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We study a model for the dynamics of vortices in type-Il superconductors. In particular, we discuss the
magnetization relaxation close to and off equilibrium. At low temperatures a crossover point is Tound,
where relaxation times become huge and seem to diverge according a Vogel-Tamman-Fulcher law at a lower
temperaturdl . where a thermodynamic glass transition might be located. Magnetic creep changes by crossing
T4 belowTy, vortex motion is strongly subdiffusive and logarithmic creep is found; adgvea power-law
creep is asymptotically followed by stretched exponential saturation. The analysis of the self-scattering func-
tion also reveals that the dynamical process is non-Gaussian. In the regimeTpgl@tvong “memory” and
“aging” effects appear. In particular, we analyze the properties of “aging” and the structure of its “dynamical
scaling.”
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[. INTRODUCTION nounced “memory” and “metastability” effectésee the ref-
erences cited in Refs. 3-11,16, and 23)-25

The nature of the dynamics of vortices in type-ll super- Under typical experimental conditions, the vortex density
conductors has been discussed for many years, because ofitisghe sample is high enough to produce a many-body system
important implications on system propertie4.In particular,  of strongly interacting “particles.” Thus, even “simplified”
in the last few years it was discovered that many experimentgpproaches to dynamical properties, such as the time-
are affected by strong dynamical off-equilibrium effects. dependent Ginzburg-Landau theory, are extremely difficult
Magnetization loops, magnetic creep, and current-voltagéo deal with from a technical point of view, and it is often
characteristics exhibit important, often even dominantnecessary to introduce phenomenological approaches such as
history-dependent features, such as “aging,” memory, andKim-Anderson-like “macroscopic” description's:*
hysteresigsee Refs. 3—18 and references therein It is in this perspective that we consider a simple sche-

The existence of equilibrium “glassy” thermodynamic matic statistical mechanics lattice model to describe some
phases in vortex matter was suggested several years*igo. common properties of vortex dynamics in type-Il supercon-
In glass formers these phase transitions are called “idealtluctors from a more “microscopic” point of view. Our
glass transitiond? because huge equilibration times often model can be understood in the well-established theoretical
make such phases experimentally inaccessible. A glassy dframework of statistical mechanics of disordered mé8ii.
namics arises when the system intrinsic relaxation time beis a phenomenological lattice Hamiltonian model for the ef-
comes of the order of or longer than the time scale on whicHective vortices dynamics, studied with Monte CafMC)
the system is probed. When this happens the system may nsimulations. Such a MC-driven model has been shown to
be able to reach thermodynamic equilibrium on any timereproduce a very broad range of experimental observations:
scale allowed in experiments. Thus, to understand the obin addition to a reentrant equilibrium phase diagram, the
served phenomenology, we need to understand the relaxationodel reproduces dynamical phenomena such as slow creep
of the system far from equilibrium, and, accordingly, to de-dynamics, the hysteresis of magnetization loops, the “second
velop models of the relevant relaxation mechanisms in thgeak” structure in magnetization loops, “memory” and irre-
vortex system. versibility of -V characteristics, and several othétsience

In the present paper we focus on a model fleagnetic  the model seems to be able to give a unified and comprehen-
relaxation in vortex mattef® In particular, we analyze the sive description of magnetic and transport properties in vor-
properties of “aging” observed in low-temperature créép, tex matter.
and its dynamical scaling structure. We elaborate on several It is interesting that our MC dynamics shows a very good
details, especially concerning the dependence of relaxatiooorrespondence with this very diverse range of experiments
times on temperature and external magnetic field. We willon vortices. MC dynamics is known to be an efficient repre-
also outline similarities with ordinary glass formers such assentation of dynamics of systems which contains slow diffu-
polymers or supercooled liquid$?!22 sive degrees of freedof,and it is well known that the

Magnetization is the simplest and most natural quantity tageneral features of relaxation processes in glassy systems,
characterize the state of the vortex system. Interestinglysuch as supercooled liquids or spin glaséé8are well rep-
magnetization measures exhibit many important, markedlyesented by the MC method. Interestingly, our results are in
out-of-equilibriumfeatures such as the presence of hystereti@agreement with those from over damped Langevin
cycles, the dependence on the sweep rate of the externaiolecular-dynamics simulations of vortex systeth&when
field, logarithmic relaxation(suggesting the existence of available.
huge relaxation timés “aging”* and other similar pro- Our model, introduced mainly to study the dynamics, to
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some extent captures some of the essential elements of tkelts also pointed out that aging properties are actually found
phase diagram. In correspondence with experimésgs for  in magnetic creep? and crossover temperatures are well
instance, references in Refs. 3033®r numerical simula- known to exist in vortex creefsee, for instance, Refs. 33
tions show, for instance, several phase transitions at low tenand 34 and references in Rej. 3

peratures when the applied magnetic field is increased: a The paper is organized in the following way. In Sec. Il we
couple of reentrant discontinuous transitions at very smaltlescribe the model. In Sec. Il we discuss the relaxation of
and large fields and, between them, an other discontinuoute magnetization and its characteristic time scales. In Sec.
transition associated to the location of the second magnetlV we discuss the two-time correlation functions of the mag-
zation peak(see Ref. 2 netization, and identify the structure of aging and memory

The picture of creep which emerges from our model isaspects of vortex dynamics. In Sec. V we turn to the spatial
schematically the following: at low temperaturésthe sys- characterization of the vortex system in the glassy regime.
tem free-energy landscape is characterized by the presencefedr this purpose we consider self-diffusion and self-
self-generatedrery high barriergof both entropic and ener- scattering functions. Finally Sec. VI contains our conclu-
getic origin.?° This implies that, on lowerind, the charac- sions.
teristic relaxation time enormously increases and eventually,
at a crossover poinfy, becomes longer than the time scale
on which the observation of the system is made. In analogy
with similar phenomena in glass-forming liquids, we call |n type-Il superconductors an external magnetic field can
such a loosely defined crossover temperaflijethe “phe-  penetrate into the sample, forming the well-known vortex
nomenological glass transition temperatut®@® Around lines. These generally repel each other and typically interact
T4, or whenever the experiment@r simulation time scales  with a quenched disordered background, such as pinning
are shorter than the equilibration times, strong off-sites, which exert short-ranged forces on vorticés.many
equilibrium properties appear: “memory,” “aging,” depen- materials, the vortex-vortex, and vortex-pin interaction en-
dence on external driving rates, and similar properties. ergy scales can be comparable to thermal fluctuations: the

At intermediate temperatures, larger thigy, we observe presence of these competing energies leads to a variety of
a nonexponential relaxation of the magnetization: a powerimportant and surprising phenomena of vortex mattér.
law decay is asymptotically followed by a stretched expo- In the simple case of straight parallel vortex lines, it is
nential behaviorthe Kohlrausch-Williams-Watts law found well known that, away from the upper critical field, the vor-
in glass formers?) Below T4, the off-equilibrium relaxation tex pair interaction potential is, usually, screened beyond the
follows a power law at very short times, and later is well field penetration lengtih. In particular, the potential has ap-
approximated by the well-known logarithmic relaxation of proximately an exponential decay at large intervortex dis-
thermally assisted flux flow.In particular, we find the exis- tances(controlled by)), and saturates at a finite maximum
tence of “aging” with “dynamical scaling” of purely dy- when the intervortex distances is of the order of the correla-
namical origin in off-equilibrium two-time correlation func- tion length¢ (see, for instance, Ref)2
tions C(t,t'), a fact very important for understanding the  This technically means that interactions are short ranged
nature of the relaxation of the vortex system, and which nein the sense used in field theory. However, in many com-
cessitates new basic experiments. This phenomenon corrpeunds, for typical values of the magnetic fiel,can be
sponds to the known “aging” behaviors found in other much larger than the average vortices separation. In fact, by
glassy system&. The crossover temperatufg is associated increasing the external field the vortex density grows, and
with a change in the properties of vortex motion at a micro-the vortex average distana, can become much smaller
scopic level: diffusive aboverl,; below T, it becomes than\. This implies that each vortex significantly interacts
strongly subdiffusive. The analysis of the self-scatteringwith very many other vortices. This fact cannot be ignored,
function F(t,t") reveals, however, that also aboVg the  and results in one of the essential difficulties theoretical ap-
system overall relaxation is a non-Gaussian process reserproaches have to face: dealing with a highly interacting
bling those present in other complex fluids. many-body system with several relevant length scales.

