dk denoting the diffusion constan
of subbandk) andEkk85ek2ek8 . Crucially, from this result
we see that there exists no linear coupling ofQ to the vector
potential—a paramagnetic term does not appear.

To proceed, as before we subject the action~12! to a
mean-field analysis. Varying the action with respect to flu
tuations ofQk , one obtains the modified~set of coupled!
Usadel equations

Dk]~Qk]Qk!2@ i e2s3
PH

^ s3
CC2Dkks2

PH ,Qk#

2(
k8

X kk8@s3
PHQks3

PH ,Qk8#50.

Applying the ansatz Qk5coshûks3
PH

^s3
CC1 i sinhûks2

PH

with uk homogeneous in the in-plane coordinates, the me
field equation assumes the form

e2sinhuk2Dkkcoshuk2 i(
k8

X kk8sinh~uk1uk8!50.

~13!

In principle, this equation has to be solved in parallel w
the self-consistent equation for the order parameter

Dkk85
pgnh

b (
n

sinuk,ndkk8 , ~14!
14451
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whereg is the effective BCS coupling constant andn is a
Matsubara index.

Analyzing the saddle-point Eq.~13!, it can be easily seen
that the field dependent term(k8Xkk8sin(uk1uk8) vanishes if
we choose the solutionuk5(21)ku ~i.e., sinceXkk850 for
k1k8 even!. Thus, there seems to be one mode that is
affected by the magnetic field. However, this would imp
that the order parameter, too, must have an alternating s
i.e., Dkk5(21)kD. Recalling the definition Dkk
5*dzD(z)fk

2 , this is not feasible. Thus, the above solutio
is ruled out32 and, therefore, on the mean-field level, th
symmetry mechanism is ineffective.

A more natural choice seems to be a spatially homo
neous order parameter. Unfortunately, for a general mo
the solution of the coupled Eqs.~13! and~14! does not seem
to be readily accessible analytically. However, to gain so
insight into the nature of the general solution, we will sp
cialize further consideration to the particular case in wh
only the lowest two subbands are coupled.

With X125X21[X the equations foru1 andu2 coincide.
Therefore, settingu[u15u2, which implies thatD115D22
[D, the mean-field equation takes the form reminiscent
the AG equation,

e sinhu2D coshu2 iX sinh~2u!50.

As with the diffusive film, the application of a strong in
plane field suppresses the order parameter and allows fo
existence of a gapless phase. According to the AG theory,
superconductor enters the gapless phase whenz[2X/D51.

If E12t!1, the parameterz is of the same form as tha
found in the diffusive case, i.e.,z;D(Hd)2/D. In the oppo-
site limit, z is greatly reduced because the wide subba
spacing restricts the motion in thez direction. Now, z
;D(Hd)2/@(E12t)2D#, and, thus, higher magnetic field
have to be applied in order to reach the gapless phase. A
the diffusive case, the hard edge in the gapped phase is c
promised due to fluctuations—see the discussion abov
and exponentially small tails in the subgap region arise.

More generally, for many subbands, one would expect
same qualitative picture to hold—althoughDkk might slowly
depend onk.

The effect of gap suppression is born out in a sim
numerical simulation. Figure 3 shows the quasiparticle D
for a two subband tight-binding model with 2320320 sites
when subject to an in-plane magnetic field. The energy
measured in units of the~unperturbed! order parameter. The
three curves correspond to different values of the magn
field. Details of the result at intermediate fields are magnifi
in Fig. 4. The mean-field square-root edge as well as
exponentially small tails are indicated. Furthermore, the in
shows the linear energy dependence of the subgap DOS
ponent, cf. Eq.~10!, on a linear-log scale: lnn(e,Egap)
;Egap2e.

