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Phase coherence phenomena in superconducting films
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Superconducting films subject to an in-plane magnetic field exhibit a gapless superconducting phase. We
explore the quasiparticle spectral properties of the gapless phase and comment on the transport properties. Of
particular interest is the sensitivity of the quantum interference phenomena in this phase to the nature of the
impurity scattering. We find that films subject to columnar defects exhibit a “Berry-Robnik” symmetry that
changes the fundamental properties of the system. Furthermore, we explore the integrity of the gapped phase.
As in the magnetic impurity system, we show that optimal fluctuations of the random impurity potential
conspire with the in-plane magnetic field to induce a band of localized subgap states. Finally, we investigate the
interplay of the proximity effect and gapless superconductivity in thin normal-metal—superconductor bilayers.
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[. INTRODUCTION o-correlated distribution. In the second case, we will con-
sider the superconducting system subject to a disordered ar-
It is well established both theoretically and experimen-ray of columnar defects, i.e., an impurity potential that does
tally that bulk swave superconductivity is robust with re- not depend on the coordinate perpendicular to the plane. The
spect to the addition of nonmagnetic impuritiésnderson  two arrangements are depicted schematically in Fig. 1.
theoren). By contrast, magnetic impurities affect a mecha- When applied to a superconductor, a magnetic field has
nism of pair breaking on the system which suppresses anvo effects: first, it induces a Zeeman splitting and, second, it
eventually destroys the superconducting phase. Remarkab§ouples to the orbital motion of the electrons. Both have the
in such systems, the quasiparticle energy gap vanishes mogéfect of suppressing the superconductivity. Whereas, in a
rapidly than the order parameter, admitting the existence of Qulk system, the orbital effect usually dominates, in very thin
gapless superconducting phase. Theean-field theory of  films the opposite situation arises. The crossover can be es-
the gap Suppression was exp|0red in a classic work by Abritimated in the following Wa?l the critical magnetic field
kosov and Gor’ko¥ Since this pioneering work, it is now associated with the orbital effect is roughly determined by
realized that this scheme applies more widely, encompassirigje condition that the flux threading an area spanned by the
general time-reversal7) symmetry-breaking perturbations coherence length is of the order of one flux quantum,
(for a review see, e.g., Refs. 3 anil #h the following, we  Hco£2= ¢, Whereé=/D/(2A) is the coherence length in
will consider the general phenomenology of a disordered suthe dirty system with order parametarand diffusion con-
perconducting thin film subject to a homogeneous in-planestantD. Now, if the width of the filmd becomes smaller than
magnetic field. the coherence lengtll<<¢, this has to be replaced by the
Generally, a bulk superconductor subject to a weak mageondition legdzqso, where H[LZ represents the in-plane
netic field of magnituded<H_, enters a Meissner phase: field; i.e., the orbital critical field increases. The critical field
the field is expelled from the bulk, penetrating only a thinH, associated with the Zeeman splitting is independent of
surface layer down to the London penetration depth. In thehe width of the systemH, is obtained from the condition
Meissner phase, the quasiparticle properties of the bulk statékat the energy splitting between(Up- and dowii])-spins is
are not affected by the magnetic field and, thus, are largelyoughly of the size of the order parametef,ugH;=A,
insensitive to disorder. However, if the dimensions of thewhereg, is the Landeg factor andug=e/(2m) the Bohr
superconductor are diminished to a scale comparable to th@agneton. Comparing the two, one concludes that the orbital
penetration depth, field lines enter the sample and the supesffect is dominant in suppressing the superconductivity when
conductivity becomes strongly suppressed. Here the quasi-
particle properties deviate significantly from those of the un- d>d.= )\_Ff
perturbed system: in particular, the system can exhibit a =0T
gapless phase. At the level of the mean field, the properties . . )
of the thin-film superconductor mirror those of the magneticVNeré A is the Fermi wavelength andthe elastic mean
impurity system and are described by the Abrikosov-T€€ Path.

Gor’kov (AG) phenomenology.However, beyond the level .

of the mean field, phase coherence effects due to norme / & 4 @

. . - ® o 4 m m I )
disorder strongly influence the long-range properties of the@ = y Pl ‘
system. In the following, we will investigate the properties of | ", ; oI £ / % M

the gapless phase in the thin-film superconducting system
focusing on two situations: in the first case, we will consider FIG. 1. Schematic picture of a thin film with-correlated dis-
an arrangement of normal impurities drawn at random from arder (left) and columnar defectgight).
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In the following, we restrict our attention to systems version symmetry is most clearly exposed. Here the quasi-
whered>d. and the Zeeman splitting can be neglected. Toparticle properties become universal, dependent only on the
be precise, we will consider a thin-film system wherefundamental symmetry class’?> A complete classification
the relevant length scales are arranged in the followingscheme of ten symmetry classés;orresponding to the ten
hierarchy: large families of symmetric spaces identified by Cartan, ex-

ists; four of these symmetry classes are relevant in the con-

Ae<[d,l]<¢. (1) text of superconductivitf? Possible symmetries are time-
reversal, spin-rotation, particle-hole, and chiral symmetry.
Now s-wave superconductors possess particle-hole symme-
dry but, generically, do not exhibit chiral symmetry. Further-
fpore, they may or may not possess time-reversal and/or
spin-rotation symmetry. Here, as one might expect, one finds
that the diffusive film in a magnetic field belongs to “sym-
metry classC” (according to Cartan’s notatignwhich cor-

The inequality\ <<| defines the quasiclassical regime, while
< ¢ is the condition for the dirty limit. Finallyh e<<d im-
plies that the subband splitting due to size quantization i
small, and many subbands are occupied. Thus, from the poi
of view of the normal electrons, the system is effectively
three dimensional.

