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Magnetic interaction between spatially extended superconducting tunnel junctions
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A general description of magnetic interactions between superconducting tunnel junctions is given. The
description covers a wide range of possible experimental systems, and we explicitly explore two experimen-
tally relevant limits of coupled junctions. One is the limit of junctions with tunneling distance much smaller
than the London penetration depth of the superconductors, the other is the limit where the tunneling distance
is much larger than the London penetration depth. The former case has previously been studied in the context
of adjacent conventional Josephson junctions, while the latter has been considered through arrays of supercon-
ducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model
to make direct interpretations of the published experiments and thereby propose that long-range magnetic
interactions are responsible for the reported experimental signatures of coupling between tunnel junctions.
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I. INTRODUCTION is one dimensional, along thedirection, and thatW<\ ;.
The spatial k,y,z) and temporalt) coordinates are normal-
Coupling between spatially extended superconductingzed to the Josephson lengihy= v#/2edugl. and the in-
junctions has been investigated vigorously over the past dererse plasma frequenayalz Vhel2etyl ., respectively. The
cade. Most of this work has been focused on systems whefgermeability is denoted by, permittivity by ¢, critical
the dominant coupling mechanism, typically inductive, iscurrent density by, the normalizedto \ ;) electric thick-
short ranged and due to the properties of common supercofress of the junction is=t,/\;, and the magnetic thickness
ductors of different junction§.* However, extended junc- s d=t,+ 2\, , where\, is the magneti¢London penetra-
tions may have spatial variations of the surface currentsjon depth of the superconductors. Voltagésare normal-
thereby inducing magnetic fields in the surroundings, whichzed to w ,/2e, the normalized surface current density of the
in turn _will cause long-range interactions betweengyperconductors is- ¢, and the characteristic energy is
junctions®® The existence of this long-range magnetic inter-py —| W ,h/2e= (#/2€)2W/ uod\ ;. Transport of quasipar-
action was demonstrated experimentally by Helsal,* by ticles across the junction is given by the parameter
studying phase locking between adjacent extended Josept_L-phwp/zmc, p being the conductivity of the junction in the

sonjunctioqs, and, at the time, modeled' by the I'ocal coupling,ormal state. The applied bias current densjtys normal-
form,!® which shares many characteristics with the loNg-jzed to the critical current density/I. .

range(nonloca) coupling mechanism of Ref. 5. More recent

experiments on arrays of superconducting weak links based

on InAs-AlISb quantum wells with Nb electrodesmay also Il. NONLOCAL MAGNETIC COUPLING

suggest interjunction coupling due to long-range magnetic ) , ) )

effects, and we will, therefore, investigate the nature of the A System of parallel superconducting junctions is

external magnetic coupling in some detail. sketched in Fig. 1. F_ollowmg the ideas of Refs. 5 and 6 we
We will initially assume that the superconductors are in-2nalyze the magnetic coupling between different junctions,

finitely large in thex andy directions and have a thickness of

W in the z direction. The junctions are defined by slits along Y=g Pl 12N Y=G;y5

the x direction (parallel to theyz plane, see Fig. )1 The sV s s s S
centers of the junctions are locatedyat a;\ ; and the elec- L
tric width of the junctions igy the width of the oxide layer
between the superconductors. We will adopt the usual sine--- Vi f Vi v
Gordon model for the dynamics of a single junctfon, y ;\M iv
J
bux— Pu—SiNg=ad—n, 1 e Y
S

where ¢ represents the difference between the phases of the
guantum-mechanical wave functions defining the supercon- FIG. 1. Sketch of the system under considerationnfer4 par-
ducting state in each junction. In adopting this model, we araillel junctions. Superconductors are labeled withSarll system
assuming that the electromagnetic dynamics in the junctioparameters are given with the symbols of the normalized units.
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or different points along the axis within the same junction, 1 1 ,
by writing the normalized, td:/2e\3, magnetic-flux distri- H=2> f [§(¢>(<Ii))2+ §(¢>§'))2+ 1-cos¢™|dx;
bution of theith junction entering thez>0 half space at '
(xy) as +HEO+HEX, ®
m(x,y) =0 (y—a;), (2)  whereH{)) is the local inductive coupling found, e.g., in
Refs. 1 and 3,

where the superscriptidentifies the junction and where

A L 153 3 [ [ oPx—x)oslaxax, ©
d’ |y|$2b J
()