IV. PHASE COHERENCE PROPERTIES
OF THE GAPLESS PHASE: MASSLESS FLUCTUATIONS

AND THE SOFT MODE ACTION

While, at the level of the mean field, all perturbatio
~i.e., magnetic impurities as well as parallel fields in film
8-6
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with different disorder potentials! follow the same AG phe-
nomenology, it is interesting to note that differences show
in the spectrum of soft fluctuations. The latter are respons
for the long-range spectral and localization properties of
quasiparticles in the gapless phase. In contrast to the m
netic impurity model,2,7 which belongs to symmetry classD
~due to broken time-reversal andspin-rotation symmetry!,
here the soft fluctuations around the mean-field should
described by an effective action belonging to symmetry cl
C ~brokenT invariance!.12 Therefore, according to the con
siderations of Refs. 9 and 10, one expects localization of
quasiparticle states in the gapless phase. In fact, below
will see that the fluctuations are sensitive to the very nat
of the impurity scattering. It turns out that the film wit
columnar defects is described by the higher symmetry c
CI, implying a modified localization length.8,10

To assess the low-energy properties of the system,
have to first identify the soft modes of the action. For fr
quenciese→0, the saddle point is not unique, but spans
degenerate manifoldQ5TQSPT

21 with T5exp(W) and
$QSP,W%50. The symmetries of the system impose cert
conditions on the generatorsW.

FIG. 3. Numerical results: DOS. Upon increasing the magn
field, the energy gap closes and the BCS singularity disappear

FIG. 4. Numerical results: subgap DOS. The solid lines sh
the square-root edge and the exponentially small tails. The s
data are plotted on a linear-log scale in the inset.
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A. Diffusive film

The choice of generatorsW is dictated by the presence o
the order parameter and the magnetic field. This leads to
following conditions.

~1! First, W has to commute with the order parameter

@s2
PH ,W#50.

~2! Second, since time-reversal symmetry is broken by
magnetic field,W has to fulfill the further restriction

@s3
PH ,W#50.

Thus,W51PH
^ Ws . Taken together, these restrictions lim

field fluctuations to those belonging to symmetry classC,
which describes superconducting systems with spin-rota
symmetry, but brokenT invariance. The correspondin
integration manifold of classC is Osp(2u2)/Gl(1u1). Ex-
panded in the generators, the soft mode action reads

SQs
52

pnh

4 E d2r Str@D cosh2u~]Qs!
2

14i e coshus3
CCQs#, ~15!

whereQs5Tss3
CCTs

21 andTs5exp(Ws).
On energy scalese,Ec5Ducoshuu/L2, the system enters

the universal zero-dimensional regime. Here the proper
of the action are dominated by the zero spatial mode
lead to12

n~e!5n~Ec!S 12
sin~2pe/d!

2pe/d D , ~16!

whered51/@n(Ec)L
2#; i.e. for e→0, the DOS vanishes qua

dratically,

n~e!

n~Ec!
.

2

3
p2S e

d D 2

.

This is to be contrasted with the low-energy behavior
the DOS in the case of columnar defects, where the sys
possesses thePz symmetry.

B. Columnar defects

Here instead of a single generatorW, one has to conside
a set of generatorsWk .

~1! Once again,Wk has to commute with the order param
eter

@s2
PH ,Wk#50.

~2! However, even though time-reversal symmetry is b
ken by the magnetic field, the generators do not have to o
@s3

PH ,Wk#50. Due toPz symmetry, which causes all ele
mentsXkk8 with k1k8 even to vanish, it is sufficient to re
quire

Wk85s3
PHWks3

PH for k1k8 odd,

c

e

8-7
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i.e., one generator, take, e.g.,W0, can be chosen ‘‘freely.’’
Then, the others are determined through the condition

Wk5~s3
PH!kW0~s3

PH!k,

or Wk5W0 if kP2N, andWk5s3
PHW0s3

PH if kP2N11.
Thus, the second condition here only imposes certain

lations between differentWk , but does not restrict the struc
ture of Wk in particle-hole space. This corresponds to t
higher symmetry class CI. Now the integration belongs
the group manifold Osp~2u2!. Again we find a manifestation
of the Berry-Robnik symmetry phenomenon: the low-ene
properties of the gapless phase are determined by the
metry class associated with systems possessing time-rev
invariance.