Before turning to the theoretical analysis, let us first . . .
briefly summarize the main results of this investigation. Atresponds to spin-rotation symmetry, but broken time-reversal

the level of the mean field, the superconducting system wit ymmetry. By contrast—despite the presence of the magnetic

an in-plane magnetic field is described by the AG théory, ield—the film with columnar defects manifests a hidden
gymmetry placing the superconductor in the higher symme-

independent of the nature of the normal disorder potentiat | cl which i v ch teristic of syst
(diffusive or columnar. The parameter governing the sup- fy class L1, which IS usually characternistic of Systems pos-
sessing time-reversal invariance. The distinct symmetry

pression of the quasiparticle energy gap is set by classes manifest themselves in the energy dependence of the
D(Hd)? density of states foe—0. Thus, although superficially the
~T~<D§§, suppression of superconductivity does not respond to geo-
metrical symmetries, manifestations of the Berry-Robnik

where®,, is the flux through an area perpendicular to theSymmetry effect can be observed in the gapless phase. The
field spanned by the width of the film and the supercon- dlstlnc_t low-energy behavior predicted above is confirmed by
ducting coherence length As found for the magnetic impu- NUMEriCS. _ _ _

rity system’ within the gapped phase, the sharp edge in the F.|nally, to cc_)mplete our dlsqu53|on, we turn to the consid-
quasiparticle density of staté®OS) predicted by the mean e€ration of the mfluence of an in-plane magnetic field on the
field is softened by the nucleation of localized tail states thafPectral properties of a normal-metal—supercondugt®)
extend into the subgap region. In this sense, the mean-fiefeilayer. Here the interplay of macroscopic quantum coher--
gap edge becomes a mobility edge separating a region &Nce phenomen_a in th_e superconductor and the mesoscopic
bulk (weakly localized quasiparticle states from strongly lo- Metal leads to interesting effectsGenerally, a supercon-
calized tail states. In the following, we will demonstrate thatductor brought into contact with a normal system tends to
these subgap states are induced by optimal fluctuations of tH&1pact aspects of its superconducting character onto the lat-
random impurity potential and are reflected as inhomoget€r: At tkle origin of this phenomenon is the Andreev
neous instanton field configurations of the mean-field equateflectlorjr of electrons at the interface: an electron with en-
tions. In the vicinity of the gap edggy,, the energy scaling ergy smaller thalh may be retroreflected off the boundary as
of these tails is universaldepending only on the distance @ hole, and a Cooper pair added to the condensate in the

from Egy,, the dimensionless parameteand dimensional- Superconductor. The coherent superposition of the incident
ity. In ngp one obtains the result electron with the reflected hole leads to a nonvanishing pair

amplitude within the normal region. In particular, the density
Egap— of states within the normal region may develop a gap—
v(e< Egap)wexy{ —(HrvpD—¢ (2)  whose size depends on the couplipdpetween the two sys-
tems. Here we consider the case of weak coupling, where the
nonperturbative in the inverse dimensionless conductanc@duced gangg‘gf v (<€A). A parallel magnetic field coun-
1/(voD), wherevy is the DOS of the system when in the teracts this phenomenon by suppressing the energy gap even
normal state. Hera, is a known dimensionless function of within the superconductor. Below, we will show that the field
the control parametef. necessary to suppress the induced gap in the normal region is
At the mean-field level, the choice of the disorder doesmuch smaller than the field required to drive the supercon-
not affect the results qualitatively. However, within the gap-ductor into the gapless phase. However, the coupling to the
less phase, the low-energy physics depends sensitively armrmal region also induces a nonvanishing DOS at low en-
the character of the impurity potential and, in particular, onergiesEgg'z)< e€<A in the superconductor. Here we consider
whether or not it respects inversion symmetry. Within thetwo different geometries, namely, a planar NS bilayer as well
diffusive regime 1#>e>D/L? the quasiparticle states as a NS cylinder with the magnetic field directed along the
exhibit a localized or “spin-insulator” phase with a localiza- axis. In the second system the enclosed flux leads to a peri-
tion length &,,c, which depends on the fundamental sym-odic modulation of the field effect as observed first in an
metry of the systerfi-*® However, it is within theergodic  experiment by Little and Parks.Only for small enough cyl-
regimee<max(/&,.,D/L?), where the influence of the in- inders the system reaches the gapless phase in certain ranges
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of the magnetic field. By further decreasing the radius, suPauli matrix in particle/hole space. This additional space is
perconductivity is completely suppressed around half-integereferred to as the charge conjugation sector. The introduction
flux quanta threading the cylinder, as predicted by deof commuting(bosoni¢ as well as anticommutingfermi-
Genne& and very recently verified experimentally by Liu onic) fields ensures the normalization of the generating func-
et all’. tional in the absence of sourceZ[0]=1. Following Ref. 9,
The paper is organized as follows: in Sec. I, we firstthe superfields are not independent, but obey the condition
study the suppression of superconductivity due to the parallej — (j ob"e 7 ¥)T, where p= 0@ Egg—i oS @ Egr [and

field at the mean-field level. In Sec. Il B we show how the Egpg= d|ag(1,o)3': ’EFF:diag(o,l)SF are projectors onto the
results for the subgap tail states, recently established for thgsson-hoson and fermion-fermion block, respectiyefak-

magnetic impurity system, translate to thin films in paralleling our notation from Ref. 9, the action assumes the canoni-
fields. Subsequently, in Secs. Il and IV, we search for manizg| form

festations of the Berry-Robnik symmetry effect on the prop-
erties of the superconducting phase. In Sec. V, we discuss the _ _
properties of thin disordered NS bilayers. Finally, we con- S[W,W]Zif dr ¥(e o§~H)V,
clude in Sec. VI.
where agc is a Pauli matrix in charge conjugation space,
II. DIEEUSIVE FILM € =¢€—i0, andH represents the Gor’kov Hamiltonian in-
) “troduced above.