\j b . A
Eex;{ - ( ly|— E))\J/)\L otherwise. gi(j')(x)=<exp{ - )\_i|aij| —

We here assume that the phase difference between thghere 5(x) and ;; are Dirac’s and Kronecker’s delta func-
quantum-mechanical wave functions of the two supercontjons, respectwely

O(y)=

5ij)5(x)=A(j 8(x), (10

ductors surrounding a junction is a function of thdirection The equation of motion for the phase of ittie junction is
only and that® provides the flux distribution along the  then
direction,

[ eyt 0~ 050w~ =3 Ao,

ry ()
The contribution to the interaction energy from the non- _Ej: j 9ij (Xi =X )¢xj'xj' dx
local magnetic interaction can then be written as the inte-
grated interaction between the magnetic-flux distributién, (11

m®(x,,y;) m(J)(X Y We will i_n the_ following only consjder the nonlocal mag-
H(”')——AE 2 f f f f netic coupling since the local coupling has already been ex-
nt \/ Xi— X )24 (yi— -y, /)2 tensively considered in the literature and since it can be di-
rectly added to the equations as indicated by the expressions
xdy;dy;jdxdx (4)  above.
For systems of finite length\ ;, L being the normalized
length, we will impose the usdaboundary conditions

1 o
:EZ E]: f Jgij(Xi_Xj’)flSSi)(ﬁi]jr)dXidX]-', (5

¢{(0)=¢P(L)=T, (12
where the kerneg;; is given by wherel is the normalized external magnetic field along the
z direction.
O(yi—a)0(y] —a) ,
9ij (X f f \/ﬁ dy;dy; A. Nonlocal magnetic coupling ford=2\ >t,
X
i Most Josephson junctions are characterized by this limit
0O(y)O(y]) whered~2\ . We can here write the interaction kernel, Eq.
f f dydy;, (6  (6),inthe form
N +(yi—y] +ay)?
AL
with a;;=a;—a;. The magnituded of the prefactor of the le|+—|e” [€ng /g
kernelg;; can be estimatédn the ideal case where the su- 0 ()= A( A ) > N; de (19
perconductors extend the entikg plane, g 2\ - m .
_ ﬁ ﬂ @ Fori=j, we can express the kernel exactly as
A7 W’

A A A
where N is a number, 4 or 8, determined by the specific g“(x)zA%(Ho()\—ﬂxo —NO()\—J|X|)
system geometry. One may expect the effectNeo be L L L
J N; N; 2
modeled. +)\—|X| Hy )\—|X| -M )\—|X| ——I
The relevant Hamiltoniaii describing a system of mag- L L L .

smaller than these values when finite length junctions are
netically coupled long Josephson junctions is then given by (14

144512-2



MAGNETIC INTERACTION BETWEEN SPATIALLY . .. PHYSICAL REVIEW B65 144512

where H, and A/, are thenth order Struv&® and Webel!  Josephson effect can be expected in systems where the tun-
functions, respectively. neling distancd, is much larger than the magnetic penetra-
This expression has the two distinct limiting forms tion depth\ . We will, therefore, analyze the long-range
magnetic interaction in this limit, providing a model for the

=) AL interaction between periodic arrays of semiconductor weak
9i(X)—gii (X)=——F——= for |X|>)\—: links and superconducting lines.
W24 2_L J The interaction kernel, Ed6), is here given by
N;
(15 N\ 2 (b2 (b2 1
gij(x)=A F) J > sdy; dy;
91 (0 —g(x) —bi2J —br2\X?+ (y;—y; + &)
AN, A A A 1 de 2D
2N 1-C+In 2)\—J>—In|x| for |x|<)\—J, b2 7b—h+(§+a”)2

