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Equilibrium and off-equilibrium dynamics in a model for vortices in superconductors
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We study a model for the dynamics of vortices in type-II superconductors. In particular, we discuss the
magnetization relaxation close to and off equilibrium. At low temperatures a crossover point is found,Tg ,
where relaxation times become huge and seem to diverge according a Vogel-Tamman-Fulcher law at a lower
temperatureTc where a thermodynamic glass transition might be located. Magnetic creep changes by crossing
Tg : belowTg , vortex motion is strongly subdiffusive and logarithmic creep is found; aboveTg , a power-law
creep is asymptotically followed by stretched exponential saturation. The analysis of the self-scattering func-
tion also reveals that the dynamical process is non-Gaussian. In the regime belowTg , strong ‘‘memory’’ and
‘‘aging’’ effects appear. In particular, we analyze the properties of ‘‘aging’’ and the structure of its ‘‘dynamical
scaling.’’
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I. INTRODUCTION

The nature of the dynamics of vortices in type-II sup
conductors has been discussed for many years, because
important implications on system properties.1–4 In particular,
in the last few years it was discovered that many experime
are affected by strong dynamical off-equilibrium effec
Magnetization loops, magnetic creep, and current-volt
characteristics exhibit important, often even domina
history-dependent features, such as ‘‘aging,’’ memory, a
hysteresis~see Refs. 3–18 and references therein!.

The existence of equilibrium ‘‘glassy’’ thermodynam
phases in vortex matter was suggested several years ag1,18

In glass formers these phase transitions are called ‘‘ide
glass transitions,19 because huge equilibration times ofte
make such phases experimentally inaccessible. A glassy
namics arises when the system intrinsic relaxation time
comes of the order of or longer than the time scale on wh
the system is probed. When this happens the system ma
be able to reach thermodynamic equilibrium on any ti
scale allowed in experiments. Thus, to understand the
served phenomenology, we need to understand the relax
of the system far from equilibrium, and, accordingly, to d
velop models of the relevant relaxation mechanisms in
vortex system.

In the present paper we focus on a model formagnetic
relaxation in vortex matter.20 In particular, we analyze the
properties of ‘‘aging’’ observed in low-temperature creep14

and its dynamical scaling structure. We elaborate on sev
details, especially concerning the dependence of relaxa
times on temperature and external magnetic field. We
also outline similarities with ordinary glass formers such
polymers or supercooled liquids.19,21,22

Magnetization is the simplest and most natural quantity
characterize the state of the vortex system. Interestin
magnetization measures exhibit many important, marke
out-of-equilibriumfeatures such as the presence of hyster
cycles, the dependence on the sweep rate of the exte
field, logarithmic relaxation~suggesting the existence o
huge relaxation times!, ‘‘aging’’ 14 and other similar pro-
0163-1829/2002/65~14!/144517~15!/$20.00 65 1445
-
f its

ts
.
e

t,
d

.
l’’

y-
e-
h
not
e
b-
ion
-
e

ral
on
ll
s

o
ly,
ly
ic
nal

nounced ‘‘memory’’ and ‘‘metastability’’ effects~see the ref-
erences cited in Refs. 3–11,16, and 23–25!.

Under typical experimental conditions, the vortex dens
in the sample is high enough to produce a many-body sys
of strongly interacting ‘‘particles.’’ Thus, even ‘‘simplified’
approaches to dynamical properties, such as the ti
dependent Ginzburg-Landau theory, are extremely diffic
to deal with from a technical point of view, and it is ofte
necessary to introduce phenomenological approaches su
Kim-Anderson-like ‘‘macroscopic’’ descriptions.1–4

It is in this perspective that we consider a simple sc
matic statistical mechanics lattice model to describe so
common properties of vortex dynamics in type-II superco
ductors from a more ‘‘microscopic’’ point of view. Ou
model can be understood in the well-established theore
framework of statistical mechanics of disordered media.26 It
is a phenomenological lattice Hamiltonian model for the
fective vortices dynamics, studied with Monte Carlo~MC!
simulations. Such a MC-driven model has been shown
reproduce a very broad range of experimental observati
in addition to a reentrant equilibrium phase diagram,
model reproduces dynamical phenomena such as slow c
dynamics, the hysteresis of magnetization loops, the ‘‘sec
peak’’ structure in magnetization loops, ‘‘memory’’ and irre
versibility of I -V characteristics, and several others.20 Hence
the model seems to be able to give a unified and compre
sive description of magnetic and transport properties in v
tex matter.

It is interesting that our MC dynamics shows a very go
correspondence with this very diverse range of experime
on vortices. MC dynamics is known to be an efficient rep
sentation of dynamics of systems which contains slow dif
sive degrees of freedom,27 and it is well known that the
general features of relaxation processes in glassy syst
such as supercooled liquids or spin glasses,26,28 are well rep-
resented by the MC method. Interestingly, our results are
agreement with those from over damped Lange
molecular-dynamics simulations of vortex systems,20,29when
available.

Our model, introduced mainly to study the dynamics,
©2002 The American Physical Society17-1
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MARIO NICODEMI AND HENRIK JELDTOFT JENSEN PHYSICAL REVIEW B65 144517
some extent captures some of the essential elements o
phase diagram. In correspondence with experiments~see for
instance, references in Refs. 30–32! our numerical simula-
tions show, for instance, several phase transitions at low t
peratures when the applied magnetic field is increase
couple of reentrant discontinuous transitions at very sm
and large fields and, between them, an other discontinu
transition associated to the location of the second magn
zation peak~see Ref. 20!.

The picture of creep which emerges from our model
schematically the following: at low temperaturesT, the sys-
tem free-energy landscape is characterized by the presen
self-generatedvery high barriers~of both entropic and ener
getic origin!.20 This implies that, on loweringT, the charac-
teristic relaxation time enormously increases and eventu
at a crossover point,Tg , becomes longer than the time sca
on which the observation of the system is made. In anal
with similar phenomena in glass-forming liquids, we c
such a loosely defined crossover temperatureTg the ‘‘phe-
nomenological glass transition temperature.’’19,22 Around
Tg , or whenever the experimental~or simulation! time scales
are shorter than the equilibration times, strong o
equilibrium properties appear: ‘‘memory,’’ ‘‘aging,’’ depen
dence on external driving rates, and similar properties.

At intermediate temperatures, larger thanTg , we observe
a nonexponential relaxation of the magnetization: a pow
law decay is asymptotically followed by a stretched exp
nential behavior~the Kohlrausch-Williams-Watts law foun
in glass formers.19! Below Tg , the off-equilibrium relaxation
follows a power law at very short times, and later is w
approximated by the well-known logarithmic relaxation
thermally assisted flux flow.1 In particular, we find the exis-
tence of ‘‘aging’’ with ‘‘dynamical scaling’’ of purely dy-
namical origin in off-equilibrium two-time correlation func
tions C(t,t8), a fact very important for understanding th
nature of the relaxation of the vortex system, and which
cessitates new basic experiments. This phenomenon c
sponds to the known ‘‘aging’’ behaviors found in oth
glassy systems.21 The crossover temperatureTg is associated
with a change in the properties of vortex motion at a mic
scopic level: diffusive aboveTg ; below Tg it becomes
strongly subdiffusive. The analysis of the self-scatter
function Fq(t,t8) reveals, however, that also aboveTg the
system overall relaxation is a non-Gaussian process res
bling those present in other complex fluids.19

At even lower temperatures a true thermodynamic ‘‘id
glass transition’’Tc may exist,1 which we locate by a Vogel-
Tamman-Fulcher fit of the relaxation time as a function
the temperature. What we stress here is that strong ‘‘glas
features can appear even ifTc50 ~as expected in two-
dimensional systems!, whenever the system is belo
Tg .19–21

Our model gives predictions on the structure of these p
nomena, and their mutual relationships, describe the syst
equilibriumandoff-equilibriumdynamics, and establish defi
nite predictions, as for instance for the properties of its ‘‘a
ing.’’ The above scenario appears to be in very good co
spondence with experiments about vortex creep
superconductors where, in particular, recent experimenta
14451
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sults also pointed out that aging properties are actually fo
in magnetic creep,14 and crossover temperatures are w
known to exist in vortex creep~see, for instance, Refs. 3
and 34 and references in Ref. 3!.