Before turning to the columnar defect system, let us begin T explore the low-energy properties of the superconduct-
yvith a discussion of the most g_eneri(_: case: a thin film \(vithing| system, after ensemble averaging over the random impu-
just a “normal” &-correlated white-noise disorder potential. rity distribution, the functional integral over the supervector
Here we are interested in the limit, where—in addition to thefie|ds W can be traded for an integral involving supermatrix
conditions(1) specified above+<d, which implies diffu-  fie|ds Q. Physically, the fieldsQ, which vary slowly on the
sive motion in all three directions. scale of the mean free path describe the soft modes of

Building on the f|eld-the2%ry approach to the study of density relaxation—the diffusion modes. In the quasiclassi-
weakly disordered systerlfs®° (for a review see, e.g., Ref. ca| limit (ez>1/7), the action forQ is dominated by the
21), the extension to the consideration of disordered supetsaqdie-point field configuration. In the dirty limil/=A),

conducting systems  follows straightforwara?y.z‘_‘ There-  he saddle-point equation admits the solutiqy= 2"
fore, here we will only briefly summarize the main elements@wgc. However, in the limite—0, the saddle point is not

in the construction of the field theory of the disordered SYUnique but spans an entire manifold parametrized by the uni-
perconductor in the framework of the nonlinear model

. : ) . . . tary transformation®=TQ,T*. Taking into account slo
(NLoM). Using this formulation, we will hereafter investi- y lon&=TQo ng | " W

e th f th ducting film t ool spatial and temporal fluctuations of the fields, the low-energy
?niigneteicrzzlladonse of the superconducting fiim 1o an in-p anE)ng-range properties of the weakly disordered supercon-

The superconducting system is described by the Gor,ko\?nuocéggt;ggfggare described by an action of the nonlinear

Hamiltonian

mvV
Mo A s1Q1-- 22| dr stp(70)?
* T 8

A" =Ho) oy

—4ie oPH® oSC— A PH , 3
with Ho=p?/(2m) — e+ V(r). Here, the matrix structure re- (e o5 @0 727)Ql ®
fers to the particle/holeRH) space,er denotes the Fermi where the supermatrix field obeys the nonlinear constraint
energy, andv(r) represents the quenched random impurityQ2=1. Furthermore, the matriced obey the the symmetry
potential whose distribution is characterized by the meanelationQ=o""® 7»QT(o} "2 )7, reflecting the symmetry

scattering time_r. We gonsidpr thg poteptial to be,drawn properties of the dyadic produdt@ll_fagH. Finally, due to
fiom a Gf‘f;‘(%')"’m white-noise distributiofV(r)V(r'))v  gauge invariance properties of the action, the incorporation
=(27vo7) (r—r’), wherew, is the average DOS of ¢ 5" magnetic field amounts to replacing the derivatives in
the normal system. Eq. (3) by thei iant i B 9 iA[oPH
The starting point of the analysis is the functional field Tﬂ: yl e hc0\f/ar|an| coun ferﬁard.— dl [g3 -]
integral for the generating functioRar?4° is completes the formulation of the disordered supercon-
ducting system as a functional field integral involving the

. — — — supersymmetric N&M action. Our interest here is in the
Z[J]If D[‘I’,‘P]GXP{—S[‘I’,‘P]JFI df(‘I’JJFJ‘I’)], thermodynamic DOS obtained as

where ¥ represent eight-component supervector fields, in- r

corporating a boson/fermion space as well as the particle/ V(€)=7T_1J’ VIm[G(r,r;e‘)].

hole and a charge conjugation space: to properly account for

all channels of quantum interference, it is standard practicélaking use of the generating functional, it is straightforward
to affect a doubling of the field space to accommodate théo show that the impurity averaged DOS can be obtained
particle-hole symmetry{=—o5"H o5, wheres," isa  from the identity
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1 . . . . . . . . . 1

(V(e)>=%f %RdStr[a'gFG@(rgH@a'gCQ]}Q, (4)

\Nhere<”'>Q::fD(?...67QQL — VSVZ&
Thus, the starting point of our analysis is the conventional ] 0
NLoM, Eq._ (3), for a three_-dimensional superconducting E . /AO =
system subject to a magnetic fief?* where the vector po- e 1
tential readsA=—Hze,. The typical scale of variation of gapless\region
the Q fields is set by the coherence lengthTherefore, since
d<¢, the matriceqQ are constant along thedirection, al-
lowing integration along to be performed explicitly. Mak-

0 0.1 0.2 0.3 0.4 0.5

ing use of the identities
K
1 (di2 1 [dr 1
—f dzA=0, —f dzA?=—(Hd)?, FIG. 2. Dependence of the energy gép,, and the order pa-
d/-an d/-an 12 F2hap .
rameterA on . Gapless superconductivity occurs in the narrow
one finds that rangeAo exp(—m4)< k<Ao/2.

mvg [, 5> K ph o additional term due to the parallel magnetic field. With the
S=-3 fd rStn D(IQ)"=5lo37.Q] ansatz Q=coshf o5 ®05C+i sinhf@ah™, where 6= 05Egg
+i0:Egr, one obtains

D#26—2i(esinh&— A coshd) — k sinh(26)=0.  (7)

where k=D(Hd)?/6 and v is the DOS of the two- Taking ¢ to be homogeneous in space, and defining
dimensional system, i.e., herg;= vd. In this planar geom- ) ,

etry, the pe}ramagnetic term, \_/vhich is crucial for the Meissner e '_K coshd, A=A+ '_K sinhd,
effect, vanishes from the action. 2 2

Note that the choice of gauge is important here: the _ ~ ~ _
physical gauge to choose is the London gageA=0 and the equations foe andA take the BCS form and, thus, admit

A,(*+d/2)=0. Both conditions are fulfilled byA= —Hze, . the diagonal solutione/A=cothé. Then, in terms of the
The above requirements originate from the fact that, in abare” parameterse and A, the saddle-point Eq(7) can be
superconductor, the vector potential is associated with a sirought to the conventional AG form
percurrentjs=n,A/m, where ng is the density of Cooper
pairs. The first condition tells us that no net current is gen- izu( 1-¢ 1 ) )
erated while the second condition does not allow a supercur- A 1—u?)’

rent to flow through the superconductor-vacuum boundary. )

Thus, when integrating alorgy we have fixed the gauge, i.e., Whereu=cothd. Following, for example, Ref. 3, by extrem-
the resulting action is not gauge invariant. Therefore, thdZing this equation and defining=«/A, one obtains the qua-
magnetic field does not appear within a covariant derivativeSiparticle energy gap

but as an additional diamagnetic termx[ o5 ,Q]?. This E. — A(1— 233

distinguishes the “thick” film, d>\g, from the single- gap '

channel caséi.e., the truly two-dimensional systenwhere ~ When combined with the self-consistency equation for the
the magnetic field can be gauged out and, thus, has no infigrder parametér