Taking into account these fluctuations, the correspond
soft mode action reads

SQs
52

pnh

8 E d2r Str@Dkcosh2uk~]Qs!
214i e coshuks3

PH

^ s3
CCQs#, ~17!

where Qs5Tss3
PH

^ s3
CCTs

21 . Here Ts5exp(W0), and W0

fulfills the conditions specified above. Once again, proper
of the class CI are available in the literature.12 In particular,
for small energies, one obtains

n~e!

n~Ec!
5

p

2E0

pe/ddz

z
J0~z!J1~z!5

p2

4
e/d1O~e3!, ~18!

showing the DOS to vanish linearly ase→0.
The predicted low-energy behavior can be verified n

merically. In Fig. 5, the density of states at low energies
compared for the two cases. On the log-log scale one
read off the exponenta governing the energy dependenc
ueua. At low energies, the two lines with slopeaC52 and
aCI51—characteristic of the symmetry classesC and CI—
fit the data for the diffusive film and the film with columna
defects, respectively.

Having studied the influence of a parallel magnetic fie
on the properties of the superconducting film, we now tu

FIG. 5. Numerical results: log-log plot of the low-energy DO
in the gapless phase for a diffusive film~open squares! and a film
with columnar defects~open circles!.
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our attention to the mean-field properties of normal-meta
superconductor hybrid systems.

V. NS HYBRID SYSTEMS

The properties of thin disordered NS bilayers have be
studied in a recent work by Fominov and Feigel’man.13 By
means of the coupled Usadel equations for the hybrid s
tem, they investigated the density of states as well as
parallel and perpendicular critical fields of the bilayer as
function of the interface transparency. The asymptotics
high and low transparencies are accessible to analytical
lutions while the results at intermediate transparencies w
found numerically.

Here, we consider a different aspect of the properties
the hybrid system, namely, the interplay between gapless
perconductivity and the proximity effect. In addition to th
effect of the field on the individual system, in the NS bilay
it also affects the coupling. As we have seen in the preced
sections, an in-plane magnetic field gradually suppresses
gap in the single-particle DOS. On the other hand, in an
structure, the proximity effect opens a gap in the DOS of
normal layer. Thus, we expect the magnetic field to wea
the proximity effect.

For simplicity, we consider here a hybrid system ea
consisting of a singleN andS channel~see Fig. 6!. That is,
neglecting the finite width, the magnetic field does not infl
ence the individual systems, and we can study the effec
the coupling alone. The coupling between the layers is
scribed by a tunneling HamiltonianHT5*d2r (t C̄NCS
1H.c.), wheret is the tunneling matrix element~assumed to
be spatially constant!. Thus, the effective action for the NS
system consists of a sum of the actions of the individ
systems,SN and SS , and a coupling term that in the wea
tunneling limit can be linearized. That is, the full action rea
~see, e.g., Ref. 33!

S52
pnh

8 E d2r Str@DN~ ]̃QN!224i es3
PH

^ s3
CCQN

1DS~ ]̃QS!224~ i es3
PH

^ s3
CC2D̂s2

PH!QS24gQNQS#,

~19!

whereg5utu2t represents the transparency of the interfa
Furthermore]̃5]2 iA@s3

PH ,.#, where the appropriate gaug
for the vector potentialA(r ) will be specified shortly. In
general, the order parameter may be complex,D̂
5uDuexp(ixs3