The paper is organized in the following way. In Sec. II w
describe the model. In Sec. III we discuss the relaxation
the magnetization and its characteristic time scales. In S
IV we discuss the two-time correlation functions of the ma
netization, and identify the structure of aging and memo
aspects of vortex dynamics. In Sec. V we turn to the spa
characterization of the vortex system in the glassy regim
For this purpose we consider self-diffusion and se
scattering functions. Finally Sec. VI contains our conc
sions.

II. MODEL

In type-II superconductors an external magnetic field c
penetrate into the sample, forming the well-known vort
lines. These generally repel each other and typically inte
with a quenched disordered background, such as pinn
sites, which exert short-ranged forces on vortices.2 In many
materials, the vortex-vortex, and vortex-pin interaction e
ergy scales can be comparable to thermal fluctuations:
presence of these competing energies leads to a variet
important and surprising phenomena of vortex matter.1–4

In the simple case of straight parallel vortex lines, it
well known that, away from the upper critical field, the vo
tex pair interaction potential is, usually, screened beyond
field penetration lengthl. In particular, the potential has ap
proximately an exponential decay at large intervortex d
tances~controlled byl), and saturates at a finite maximu
when the intervortex distances is of the order of the corre
tion lengthj ~see, for instance, Ref. 2!.

This technically means that interactions are short ran
in the sense used in field theory. However, in many co
pounds, for typical values of the magnetic field,l can be
much larger than the average vortices separation. In fact
increasing the external field the vortex density grows, a
the vortex average distancea0 can become much smalle
than l. This implies that each vortex significantly interac
with very many other vortices. This fact cannot be ignore
and results in one of the essential difficulties theoretical
proaches have to face: dealing with a highly interact
many-body system with several relevant length scales.

To cope with these difficulties, we consider a simplifie
model which is a schematic coarse-grained lattice version
a real interacting vortex system.20 It is worth recalling that
the coarse-graining technique used here is similar to o
well-known coarse-graining approaches to multiscale pr
lems ranging from magnetism to structural defects in crys
~see Ref. 35!. The basic underlying idea is that, under certa
conditions~often not easy to be formally established35!, the
properties of a system withN degrees of freedom can b
described using a smaller setN8, by disregarding phenomen
occurring below the smallest scale of interest in the proble

Our model is a coarse-grained version of a vortex sys
described by Ginzburg-Landau equations in the London
proximation. We coarse grain the original system of vortic
7-2
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EQUILIBRIUM AND OFF-EQUILIBRIUM DYNAMICS IN . . . PHYSICAL REVIEW B 65 144517
on a given length scalel 0. This produces a Hamiltonian lat
tice system whose coarse-grained interaction potential ca
simpler than the original one. The coarse-graining lengthl 0
is a parameter that one can opportunely tune: ifl 0 is very
small, say smaller thanj, our model coincides with the origi
nal Ginzburg-Landau one. Our approximation here is to t
a finite coarse-graining lengthl 0. Sincel 0 can be larger than
j ~we take ł 0.l), each coarse-grained lattice site can
multiply occupied. The occupancy is, however, restricted
the upper critical fieldBc2. For this reason, we call the mod
a restricted occupancy model~ROM!.20

The model aims to find a compromise between the co
plexity of real physical interactions and the crucial advanta
of having a system with a simplified interaction matrix whi
is analytically and numerically tractable in both its equili
rium and dynamical aspects. Of course, an intrinsic lim
tion appears: one cannot have information about sys
properties on scales smaller thanl 0. In the present case, how
ever, our main interest is to explore the system dynam
with particular reference to the region at low temperatu
and high vortex densities where ‘‘glassy’’ features subst
tially appear, characterized by long time and space sc
~much larger thanl). In such a region we expect that th
finite l 0 approximations is not too drastic, and the fact th
we reproduce many of the known experimental observati
on magnetic relaxation may be an indication for that. Ma
important models of vortex dynamics, such as the Ki
Anderson model~which is a mesoscopic model, i.e., a mod
coarse grained on a scale much larger of the one we a
here!, are unable to describe the equilibrium phases of
system. Interestingly enough, the present model also cap
some of the essential elements of the phase diagram.20

Coarse graining of the vortex system at zero tempera
has been used in the past, as, for instance, in Refs. 36–3
variance with these coarse-grained cellular automata,
ROM is a full statistical mechanics model which explicit
considers the fact that the vortex system is in contact wit
thermal bath and has a finite value ofBc2. Another important
difference consists in our use of a standard MC Kawas
dynamics27 to model the system relaxation and not determ
istic cellular automata rules. We will see that all these fa
are of crucial relevance to understand the system proper

A. Hamiltonian

In order to consider only the fundamental interactions
the system, we ignore other important but more specific
fects such as surface barriers, and consider just the ab
cited three energy scales: vortices repulsion, vortex-pin c
pling, and thermal fluctuations. A system of straight para
vortex lines, corresponding to a magnetic fieldB along thez
axis, interacts via a potential2

A~r !5
f0

2

2pl82
@K0~r /l8!2K0~r /j8!#, ~1!

where

j85cj/A2 and l85cl, c5~12B/Bc2!21/2. ~2!
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Here K0 is the MacDonald function, andj and l are the
correlation and penetration lengths. The coarse graining
the original vortex system in thexy plane is made by intro-
ducing a square grid of lattice spacing,l 0, of the order of the
London length,l ~see Fig. 1!. By this procedure, the origina
vortex system is mapped into a lattice model characteri
by a classical fieldni . The coarse-grained model Hami
tonian has the following form:

H5
1

2 (
i j

niAi j nj2
1

2 (
i

Aii uni u2(
i

Ai
puni u. ~3!

Since a lattice site is a coarse-grained representation
surface of area of orderl 0

2 in the original system, the occu
pancy of lattice sites in Eq.~3! is an integer variable equal t
the net number of particles on sitei, niP$2Nc2 , . . . ,
21,0,1. . . ,Nc2% ~see Fig. 1!. The parameterNc2 ~Ref. 39!
bounds the particle density per site below a critical val
and is schematically related to the upper critical fieldBc2
characteristic of type-II superconductors~see below!. Par-
ticles on each site have an overall ‘‘charge’’~associated with
the two possible orientations of magnetic flux! and neighbor-
ing particles with opposite ‘‘charge’’ can annihilate~or be
created, which generally implies an high energy cost!.