(18  This expression can be written in the exact form

L
2_
\s (22

b+ X2+ b?
x| — X2+ b2+ b In————

x|

A
Fori#j, we cannot express the kerrg|(x) explicitly. — g;j(X)= E[Z\/XZJF al - \/X2+(aij +b)?— \/X2+(aij —b)?
2
\/x2+
(17) \/X2+ aizj —aij
smaller than the characteristic length scale at which
(23
97(x) for x#0.

where the first expression has a leading error term
However, one can, for large|\;/\ , approximate the ker-
\/X2+(aij+b)2+aij+b
+(aj;+b)in
L2 ’ 2+ (& —b)?— (a; —b)
2 ij ij

with the leading error term being (x\;/\) ~°. Since the |t is here important to recall thgty;|>b for i#j. Foraj;
»((x;) varies in Josephson junctions, we can with very

The remaining contribution fofx| <\, /\; can thus be

% (x\3/N.)"°. Cis the Euler constartt
nel with
9ij () =g (x)= . for |x|>%, VP +af +a
! —(a;;—b)In
magnetic penetration depkh is usually orders of magnitude _ (i=j) Eq. (22 reads
good approximation use the above limiting expressions, g“(x)zzé
accounted for through a purely local interaction of the formand the asymptotic form of the general expression for large

x| is
gi‘ﬁ’(x):( j (95 (&)= af” ()] d¢ | o(x) (18) A
gij(x) =g (x)= - for |x|>+af+b?
INn4+2C—-1~1.541 for a;=0 /X2+ai2]‘ " gb2
=AS 8 A\ A
(X) —2—; for |a|]|>—L (24)
ajj \j A

(190  with leading error termex >,

Equation(22) is exact, but still poses a few concerns for
For systems wherk, /\ ;<1 and|a;—a;.1|>N\_/\;, we  x=0. However,g;(x) has only a logarithmic singularity,

can, therefore, with good approximation write which is well behaved when integrated, aggi(x) has the
© (=) well-defined limiting value
gij (X)~gjj” (x) + gjj (%) (20)
. A |a;il b b
for all i,j. (0)= — L 1+—)In(1+—)
%05 |ayj] |ayj]

B. Nonlocal magnetic coupling forA <ty=d
+

b b
While this limit of system parameters is not usually rel- 1- m)ln( 1- m) for i#j. (29
evant for Josephson systems, experiments on superlattices of
semiconductor quantum wells and superconductinddAssuming that the magnetic-flux distribution can be ex-
electrode§ indicate that tunneling between superconductorgpressed by Eq(2), we have then provided the kernel that

can be facilitated over distances of 500 nm, and, thus, that determines the magnetic interaction between tunnel junctions
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in the limit where the the magnetic and electric thickness of 1.0 T '(a) T '(b)
the junctions are equak, <ty~d. 0.8l a=085 o=11| || a=075, o=11
lIl. NUMERICAL SIMULATIONS § 0.6}
In order to explore the possible relevance of the above ,'S 0.4l
coupling mechanism, we have performed numerical simula- £
tions of experimentally relevant superconducting systems, 0.2h

which produce measurements that may be interpreted in light
of nonlocal magnetic coupling. The following two sections
consider simulations of equations of motion in the form of
Eq. (11), where the interaction kernej; takes the form of
the above two extreme parameter limits. We are not consid- F|G. 2. Dc current-voltage charateristicsy(,V;) for n=2 iden-

0 7 2 0 7 2
V,=aV,

ering the local inductive coupling; . tical adjacent Josephson junctions with parameters4, o
=0.05, A\ /A ;=0.0009, anda) a=0.35, (b) a=0.75, operated at
A. Nonlocal magnetic coupling ford=2x, >t, the first zero-field step for=*1.