PH). Note thatD here is the self-consistentl

FIG. 6. Sketch of the hybrid NS systems considered in the
in the planar and cylindrical geometry.
8-8
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PHASE COHERENCE PHENOMENA IN . . . PHYSICAL REVIEW B65 144518
determined order parameter. The presence of the no
layer leads to a renormalization of the order parameter
weak couplings, however, the proximity induced suppress
of the order parameter is small. Therefore, we concentrat
the much more pronounced effect on the quasiparticle D

Subjecting the action~19! to a saddle-point analysis, on
obtains the following coupled Usadel-like equations:

DN]̃~QN]̃QN!2@ i es3
PH

^ s3
CC,QN#5g@QS ,QN#,

~20!
DS]̃~QS]̃QS!2@ i es3

PH
^ s3

CC2D̂s2
PH ,QS#5g@QN ,QS#.

As a simple guiding example, let us first consider the pr
erties of the system in the absence of a magnetic field, wh
the order parameter can be chosen to be real. Now, in s
tions where the superconducting terminal is represented
bulk system, the latter simply acts as a boundary condi
for the normal region. However, in the present case,
single superconducting channel is itself heavily influenc
by the contact with the normal region. As a result, Fomin
and Feigel’man13 have shown that a gap develops in t
normal region while in the superconductor quasiparti
states at energies down to the size of the proximity eff
induced gap are generated.

To see this explicitly, let us employ the ansatzQX

5coshûXs3
PH

^s3
CC1 i sinhûXs2

PH with uX homogeneous (X
5N,S). In this case, the saddle-point equations reduce t

2 i e sinhûN5g sinh~ ûN2 ûS!,
~21!

2 i ~e sinhûS2D coshûS!5g sinh~ ûS2 ûN!.

If the two systems are decoupled,g50, the solution for the
superconductor at energies well below the gap,e!D, reads
uS' ip/2. At weak coupling, settinguS5 ip/21qS in the
low-energy regime and expanding the equations above u
linear order in qS yields cothuN5e/g and qS5(e
2 ig coshuN)/D. Thus, at small energies, the density of sta
in the two layers is given as

nN~e!5nh Re@coshuN#5H 0, e,g

nh

e

Ae22g2
, e.g,

~22!

nS~e!52nh Im@qS#5
g

D
nN~e!. ~23!

As expected, the superconductor induces an energy ga
the normal region of magnitudeEgap

(N)5g. Furthermore, the
contact with the normal region leads to the appearance
quasiparticle states in the superconductor at energies dow
the proximity effect induced gapEgap

(N)!D. ~Note that close to
the singularity ate5Egap

(N) , the approximations above are n
longer valid.!

How do these characteristic features of the proximity
fect change in the presence of a magnetic field? In the
lowing, we will consider two different geometries as d
picted in Fig. 6. In Sec. V A, a planar NS bilayer
investigated. Subsequently, in Sec. V B, we study a se
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where the bilayers are wrapped around a cylinder with
magnetic field directed along the cylinder axis. While
the first case the magnetic-field effect is due only to the fl
enclosed between theN and S layers; here the system as
whole encloses magnetic flux, which leads to markedly d
ferent behavior.

A. Planar geometry

In the planar geometry, as before, the appropriate gaug
the London gaugeA52(Hz1c0)ey . Here the constantc0
is determined through the condition that the supercurr
through a cross section of the bilayer vanishes,13

E dz j ~z!5 jN1 jS50, ~24!

wherejX5nXAX /m. To a first approximation,nN50. Thus,
no supercurrent flows in theN region and, therefore, the
supercurrent in theS region has to vanish as well, i.e.,AS
50 which impliesc052HdS .