The first term in Eq.~3! represents the repulsion betwee
the particles.2 In the limit of smalll 0 ~say,l 0<j), the coarse-
grained potentialAii coincides with the ‘‘full’’ interaction
A(r ) obtained in the London limit from Ginzburg-Landa
theory. The ROM thus corresponds to standard models
ready studied. The problem with the models obtained in s
a smalll 0 limit is that they are hardly feasible to explore th
region of long time and space scales at low temperatures
high magnetic fields where ‘‘glassy’’ features substantia
appear. On the contrary, forl 0 of the order ofl ~the value
used here!, the ROM is suited to describe the above ‘‘com
plex’’ fluid or glassy behaviors of vortex matter, but does n
catch its features at shorter length scales.

As already stated, here we take the coarse graining len
l 0 of order the of the range of interaction between the vo
ces, and thus consider a finite range potentialAi j . We as-
sumeAii 5A051: Ai j 5A1 if i and j are nearest neighbors
andAi j 50 for all others pairs of sites.39 The effective range
of the vortex-vortex interaction,l8 and j8 in Eq. ~1!, de-
pends on the temperature and magnetic field, thus the r
between the coarse-graining lengthl 0 and l8 will change
with temperature and magnetic induction. This implies tha

FIG. 1. A schematic diagram of the coarse-grained model d
with in the present paper. The original vortex system~left! is coarse
grained on a length scalel 0, and mapped into a lattice model whe
multioccupancy is allowed~ROM is the reduced occupancy mode!.
7-3
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MARIO NICODEMI AND HENRIK JELDTOFT JENSEN PHYSICAL REVIEW B65 144517
l 0 is fixed, one should letAi j change withT andB. In par-
ticular, it would be more realistic to include off-diagon
terms inAi j beyond nearest-neighbor interactions whenl8
begins to become large compared withl 0. At present we
neglect these complications, and use only the simple nea
neighbor form ofAi j described above, but this does not a
fect the general results we find. As will become clear belo
this T- and B-independent form ofAi j is sufficient to de-
scribe many features of the vortex system.

The second term in Eq.~3! concerns the particle self
interaction energy: in brief, it imposes that a single vort
left alone has no ‘‘interaction energy.’’ The third term corr
sponds to a random pinning potential, with a given distrib
tion P(Ap), acting on a fractionp of lattice sites~typically
below we usep51/2). For simplicity we choose a delta
distributed random pinning:P(Ap)5(12p)d(Ap)1pd(Ap

2A0
p).39

To control the overall system ‘‘charge density,’’ one c
add a chemical potential term2m( ini to the above Hamil-
tonian, and study the system in the grand canonical
semble, a fact which proves to be useful in analyti
approaches.20

B. Parameters ofH
The parameters entering the model can be qualitativ

related to material parameters of superconductors. We
relate the coarse-graining lengthl 0 to the upper critical field
Bc2 through the relationNc2F0}Bc2l 0

2, whereF05hc/2e is
the unit quantum magnetic flux. This implies

l 0}Nc2
1/2j. ~4!

Thus we have related the coarse graining length scalel 0, the
superconducting coherence lengthj and the ROM is upper
occupancy boundNc2.

The energy scale unit in the model is set by the interv
tex couplingA0, to which all the other energy scales, such
A1 andAp, have to be compared. The ratiok* 5A1 /A0 can
be related to the Ginzburg-Landau parameterk5l/j and, in
typical cases, is expected to be an increasing function ok.
Asymptotically, vortex line segments interaction is expone
tial A(r );V0exp(2r/A2l).2 Then, since by definitionl 0 is
the coarse-grained lattice spacing length, whenl 0 is suffi-
ciently large one can approximately writeA0 /A1
;A(0)/A( l 0). For l 0.l, this in turn implies that

ln
1

k*
;ANc2

2

1

k
. ~5!

Finally, the average pinning strengthA0
p is assumed to be

a reasonable fraction,ap ~below ap50.3), of A0:

A0
p5apA0 . ~6!

The temperature scale of the ROM can be directly rela
to the physical temperature of the vortex system in a su
conductor. The most meaningful way of doing this is to co
pare the structure of the equilibrium phase diagram of
14451
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ROM to the corresponding phase diagram of the vortex s
tem ~see Fig. 2, the discussion below, and Ref. 20!.

C. Model dynamics

On a macroscopic scale, the equations describing the s
of the vortices are the Maxwell equations combined with
material equation associated with the electromagnetic
sponse of a superconductor, which in turn depends on
dynamics of vortices. This is the basis for the classic th
mally assisted flux flow theory.1–4 From a more microscopic
point of view, vortex motion has been described by tim
dependent Ginzburg-Landau equations and typically, in
London limit, by considering as essential degrees of freed
only the vortex positions. Simulations have often assum
that the vortex dynamics could be modeled by a set of ov
damped Langevin molecular-dynamics equations for the v
tex positions,29,40–42but even in this limit it is hardly pos-
sible to explore the long time and space scales, and the h
density region physics where glassy features essent
appear.

It is an experimental observation that diffusion modes
very important in vortex systems: vortices undergo a sor
‘‘Brownian’’ motion in their wandering in the sample,43,44 as
also found in molecular dynamics.45 With this in mind we
assume that the vortex dynamics is a stochastic diffus
process in a thermal bath, in the presence of conserva
interaction potentials describing the vortex-vortex a
vortex-pinning interactions, as summarized in the Ham
tonian equation~3!. The simplest consistent approach f
simulating the system relaxation at nonzero temperatu

FIG. 2. Main frame: the phase diagram of the ROM in the pla
(H* ,T* ), whereH* 5m/kBT andT* 5T/A1 are the dimensionless
chemical potentials of the external applied field and temperatur
is evaluated in mean field approximation in the small pinni
strength regime (A0

p,A0), for k* 510 andA0
p50.0,0.5, and 0.75

~full, dotted, and dashed lines! and k* 53.3 andA0
p50.0 ~long

dashed line!. Computer simulations of the ROM in two dimension
at low T by increasing the field, also reveal a couple of first-ord
reentrant phase transitions and, between them, another first-o
transition associated with the seconds magnetization peak, w
here is schematically shown by the broad horizontal dashed
Inset: hysteretic magnetization loop with an ‘‘anomalous’’ seco
peak,Nsp(g). The magnetizationM is plotted as a function of the
applied field density,Next , in the ROM during a cycling of the
field, for k* 50.26 atT50.3, and for a sweep rateg51023.
7-4
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EQUILIBRIUM AND OFF-EQUILIBRIUM DYNAMICS IN . . . PHYSICAL REVIEW B 65 144517
consists in a Monte Carlo Kawasaki dynamics27~here on a
square lattice of sizeL) at a temperatureT ~see Ref. 39! This
is a standard approach in computer simulations of dynam
processes in complex fluids.27 We allow vortex-antivortex
annihilation and creation on neighboring sites. In particu
we suppose that the system is in contact with an exte
reservoir of ‘‘particles’’ through surfaces of the system. Th
external reservoir schematically corresponds to the app
field present in magnetic experiments on superconduct
Particles are introduced and escape the system only thro
the reservoir, which, by definition, has a given densityNext .
In the absence of pinning and other forces, the internalequi-
librium density Nin satisfiesNext5Nin . However, as we
shall see below, this is an ideal case which will change d
matically in the presence of pinning~see the Bean profiles in
Fig. 9!.

D. Numerical simulations

In what follows we typically consider a two-dimension
square lattice which is periodic in one direction and has
other two edges coupled to the external reservoir~i.e., a cyl-
inder geometry!. We performed MC simulations on lattice
of linear sizeL532 ~but we checked our results in the siz
rangeLP$8, . . .,128%) described by Eq.~3! ~where the pa-
rameters are usuallyA051.0, A0

p50.3, andNc2527) in the
presence of a thermal bath at temperatureT. We have
sampled several values ofk* [A1 /A0P@0,0.3#. Our nu-
merical statistical averages run, according to system s
from 128 to 1024 thermal noise and pinning realizations.