Observation of phase locking between t{as more ad-
jacent extended Josephson junctions have been reported tigns. Figure 3 shows how the range in bias current differ-
cases where the oscillators are operated in self-resonagfice,A »=maxn;— o 7,|, for which the average voltages
(fluxon) modes**314 The experiments reported in Refs. 4 of the junctions are identical ;)= o(V,)) as a function of
were performed on a system with two junctions of length the bias point 7,=3(7%,+0o7,). The simulation results
~4, widthw=0.2, interjunction distanca~0.35, 0.75, and clearly show that nonzero, and measurable, phase-locking
magnetic thicknesd~0.0009\;; all lengths are normalized ranges may be expected as a result of magnetic interactions.
to A;~100 um. Phase locking between fluxon modes waswe further observe that the locking range in bias current is
reported in this system both when the bias currents of théoughlyindependent of the bias polarity and that the lock-
two junctions were of the samer&1) and opposite€=  ing ranges for the interjunction distanae=0.35 are roughly
—1) sign and a local coupling model was adopted to explairfour times those the locking ranges of the system wveith
the core features of the experimental data. We will here dem=0.75, in reasonable agreement with the experimental‘data.
onstrate the phase-locking results based on the nonlocalaking quantitative comparisons between our simulation
magnetic coupling, whose strength and functional form isdata and the corresponding experiments, we notice that the

almost entirely given by the geometry of the system. simulations exhibit maximum locking ranges of about the
The above geometry provides for an interjunction cou-size exhibited by the experiments. Some discrepancy is of
pling parametefsee Eq(7)] course not unexpected, since the experimental system is re-
ported with, e.g., slightly different critical currents of the
A~0.0014s, (26) junctions, a large uncertainty in the characteristic Josephson
where we have useN=4 since the junctions are adjacent, [€ngth, etc. Additionally, the above theory is based on ideal
and a coupling parameter of geometries where considerations of magnetic interactions
can be simplifiede.g., the parameté¥ in the magnitude\
A~0.00290 (27 of the interaction kernel is likely smaller than predicted, as

mentioned above With such considerations in mind, the
agreement between the simulated theory and the experimen-
tal data is remarkably good and demonstrates the potential

for the junction self-interactiopg;; (x) ]. We have performed
the presented simulations with a damping coefficieniof
=0.05 and external magnetic field=0. The experimental
system consists of two junctions with slightly different sys-

tem parameters, and the study of phase locking between 0.20] ~-e-74=0.35 0=+7 (n,0)
fluxon oscillations in the different junctions was conducted i e )
by having two independent current sources biasing the junc- o OO} —emam0rs omor (amco) ]
tions. We will, for simplicity, model the junctions as being ® o e
identical except for their individual bias currents. = o.70r , ]

The results of the numerical simulations are summarized 5
in Figs. 2 and 3. Figure 2 shows the simulated dc-average 0.05} ]
current-voltage characteristics of the two junctions, both op-
erated in a zero-field-steZFS mode (single oscillating 0.00 : : :

0.0 0.2 0.4 0.6 0.8 1.0

fluxon), with identical magnitude bias currenty{= 7,
=o07,, o=*1). Given the small magnitu@® of A, we
find that the current-voltage characteristics are almost inde- FIG. 3. Ranges of phase locking;=max 7, — o7, as a func-
pendent of the current polarity=+ 1. However, due to the tion of the current bias poingy=3(7,+ o n,) for the junctions
self-coupling, given by;;(x), the ZFS’s are not stable for all whose current-voltage characteristics are shown in Fig. 2. The junc-
bias currents up to the critical currents;| =1, of the junc-  tions are biased at the first zero-field step shown in Fig. 2.

10=0.5(n,+0n,)
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importance of the long-range magnetic interaction and cross T ‘ ' T '