Using the same ansatz as for the field-free case, one
tains

2
DN

4
~Hd!2sinh~2ûN!2 i e sinhûN5g sinh~ ûN2 ûS!,

2 i ~e sinhûS2D coshûS!5g sinh~ ûS2 ûN!,

whered5dN2dS is the distance between the two layers.
As pointed out earlier, being a single-channel system,

superconductor alone does not feel the magnetic field. Ag
we are interested in the DOS at energies well below the g
e!D. As in the field-free case, an expansion inqS5uS
2 ip/2 leads to

kNsinh~2ûN!12i ~e sinhûN2g coshûN!50, ~25!

wherekN5DN(Hd)2/2. Furthermore,qS5(e2 ig coshuN)/
D as before. Thus, in the two-channel case, the magn
field leads to a suppression of the proximity effect. Equat
~25! shows that the closing of the induced gap is describ
by the AG theory, where the relevant parameter iszN
5kN /g. Therefore, one finds that the characteristic fie
zN(Hc)[1 causing the proximity effect induced gap to va
ish is much weaker than the field necessary to drive the
perconductor into the gapless phase~i.e., taking into account
the finite width of the individual layer!.

B. Cylindrical geometry

While in the planar geometry a nonvanishing supercurr
is forbidden, in the cylindrical geometry a supercurrent c
flow around the cylinder: in contrast to the previous case,
system now encloses magnetic flux.

Starting with a single superconducting layer, for the c
lindrical geometry, the most convenient gauge to choos
the symmetric gaugeA5 1

2 H3r52 1
2 Hrew , where we use

cylindrical coordinates (r ,w,z). Now the phase degree o
8-9
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freedom has to be taken into account, and a more gen
ansatz for the matricesQ solving the saddle-point equation
is needed,

QS5coshûSs3
PH

^ s3
CC1 i sinhûSeinws3

PH
s2

PH ,

wherenPZ, and the phase matches the phase of the o
parameter,D̂5uDuexp(inws3

PH). Substituting this ansatz into
the saddle-point equation, one obtains

DS~n1Hr S
2!2

2r S
2

sinh~2ûS!12i ~e sinhûS2D coshûS!50.

Thus, even in the absence of the NS coupling, the magn
field affects the properties of the superconductor. The inte
n has to be chosen such that it minimizesun1Hr S

2u, and,
therefore, by increasing the magnetic field, the param
governing the gap suppression

zS~H;n!5
DS~n1Hr S

2!2

2r S
2D

varies periodically between 0 andzS
max5DS/(8rS

2D)5(j/dS)
2,

where dS is the diameter of the cylinder. The size of th
energy gap isEgap5D(12zS

2/3)3/2, and the superconducto
enters the gapless phase whenzS51. This condition can
only be fulfilled if dS,j.

As pointed out earlier, the magnetic field not only su
presses the energy gap, but also renormalizes the orde
rameterD. That is the order parameter in the formulas abo
has to be determined self-consistently. AtT50, the self-
consistency equation can be cast in the form3

lnS D

D0
D

5H 2
p

4
zS , zS<1,

2arcoshzS2
1

2
~zS arcsinzS

212A12zS
22!, zS.1.

~26!

Thus, the periodic modulation ofz also leads to a periodic
modulation of the order parameter. Similarly, the transit
temperatureTc , which obeys3

lnS Tc

Tc
0D 5cS 1

2D2cS 1

2
1

k

2pTc
D , ~27!

is a periodic function of the applied field as observed first
Little and Parks.15 Furthermore, in small rings supercondu
tivity is completely suppressed in a certain range of magn
fields around half-integer flux quanta threading t
cylinder.16 Only very recently it has been possible to man
facture small enough cylinders, where this prediction co
be verified experimentally.17 Figure 7 shows the order pa
rameter atT50 and the transition temperature for a cylind
with dS,j0 ~where j0 is the coherence length atH50),
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plotted against magnetic fluxF/f0, whereF5pHr S
2 . As

expected, both vanish around half-integer flux quanta wh
they reach their unperturbed maximal values at inte
flux quanta. The region aroundF/f051/2 is magnified in
Fig. 8, where the energy gap and the order parameter
plotted. The system shows a crossoverS→gaplessS→N
→gaplessS→S by increasing the magnetic field.