The ROM is able to describe a large variety of dynami
properties observed in type-II superconductors.20 Here we
focus on the dynamical properties of the system in the lowT
region. This is the region where mean-field theory shows
the equilibrium phase diagram of the model~shown in Fig.
2! in the applied field-temperature plane has a reent
phase transition line from a high-temperature, low-dens
fluid phase to an ordered phase,20 in analogy to
predictions1,46 and observations~see for instance reference
in Refs. 30 and 32! in superconductors. In good compariso
with experiments~see references in Refs. 30 and 32! also our
numerical simulations for finite dimensional systems~i.e.,
non-mean-field! show a sequence of phase transitions:
instance, when the field is increased two reentrant disc
tinuous transitions are found~as much as in mean-fiel
theory! and, between them, another discontinuous transi
associated to with the location of the second magnetiza
peak~this is described in more detail in Ref. 20!.

In our numerical simulations below, we usually keep t
temperatureT fixed and ramp the ‘‘external field’’Next ~start-
ing from zero up to some given value! at a given sweep rate
g: g5DN0 /text , wheretext is the time we spend at a eac
value ofNext andDN0 is its step increment during the ram

III. MAGNETIZATION RELAXATION

A very natural and important quantity which characteriz
the state of the system is the magnetizationM (t),

M ~ t !5Nin~ t !2Next~ t !, ~7!
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whereNin5( ini /L2 is the total ‘‘charge’’ density inside the
system at timet, andNext is the applied field. As in typical
experiments, we record the isothermal magnetizationM (t).
Time is measured in such a way that unity corresponds
average to a full Monte Carlo sweep of the lattice.

First we briefly consider magnetization loops: the appl
field Next is ramped at a given ‘‘sweep rate’’g, up to a given
value, and then decreased back to zero. We typically
hysteretic magnetization loops with shapes that closely
semble experimental observations23–25,30,32,47~for details see
Ref. 20!. In particular, whenk* is above a critical value
kc* .0.25 ~which is the regime we consider below!, a pro-
nounced second peak is observed inM, as shown in Fig. 2,
which was shown to correspond to a first-order pha
transition.20

In what follows, we are interested in studying the prop
ties of magnetic relaxation~i.e., creep! when, during these
magnetization loops, the external field is at some point fix
at a given working valueNext , and the vortex system is
allowed to isothermally evolve.

A. Relaxation aboveTg

The thermal creep of vortices significantly depends,
explained below in detail, on the value of the applied fie
Next , on the temperatureT, and on the field sweep rateg
~and on system interactions parametersk* , Ap, and sizeL).

In particular, the nature of the dynamics change qual
tively by decreasingT. For the sake of clarity, we first con
sider the creep dynamics at relatively ‘‘high’’ temperatur
where it is possible to investigate the dynamics of the sys
close to equilibrium. We will also show that, in these
‘‘simple’’ situations, the relaxation has a nontrivial structur
At lower temperatures, below a certain crossover valueTg to
be defined later, the nature of the dynamics qualitativ
changes: forT<Tg the system is typically well off equilib-
rium because the observation time scales are much sh
than the characteristic equilibration times. In this region o
finds a ‘‘logarithmic’’ creep, corresponding to a subdiffusiv
motion of single vortices.

In what follows we consider a system which is zero-fie
cooled at a given temperatureT. We then ramp the externa
field ~at a rateg51023) up to the working valueNext , and
then we monitor the magnetic relaxationM (t). Let us con-
sider first the intermediate temperatures range where the
tem is close to equilibrium. As a typical case, we report
behavior ofM (t) at T51.0 for a system characterized by a
interaction parameterk* 50.28. At that given temperature
we record the system evolution for several values ofNext .

In the present regime, it is possible at long times to o
serve the saturation ofM (t) to its equilibrium value. The
asymptotic long times decay isnot exponential~see Fig. 3!,
but approximated by the so-called Kohlrausch-William
Watts ~KWW! law ~i.e., a stretched exponential!,

M ~ t !2M ~0!5DM @12e2(t/tM)bM#, ~8!

where M (0) is the magnetization value when the appli
field was set to the fixed working valueNext ~i.e., at t50).
7-5
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The KWW relaxation is also typically found in glass forme
above the glass transition.19 The time scaletM and the Kohl-
rausch exponentbM ~and the fit parameterDM ) depend on
the temperatureT and on the overall fieldNext as shown in
Figs. 4, 5, and 6. In particular, for a givenNext , bM in-
creases withT and seems to approach a value of 1 whenT
→` ~see Fig. 6!. Figure 4 outlines, instead, the nonmon
tonic behavior oftM with Next : tM has a broad maximum in
correspondence with the location of the second magne
tion peak,Nsp ~see the inset of Fig. 2!. The behavior oftM as
a function ofT andNext is a very important feature of grea
importance to the off-equilibrium behavior found in supe
conducting samples. Its effects can be seen, for instanc
the experimental observation of field dependent creep r
and magnetic loops.48 In fact, in experiments~or computer

FIG. 3. Isothermal magnetization relaxation in the ROM f
k* 50.28 atT51.0, for the shown values of the external fieldNext

~ramped from zero with a rateg51023). Asymptotically,M (t) is
well fitted by the so-called Kohlrausch-Williams-Watts~KWW!
law, i.e., stretched exponentials~continuous lines!, but ~see the in-
set! at short times a power-law relaxation is observed~the dashed
line in the inset is to guide the eye!.

FIG. 4. The parameters of the Kohlrausch-Williams-Wa
asymptotic magnetic relaxation shown in Fig. 3 (T51.0). Inset: the
exponentbM as a function of the applied fieldNext . Main panel:
the equilibration timetM . Notice thattM is a non monotonous
function ofNext which spans about one decade. The location of
maximum oftM corresponds to the position of the ‘‘second pea
observed in magnetization loops~see Fig. 2!. The first peak intM is
related to the crossing of the low field order-disorder transition.
14451
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simulations! the external field is typically ramped at a give
rate g, but wheneverg@tM

21 the system is taken out o
equilibrium, simply because it is unable to follow the driv
Then ‘‘memory’’ and ‘‘aging’’ effects, along with depen
dences on the sweep rate, are immediate consequences
tually, we can clearly see those effects in our system wh
ever we cool it too rapidly in the low-T regime, as discusse
below.

The KWW relaxation characterizes the long-time regim
of the vortex dynamics, which is analogous to the so-cal
a relaxation in supercooled liquids and glass formers.19 The
asymptotic regime is markedly different from the short-tim
relaxation, the so-calledb relaxation of supercooled liquids
where a power-law behavior is found~see the inset of Fig.
3!:

e

FIG. 5. The parameters of the Kohlrausch-Williams-Wa
asymptotic relaxation of the magnetization as a function of the te
peratureT, recorded atNext510 after ramping the field with a rate
g as in Fig. 3. The equilibration timetM enormously grows by
decreasing the temperatureT. Below the crossover temperatureTg

;0.25, the system relaxation times are larger than the observa
time. The Vogel-Tamman-Fulcher~VTF! fit of Eq. ~10! is the su-
perimposed curve. Inset: In the region wheretM seems to diverge,
we plot it as a function of 1/T, and show the VTF fit of Eq.~10!.
For comparison also an Arrhenius curve is shown~dashed straight
line!.