At even lower temperatures a true thermodynamic “ideal To cope with these difficulties, we consider a simplified
glass transition'T, may exist which we locate by a Vogel- model which is a schematic coarse-grained lattice version of
Tamman-Fulcher fit of the relaxation time as a function ofa real interacting vortex systefi\It is worth recalling that
the temperature. What we stress here is that strong “glassythe coarse-graining technique used here is similar to other
features can appear even T.=0 (as expected in two- well-known coarse-graining approaches to multiscale prob-
dimensional systems whenever the system is below lems ranging from magnetism to structural defects in crystal
Ty 02t (see Ref. 35 The basic underlying idea is that, under certain

Our model gives predictions on the structure of these pheconditions(often not easy to be formally establisf&d the
nomena, and their mutual relationships, describe the systemfgoperties of a system with/’ degrees of freedom can be
equilibrium andoff-equilibriumdynamics, and establish defi- described using a smaller s&t, by disregarding phenomena
nite predictions, as for instance for the properties of its “ag-occurring below the smallest scale of interest in the problem.
ing.” The above scenario appears to be in very good corre- Our model is a coarse-grained version of a vortex system
spondence with experiments about vortex creep irdescribed by Ginzburg-Landau equations in the London ap-
superconductors where, in particular, recent experimental rggroximation. We coarse grain the original system of vortices

Il. MODEL
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on a given length scally. This produces a Hamiltonian lat-
tice system whose coarse-grained interaction potential can be
simpler than the original one. The coarse-graining lergth

is a parameter that one can opportunely tundjyifs very

small, say smaller tha&, our model coincides with the origi- LA R
nal Ginzburg-Landau one. Our approximation here is to take n—OS ﬁ ‘}
a finite coarse-graining length. Sincel, can be larger than - n=2 n=1

¢ (we takety=N\), each coarse-grained lattice site can be
multiply occupied. The occupancy is, however, restricted by FIG. 1. A schematic diagram of the coarse-grained model dealt
the upper critical fieldB.,. For this reason, we call the model with in the present paper. The original vortex systgéeft) is coarse
a restricted occupancy mod@OM).%° grained on a length scalg, and mapped into a lattice model where
The model aims to find a compromise between the commultioccupancy is allowe@ROM is the reduced occupancy model
plexity of real physical interactions and the crucial advantage
of having a system with a simplified interaction matrix which Here K, is the MacDonald function, and and A are the
is analytically and numerically tractable in both its equilib- correlation and penetration lengths. The coarse graining of
rium and dynamical aspects. Of course, an intrinsic limita-the original vortex system in they plane is made by intro-
tion appears: one cannot have information about systerducing a square grid of lattice spacirig, of the order of the
properties on scales smaller thanin the present case, how- London length) (see Fig. 1 By this procedure, the original
ever, our main interest is to explore the system dynamicsyortex system is mapped into a lattice model characterized
with particular reference to the region at low temperaturedy a classical fieldn;. The coarse-grained model Hamil-
and high vortex densities where “glassy” features substantonian has the following form:
tially appear, characterized by long time and space scales
(much larger than\). In such a region we expect that the 1 1
finite |, approximations is not too drastic, and the fact that H= 2 ; MiAijN; = 2 Z A“|ni|_2i Aflmil. 3
we reproduce many of the known experimental observations
on magnetic relaxation may be an indication for that. ManySince a lattice site is a coarse-grained representation of a
important models of vortex dynamics, such as the Kim-surface of area of ordéﬁ in the original system, the occu-
Anderson mode{which is a mesoscopic model, i.e., a model pancy of lattice sites in Ed3) is an integer variable equal to
coarse grained on a scale much larger of the one we adofite net number of particles on sie nje{—Ng, ...,
herg, are unable to describe the equilibrium phases of the-1,0,1... ,N.,} (see Fig. L The parameteN, (Ref. 39
system. Interestingly enough, the present model also capturé®unds the particle density per site below a critical value,
some of the essential elements of the phase diagtam. and is schematically related to the upper critical fi8lg
Coarse graining of the vortex system at zero temperatureharacteristic of type-ll superconductofsee below. Par-
has been used in the past, as, for instance, in Refs. 36—38. Atles on each site have an overall “charg@’ssociated with
variance with these coarse-grained cellular automata, th#he two possible orientations of magnetic fliand neighbor-
ROM is a full statistical mechanics model which explicitly ing particles with opposite “charge” can annihilater be
considers the fact that the vortex system is in contact with &reated, which generally implies an high energy tost
thermal bath and has a finite valueRy,. Another important The first term in Eq(3) represents the repulsion between
difference consists in our use of a standard MC Kawasakihe particle€.In the limit of smalll, (say,|,=< ), the coarse-
dynamic$’ to model the system relaxation and not determin-grained potentiald; coincides with the “full” interaction
istic cellular automata rules. We will see that all these factsA(r) obtained in the London limit from Ginzburg-Landau
are of crucial relevance to understand the system propertietheory. The ROM thus corresponds to standard models al-
ready studied. The problem with the models obtained in such
A. Hamiltonian a smallly limit is that they are hardly feasible to explore the
region of long time and space scales at low temperatures and

In order to cqnsider only the fundamental interactiqns inhigh magnetic fields where “glassy” features substantially
the system, we ignore other important but more specific ef;

i . ) appear. On the contrary, fog of the order of\ (the value
fects such as surface barriers, and consider just the abovséed herg the ROM is suited to describe the above “com-
cited three energy scales: vortices repulsion, vortex-pin co

. . . u}:')Iex" fluid or glassy behaviors of vortex matter, but does not
pling, and thermal fluctu.atlons. A system of straight parallelcatch its features at shorter length scales.
vortex lines, correspondmg to a magnetic fiélalong thez As already stated, here we take the coarse graining length
axis, interacts via a potentfal I, of order the of the range of interaction between the vorti-
82 ces, and thus consider a finite range potentigl We as-
_ 0 N , sumeA;j=Ag=1: A;;=A, if i andj are nearest neighbors,
Alr)= 277)\'2[K°(r/7\ )~ Kolr/€N], @ andA;; =0 for all otr:ers pairs of site¥. The effective range
of the vortex-vortex interaction\’ and ¢’ in Eq. (1), de-
where pends on the temperature and magnetic field, thus the ratio
between the coarse-graining lendthand X’ will change
§’=c§/\/§ and N =c\, c=(1-B/Bg) Y2 (2 with temperature and magnetic induction. This implies that if
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lo is fixed, one should led;; change withT andB. In par-
ticular, it would be more realistic to include off-diagonal
terms inA;; beyond nearest-neighbor interactions when
begins to become large compared with At present we
neglect these complications, and use only the simple nearest-
neighbor form ofA;; described above, but this does not af-
fect the general results we find. As will become clear below,
this T- and B-independent form ofy;; is sufficient to de-
scribe many features of the vortex system.