—4(i60’§H®0'3C,C—A0'5H)Q]a ©)

ence.
A mTgvg 1
A. Mean-field analysis B T ity

As usual, at the mean-field level, the density of states i$yhere we have shifted to Matsubara frequencies, — e,
obtained by subjecting the acti@b) to a saddle-point analy- =(2n+1)7/ B, one finds that, af =0, superconductivity is

sis. Varying the ac;tion with respect @, subject to the non-  yegtroyed when, = A4/2, whereA, is the order parameter
linear constrainQ“=1, one obtains the saddle-point equa- i, the abhsence of a magnetic field. The gapless phase sets in

tion at the smaller value,= A exp(—/4). In the following, we
« will be able to determine the order parameter self-
DI(QaQ) — _[UE’HQUE’H,Q] consistently, and\ will be understood as the renormalized
2 order parameter, even if not stated explicitly. The suppres-
i~ PHo CC_ A PH ~7_— sion of the energy gajg,,, and the order parametex is
lie o5 wo™=A037,Q1=0. © shown in Fig. 2. 0
The latter can be identified as the Usadel equatifor the Finally, in the mean-field approximation, the DOS takes

average quasiclassical Green function, supplemented by dhe form
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VO 2p BE . PH_ ce phasized in Ref. 3, this leads to the same AG mean-field
v(e)= ?J -y ReStfog @o3"®@03Q(N] (9 results. However, in this case, due to the presence of a para-
magnetic term in the action, the mean-field gap edge is ro-
bust, i.e., no subgap states are generated.

= v5Rdg coshd].
Inserting the solution determined by E@®), this yields the lIl. COLUMNAR DEFECTS
characteristic AG DOS, exhibiting a square-root edge in the
gapped phase. In the normal system, previous studiéhave shown that

the properties of a thin film in an in-plane magnetic field
depend sensitively on the nature of the impurity potential.
) ) Do the quasiparticle properties of the disordered supercon-
According to the mean-field AG theory, the superconduct-qyctor exhibit a similar sensitivity?
ing system is expected to exhibit a gapped phase over awide | the normal systemz-inversion symmetry effectively
range of parameters with the DOS varying as a square root @iompensates for the time-reversal symmetry breaking of the
the energy difference— Eq,in the vicinity of the gap edge  magnetic field, driving the system into the orthogonal sym-
Egap- Recently, studies in the related context of a superconmetry clas€® As such, one might expect that the inversion
ducting system perturbed by magnetic impurities have showBymmetry restores the validity of the Anderson theorem, ren-
that the hard edge predicted by the AG theory isdering the superconducting phase insensitive to the disorder
untenablé®’ In particular, in the diffusive system, it has potential. In fact, constraints imposed by self-consistency of
been shown that optimal fluctuations of the random impuritythe order parameter prevent the existence of a mechanism
potential lead to the nucleation of localized subgap quasipafhat could cancel the effect of the magnetic field. The reason
ticle states that soften the gap edge. o is that here we are dealing with an interacting problem: with
Within the framework of the supersymmetric field theory, the formation of Cooper pairs, it is not possible to replace
the precise mechanism of sub-gap state formation has begjpe-reversal symmetry by any other symmetry. Indeed, at
elucidated in Ref. 7. There, it was shown that, in addition tothe |eve| Of the mean-ﬁe'd AG theory, the inﬂuence of co-

the homogeneous AG solution, the saddle-point &@j.ac-  [umnar defects is indistinguishable from that of the diffusive
commodates a degenerate manifold of spatially inhomogescatterers—only the parametéis modified.

neous instanton or bounce solutions. Referring to Ref. 7 for  However, as we will see in Sec. IV, the Berry-Robnik
details, to exponential accuracy, the subgap DOS takes thghenomenon described in Ref. 29 is not completely ineffec-
form tive in the superconducting phase. Taking into account fluc-
tuations in the gapless phase, we will show that, while the
v(e)~ex;{ —cwuD ¢ 21— §2/3)71/2Egap_ 6}, (10) diffusive film_ belongs_to the fundamental symmgtry cl&ss _
A (corresponding to a disordered superconductor in a magnetic
field), with columnar defects, the system belongs to the
hjgher symmetry class Gtharacteristic of the time-reversal
variant superconductprThe result is a substantial modifi-

B. Subgap states

wherec, is a numerical constant. Within the same theory,
one finds that the subgap states are confined to droplets

size cation of the low-energy behavior: in the diffusive film,
A \VIZIE o\ -14 quantum interference phenomena in the particle/hole channel
fdrop(6)=61/4§<—p> (&) induce a microgap structure with a DOS varying &%)
Ega A ~ €2, while in the film with columnar defects(e)~e.

diverging upon approaching the gap edge. The mean-field To be specific, let us consider a model of a thin-film su-

gap edgeE,,, therefore, assumes the significance of a moperconductor subject to a randofmpurity) potential that

bility edge separating localized subgap states from extende res o_nly_ along the in-plane d_|rect|ons. In the absence of a
bulk states. magnetic field or superconducting order parameter, the qua-

Being confined to a region of size = £515 Mg, it is siparticle Hamiltonian can be subdivided into different sub-
rop—~ F

: - - ds labeled by an indéx The spectral properties of each
evident that the physical mechanism of subgap state forme¥Zan . ) : .
tion is quasiclassical in origin, relying on optimal fluctua- subband are described by a two-dimensionabi action

tions of the random impurity potential. Moreover, in contrastOf conven'qonal type. The derivation of an Qﬁectlve low-

to Lifshitz semiconductor band-tail stat¥seach droplet ene'rgy act|on.follc.>ws closely the normal case in Ref. 28. The

leads to the nucleation of an entire band of localized statesG.or kov Hamiltonian of the system now reads

Qualitatively, the physical mechanism of subgap state forma- %

tion is ponnected to mesoscopic flugtuatlons in the phase H=| — —+W(z)—V(x,y) 03PH+A(Z)02PH, (11)

sensitivity of the electron wave function. In regions where 2m

the sensitivity is high, the impact of a time-reversal symme- _

try breaking, such as that imposed by the magnetic impuriwhereﬁ=¢9+ineycr§H, W s the confining potential, and

ties or parallel magnetic field, is stronger, and the effectiveepresents an impurity potential drawn at random from the

scattering ratg is enhanced. white-noise é-correlated distribution with zero mean, and
Note that, instead of applying a magnetic field, one mightcorrelation <V(r)V(r’)>=(Zvar)*lé(z)(r—r’), where

consider driving a supercurrent through the system. As eme(") are “in-plane” two-component vectors.
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Diagonalizing the z-dependent part of the problem, whereg is the effective BCS coupling constant ands a
and representin@{ in the basis of thérea) eigenfunctions Matsubara index.