FIG. 6. The parameters of the Kohlrausch-Williams-Wa
asymptotic relaxation of the isothermal magnetization as a func
of the temperatureT, recorded atNext510 ~the field was ramped
from zero with a rateg as in Fig. 3!. By loweringT, the exponent
bM decreases well below 1~the value corresponding to a simp
exponential relaxation!. Inset: the value of the magnetization at th
initial time t50 after the ramp has arrived atNext510.
7-6
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M ~ t !2M ~0!5M0S t

tM
D aM

. ~9!

Even at the relatively high temperatureT51.0 ~cf. Fig. 2!,
this power law holds for several orders of magnitude in tim
We can numerically clearly distinguish the value of the e
ponentaM.0.8 ~almost independent ofNext) from bM (aM
decreases from 1 at highT to aM.0.8 atT51.0, and then
remains almost constant withT). This shows that the dynam
ics is characterized by regions with different structures, a
that the long-time relaxation is qualitatively different fro
the short time one. The KWW regime~which, for example,
at Next516.8 is found fort.103; see Fig. 3! and the power-
law regime ~for Next516.8 found whent,102) are sepa-
rated by an interesting crossover region whose duration
creases with decreasing temperature~i.e., increasing
equilibration time of the system!, while the extension of
power-law region shrinks.

It is important to mention that the above general resu
are not changed when the size of the systemL is varied.
However, as expected, increasing the system size does
the characteristic time of relaxation: for example, atT51 for
Next510 we find tM}L2 in the interval we spanned (L
P@8,128#). This finding may be of importance to practic
applications, since this implies that samples of different si
may have very different equilibration and response times
external drive.

Another quantity which significantly affectstM is the in-
teraction parameterk* . We have not investigated this in fu
detail, but we observe that a small increases ofk* may result
in a strong increase oftM .20 Hence, for real superconduc
ors, we expect a strong dependence of the characteristic
of magnetic relaxation on the Ginzburg-Landau parame
Finally, as expected,tM increases with the amplitude of pin
ning energy,Ap.

B. Crossover temperatureTg

The scenario described above forT51.0 is found in all
regions of not too low temperature, but at lowerT the picture
changes. We plottM and bM as a function ofT for Next
510 in Figs. 5 and 6~similar results are found for differen
Next). It is very important to note that, aroundT50.5, bM
drastically decreases and, at the same time, a steep inc
of tM is found. In fact, for temperatures belowTg.0.25, the
characteristic relaxation time of the system~i.e., tM) be-
comes longer than our observation window. Consequen
below Tg(Next), the system is in an off-equilibrium stat
during our observation, and, as shown in detail below, typ
glassy phenomena, such as ‘‘aging,’’ are observed.
crossover temperatureTg is itself a function ofg. It has a
physical meaning similar to the so-called phenomenolog
glass transition point in supercooled liquids.19 Exploiting this
analogy we will call this temperature the glass temperat
despite the fact that in glassy systems it is only loos
defined.19 The existence of an underlying~lower! ‘‘ideal’’
glass transition point,Tc , is a subtle possibility which, in
many cases~as supercooled liquids! still remain unresolved.
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Tc is often located by extrapolation ontM data from the high
T region, as we explain below.

The behavior oftM with the temperature gives importan
information about the system equilibration time scales~see
Fig. 5!. By decreasing the temperature,tM goes smoothly
through a minimum, which, for Next510, is aroundT
.3.25. AsT is further decreased,tM strongly increases. The
divergence at low temperatures can be fitted with a po
law tM;(T2Tc)

2g, which gives Tc.0.21 and g.2.0.
However, for our data, a slightly better quality fit is foun
with the exponential Vogel-Tamman-Fulcher law~see the in-
set of Fig. 5!,

tM5t0expS E0

T2Tc
D , ~10!

where, atNext510, the characteristic timet0 is very large,
t058.93102, and the characteristic activation energyE0 is
ten times larger thanTc : E051.0 andTc50.1. The presence
of a strong increase oftM close to a power law or a Vogel
Tamman-Fulcher law is again an example of the similar
with glassy features of supercooled liquids and gla
formers.19 The above fits define the location of the ‘‘idea
transitionTc . In the present case, they give a finiteTc , but,
as much as in glasses, a standard Arrhenius fit@i.e., with Eq.
~10!, whereTc50# might also be consistent at very lowT. In
facts, since the present system is a two-dimensional sys
we expect thatTc50, but a finiteTc produces a better qual
ity fit in all the data set of the range considered. Consisten
with the present scenario, a Vogel-Tamman-Fulcher law
been also found in recent Molecular Dynamics simulation29

and was previously experimentally observed in Ref. 49.
Summarizing, we showed that about a certain crosso

temperature Tg(Next) the characteristic relaxation tim
tM(Next ,T) increases very rapidly withT, and as a conse
quence is bound to become larger than the observation t
In analogy with glass formers,Tg can be defined as th
‘‘phenomenological glass transition temperature.’’ By e
trapolating the growth oftM with decreasingT, an ‘‘ideal
glass transition’’Tc(Next) can also be located. In the prese
case, where the pinning amplitude,Ap , is small, the value of
Tc is not inconsistent withTc50, as expected for a two
dimensional model, though from the simulation data we c
not rule out aTc.0.

C. Relaxation belowTg

Since belowTg relaxation times are huge, one might e
pect that the motion of the particles essentially freezes, a
from their vibration inside cages of other vortices. Instead
we now shown, the off-equilibrium dynamics has remarka
rich properties.

In a narrow temperature interval aroundTg the magneti-
zation relaxation undergoes an important change. Actua
around and belowTg , M (t) ~see Fig. 7! has an initial power-
law behavior as discussed above, but in the long-time reg
a logarithmic fit is definitely better than a stretched expon
tial with a very small exponent~sayb,0.3). A particularly
7-7
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good fit is found by use of the well-known interpolatio
formula often used to describe vortex creep in experimen1

M ~ t !2M ~0!.DM`H 12F11
mT

Uc
lnS t1t0

t0
D G21/mJ ,

~11!

wherem.1 is consistent with our data. The above fit para
eters are shown in Fig. 8 as a function ofNext for T50.1
~similar results are obtained for lowerT). In agreement with
previous findings,t0 is a nonmonotonic function ofNext .
Interestingly,t0 andmT/Uc are linearly related, but, contrar
to expectations from equilibrium considerations,Uc in-
creases whent0 decreases. This outlines that the value ofUc
cannot be related to some characteristic ‘‘equilibrium ene
barrier value,’’ which instead must increase with the equil
rium times scales as shown before.

FIG. 7. The magnetization in the ROM at low temperatu
shows a logarithmic creep. Here we plot data forNext510 ~after a
ramp fromNext50 at a rateg51023) at the shown temperature
~for k* 50.28). Asymptotically, over at least four orders of magn
tude in time, atT50.25M (t) is well fitted by the usual logarithmic
interpolation formula~continuous lines!, but ~see the inset! at very
short times a power-law relaxation is still observed on a couple
decades~dashed line!. For comparison we also plot the KWW
stretched exponential relaxation found atT51.0 ~empty circles!.