The second term in Eq3) concerns the particle self-
interaction energy: in brief, it imposes that a single vortex
left alone has no “interaction energy.” The third term corre-
sponds to a random pinning potential, with a given distribu-
tion P(AP), acting on a fractiorp of lattice sites(typically FIG. 2. Main frame: the phase diagram of the ROM in the plane
below we usep=1/2). For simplicity we choose a delta- (H*,T*), whereH* = u/kgT andT* =T/A; are the dimensionless
distributed random pinningP(AP) = (1— p) 5(AP) + p S(AP chemical potentials of the external applied field and temperature. It
—AD) 39 is evaluated_ in mean field approximation in the small pinning

To control the overall system “charge density,” one can Strength regime A<Ay), for K*=10*andA8=0.0,0.5, and 0.75
add a chemical potential term x=;n; to the above Hamil- (full. dotted, and dashed linesnd «* =3.3 andA5=0.0 (long
tonian, and study the system in the grand canonical en(jashed ling Computer simulations of the ROM in two dimensions,

semble, a fact which proves to be useful in analyticalat low T by increasing the field, also reveal a couple of first-order
approac,:hego reentrant phase transitions and, between them, another first-order

transition associated with the seconds magnetization peak, which
here is schematically shown by the broad horizontal dashed line.
B. Parameters of H Inset: hysteretic magnetization loop with an “anomalous” second

The parameters entering the model can be qualitativel¢@k:Ns(¥). The magnetizatioM is plotted as a function of the
related to material parameters of superconductors. We cgiPPlied field densityNe,, in the ROM during a cycling of the
relate the coarse-graining lengthto the upper critical field "e'd: for «*=0.26 atT=0.3, and for a sweep rate=10"".

B, through the relatioN ,® = B,|3, whered®,=hc/2e is
the unit quantum magnetic flux. This implies

ROM to the corresponding phase diagram of the vortex sys-
tem (see Fig. 2, the discussion below, and Ref). 20

lox NI, (4)

0*Nez¢ C. Model dynamics

Thus we have related the coarse graining length dgatae On a macroscopic scale, the equations describing the state

superconducting coherence lengtfand the ROM is upper of the vortices are the Maxwell equations combined with the

occupancy boundlc,. material ion iated with the electromagnetic re-
The energy scale unit in the model is set by the intervor- aterial equation associated with the electromagnetic re

t i t0 which all the oth | h sponse of a superconductor, which in turn depends on the
ex couplingA,, to which all the other energy scaies, suc asdynamics of vortices. This is the basis for the classic ther-
A; andAP, have to be compared. The ratid =A; /A, can

be related to the Ginzbura-Land \/ di mally assisted flux flow theory.* From a more microscopic
€ related to the Ginzburg-Landau paramateri/¢ and, in point of view, vortex motion has been described by time-

typical cases, is expec_ted to be an increasing fL_mction. of dependent Ginzburg-Landau equations and typically, in the
Asymptotically, vortex Imezsegment_s Interaction IS €xponeny ,nqon fimit, by considering as essential degrees of freedom
tial A(r)~V0ex.p(—r/\/§)'\). Then, since by definitiomy IS g1y the vortex positions. Simulations have often assumed
the coarse-grained lattice spacing length, whens suffi-  that the vortex dynamics could be modeled by a set of over-
ciently large one can approximately writtAo/A;  gamped Langevin molecular-dynamics equations for the vor-

~A(0)/A(lo). Forlp=A, this in turn implies that tex positions>*°=*2put even in this limit it is hardly pos-
sible to explore the long time and space scales, and the high-
Ini~ /kl (5) density region physics where glassy features essentially
K* 2 k' appear.

It is an experimental observation that diffusion modes are
Finally, the average pinning streng#f§ is assumed to be very important in vortex systems: vortices undergo a sort of

a reasonable fractiony, (below a,=0.3), of Ay: “Brownian” motion in their wandering in the sampf&;**as
also found in molecular dynamié8.With this in mind we
A= apPo- (6) assume that the vortex dynamics is a stochastic diffusion

process in a thermal bath, in the presence of conservative
The temperature scale of the ROM can be directly relatednteraction potentials describing the vortex-vortex and
to the physical temperature of the vortex system in a supewrortex-pinning interactions, as summarized in the Hamil-
conductor. The most meaningful way of doing this is to com-tonian equation(3). The simplest consistent approach for
pare the structure of the equilibrium phase diagram of thesimulating the system relaxation at nonzero temperatures
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consists in a Monte Carlo Kawasaki dynamii¢sere on a whereN;,=3n,/L? is the total “charge” density inside the
square lattice of sizk) at a temperatur€ (see Ref. 39This  system at timed, andN,,, is the applied field. As in typical
is a standard approach in computer simulations of dynamicaxperiments, we record the isothermal magnetizakit{i).
processes in complex fluids.We allow vortex-antivortex Time is measured in such a way that unity corresponds on
annihilation and creation on neighboring sites. In particularaverage to a full Monte Carlo sweep of the lattice.
we suppose that the system is in contact with an external First we briefly consider magnetization loops: the applied
reservoir of “particles” through surfaces of the system. Thisfield N.,; is ramped at a given “sweep rate/, up to a given
external reservoir schematically corresponds to the appliedalue, and then decreased back to zero. We typically find
field present in magnetic experiments on superconductorsiysteretic magnetization loops with shapes that closely re-
Particles are introduced and escape the system only througlemble experimental observatiéfig>2%324/for details see
the reservoir, which, by definition, has a given density;. Ref. 20. In particular, whenx* is above a critical value
In the absence of pinning and other forces, the inteeqal-  «* =0.25 (which is the regime we consider belpva pro-
librium density N;, satisfiesNg,=N;,. However, as we nounced second peak is observedMnas shown in Fig. 2,
shall see below, this is an ideal case which will change drawhich was shown to correspond to a first-order phase
matically in the presence of pinnirigee the Bean profiles in transition?°
Fig. 9. In what follows, we are interested in studying the proper-
ties of magnetic relaxatiofi.e., creep when, during these

D. Numerical simulations magnetization loops, the external field is at some point fixed

at a given working valueN.,;, and the vortex system is

In what follows we typically consider a two-dimensional .
@Ilowed to isothermally evolve.