{p}, ie., Hyo=ldzdH ¢ where [_35/(2m)+w(z) Analyz_ing the saddle-point E(q13)3 it can be eas_,ily seen
— €] =0, the vector potentiah=—Hze, as well as the that the field dependent terlly, Yjq. Sin(G+ 6 vanishes if

k+k’ even. Thus, there seems to be one mode that is not
affected by the magnetic field. However, this would imply
A =— Heyf dz ¢ (2)z2dy(2), that the order parameter, too, must have an alternating sign,
ie., An=(—1)A. Recalling the definition A
=[dzA(2) ¢§’ this is not feasible. Thus, the above solution
Akk/:f dz o (2)A(2) b (2). is ruled out* and, therefore, on the mean-field level, the
symmetry mechanism is ineffective.

Let us emphasize that, if the system possesses inversionrga c';“ursngrr?jer;atiizlrﬁ:tzlfeui?g&i;?elbe fzrsgatfggrgorn;ggg[
symmetryz— —z, the matrix elemenf,. differs from zero P : Y 9 '

only if k+k’ is odd; in particularA=0. For simplicity, the SO'U“OU of the cqupled Eq@.3) and(14) does not seem
: : to be readily accessible analytically. However, to gain some
here we only consider the fully symmetric case. S : . .
4 ._insight into the nature of the general solution, we will spe-
Under the further assumption that the subband spacing.”: ; . : . .
. . ' ialize further consideration to the particular case in which
|ex— €| is larger than the scattering ratepne finds that

only the diagonal components of the order parameter ar8nIy the lowest two subbands are coupled.
y 9 P P With X;,= X,,=X the equations fop; and 6, coincide.

nonvanishing. Starting from the conventional superconduct_-l_herefore setting/= 6, = 8,, which implies thatA ;= A
s — V17— VY2, 117 =222

ing 2D NLo'M action for thek subbands and turning on an =A, the mean-field equation takes the form reminiscent of
in-plane magnetic field, it is straightforward to show that the_, . q
the AG equation,

total effective action assumes the form
e sinhf#— A coshfd—iXsinh(26)=0.

f d?r >, St{Dk(an)z_‘l(ie—o’gH@ oS¢ As with the diffusive film, the application of a strong in-
k plane field suppresses the order parameter and allows for the
existence of a gapless phase. According to the AG theory, the
_ PHYO, _ ,oPH PHO, , superconductor enters the gapless phase wWket/A=1.
B2 ) 2% Y 737 Qurs Qi } (12 If E;,7<<1, the parametet is of the same form as that
found in the diffusive case, i.ef~D(Hd)?/A. In the oppo-
where X =Dy A Aw/[ 1+ (Exw7)?].  Furthermore,  site limit, ¢ is greatly reduced because the wide subband
Dy = (Dy+ Dy)/2 (with Dy denoting the diffusion constant spacing restricts the motion in the direction. Now, £
of subbank) andE = €,— €, . Crucially, from this result ~D(Hd)?/[(E;,7)?A], and, thus, higher magnetic fields
we see that there exists no linear couplingfo the vector  have to be applied in order to reach the gapless phase. As in
potential—a paramagnetic term does not appear. the diffusive case, the hard edge in the gapped phase is com-
To proceed, as before we subject the actid®) to a  promised due to fluctuations—see the discussion above—
mean-field analysis. Varying the action with respect to fluc-and exponentially small tails in the subgap region arise.

VO
8

S=—

tuations ofQ,, one obtains the modifietset of coupled More generally, for many subbands, one would expect the
Usadel equations same qualitative picture to hold—although, might slowly
depend ork.
Dd(QudQy) —[ie 05" ® 05— Aob™,Q] The effect of gap suppression is born out in a simple
numerical simulation. Figure 3 shows the quasiparticle DOS
> Xlob"Quatt ,Qu1=0. for a two subband tight-binding model with<20x20 sites
K’ when subject to an in-plane magnetic field. The energy is

R R measured in units of th@inperturbeg order parameter. The
Applying the ansatz kacoshoko§H®a§C+i sinhekogH three curves correspond to different values of the magnetic
with 6, homogeneous in the in-plane coordinates, the mearfield. Details of the result at intermediate fields are magnified
field equation assumes the form in Fig. 4. The mean-field square-root edge as well as the
exponentially small tails are indicated. Furthermore, the inset
shows the linear energy dependence of the subgap DOS ex-

E_Sinhek_AkaOShak_ig Xy SINA( G+ G) = 0. ponent, cf. Eq.(10), on a linear-log scale: e<Ey)

(13 ~Eggpe.
In principle, this equation has to be solved in parallel with IV. PHASE COHERENCE PROPERTIES
the self-consistent equation for the order parameter OF THE GAPLESS PHASE: MASSLESS FLUCTUATIONS
AND THE SOFT MODE ACTION
Akk,:% > sinby 1S » (14) While, at the level of the mean field, all perturbations
B ’ (i.e., magnetic impurities as well as parallel fields in films
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A. Diffusive film

The choice of generatol® is dictated by the presence of
the order parameter and the magnetic field. This leads to the

following conditions.
(1) First, W has to commute with the order parameter

‘ w-m«awwwwmw
; [o5H W]=0.