FIG. 8. The parameters of the asymptotic magnetization lo
rithmic creep as a function ofNext , recorded atT50.1 ~the field
was ramped from zero with a rateg51023). The ‘‘effective’’ bar-
riersUc andt0 are strongly correlated:t0 is smaller the largerUc is
~see the text!.
14451
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The radically different states approached after the sa
relaxation time by the system at two different temperatu
above and belowTg can be illustrated in the following way
In Fig. 9 we show the density profiles~i.e., the Bean profiles!
of such two states. We measured the magnetization as a f
tion of the sample transverse spatial coordinate,M (x), at the
end of our observation time windowt51.53106, for a sys-
tem atT51.0 ~which is approximately at equilibrium! and an
other atT50.1 ~which, up to the recorded times, is off equ
librium!. The system atT51.0 has a flat density profile with
no macroscopic heterogeneities; in contrast, the one aT
50.1 shows a pronounced Bean-like profile with strong s
tial variations. The fact that close to the surface in the Be
profile we find a peak inM ~i.e., Nin.Next) is again similar
to experimental data~see, for instance, Ref. 6!.

The good correspondence between the behavior of
ROM and a large amount of experiment
works3,5–11,16,23–25,33,34,50–54seems to confirm the schemat
scenario for magnetic creep discussed here. It is also im
tant to note that the above dynamical phenomena, rang
from slow relaxation or hysteresis to an anomalous ‘‘seco
peak’’ in magnetization loops, are found in very many diffe
ent types of superconductors with a broad range of mate
parameters.5–11,16,23–25This corroborate the hypothesis that
basic general~sample independent! mechanism is respon
sible for the observed complex phenomenology.

The famous Anderson-Kim model for magnetic relaxati
in superconductors predicts the well-known logarithm
creep ~asymptotically followed by an exponential!.1–4 In
‘‘conventional’’ superconductors, such a behavior is typica
found experimentally.3 However, in nonconventional supe
conductors the scenario is much more involved,3 the expla-
nation of deviations from the Kim-Anderson model bein
one of the goals of collective flux-pinning models.1 It has
long been known that in YBCO crystals magnetic relaxat
deviates from the Anderson-Kim prediction, and is better
scribed by the collective pinning interpolation formula of E
~11! ~see for instance, Ref. 50 and references in Ref.!.
Many other examples are well known,3 even in ‘‘unusual’’
materials. For instance in the organic superconduc
(BEDT-TTF)2Cu(NCS)2, it is known that relaxation is loga

s

f

-

FIG. 9. The Bean profile of the local internal field,M (x), as a
function of the transversal coordinatex/L in a system of linear size
L532, forNext510 atT51 and 0.1. The profiles are recorded aft
ramping the field~as in Fig. 7!, and waiting up tot51.53106 ~i.e.,
up to the last point in Fig. 7!.
7-8
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EQUILIBRIUM AND OFF-EQUILIBRIUM DYNAMICS IN . . . PHYSICAL REVIEW B 65 144517
rithmic only below 1 K, whereas between 1.5 and 8
power-law behavior is found.51 Power laws were also foun
in LuBa2Cu3O7,52 in BSCCO~see, for instance, Ref. 23!. A
transition from low-temperature logarithmic to higher tem
perature power law was reported in both BSCCO~Ref. 33!
and YBCO crystals53,54~for a complete list of references, se
Ref. 3 and also Refs. 5–11,16,23–25,30, and 32. Finall
definite asymptotic crossover to a stretched exponential
havior is recorded in heavy fermion superconductors suc
UPt3 and UBe13.34 All these disparate observations can
reconciled in the present scenario.

IV. TWO-TIME CORRELATION FUNCTIONS

Above we discussed how sweep-rate-dependent hyste
cycles, slowly relaxing magnetization, etc. indicate that o
system, on the observed time scales, at low temperature i
from equilibrium. Actually, we have seen that by decreas
the temperature the dynamics slows down and that there
ist a finite temperature below which the system cannot
equilibrated anymore within the time scale of the experim
or the computer simulation.

The appropriate tools to describe off-equilibrium beha
iors, such as ‘‘aging’’ and ‘‘memory,’’ are two-time correla
tion functions because they clearly reveal the underly
nonstationarity of the dynamics.21 Thus in the simulations we
described above, along with the magnetizationM (t), we also
recorded the density-density correlation (t.tw):

C~ t,tw!5^@Nin~ t !2Nin~ tw!#2&5^@M ~ t !2M ~ tw!#2&.
~12!

In fact, the analysis ofC(t,tw) gives us access to more re
evant information on the structure of the off-equilibrium d
namics than that contained inM (t), as we discuss below.

A. Equilibrium relaxation

We have seen that at not too low temperatures, for
stance atT51.0, the system relaxation is characterized
finite relaxation times, but the dynamics is already nontriv
The two-time correlatorC(t,tw) is plotted in Fig. 10 for a
relaxation atNext516.8 after a ramp~from zero external
field! with g51023 at T51.0 ~for a system with k*
50.28).

In agreement with the scenario recorded forM (t), at long
times,C(t,tw) is well fitted by the KWW stretched exponen
tial form ~see Fig. 10!:

C~ t,tw!.C`@12e2[( t2tw)/t] b
#. ~13!

The exponentb.1.4 is almost constant for intermedia
fields~see Fig. 11!, but some weak variation could be spott
as function ofNext . The characteristic timet(Next) has a
nonmonotonic behavior withNext , shown in Fig. 11, and
also its dependence onT is analogous to that found fortM .

At T51.0, the two-time correlation functionC(t,tw)
shows no sign of ‘‘aging’’: as expected for relaxations clo
to equilibrium,C(t,tw) is a function only of the time differ-
encet2tw ~up to the longest waiting timetw , we probed,
twP@102,104#!. This is clearly seen in Fig. 12, where we pl
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C(t,tw)/C` for several different values ofNext as a function
of the scaling variable (t2tw)/t(Next ,T): all the data~for all
tw andNext) fall on the same master function~which is more
general than the above KWW fit!.

The pre-asymptotic dynamics~i.e., t,tw!t) is also of in-
terest and consistent with our previous results:C(t,tw) has a
power-law regime over several decades in time

C~ t,tw!.C0S t2tw

t D ac

. ~14!

The exponentac is shown in Fig. 11 as a function ofNext : it
is almost constant,ac.1.7, except at very small or high
fields. Note that thet in Eq. ~14! is thesameas in Eq.~13!,
but the exponentsac and b are numerically different~see
Figs. 11 and 12!.

B. Off-equilibrium relaxation

The present scenario changes for temperatures around
below Tg wherestrongoff-equilibrium behaviors are found

FIG. 10. The two time magnetization correlation functio
C(t,tw)5^@M (t)2M (tw)#2&, plotted as a function oft2tw , for
Next510 ~after a ramp fromNext50 at a rateg51023) and T
51 (k* 50.28). At long times, over several decades,C is approxi-
mately a stretched exponential int2tw , but ~see the inset! at short
time a power-law behavior is found~dashed line! on several time
decades.