square lattice which is periodic in one direction and has th
other two edges coupled to the external resertiat, a cyl-
inder geometry. We performed MC simulations on lattices A. Relaxation aboveT

of linear sizeL =32 (but we (_:hecked our results in the sizeé  The thermal creep of vortices significantly depends, as
rangel € {8, .. .,128) described by Eq(3) (where the pa-  gypjained below in detail, on the value of the applied field
rameters are usuallfio=1.0, Af=0.3, andN,=27) inthe  \_ " on the temperatur&, and on the field sweep ratg
presence of a thermal bath at temperatdieWe have (and on system interactions parametets AP, and sizel).
sampled several values of*=A;/Age[0,0.3]. Our nu- | particular, the nature of the dynamics change qualita-
merical statistical averages run, according to system Siz@jvely by decreasing. For the sake of clarity, we first con-
from 128 to 1024 thermal noise and pinning realizations. gjder the creep dynamics at relatively “high” temperatures
The ROM is able to describe a large variety of dynamicalyhere it is possible to investigate the dynamics of the system
properties observed in type-Il superconductdrsiere we  close to equilibrium We will also show that, in these
focus on the dynamical properties of the system in the Tow- “simple” situations, the relaxation has a nontrivial structure.
region. This is the region where mean-field theory shows thajt |ower temperatures, below a certain crossover valyo
the equilibrium phase diagram of the modshown in Fig.  pe defined later, the nature of the dynamics qualitatively
2) in the applied field-temperature plane has a reentraréhanges: foff<T, the system is typically well off equilib-
phase transition line from a high-temperature, low-densitytjym because the observation time scales are much shorter
fluid phase to an ordered phaSe,in analogy to than the characteristic equilibration times. In this region one
prediction$® and observationgsee for instance references finds a “logarithmic” creep, corresponding to a subdiffusive
in Refs. 30 and 3Rin superconductors. In good comparison motion of single vortices.
with experimentgsee references in Refs. 30 and aso our In what follows we consider a system which is zero-field-
numerical simulations for finite dimensional systefi®., ¢ggled at a given temperatufie We then ramp the external
non-mean-fiell show a sequence of phase transitions: forfig|q (at a ratey=10"3) up to the working valud,,,, and
instance, when the field is increased two reentrant disconhen we monitor the magnetic relaxatidh(t). Let us con-
tinuous transitions are foundas much as in mean-field gjger first the intermediate temperatures range where the sys-
theory and, between them, another discontinuous transitioRem is close to equilibrium. As a typical case, we report the
associated to with the location of the second magnetizatiogenavior ofM(t) at T=1.0 for a system characterized by an

peak(this is described in more detail in Ref.)20 interaction parametex* =0.28. At that given temperature,
In our numgncal simulations below, we'usually keep theye record the system evolution for several valuedlgf,.
temperaturd fixed and ramp the “external fieldN,; (start- In the present regime, it is possible at long times to ob-

ing from zero up to some given valuat a given sweep rate gepye the saturation d¥(t) to its equilibrium value. The
v ¥=ANp/7ex;, Wherer,,, is the time we spend at a each asymptotic long times decay i@t exponentialsee Fig. 3,
value ofNe,: andANy is its step increment during the ramp. byt approximated by the so-called Kohlrausch-Williams-

Watts (KWW) law (i.e., a stretched exponential
11l. MAGNETIZATION RELAXATION

(/) By
A very natural and important quantity which characterizes M(t)—=M(0)=AM[1—e” /)™, 8

the state of the system is the magnetizatib(t), ) o _
where M(0) is the magnetization value when the applied

M (1) = N;,(t) = Ny 1), (7)  field was set to the fixed working valué,,; (i.e., att=0).

144517-5



MARIO NICODEMI AND HENRIK JELDTOFT JENSEN PHYSICAL REVIEW B35 144517

2.5 . 5
10f 10° 2
2.0 ;"\wi 5 105
= S0t & 2
15 S 3 2 4
b= 10° | . 10
i [ S0t ’
= 1.0 10° 10" 10" 10" 10° 10° 10* 5 \\ 2 ;
E 10 051.01.52.0253.03.54.0
\\ T’l
0.5 2 . -
10° T
0.0 -1 0 2 3 4 5
10 10 10 10 10 10 10 0 1 2 T 3 4 5
t

FIG. 5. The parameters of the Kohlrausch-Williams-Watts
asymptotic relaxation of the magnetization as a function of the tem-
peratureT, recorded alN.,,= 10 after ramping the field with a rate
v as in Fig. 3. The equilibration timey, enormously grows by
decreasing the temperatufe Below the crossover temperaturg
~0.25, the system relaxation times are larger than the observation
time. The Vogel-Tamman-Fulché€VTF) fit of Eq. (10) is the su-
perimposed curve. Inset: In the region whefg seems to diverge,
we plot it as a function of T, and show the VTF fit of Eq(10).

For comparison also an Arrhenius curve is shddashed straight
line).

FIG. 3. Isothermal magnetization relaxation in the ROM for
k*=0.28 atT=1.0, for the shown values of the external fi&Ng,,
(ramped from zero with a ratg=10"%). Asymptotically,M(t) is
well fitted by the so-called Kohlrausch-Williams-Watt&WW)
law, i.e., stretched exponentialsontinuous lines but (see the in-
se) at short times a power-law relaxation is obseryde dashed
line in the inset is to guide the eye

The KWW relaxation is also typically found in glass formers
above the glass transitidR The time scaler,, and the Kohl-
rausch exponens,, (and the fit parametekM) depend on
the temperaturd and on the overall fieldN.,; as shown in  simulation$ the external field is typically ramped at a given
Figs. 4, 5, and 6. In particular, for a giveMa,:, By in- rate y, but whenevery> r[,,l the system is taken out of
creases withl and seems to approach a value of 1 wHen equilibrium, simply because it is unable to follow the drive.
—x (see Fig. 6. Figure 4 outlines, instead, the nonmono- Then “memory” and “aging” effects, along with depen-
tonic behavior ofry with Ng,,: 7y has a broad maximum in dences on the sweep rate, are immediate consequences. Ac-
correspondence with the location of the second magnetizdually, we can clearly see those effects in our system when-
tion peak N, (see the inset of Fig.)2The behavior ofry, as ever we cool it too rapidly in the low-regime, as discussed

a function of T andN,,, is a very important feature of great P€lOW. _ _ _ .
importance to the off-equilibrium behavior found in super- . 1he KWW relaxation characterizes the long-time regime

conducting samples. Its effects can be seen, for instance, ff thle vc;'rtex.dynamics, \INZiCI.h IS danalggolus t?c thne}ésgl;]called
the experimental observation of field dependent creep rate? reélaxation in supercooied liquids and giass forimersne

and magnetic loop€ In fact, in experimentgor computer asymp'Fotic regime is markedly Qiﬁerent from the sh.ort.-time
relaxation, the so-calle@ relaxation of supercooled liquids,

where a power-law behavior is fouridee the inset of Fig.

5000 095
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4000 [ R 10
*Plo ...-"'.'. ° 09| - g @O
3000 0 51015202 ® ° -
E New @ 0.8 I -05
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&, o’ .. 0sf ¢ 2518
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T

FIG. 4. The parameters of the Kohlrausch-Williams-Watts
asymptotic magnetic relaxation shown in Fig.B<1.0). Inset: the FIG. 6. The parameters of the Kohlrausch-Williams-Watts
exponentB,, as a function of the applied field.,;. Main panel:  asymptotic relaxation of the isothermal magnetization as a function
the equilibration timery,. Notice thatr, is a non monotonous of the temperaturd, recorded alN.,= 10 (the field was ramped
function of Ng,; which spans about one decade. The location of thefrom zero with a ratey as in Fig. 3. By lowering T, the exponent
maximum of ), corresponds to the position of the “second peak” By, decreases well below (the value corresponding to a simple
observed in magnetization loofsee Fig. 2 The first peak inry, is exponential relaxation Inset: the value of the magnetization at the
related to the crossing of the low field order-disorder transition. initial time t=0 after the ramp has arrived b, = 10.
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t \am T. is often located by extrapolation afy data from the high
M(t)—M(0)= Mo(T—) : (9)  Tregion, as we explain below.
M The behavior ofry with the temperature gives important
information about the system equilibration time scalese