(2) Second, since time-reversal symmetry is broken by the
magnetic field W has to fulfill the further restriction

L L L PH _
0 05 1 15 2 [o3™, W]=0.

e/|A| Thus, W=1PHeW;,. Taken together, these restrictions limit

. . . _ . field fluctuations to those belonging to symmetry clé&ss
FIG. 3. Numerical results: DOS. Upon increasing the magneliGyhich describes superconducting systems with spin-rotation

field, the energy gap closes and the BCS singularity disappears. symmetry, but brokenT invariance. The corresponding
integration manifold of clas€ is Osp(42)/GI(1|1). Ex-

with different disorder potentialfollow the same AG phe- panded in the generators, the soft mode action reads

nomenology, it is interesting to note that differences show up

in the spectrum of soft fluctuations. The latter are responsible __ "0 42 StiD cosR 5

for the long-range spectral and localization properties of the s 4 r St D cosito(dQs)

guasiparticles in the gapless phase. In contrast to the mag- ) cc

netic impurity modef” which belongs to symmetry clags +4iecoshfoz Q] (15

(due to broken time-reversal arspin-rotation symmetry, h CCr—1

. ; ereQ,=T T, andTs=¢e .

here the soft fluctuations around the mean-field should be’ on S;erg;05calfas<E =SD|C§IS)PO1/¢;17)L2 the system enters

described bY an gﬁecti\itza action belonging t(_) symmetry Clasﬁwe universal zero-dime(;\sional regimé. Here the properties

C. (brokenTlnvarlance). Therefore, according to th_e CON- of the action are dominated by the zero spatial mode and

siderations of Refs. 9 and 10, one expects localization of th?ead td2

guasiparticle states in the gapless phase. In fact, below we

o

DoS (Arb. Units)

will see that the fluctuations are sensitive to the very nature sin(2el 8)
of the impurity scattering. It turns out that the film with v(e):v(Ec)<1— —) (16
columnar defects is described by the higher symmetry class 2mel &
Cl, implying a modified localization length:” wheres=1[ v(E¢)L2]; i.e. for e—0, the DOS vanishes qua-
To assess the low-energy properties of the system, Wgatically,
have to first identify the soft modes of the action. For fre-
guenciese—0, the saddle point is not unique, but spans a v(e) 2 e\?
degenerate manifoldd=TQgpT ! with T=expW) and m= 572(5)
{Qgp,W}=0. The symmetries of the system impose certain ¢
conditions on the generatovs. This is to be contrasted with the low-energy behavior of
the DOS in the case of columnar defects, where the system
@@@ possesses thg, symmetry.
o

B. Columnar defects

Here instead of a single generaidf one has to consider
a set of generatorgy, .

(1) Once againW, has to commute with the order param-
eter

DoS (Arb. Units)

[o5", W, ]=0.

(2) However, even though time-reversal symmetry is bro-
ken by the magnetic field, the generators do not have to obey
Energy &/ [ [ag’H,vvk]zo_. Due to, symmetry, which causes all ele-

ments X, with k+k’ even to vanish, it is sufficient to re-

0.1 0.2

0.3 0.4 0.5

FIG. 4. Numerical results: subgap DOS. The solid lines showdu!"®
the square-root edge and the exponentially small tails. The same PH PH ,
data are plotted on a linear-log scale in the inset. Wi =03 Wyoz  for  k+k' odd,
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B

2 z
c
=) dx
o ds
= —
< B
n . . .
o FIG. 6. Sketch of the hybrid NS systems considered in the text
o in the planar and cylindrical geometry.

; , our attention to the mean-field properties of normal-metal—

0.001 0.010 e/|A 0.100 1.000 superconductor hybrid systems.
FIG. 5. Numerical results: log-log plot of the low-energy DOS V. NS HYBRID SYSTEMS

in the gapless phase for a diffusive filfopen squargsand a film

The properties of thin disordered NS bilayers have been
with columnar defectgopen circles prop y

studied in a recent work by Fominov and Feigel'ntamy

means of the coupled Usadel equations for the hybrid sys-
tem, they investigated the density of states as well as the
parallel and perpendicular critical fields of the bilayer as a

i.e., one generator, take, e.§Vj;, can be chosen “freely.”
Then, the others are determined through the condition

W, = (T kW (oM function of the interface transparency. The asymptotics at
k 3 0T o high and low transparencies are accessible to analytical so-
or W,=W, if ke 2N, andwkzggH\NoggH if ke 2N+ 1. lutions while the results at intermediate transparencies were

Thus, the second condition here only imposes certain refound numerically.

lations between differentv, , but does not restrict the struc-  Here, we consider a different aspect of the properties of
ture of W, in particle-hole space. This corresponds to thethe hybrid system, namely, the interplay between gapless su-
higher symmetry class Cl. Now the integration belongs toPerconductivity and the proximity effect. In addition to the
the group manifold Os(ﬁ|2) Again we find a manifestation effect of the field on the individual system, in the NS bilayer
of the Berry_Robnik Symmetry phenomenon: the |0W_energyjt also affects the COUpling. As we have seen in the preceding
properties of the gapless phase are determined by the syrfections, an in-plane magnetic field gradually suppresses the
metry class associated with systems possessing time-rever§a@Pp in the single-particle DOS. On the other hand, in an NS

invariance. structure, the proximity effect opens a gap in the DOS of the
Taking into account these fluctuations, the correspondingormal layer. Thus, we expect the magnetic field to weaken
soft mode action reads the proximity effect.

For simplicity, we consider here a hybrid system each
g [, S bH consisting of a singl&N and S channel(see Fig. 6. That is,
Sq.=— Tf d?r St Dycost 6,(3Qs)*+ 4i e coshbya neglecting the finite width, the magnetic field does not influ-
ence the individual systems, and we can study the effect on
®U§CQS], (170 the coupling alone. The coupling between the layers is de-
scribed by a tunneling Hamiltoniafi{r=[d?r (t ¥ \Wg
+H.c.), wheret is the tunneling matrix elemeigassumed to
Pe spatially constaptThus, the effective action for the NS
system consists of a sum of the actions of the individual
systems,Sy and Sg, and a coupling term that in the weak

where Q,=T.ob"®0oST; . Here T,=expW,), and W,

fulfills the conditions specified above. Once again, propertie
of the class CI are available in the literatdfen particular,
for small energies, one obtains

vie) _m[medz m? tunneling limit can be linearized. That is, the full action reads
"2 = ’ . e.g., Ref. 33
W(E) Zfo . Jo(2)31(2) 7 e/ +0(€%), (18) (see, e.g., Ref. 3
showing the DOS to vanish linearly @s-0. S=- W;DJ’ d?r St{D\(9Qn)%— 4i et "® 0S°Qy

The predicted low-energy behavior can be verified nu-
merically. In Fig. 5, the density of states at low energies is ~ 2 s PHo CC_A PH~ _
compared for the two cases. On the log-log scale one can TDs(0Qg) "~ 4(ieog ®0og™—A0;7)Qs~4yQnQs],
read off the exponen& governing the energy dependence, (19
|e|*. At low energies, the two lines with slopec=2 and 12 .
o= 1—characteristic of the symmetry class@snd Cl— where y=|t|*7 represents the transparency of the interface.