FIG. 11. The exponentac of the short-time power-law relax
ation of C(t,tw) of Fig. 10 ~for tw5102), the KWW exponentb,
and the characteristic timet of its long-time stretched exponentia
decay, are shown as functions of the applied fieldNext .
7-9
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We investigate in this section the dynamics of a system
low Tg . We have already seen that forT,Tg relaxation still
takes place, though its nature is very different from the
laxation for T.Tg . For T,Tg the systems clearly exhibi
aging. This phenomenon, typical of off equilibrium dynam
ics, occur in many different systems ranging fro
polymers,22 to supercooled liquids,19,22 spin glasses,21,22 or
granular media.55 The origin of aging and its apparent un
versality are important theoretical questions broadly stud
in recent years.21,56–58

Figure 13 clearly shows thatC(t,tw) at T50.1 (k*
50.28) exhibits strong aging, in the sense thatC(t,tw) ex-
plicitly depends on both timest and tw and not only on the
relative time distancet2tw . This is in contrast to the situa
tions close to equilibrium, whereC is a function only oft
2tw . Here the behavior ofC explicitly depends on thewait-

FIG. 12. The two-time correlation functionC(t,tw) in Fig. 10,
for the shown values of the external field (T51.0), are all collapsed
on the same master function when plotted as a function ot
2tw)/t, wheret is the characteristic relaxation time. This show
that at equilibrium no ‘‘aging’’ is present inC. The bold continuous
line is a fit with the KWW function of the asymptotic region, an
the dotted line is the initial region power-law fit.

FIG. 13. Logarithmic time relaxation of the two-time vorte
density correlation functionC(t,tw), in the ROM, recorded for
Next516 (k* 50.28). C(t,tw) shows strong ‘‘aging’’ and ‘‘stiffen-
ing’’ with tw . The superimposed lines are the log fits of the te
Inset: the same data of the main frame plotted on log-log scal
show the short-time power-law deviations from logarithmic beh
ior.
14451
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ing time, tw , elapsed since the system preparation. Note
an interesting phenomenon is observed: the system re
ation is slower the longer is its ‘‘age’’tw . Such a dynamical
‘‘stiffening’’ is also typical of glass formers.19,22

It is important to stress that analysis limited to slow
relaxing ‘‘one-time’’ quantities, such asM (t), may lead to
the misleading impression that the system is nearly at
tionarity and close to equilibrium. The analysis ofC(t,tw)
points out that this is not the case. This is an important
servation in order to avoid wrong extrapolations from eq
librium properties.21

Let us discuss now in detail the times dependence
C(t,tw) in the low-T region. Here, where equilibration time
are very long,C(t,tw), after the initial power-law behavior
is well fitted by a generalization of the known logarithm
interpolation formula, often experimentally used1. For the fit
to be successful one need to introduce thewaiting time tw
explicitly into the formula:

C~ t,tw!.C`H 12F11
mT

Uc
lnS t1t0

tw1t0
D G21/mJ . ~15!

As for M (t), we found that to takem.1 is consistent with
our data. In the above fitUc /mT only depends onNext and,
interestingly,t0 is approximately a linear function oftw : t0

}tw1t0* , wheret0* is a constant~see Fig. 14!.
More than the three parameters fit in itself, the interes

in the presence ofscaling propertiesof purely dynamical
origin in the off-equilibrium relaxation. This is shown in Fig
15, where data for different fieldsNext and different waiting
times tw are rescaled to collapse onto a single scaling fu
tion. The above results imply that for large enough tim
though smaller than the equilibration time,C(t,tw) is a uni-
versal function of the ratiot/tw : C(t,tw);S(t/tw).

This scaling behavior is in agreement with general scal
properties in off equilibrium dynamics~see Ref. 57! and
close analogies appear with other glass formers.19,21,22,55,57In
particular, the above scaling form@C(t,tw);S(t/tw), in
which C(t,tw) is a function only of the ratiot/tw#, in glassy
system is usually called ‘‘simple aging.’’21 Experimental
measurements ofC(t,tw) do not exist yet, but would be ex
tremely important for the identification of the true nature

.
to
-

FIG. 14. The parameters of the asymptotic logarithmic fit of t
two-time correlation functionC(t,tw) of Fig. 13 as a function of the
waiting timetw . Uc is numerically independent ofNext in the con-
sidered broad range, andt0 is a linear function oftw ~the continuous
line is a linear fit!.
7-10
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EQUILIBRIUM AND OFF-EQUILIBRIUM DYNAMICS IN . . . PHYSICAL REVIEW B 65 144517
dynamical phenomena of vortices in superconductors.
presence of ‘‘aging’’ in magnetic relaxation,M (t), was re-
cently observed in Ref. 14.

V. MEAN-SQUARE DISPLACEMENT AND SELF-
SCATTERING FUNCTION

The magnetization dynamics described above can be
lyzed in further depth by considering microscopic quantit
associated with vortex motions, such as their mean-sq
displacement or the self scattering function. Below we d
cuss these quantities. The mean-square displacement i
fined as

R2~ t !5
1

N K (
i

@rW i~ t !2rW i~0!#2L , ~16!

whereN is the total number of particles present on the latt
andrW i(t) is the location of vortexi at time t. The incoherent
intermediate scattering function is, by definition,

Fq~ t,tw!5
1

N K (
j

eiqW •rW j (t)e2 iqW •rW j (tw)L , ~17!

where the components ofqW are equal to 2pn/L with n

P$0, . . . ,L21% ~the data shown below are forqW iy and uqu
58p/L). In typical liquids, the functionFq can be directly
measured in neutron- and light-scattering experiments.Fq is
also very important for a theoretical description of dynami
processes in complex fluids.59

Usually, vortex relaxation also includes pair creatio
annihilation processes. These are, however, highly s
pressed at low temperatures or high fields, and vortices
be approximately viewed as moving ‘‘particles.’’ Thus w
recordedR2(t) and Fq(t,tw) in a specific type of compute
simulations where, after ramping the field from zero toNext
at a given rateg ~below g5531024), we let the system
evolve subject to the ‘‘freezing’’ of the vortex-antivorte
creation-annihilation mechanisms. In order to simulateR2(t)
andFq(t,tw) at a definite average density, we eliminate t

FIG. 15. Off-equilibrium dynamical scaling. Superimposed
the same master function are relaxation data ofC(t,tw) recorded for
Next54,10, and 16 (k* 50.28, andT50.1) for eachtw5102,5
3102, 103, and 104. The asymptotic dynamical scaling isC(t,tw)
;S(t/tw).
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reservoir closing the system, and let the vortices mo
around subject to periodic boundary conditions. We str
that the above approximation of the ‘‘real’’ dynamics is on
reasonable at high fields and low temperatures wh
creation-annihilation is practically absent. Within this kind
dynamics, one can~at the coarse-grained level! define the
particle positions at each time step during the evolution, a
record the internal rearrangement of the system. To be ab
compare results for different particle densities, in this set
simulations we define one time unit to correspond to an
erage update of each particle present.

The vortex mean square displacementR2(t), recorded for
Next510, is shown in Fig. 16 for several temperatures. W
aboveTg , R2(t) is asymptotically linear int. This fact is
consistent with low-density measurements43 and
simulations.45 Thus we can write that

R2~ t !5Dtn, ~18!

whereD5D(T,Next) is the diffusion coefficient and the ex
ponentn(T,Next) is simply n51. By lowering T, R2(t) is
still linear in t for both small times and large times, but a
inflection region appears at intermediate scales. Thus we
tinguish a short-time behaviorR2(t).D0tn0 and a long-time
one R2(t).D`tn`. The generalized diffusion coefficient
D0(T,Next) andD`(T,Next) are plotted as a function ofNext
in Fig. 17 ~for T51) and as a function ofT in Fig. 18 ~for
Next510). Their behavior is consistent with the one record
for characteristic equilibration time,t, defined in Eq.~13!.

While the short-time relaxation is always diffusive, i.e
n051, eventually, as is apparent in Fig. 16, for temperatu
below Tg , the process at long times becomes strongly s
diffusive, i.e.,n`,1. The asymptotic exponentn` crucially
depends onT, as shown in Fig. 18, and seems to be appro
mately constant withNext .