Even at the relatively high temperatufe=1.0 (cf. Fig. 2,  Fig. 5). By decreasing the temperaturs, goes smoothly
this power law holds for several orders of magnitude in timethrough a minimum which, for Nex=10, is aroundT
We can numerically clearly distinguish the value of the ex-~3.25. AsT is further decreased,, strongly increases. The
ponentay =0.8 (almost independent dfe,) from By (am  divergence at low temperatures can be fitted with a power
decreases from 1 at highto ay=0.8 atT=1.0, and then |qw u~(T—T.) ™7, which gives T,=0.21 and y=2.0.
remains almost constant witf) . This shows that the dynam- However, for our data, a slightly better quality fit is found

ics is characterized by regions with different structures, angyith the exponential Vogel-Tamman-Fulcher lésee the in-
that the long-time relaxation is qualitatively different from set of Fig. 5,

the short time one. The KWW regim&hich, for example,
at Ng,= 16.8 is found fort>10% see Fig. 3and the power-
law regime (for Ng,=16.8 found whernt<1(?) are sepa- o= exp{ Eo ) (10)
. . . . . M 0 ’

rated by an interesting crossover region whose duration in- T-T.
creases with decreasing temperatufee., increasing
equilibration time of the systeiwhile the extension of where, atN,,=10, the characteristic time, is very large,
power-law region shrinks. T0=28.9X 10%, and the characteristic activation enefgy is

It is important to mention that the above general resultsen times larger thaffi,: Eo=1.0 andT.=0.1. The presence
are not changed when the size of the systeris varied.  of a strong increase ofy close to a power law or a Vogel-
However, as expected, increasing the system size does shifamman-Fulcher law is again an example of the similarity
the characteristic time of relaxation: for exampleTat1 for with glassy features of supercooled liquids and glass
Nex=10 we find ryL? in the interval we spannedL( formers!® The above fits define the location of the “ideal”
€[8,128)). This finding may be of importance to practical transitionT.. In the present case, they give a firiftg, but,
applications, since this implies that samples of different sizegis much as in glasses, a standard Arrhenilsdit, with Eq.
may have very different equilibration and response times tg10), whereT,= 0] might also be consistent at very I6tv In
external drive. facts, since the present system is a two-dimensional system

Another quantity which significantly affects, is the in-  we expect thaf =0, but a finiteT. produces a better qual-
teraction parameter*. We have not investigated this in full ity fit in all the data set of the range considered. Consistently
detail, but we observe that a small increases™fmay result  with the present scenario, a Vogel-Tamman-Fulcher law has
in a strong increase ofy, .2 Hence, for real superconduct- been also found in recent Molecular Dynamics simulatfons,
ors, we expect a strong dependence of the characteristic tinshd was previously experimentally observed in Ref. 49.
of magnetic relaxation on the Ginzburg-Landau parameter. Summarizing, we showed that about a certain crossover
Finally, as expectedyy, increases with the amplitude of pin- temperature T¢(Ney) the characteristic relaxation time
ning energyAP. Tm(Next, T) increases very rapidly witff, and as a conse-
quence is bound to become larger than the observation time.
In analogy with glass formers[, can be defined as the
“phenomenological glass transition temperature.” By ex-

The scenario described above f6=1.0 is found in all  trapolating the growth ofr,, with decreasingrl, an “ideal
regions of not too low temperature, but at lovilethe picture  glass transitionT (N, can also be located. In the present
changes. We plot, and By as a function ofT for N,  case, where the pinning amplituds, , is small, the value of
=10 in Figs. 5 and &similar results are found for different T, is not inconsistent withT.=0, as expected for a two-
Neyy . It is very important to note that, arourit=0.5, By dimensional model, though from the simulation data we can-
drastically decreases and, at the same time, a steep increasa rule out aT.>0.
of 7, is found. In fact, for temperatures beldly=0.25, the
characteristic relaxation time of the systdire., r,) be-
comes longer than our observation window. Consequently,
below T4(Nexy), the system is in an off-equilibrium state  Since belowT relaxation times are huge, one might ex-
during our observation, and, as shown in detail below, typicapect that the motion of the particles essentially freezes, apart
glassy phenomena, such as “aging,” are observed. Thé&om their vibration inside cages of other vortices. Instead, as
crossover temperaturg, is itself a function ofy. It has a  we now shown, the off-equilibrium dynamics has remarkably
physical meaning similar to the so-called phenomenologicatich properties.
glass transition point in supercooled liquid<Exploiting this In a narrow temperature interval arouiig the magneti-
analogy we will call this temperature the glass temperatureation relaxation undergoes an important change. Actually,
despite the fact that in glassy systems it is only looselyaround and below,, M(t) (see Fig. 7 has an initial power-
defined!® The existence of an underlyingowen “ideal” law behavior as discussed above, but in the long-time region
glass transition pointT,, is a subtle possibility which, in a logarithmic fit is definitely better than a stretched exponen-
many casesgas supercooled liquigistill remain unresolved. tial with a very small exponersay 8<0.3). A particularly

B. Crossover temperatureT

C. Relaxation belowT,
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FIG. 9. The Bean profile of the local internal fieldl,(x), as a

h FIG. 7| Th.fh m_algnetlzatl'fl)n in the IRtOth at IOV_V fgm%eraturesfunction of the transversal coordinatél in a system of linear size
shows a logarithmic creep. Here we plot data iy~ 10 (after a L =32, forNgyw=10 atT=1 and 0.1. The profiles are recorded after

ramp fromN,=0 at a ratey=10"%) at the shown temperatures . - PR " _ :
(for k* =0.28). Asymptotically, over at least four orders of magni- L?)rqgl?ﬁet?:s??giﬁts il: ;g; and waiting up td=1.5x10" (i.e.,
tude in time, aff=0.25M (t) is well fitted by the usual logarithmic '
interpolation formula(continuous line but (see the insgtat very The radically different states approached after the same
short times a power-law relaxation is still observed on a couple ofe|axation time by the system at two different temperatures
decades(dashed ling For comparison we also plot the KWW ahove and belowT, can be illustrated in the following way.
stretched exponential relaxation foundTat 1.0 (empty circles. In Fig. 9 we show the density profiléise., the Bean profiles
of such two states. We measured the magnetization as a func-

good fit is found by use of the well-known interpolation tion of the sample transverse spatial coordinkt€x), at the
formula often used to describe vortex creep in experiments.end of our observation time windoty= 1.5x 1P, for a sys-

tem atT=1.0(which is approximately at equilibriupand an
uT 1’M] other atT=0.1 (which, up to the recorded times, is off equi-

1+ —1In

U librium). The system af =1.0 has a flat density profile with
Cc

(11) no macroscopic heterogeneities; in contrast, the on& at
=0.1 shows a pronounced Bean-like profile with strong spa-
wherep =1 is consistent with our data. The above fit param-tial variations. The fact that close to the surface in the Bean
eters are shown in Fig. 8 as a function N, for T=0.1  Profile we find a peak i (i.e., Nin>Nexy is again similar
(similar results are obtained for low@). In agreement with {0 €xperimental datésee, for instance, Ref)6 _
previous findingst, is a nonmonotonic function oRl;. The good correspondence between the behavior of the

Interestinglyto anduT/U, are linearly related, but, contrary ROM__and__'a large ~amount of = experimental
to expectations from equilibrium considerationld, in- works® 9116237253335 eems to confirm the schematic
creases whety, decreases. This outlines that the valudJgf ~ SCENario for magnetic creep discussed here. It is also impor-

cannot be related to some characteristic “equilibrium energy@nt t note that the above dynamical phenomena, ranging
barrier value,” which instead must increase with the equilib-T0M SIow relaxation or hysteresis to an anomalous “second
rium times scales as shown before. peak” in magnetization loops, are found in very many differ-

ent types of superconductors with a broad range of material
parameters:1+1623-25Thjs corroborate the hypothesis that a