Now adding the normal layer, we again concentrate
energies much smaller than the gap. With the same appr
mation used earlier, the equation for the normal region re

DN~n1Hr N
2 !2

2r N
2

sinh~2ûN!12i ~e sinhûN2g coshûN!50.

Once again, the mean-field equation assumes the form o
AG equation with the parameterzN(H;n)5DN(n
1Hr N

2 )2/(2r N
2 g). Comparing the two valueszS andzN , we

find that zN
max@zS

max, i.e., the proximity gap is suppresse
before the superconductor itself would enter the gapless
gime. At the same time the solution for the superconduc
takes the form

qS5
e2 ig coshuN

D~12zS!
,

yielding nS5nhg/D(12zS)21coshuN . That is the com-
bined influence of the presence of the normal region and

FIG. 7. The order parameterD and the transition temperatureTc

as a function of the magnetic fluxF5pHr S
2 threading the cylinder.

FIG. 8. Energy gapEgapand order parameterD in the vicinity of
F/f051/2.
8-10
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PHASE COHERENCE PHENOMENA IN . . . PHYSICAL REVIEW B65 144518
magnetic field leads to an enhanced density of states at
energies in the superconductor.

This concludes our discussion of the mean-field proper
of thin disordered NS hybrid systems. Taking into acco
the influence of fluctuations, it is straightforward to see t
the low-energy properties of the quasiparticle states are
tated by the same theory obtained in the preceding sec
Here, we assume the disorder in theN andS channel to be
uncorrelated, which violatesPz invariance. Thus, the gaples
hybrid system is described by symmetry classC.

VI. CONCLUSIONS

To conclude, we have cast the properties of a disorde
thin superconducting film subject to a parallel magnetic fi
in the framework of a statistical field theory. In the mea
field approximation, known results from the AG theory2 are
recovered. The same phenomenology applies to diffus
films as well as films with columnar defects. In the diffusi
case, we have shown that—within the gapped phase—ta
into account inhomogeneous instanton solutions of
saddle-point equation, the hard gap is destroyed. By ana
with the magnetic impurity problem,7 exponentially small
tails within the gap region appear. The same is to be expe
for the columnar defects.~For M.2 the coupling between
the different subbands complicates the analysis. Howe
the general behavior should not be affected qualitatively.!

Within the gapless phase, the Berry-Robnik symme
phenomenon leads to different low-energy properties.
confirmed by numerics, for the diffusive film, the DOS va
ishes quadratically fore→0 ~classC! as one might expec
ue

ev
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for superconducting systems whereT invariance is lifted.
However, in the presence of columnar defects only, the D
at small energies is linear ine ~class CI!, a behavior charac-
teristic of systems that possess time-reversal invariance.
though thePz symmetry cannot prevent the gradual destru
tion of superconductivity by the magnetic field, som
compensation for theT breaking is still effective.

In NS bilayers, we have shown that the coupling betwe
the two systems leads to~i! an energy gapEgap

(N) in the DOS
of the normal layer, and~ii ! a finite density of states in
the superconductor at energiesEgap

(N),e,D. In this geometry,
a parallel magnetic field suppresses the induced proxim
gapEgap

(N) . The characteristic fieldHc(N) determining the oc-
currence of the gapless phase is greatly reduced as comp
to the field Hc(S) that drives the superconductor into th
gapless phase, being roughlyHc(N)/Hc(S)'(Egap

(N)/D)1/2. In
a cylindrical geometry, the energy gap shows a perio
modulation with the magnetic field reminiscent of the Littl
Parks effect: if the cylinder encloses multiples of the fl
quantumf0, this can be compensated by the phase of
order parameter. Thus, the variation of the energy gap
determined by the effective fieldHeff5minnPZuH1n/r S

2u.
The gapless phase can only be reached in sufficiently s
systems, where the diameter of the cylinder fulfills the re
tion dS,j.
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