From this point of view,Tg is related to a sort of structura
arrest, where particle displacement, forT<Tg , becomes dra-
matically suppressed. Each vortex can rattle inside cage
other neighboring vortices for long times, but its diffusion o
long length scales is highly inhibited. The system dynam

FIG. 16. The vortex mean-square displacementR2(t) at Next

510 for several temperatures. BelowTg;0.25, R2(t) is strongly
subdiffusive:R2(t);tn with n,1. Straight lines are guides for th
eye.
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need large-scale ‘‘cooperative rearrangements’’ to relax
analogy, for instance, with supercooled fluids.19

Interestingly, a very similar scenario has been recorde
real superconducting samples: for instance, in Ref. 15, it
clearly shown that vortices possess a certain degree of
bility in the low-temperature phase, and only ‘‘freeze’’ belo
a characteristic field-dependent temperature.

In Fig. 19, we plot the self-scattering functionFq(t,tw) as
a function of t2tw , recorded forNext510 ~similar results
are found for otherNext). When T.Tg , Fq(t,tw) shows a
KWW relaxation at long times@very similar to the one of Eq
~13!, where, forT51, b.0.85#. Fq(t,tw) is time translation
invariant, i.e., it depends ont2tw , but its KWW behavior
gives important information concerning the nature of the m
croscopic vortex motion: it outlines that the overall vort
diffusion is a non-Gaussian process. In fact, for a Gaus
process we should have found that lnFq(t,0)}2q2R2(t).
This is clearly not the case here, sinceR2(t)}t at T51,
while lnFq(t,0)}2tb with b,1.

FIG. 17. The diffusion coefficient of vortex motion in the ROM
as a function of the external field.D0 and D` correspond to the
short times and asymptotic behaviors. The data shown here ar
T51.0, whereR2(t)}t ~see Fig. 16!.

FIG. 18. The short-times~asymptotic! diffusion exponentn0

(n`) and coefficientD0 (D`) of the mean-square displacemen
R2(t).Dtn, as a function of the temperature (Next510). Below
Tg.0.25 the asymptotic dynamics is strongly subdiffusive (n`

!1).
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At lower temperatures, belowTg , Fq(t,tw) is also aging,
as shown in Fig. 19. It is possible to see thatFq(t,tw) is not
a function of t2tw , because the curves for differenttw do
not collapse one on top of the other. Moreover, the ti
dependence ofFq(t,tw) is no longer of KWW type, but is
asymptotically logarithmically slow, similar to the behavio
of the correlation functionC(t,tw) discussed above. Th
function Fq can be experimentally accessible.

VI. CONCLUSIONS

Summarizing, we studied a model consisting of a coar
grained version, on a scalel 0, of a vortex system describe
by Ginzburg-Landau equations in the London approxim
tion. Such a model was previously shown to have many c
respondences to the properties of vortices in supercond
ors, such as a reentrant phase diagram, magnetization l
with a ‘‘second peak’’~with a location dependent on th
sweep rate of the applied field!, properties of Bean profiles
logarithmic creep, ‘‘aging’’ phenomena, nonlinear an
history-dependentI -V characteristics, a peak effect in th
critical currents, and others.20

In the case considered here,l 0;l, the model is schematic
but fully tractable, and thus provides a simple description
important mechanisms underlying the complex dynamics
vortex matter. Its equilibrium phase diagram was stud
elsewhere:20 our numerical simulations show a sequence
phase transitions; for instance, at lowT, when the field is
increased two reentrant discontinuous transitions are fo
and, between them, another discontinuous transition ass
ated to the location of the second magnetization peak.

for

FIG. 19. The self-scattering functionFq(t,tw) is plotted as a
function of t2tw ~here Next510). The empty symbols are dat
corresponding totw50 for the shown temperatures. The filled sym
bols are data fortw51.53102 and 1.53103 ~empty squares and
triangles!. At high temperatures, for instance atT52, Fq(t,tw) is a
function of t2tw , because filled and empty symbols are one on
of the others. At lowT, this is no longer the case, and ‘‘aging’’ i
seen, as it is apparent for the data withT50.1. The curves super
imposed on the data forT52 and 0.5 are stretched exponenti
asymptotic fits. This outlines that the relaxation process is n
Gaussian~where a simple exponential relaxation should take plac!.
For T,Tg , slow logarithmic decay is seen, as shown by the dat
T50.1.
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Here, in particular, we have focused on the details of
dynamics of the magnetization. The system is characteri
by relaxation times which depend on the applied fieldNext
and temperatureT: t(Next ,T). For a givenT, t is a non-
monotonic function ofNext , with a broad maximum around
the second peak location. This explains why around the s
ond peak ‘‘slushy’’ regions have been often observed~see,
for instance, Refs. 30 and 32!: sincet is very large around
the second peak, off-equilibrium ‘‘glassy’’ features appe
whenever the system is observed on time scales too s
compared tot.

For a givenNext , t is also a nontrivial function ofT and,
in particular, increases dramatically when the temperatur
lowered ~similar to the Vogel-Tamman-Fulcher behavior o
glass formers!. In fact, below a crossover temperatu
Tg(Next), it becomes impossible to equilibrate the system
the observation time scales. AboveTg , the magnetic creep
shows power laws followed asymptotically by a stretch
exponential saturation. In contrast, at very low temperatur
vortex motion is highly suppressed, but not completely a
sent, and logarithmic creep is recorded. These properties
seem to be found in many experiments,1–11,16,23–25where for
instance definite crossover from power-law to logarithm
creep has been observed.

Interestingly, the crossover temperatureTg corresponds to
a change in microscopic vortex motion: from diffusiv
~aboveTg) to strongly subdiffusive belowTg .20 However,
the analysis of the self-scattering function,Fq(t,tw), shows
that even aboveTg vortex diffusion is a non-Gaussian pro
cess, and the system dynamics is nontrivial.

In typical experiments or computer simulations, magne
properties are observed after a zero-field cooling followed
ramping the external field at a given rateg. Wheneverg is
d

s

i
.
l

.V
p

.
,

d
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much larger than the inverse of the characteristic relaxa
time,t(Next ,T), the system is driven off equilibrium, simpl
because it is unable to follow the drive, and ‘‘memory’’ an
‘‘aging’’ effects, along with dependences on the field swe
rate, occur.

We showed that, around or belowTg , our system exhibits
aging with a definite ‘‘dynamical scaling’’ structure, whe
two times magnetization correlation functions are of t
form: C(t,tw).S(t/tw). This scenario closely resembles th
so called ‘‘simple aging’’ of glassy systems.21 In particular,
we found that the scaling functionS is well described by a
generalization of the ‘‘interpolation’’ formula known fo
thermal logarithmic creep.

The rapid growth oft á la Vogel, Tamman, and Fulche
by decreasing the temperature, the very existence ofTg , the
slow off equilibrium relaxations, and the sweep rate dep
dences: all these facts outline a general correspondence
tween the dynamics of vortices and other glassy syst
such as glass formers and supercooled liquids.19,21,22Interest-
ingly, the scenario depicted here is supported by a few av
able molecular-dynamics simulations of over-damp
London-Langevin models,20,29 and has many correspon
dences with experimental findings. Experimental studies
quantities such ast(Next ,T) and checks of the scaling prop
erties ofC(t,tw).S(t/tw), as well asFq(t,tw) would be of
great importance for clarifying the nature of dynamical p
cesses in vortex matter and the relationship between vo
dynamics and the dynamics observed in other glassy
tems.
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