M(t)—M(O):AMmll—

t+1t,
to

900 900 basic generalsample independenimechanism is respon-
800 ° 800 o sible for the observed complex phenomenology.
o0 400 The famous Anderson-Kim model for magnetic relaxation
600 o 600 a in superconductors predicts the well-known logarithmic
500 Q9 500 B creep (asymptotically followed by an exponentidr* In
400 %‘5@--@ ol e “conventional” superconductors, such a behavior is typically
3001 O Bo) 300 g 2d found experimentally. However, in nonconventional super-
280 0 20 7 conductors the scenario is much more involvete expla-
100 100 1 nation of deviations from the Kim-Anderson model being
5 10 15 20 25 00402 0.04 0.06 0.08 0.1 0.12 one of the goals of collective flux-pinning modélst has
N.y kgT/U, long been known that in YBCO crystals magnetic relaxation

deviates from the Anderson-Kim prediction, and is better de-
FIG. 8. The parameters of the asymptotic magnetization logascribed by the collective pinning interpolation formula of Eq.
rithmic creep as a function dfl,,,, recorded aff=0.1 (the field ~ (11) (see for instance, Ref. 50 and references in Ref. 3
was ramped from zero with a rate=10"3). The “effective” bar-  Many other examples are well knowrgven in “unusual”
riersU, andt, are strongly correlated; is smaller the largetd . is ~ materials. For instance in the organic superconductor
(see the tejt (BEDT-TTF),Cu(NCS), it is known that relaxation is loga-
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rithmic only below 1 K, whereas between 1.5 and 8 K
power-law behavior is found: Power laws were also found

in LuBa,Cuy0,,%% in BSCCO(see, for instance, Ref. 23A
transition from low-temperature logarithmic to higher tem-
perature power law was reported in both BSC(R2f. 33

and YBCO crystaf$>*(for a complete list of references, see
Ref. 3 and also Refs. 5-11,16,23-25,30, and 32. Finally, a
definite asymptotic crossover to a stretched exponential be-
havior is recorded in heavy fermion superconductors such as
UPt; and UBg3.3* All these disparate observations can be
reconciled in the present scenario.

t-t,,

IV. TWO-TIME CORRELATION FUNCTIONS

Above we discussed how Sweep-rate-dependent hysteretic FIG. 10. The two time magnetization correlation function
cycles, slowly relaxing magnetization, etc. indicate that ourC(t,tw) =([M(t)—M(ty)]?), plotted as a function of—t,, for
system, on the observed time scales, at low temperature is fiex— 10 (after a ramp fromNe,=0 at a ratey=10"°) and T
from equilibrium. Actually, we have seen that by decreasing™ ! («* =0.28). At long times, over several decad€ss approxi-
the temperature the dynamics slows down and that there ef@t€ly a stretched exponentialtir t,,, but(see the insgtat short
ist a finite temperature below which the system cannot b&Me @ power-law behavior is founlashed lingon several time
equilibrated anymore within the time scale of the experimenfiecades'
or the computer simulation.

The appropriate tools to describe off-equilibrium behav-
iors, such as “aging” and “memory,” are two-time correla-
tion functions because they clearly reveal the underlyin
nonstationarity of the dynamié$ Thus in the simulations we
described above, along with the magnetizafib(t), we also
recorded the density-density correlatian~,,):

C(t,ty) = ([Nin(t) = Nin(ty) 12 =([M(t) — M(tw>]2>-(1

C(t,ty)/C.. for several different values di.,; as a function
of the scaling variablet(-t,,)/ 7(Ngy, T): all the datafor all
w andNg,, fall on the same master functigwhich is more
gtgeneral than the above KWW Jit

The pre-asymptotic dynamidse., t,t,,<7) is also of in-
terest and consistent with our previous resultét,t,,) has a
power-law regime over several decades in time
t—t,\ %

T

2 C(t,ty)=Cy
In fact, the analysis o€(t,t,,) gives us access to more rel-

evant information on the structure of the off-equilibrium dy- The exponeng, is shown in Fig. 11 as a function &fg,;: it
namics than that contained M(t), as we discuss below. is almost constanta.=1.7, except at very small or high
fields. Note that the in Eq. (14) is thesameas in Eq.(13),
but the exponents, and 8 are numerically differentsee

We have seen that at not too low temperatures, for in—FIgS' 11 and 1p

stance afT=1.0, the system relaxation is characterized by
finite relaxation times, but the dynamics is already nontrivial.
The two-time correlatoC(t,t,,) is plotted in Fig. 10 for a
relaxation atN.,~=16.8 after a rampfrom zero external
field) with y=10"2 at T=1.0 (for a system with *

(14

A. Equilibrium relaxation

B. Off-equilibrium relaxation

The present scenario changes for temperatures around and
below T4 wherestrong off-equilibrium behaviors are found.

=0.28). 7000
In agreement with the scenario recordedl¥bft), at long 1.8 -O 6000 5
times,C(t,t,,) is well fitted by the KWW stretched exponen- 17 | cPamee® ) 4 '
tial form (see Fig. 10 ) 5000 :
, 10 o . (4000
Cl(t—t.)/7B . i
C(t,t,)=C,[1—e [(t=tw/17] (13 =15 wl 3000
The exponentB=1.4 is almost constant for intermediate 1.4 @ 11 2000
fields(see Fig. 1], but some weak variation could be spotted ’ 1000 '.. -
as function ofNg,;. The characteristic time(Ng,) has a L3 ext *

nonmonotonic behavior wittN.,;, shown in Fig. 11, and
also its dependence dhnis analogous to that found fa, .
At T=1.0, the two-time correlation functiorc(t,t,)

shows no sign of “aging™ as expected for relaxations close FiG. 11. The exponena, of the short-time power-law relax-
ation of C(t,t,,) of Fig. 10 (for t,,=10%), the KWW exponent3,
and the characteristic time of its long-time stretched exponential

to equilibrium,C(t,t,,) is a function only of the time differ-
encet—t,, (up to the longest waiting timg,, we probed,

0 5 10 15 20 25

0
0 5 10 15 20 25
Next

t, e[10%,10%]). This is clearly seen in Fig. 12, where we plot decay, are shown as functions of the applied fislg,.
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(t-ty)/T FIG. 14. The parameters of the asymptotic logarithmic fit of the