~ PH .
fit the data for the diffusive film and the film with columnar Furthermor&=d—iA[o3",.], where the appropriate gauge
defects, respectively. for the vector potentialA(r) will be specified shortly. In

Having studied the influence of a parallel magnetic fieldgeneral, the order parameter may be complek,
on the properties of the superconducting film, we now turn=|A|exp@Xcr§H). Note thatA here is the self-consistently
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determined order parameter. The presence of the normathere the bilayers are wrapped around a cylinder with the

layer leads to a renormalization of the order parameter. Amagnetic field directed along the cylinder axis. While in

weak couplings, however, the proximity induced suppressiotthe first case the magnetic-field effect is due only to the flux

of the order parameter is small. Therefore, we concentrate oanclosed between thid and S layers; here the system as a

the much more pronounced effect on the quasiparticle DOSvhole encloses magnetic flux, which leads to markedly dif-
Subjecting the actiofi19) to a saddle-point analysis, one ferent behavior.

obtains the following coupled Usadel-like equations:

A. Planar geometry

Dnd(QndQn) —[i et @ 5%, Qnl=1[Qs,Qul, . .
( " InLthedeanar gz;)metr();_,' ai be)fore, |_t|he a{)hproprlat;e (F:]ﬂauge is
~ S N ri.-PHo CC_ A PH _ e London gaugd = —(Hz+cy)e,. Here the constant,
DsH(QsdQs)~[ieos @ o5 A0z, Qs]= 1 Qn. Qs is determined through the congiytion that the supercurrent
As a simple guiding example, let us first consider the propthrough a cross section of the bilayer vanishes,
erties of the system in the absence of a magnetic field, where
the order parameter can be chosen to be real. Now, in situa-
tions where the superconducting terminal is represented by a f dzj(z)=jn+js=0, (24)
bulk system, the latter simply acts as a boundary condition
for the normal region. However, in the present case, thavherejy=nyAy/m. To a first approximationny=0. Thus,
single superconducting channel is itself heavily influencecho supercurrent flows in th&l region and, therefore, the
by the contact with the normal region. As a result, Fominovsupercurrent in thé& region has to vanish as well, i.éAg
and Feige'maf® have shown that a gap develops in the =0 which impliescy=—Hds.
normal region while in the superconductor quasiparticle Using the same ansatz as for the field-free case, one ob-
states at energies down to the size of the proximity effectains
induced gap are generated.
To see this explicitly, let us employ the ansafy Dy - . o .
= coshtyobH©o$C+i sinhyob with 6 homogeneousX — = (Hd)?sinh(26y) —i e sinhBly= y sinh( y— ),
=N,S). In this case, the saddle-point equations reduce to

—iesinhfy=sinh oy — Bs), —i(esinhfs— A coshés)= y sinh 65— 6y),
RSN - A oA (21 whered=dy—dg is the distance between the two layers.
~i(esinhfs— A coshfs) =y sinf( fs— O). As pointed out earlier, being a single-channel system, the
If the two systems are decoupleg=0, the solution for the superconductor alone does not feel the magnetic field. Again
superconductor at energies well below the gapA, reads Wwe are interested in the DOS at energies well below the gap,
6s~im/2. At weak coupling, settingds=im/2+ 95 in the €<A. As in the field-free case, an expansion dx= 65
low-energy regime and expanding the equations above up toi7/2 leads to
linear order in Y9g yields cothgy=ely and 9s=(e
—ivycoshfy)/A. Thus, at small energies, the density of states knSINN(28y) + 2i (e sinhBy— y coshdy) =0,  (25)
in the two layers is given as
where ky=Dy(Hd)%2. Furthermore 5= (e—iy coshéy)/
0, e<y A as before. Thus, in the two-channel case, the magnetic
field leads to a suppression of the proximity effect. Equation
vn(€)=vy Re coshy]= ,,DL, €y, 22 (25) shows that thpepclosing of the Fi)nducedygap is dec'lscribed
-y by the AG theory, where the relevant parameter{jg
=ky/7y. Therefore, one finds that the characteristic field
_ _Y {n(H) =1 causing the proximity effect induced gap to van-
ve(€)=—vpImlds]= FTon(e). 23 ish is much weaker than the field necessary to drive the su-
erconductor into the gapless phdse., taking into account

As expected, the superconductor induces an energy gap Re finite width of the individual layer

the normal region of magnitudg{y)=y. Furthermore, the

contact with the normal region leads to the appearance of o

quasiparticle states in the superconductor at energies down to B. Cylindrical geometry

the proximity effect induced gaﬁé§%<A. (Note that close to While in the planar geometry a nonvanishing supercurrent

the singularity ate= Eggg the approximations above are no is forbidden, in the cylindrical geometry a supercurrent can

longer valid) flow around the cylinder: in contrast to the previous case, the
How do these characteristic features of the proximity ef-system now encloses magnetic flux.

fect change in the presence of a magnetic field? In the fol- Starting with a single superconducting layer, for the cy-

lowing, we will consider two different geometries as de- lindrical geometry, the most convenient gauge to choose is

picted in Fig. 6. In Sec. VA, a planar NS bilayer is the symmetric gaugé‘zéer:—%Hre@, where we use

investigated. Subsequently, in Sec. V B, we study a setupylindrical coordinates r;¢,z). Now the phase degree of