two-time correlation functioi(t,t,,) of Fig. 13 as a function of the
FIG. 12. The two-time correlation functio@(t,t,) in Fig. 10,  waiting timet,,. U is numerically independent ®,, in the con-
for the shown values of the external fiel@i€ 1.0), are all collapsed sidered broad range, amglis a linear function of,, (the continuous
on the same master function when plotted as a functiontof (line is a linear fi}.
—t,)/ 7, wherer is the characteristic relaxation time. This shows
that at equilibrium no “aging” is present i@. The bold continuous ing timg t,,, elapsed since the system preparation. Note that
line is a fit with the KWW function of the asymptotic region, and an interesting phenomenon is observed: the system relax-
the dotted line is the initial region power-law fit. ation is slower the longer is its “aget),. Such a dynamical
“stiffening” is also typical of glass former$®22
We investigate in this section the dynamics of a system be- It is important to stress that analysis limited to slowly
low T,. We have already seen that fox< T, relaxation still ~ relaxing “one-time” quantities, such ali(t), may lead to
takes place, though its nature is very different from the rethe misleading impression that the system is nearly at sta-
laxation for T>T,. For T<T4 the systems clearly exhibit tionarity and close to equilibrium. The analysis ©f{t,t,,)
aging. This phenomenon, typical of off equilibrium dynam- points out that this is not the case. This is an important ob-
ics, occur in many different systems ranging from servation in order to avoid wrong extrapolations from equi-
2 ; H ,22 ; 1,22 ihri H 1
polymers?? to supercooled liquid$?2 spin glasse$'?? or librium properties’
granular medi&® The origin of aging and its apparent uni-  Let us discuss now in detail the times dependence of
versality are important theoretical questions broadly studied(t,t,,) in the low-T region. Here, where equilibration times
in recent year§!>6-58 are very long,C(t,t,), after the initial power-law behavior,
Figure 13 clearly shows tha€(t,t,) at T=0.1 («* is well fitted by a generalization of the known logarithmic
=0.28) exhibits strong aging, in the sense t@4t,t,) ex- interpolation formula, often experimentally use8or the fit
plicitly depends on both timesandt,, and not only on the to be successful one need to introduce wedting time f{,
relative time distancé—t,,. This is in contrast to the situa- explicitly into the formula:
tions close to equilibrium, wher€ is a function only oft

—t,,. Here the behavior of explicitly depends on thesait- C(t,tw)zcm( 1-1+ M—Tln( t+to) 1’“]_ 15
U, twt 1o
5 p As for M(t), we found that to take.=1 is consistent with
o our data. In the above fit ./« T only depends oM, and,
4 :%10_2 interes:ingly,to is approximately a Iine.ar function af,: tq
& e xt,+t§ , wheretj is a constantsee Fig. 14
3 31@ ‘0'2 More than the three parameters fit in itself, the interest is
S 104 % a=16 in the presence o$caling propertiesof purely dynamical
©2 ’ 102 310%2 310°2 origin in the off-equilibrium relaxation. This is shown in Fig.
T t-t,, 15, where data for different fieldSe,; and different waiting
1o 10 timest,, are rescaled to collapse onto a single scaling func-
¢ =10 . . .
NEXIEL tion. The above results imply that for large enough times,
0" 10 k though smaller than the equilibration time(t,t,,) is a uni-

t-t,, versal function of the ratid/t,,: C(t,t,,)~S(t/ty).
This scaling behavior is in agreement with general scaling
FIG. 13. Logarithmic time relaxation of the two-time vortex- properties 'n_ off equmbrl_um dynamicésee Ref.225575 gnd
density correlation functiorC(t,t,), in the ROM, recorded for ClOS€ analogies appear with other glass formefs?2°5 W_n
Ny =16 (k* =0.28). C(t,t,) shows strong “aging” and “stiffen-  Particular, the above scaling forfC(t,t,)~S(t/ty), in
ing” with t,,. The superimposed lines are the log fits of the text.which C(t,t,) is a function only of the ratid/t,,], in glassy
Inset: the same data of the main frame plotted on log-log scale t§ystem is usually called “simple aging™ Experimental
show the short-time power-law deviations from logarithmic behav-measurements a®(t,t,,) do not exist yet, but would be ex-
ior. tremely important for the identification of the true nature of
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FIG. 15. Off-equilibrium dynamical scaling. Superimposed on t
the same master function are relaxation dat&@ft,,) recorded for
Nex=4,10, and 16 £*=0.28, andT=0.1) for eacht,=10%5 FIG. 16. The vortex mean-square displacemBAt) at Ney
X 1%, 1C%, and 10. The asymptotic dynamical scaling &(t,t,) =10 for several temperatures. Beldly~0.25, R¥(t) is strongly
~S(thty). subdiffusive:R?(t) ~t” with »<1. Straight lines are guides for the
eye.

dynamical phenomena of vortices in superconductors. The

cently observed in Ref. 14. around subject to periodic boundary conditions. We stress

that the above approximation of the “real” dynamics is only
reasonable at high fields and low temperatures where
creation-annihilation is practically absent. Within this kind of
dynamics, one caiat the coarse-grained leyedlefine the
The magnetization dynamics described above can be angarticle positions at each time step during the evolution, and
lyzed in further depth by considering microscopic quantitiesrecord the internal rearrangement of the system. To be able to
associated with vortex motions, such as their mean-squa@mpare results for different particle densities, in this set of
displacement or the self scattering function. Below we dis-simulations we define one time unit to correspond to an av-
cuss these quantities. The mean-square displacement is d&age update of each particle present.
fined as The vortex mean square displacemBA(t), recorded for
Ney= 10, is ghown in Fig. 16 for several temperatures. Well
1 - - aboveT,, R(t) is asymptotically linear irt. This fact is
RA(1)= N< Z [ri(t)—ri(O)]2>, (16 consistent with low-density measuremédts and
simulations®® Thus we can write that
whereN is the total number of particles present on the lattice

V. MEAN-SQUARE DISPLACEMENT AND SELF-
SCATTERING FUNCTION

- 2 — v
andr;(t) is the location of vortex at timet. The incoherent R(t)=Dt”, (18
intermediate scattering function is, by definition, whereD =D(T,N,,, is the diffusion coefficient and the ex-
1 B B ponent(T,Ney) is simply »=1. By lowering T, R2(t) is
Fo(tity)=—( > eldrig=iari(tw (17) still linear in t for both small times and large times, but an
q W N - 1 . . . . . el
] inflection region appears at intermediate scales. Thus we dis

R tinguish a short-time behavi®?(t)=Dt*c and a long-time
where the components af are equal to Zn/L with n one R?(t)=D.t"<. The generalized diffusion coefficients
€{0,... L—1} (the data shown below are fatly and|q| Do(T,Ngyy) andD..(T,Ng,y are plotted as a function &,
=8/L). In typical liquids, the functiorF can be directly in Fig. 17 (for T=1) and as a function of in Fig. 18 (for
measured in neutron- and light-scattering experiméfiss  Ney= 10). Their behavior is consistent with the one recorded
also very important for a theoretical description of dynamicalfor characteristic equilibration time,, defined in Eq(13).
processes in complex fluids. While the short-time relaxation is always diffusive, i.e.,

Usually, vortex relaxation also includes pair creation-vo=1, eventually, as is apparent in Fig. 16, for temperatures
annihilation processes. These are, however, highly sugelow Ty, the process at long times becomes strongly sub-
pressed at low temperatures or high fields, and vortices cadiffusive, i.e.,v.,<1. The asymptotic exponemt, crucially
be approximately viewed as moving “particles.” Thus we depends of, as shown in Fig. 18, and seems to be approxi-
recordedR?(t) and Fq(t,ty) in a specific type of computer mately constant witiNe;.
simulations where, after ramping the field from zerd\ig,; From this point of view] is related to a sort of structural
at a given ratey (below y=5x10 %), we let the system arrest, where particle displacement, To Ty, becomes dra-
evolve subject to the “freezing” of the vortex-antivortex matically suppressed. Each vortex can rattle inside cages of
creation-annihilation mechanisms. In order to simuRtét) other neighboring vortices for long times, but its diffusion on
andFq(t,t,) at a definite average density, we eliminate thelong length scales is highly inhibited. The system dynamics
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FIG. 17. The diffusion coefficient of vortex motion in the ROM ) ) ]
as a function of the external fiel@, and D.. correspond to the FIG. 19. The self-scattering functioRq(t,t,) is plotted as a
short times and asymptotic behaviors. The data shown here are féfnction of t—t,, (here Ne,=10). The empty symbols are data
T=1.0, whereR(t)=t (see Fig. 16 corresponding to,,= 0 for the shown temperatures. The filled sym-