144518-9
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freedom has to be taken into account, and a more general 1 , ; . ; 1
ansatz for the matrice® solving the saddle-point equations
is needed,
~ ~ . PH
Qs=coshfso b @ aSC+i sinhfe"¢7s obH |
S sY3 3 S 2 TC/TCO |A|/AO
wherene Z, and the phase matches the phase of the order
parameterA =|A|exp(neos™). Substituting this ansatz into
the saddle-point equation, one obtains
Dg(n+ Hrg)Z ) R R 0 0.5 1 1.5 2 25
———sinh(26g) + 2i (e sinhfs— A coshég) = 0.
2r2 s S S (0 /¢0

Thus, even in the absence of the NS coupling, the magnetic FIG. 7. The order parameterand the transition temperatufe
field affects the properties of the superconductor. The integegs a function of the magnetic fluk= Hr3 threading the cylinder.
n has to be chosen such that it minimizZes+ Hr2|, and,

therefore, by increasing the magnetic field, the parametgslotted against magnetic flusb/ o, where®=Hr. As

governing the gap suppression expected, both vanish around half-integer flux quanta while
they reach their unperturbed maximal values at integer

Dg(n+Hrg? flux quanta. The region around/¢,=1/2 is magnified in
¢s(Hin)= T Fig. 8, where the energy gap and the order parameter are

plotted. The system shows a crosso&r gaplessS—N
varies periodically between 0 an@®=Dg/(8r2A)=(&/d9? ~ —gaplessS— S by increasing the magnetic field.
where dg is the diameter of the cylinder. The size of the Now adding the normal layer, we again concentrate on
energy gap isEg=A(1— (%)% and the superconductor energies much smaller than the gap. With the same approxi-
enters the gapless phase whag=1. This condition can mation used earlier, the equation for the normal region reads
only be fulfilled if dg<¢.
As pointed out earlier, the magnetic field not only sup- DN(nJrHrﬁ,)2

presses the energy gap, but also renormalizes the order pa=— 2 sinf(26y) +2i (e sinhfy— y coshdy) =0.
rameterA. That is the order parameter in the formulas above N
has to be determined self-consistently. A=0, the self-  Once again, the mean-field equation assumes the form of an
consistency equation can be cast in the form AG equation with the parameterZy(H;n)=Dy(n
A +Hr2)2/(2r2y). Comparing the two valuess and £y, we
In(—) find that {*>¢3%, i.e., the proximity gap is suppressed
Ao before the superconductor itself would enter the gapless re-
- gime. At the same time the solution for the superconductor
- ng, {s=1, takes the form
N 1 e—ivycoshd
—arcosl‘{s—z(gsarcsinggl— \/1—4,“;2), {>1. 193=A(1—_£S)N,

(20 yielding vs=vyy/A(1—{s) *coshdy. That is the com-
Thus, the periodic modulation af also leads to a periodic Pined influence of the presence of the normal region and the
modulation of the order parameter. Similarly, the transition

temperatureT ., which obey3 @ 35
S N S |
Te 1 1 K —_—
'”(Tf))_‘”(z ¢(2+2ch : @7) ,

i E,/A, | 1A1A,
is a periodic function of the applied field as observed first by~ ** gapless )
Little and Parks® Furthermore, in small rings superconduc- region
tivity is completely suppressed in a certain range of magnetic y: \
fields around half-integer flux quanta threading the ==
cylinder® Only very recently it has been possible to manu- 04 045 05 035 06
facture small enough cylinders, where this prediction could 0 /(|)0

be verified experimentalfy Figure 7 shows the order pa-
rameter aff =0 and the transition temperature for a cylinder  FIG. 8. Energy gajEy,,and order parametey in the vicinity of
with dg<&, (where &, is the coherence length &t =0), D/ po=1/2.
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magnetic field leads to an enhanced density of states at lofer superconducting systems wheteinvariance is lifted.

energies in the superconductor. However, in the presence of columnar defects only, the DOS
This concludes our discussion of the mean-field propertieat small energies is linear ia(class CJ}, a behavior charac-

of thin disordered NS hybrid systems. Taking into accounteristic of systems that possess time-reversal invariance. Al-

the influence of fluctuations, it is straightforward to see thathough theP, symmetry cannot prevent the gradual destruc-

the low-energy properties of the quasiparticle states are didion of superconductivity by the magnetic field, some

tated by the same theory obtained in the preceding sectiomompensation for thg breaking is still effective.

Here, we assume the disorder in tNeand S channel to be In NS bilayers, we have shown that the coupling between
uncorrelated, which violateB, invariance. Thus, the gapless the two systems leads (0 an energy gang;; in the DOS
hybrid system is described by symmetry cl&ss of the normal layer, andii) a finite density of states in
the superconductor at energlég\‘ﬁzs e<A. In this geometry,
VI. CONCLUSIONS a parallel magnetic field suppresses the induced proximity

apE{Y) . The characteristic fielt (N) determining the oc-
urrence of the gapless phase is greatly reduced as compared
to the field H (S) that drives the superconductor into the
gapless phase, being rougti(N)/H(S)~(E/A) Y2 In

recovered. The same phenomenology applies to diffusiv@ cylind_rical geometry, the. energy gap I periodic
modulation with the magnetic field reminiscent of the Little-

films as well as films with columnar defects. In the diffusive . . .
Parks effect: if the cylinder encloses multiples of the flux

case, we have shown that—within the gapped phase—takin )
into account inhomogeneous instanton solutions of thélu@ntumey, this can be compensated by the phase of the

saddle-point equation, the hard gap is destroyed. By analoggrder parameter. Thus, the variation of the energy gap is
i i i i etermined by the effective fieltH.q=min,_z|H+n/rg.
with the magnetic impurity problerh,exponentially small eff ez T HITs
tails within the gap region appear. The same is to be expectet€ gapless phase can only be reached in sufficiently small
for the columnar defectsFor M>2 the coupling between SySt€ms, where the diameter of the cylinder fulfills the rela-
the different subbands complicates the analysis. Howevefon ds<¢.
the general behavior should not be affected qualitatively.
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To conclude, we have cast the properties of a disorderefl
thin superconducting film subject to a parallel magnetic fiel
in the framework of a statistical field theory. In the mean-
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