bols are data fot,=1.5x10% and 1.5<10° (empty squares and

dl le . " | . triangleg. At high temperatures, for instance®t 2, Fq(t,t,) is a
need large-scale “cooperative rearrangements” to relax, Runction oft—t,,, because filled and empty symbols are one on top

analogy, for instance, with supercooled flufds. _of the others. At lowT, this is no longer the case, and “aging” is
Interestingly, a very similar scenario has been recorded iReen, as it is apparent for the data with0.1. The curves super-

real superconducting samples: for instance, in Ref. 15, it Wagnposed on the data fof=2 and 0.5 are stretched exponential

clearly shown that vortices possess a certain degree of M@symptotic fits. This outlines that the relaxation process is non-

bility in the low-temperature phase, and only “freeze” below Gaussiariwhere a simple exponential relaxation should take place

a characteristic field-dependent temperature. ForT<T,, slow logarithmic decay is seen, as shown by the data at
In Fig. 19, we plot the self-scattering functiéi(t,t,) as  T7=0.1.

a function oft—t,,, recorded forNg,= 10 (similar results

are found for otheNe,). WhenT>Ty, F(t,t,) shows a At lower temperatures, beloW,, F(t,t,) is also aging,
KWW relaxation at long timegvery similar to the one of Eq.  as shown in Fig. 19. It is possible to see tRa(t,t,,) is not
(13), where, forT=1, =0.85]. F4(t,t,) is time translation 3 function oft—t,,, because the curves for differery do
invariant, i.e., it depends ot-t,,, but its KWW behavior  not collapse one on top of the other. Moreover, the time
gives important information concerning the nature of the mi-gependence oF 4(t,t,) is no longer of KWW type, but is
croscopic vortex motion: it outlines that the overall vortex agsymptotically logarithmically slow, similar to the behavior
diffusion is a non-Gaussian process. In fact, for a Gaussiagf the correlation functionC(t,t,,) discussed above. The
process we should have found thatFiift,0)= —q”R*(t).  function F, can be experimentally accessible.
This is clearly not the case here, sinB8(t)=t at T=1,
while InFy(t,0)« —t# with g<1.

VI. CONCLUSIONS

Summarizing, we studied a model consisting of a coarse-
1.0 i RO W - e e B grained version, on a scalg, of a vortex system described
T by Ginzburg-Landau equations in the London approxima-
08 | ‘\\ L v tion. Such a model was previously shown to have many cor-
s|my, 0 Dy \\\. ® v, respondences to the properties c_Jf vortices in su_per(_:onduct-
L 06 2 5 ® D, ors, such as a reentrant phase diagram, magnetization loops
Alo! \a, with a “second peak”(with a location dependent on the
0.4 z ‘\\" """ R \.\ sweep rate of the applie.d figldoroperties of Bean profiles,
e e quanthmlc creep, “aging” p_he_nomena, nonllnea_r and
0.2 0 o100 aite 1P L1 hl_s'gory-dependent-v characteristics, a peak effect in the
! critical currents, and othefS.
0.0 5 0 i 5 In the case considered hefg:-\, the model is schematic
1002 5100 2 510 2 510 but fully tractable, and thus provides a simple description of
T-l important mechanisms underlying the complex dynamics of

vortex matter. Its equilibrium phase diagram was studied
FIG. 18. The short-timegasymptoti¢ diffusion exponenty, elsewheré® our numerical simulations show a sequence of
(v..) and coefficientD, (D..) of the mean-square displacement, Phase transitions; for instance, at Ioky when the field is
R?(t)=Dt", as a function of the temperatur&l,,=10). Below increased two reentrant discontinuous transitions are found
T,=0.25 the asymptotic dynamics is strongly subdiffusive, ( and, between them, another discontinuous transition associ-
<1). ated to the location of the second magnetization peak.
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Here, in particular, we have focused on the details of thenuch larger than the inverse of the characteristic relaxation
dynamics of the magnetization. The system is characterizetime, 7(N¢y;, T), the system is driven off equilibrium, simply
by relaxation times which depend on the applied fillg,,  because it is unable to follow the drive, and “memory” and
and temperaturd@: 7(Ney,T). For a givenT, 7 is a non-  “aging” effects, along with dependences on the field sweep
monotonic function olNg,,, with a broad maximum around rate, occur. -
the second peak location. This explains why around the sec- We showed that, around or beldly, our system exhibits
ond peak “slushy” regions have been often obseryege, 2ding with a definite “dynamical scaling” structure, where
for instance, Refs. 30 and BXince is very large around WO times magnetization correlation functions are of the
the second peak, off-equilibrium “glassy” features appear’o'™M: C(t,tw)=S(t/ty,). This scenario closely resembles the
whenever the system is observed on time scales too shotf c@lled “simple aging” of glassy §ysterﬁ%]n particular,
compared tor. we found that the scaling functiofi is well described by a

For a givenN,,, 7 is also a nontrivial function of and, generalization of the “interpolation” formula known for

in particular, increases dramatically when the temperature i@errr?al Iogarithmichcr(f-:-ep.l | ch
lowered (similar to the Vogel-Tamman-Fulcher behavior of ~ 1he rapid growth ofr ala Vogel, Tamman, and Fulcher,
glass formers In fact, below a crossover temperature PY décreasing the temperature, the very existenck, ofthe
T4(Ney), it becomes impossible to equilibrate the system orslow off equilibrium reIaxatl_ons, and the sweep rate depen-
the observation time scales. Abo¥g, the magnetic creep dences: all these facts outline a general correspondence be-
shows power laws followed asymptotically by a stretchedt""eﬁn thelz dyr;amlcs of (\j/ornces anld dolf[hfﬂraglzgssy systems
exponential saturation. In contrast, at very low temperaturess,UC as glass formers and supercooled liq ““Interest- _
vortex motion is highly suppressed, but not completely ab_mgly, the scenario deppted hgre IS ;upported by a few avail-
sent, and logarithmic creep is recorded. These properties al@p!e _molecular-dynamics  simulations of ~over-damped
seem to be found in many experimeht&l23-2yhere for London-Langevin mode®?° and has many correspon-
instance definite crossover from power-law to Iogarithmicdences with experimental findings. Experimental studies of
creep has been observed. quantities such as(Ng,;, T) and checks of the scaling prop-

Interestingly, the crossover temperatdiigcorresponds to  €"!€S OfC(t,t,) =S5(t/1y,), as well asF(t,t,) would be of
a change in microscopic vortex motion: from diffusive 9r€at importance for clarifying the nature of dynamical pro-
(aboveT,) to strongly subdiffusive belowT,.2° However cesses in vortex matter and the relationship between vortex

g g - ) . . .

the analysis of the self-scattering functidfy(t,t,,), shows dynamics and the dynamics observed in other glassy sys-
that even abovd vortex diffusion is a non-Gaussian pro- tems.
cess, and the system dynamics is nontrivial.

In typical experiments or computer simulations, magnetic
properties are observed after a zero-field cooling followed by H.J.J. was supported by the EPSRC. M.N. acknowledges
ramping the external field at a given raje Whenevery is  support from INFM-PRAHOP) and INFM-PCI.
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