. . = L=10 _:
talk between extended Josephson junctions. ! MNV\N\/\ ]
04 b
B. Nonlocal magnetic coupling fora <ty=d < -1 — 3
Current-voltage measurements on periodic superlattices < b =20 o ]
of gratings of superconducting Nb electrodes and InAs-AlSb | N
quantum well§ in a weak magnetic field have revealed re- 0F
sistance with periodic components as a function of the ap- s 1
plied magnetic field. The oscillation period has been found to — : : — : -
correspond to a flux quantum being injected irigpected o =2 4 6 8 10 12 14

from) the grating cells. However, for long grating cells a [L/2m = 8/,

doubling of the frequency is observed for low applied mag- FIG. 4. Normalized relative magnetizatiodM=(¢0(L)
netic fields. This frequency doubling was interpreted as a_ #9(0)),~ LT as a function of normalized applied magnetic field
result of symmetry br_eaking in the flux configurations of ther ¢, systlems oh=18 junctions with b>\ /\,) coupling param-
superconducting gratings. etersa=0.42,b=0.22, andA =0.3. The horizontal axis is scaled to
We will here investigate this interpretation using our 1ong-ine flux quantum®,=h/2e. Indicated by the arrows<) of unit
range magnetic coupling as the coupling mechanism betweggngth, large applied magnetic fieldisresult in magnetization pe-
the superconducting gratings. Since the superlattice of gratiod of ®,, while the longer systemlL(=20) exhibits a frequency
ings exhibits periodic resistivity behavior as a function of doubling for smaller values df.
magnetic field, and since a critical current is measured across

the superlattice, we assume that Josephson coupling exisfigr to investigate the more detailed reason for this behavior,
between the superconducting Nb strips. However, since thge have, in Fig. 5, displayed the individual relative magne-
physical(tunneling distance between the superconductors iStizations AM; for i=5-14 andL=20 as a function of the
bA,~500 nm>A ~45 nm, we will consider the magnetic magnetic field. For large fields we observe that all junctions
coupling of Sec. IIB. The Josephson penetration depth opehave identically in their magnetizationghe vertical

each extended weak link is estimated to be=2.3 um  gashed lines define field intervals of a single flux quantum
from the experiments. Thus, all the relevant geometric pa-

rameters, a=960 nmA;, b, L=<95 um/\;, and w T T T T T T T T T T
=15 nmi\;, can be appropriately normalized. The critical ;I\N\IW\P\[\I\I'\I'\I\/\#
current density of the lattice is measured to Wl i —
~1.26 A/m.

We have conducted numerical simulations of systems
consisting of up tan=18 overdamped weak links with the
above system parameters and with normalized lengths of
=10-30 for varying normalized applied magnetic fields
Since the experiments are probing a dynamical resistance at
a low frequency of 497 Hz, we cannot expect to simulate the
exact measurement within such a long time scale. Instead,
we have decided to numerically measure rslative magne-
tization AM,= ¢ (L)— ¢((0)—LT for each junction in
the applied magnetic field, without bias current. Thus, we
apply the desired magnetic field and let the system relax until

»1(x)=0 for all x andi, whereafter the relative magnetiza-
tion is measured. We then define ttotal relative magneti-
zationAM=(AM;); as a measurement relevant for the ex-
perimentally observed dynamical resistance. BN YT ONININT N e
Figure 4 shows the magnetization simulation results for

. : 0 2 4 6 8 10 12 14
the above parameters with= 10 andL =20 as a function of TL/2m = &/%
the (decreasingapplied magnetic fieldnormalized to inte- ¢
ger number of flux quanta per junctipriThe results clearly ~ FIG. 5. Normalized relative magnetizatioa M;= (¢ (L)
show that the system responds periodically with the mag- ¢ (0))—LT of junctions 5—14 of the= 18 participating junc-
netic field and that the period is the flux quantum. Bothtions of lengthL =20 described in Fig. 2AM; is shown as a func-
simulated lengths show that the periodic response vanishes tidn of normalized applied magnetic fieltl Vertical sections indi-
very low magnetic fields. However, for the longer system,cated by dashed lines demonstrate that the global periodiity (
L=20, we observe a transition into frequency doubling at=(AM;);) seen in Fig. 2 is due to “in-phase” ¢’ = ¢{ ")
intermediate magnetic fields—all these observations are imagnetic-field distribution in the junctions for high and “out-of-
direct agreement with the experimental observations of thghase” (¢§‘i)¢¢§iif11’) magnetic-field distribution for low external
dynamical resistance as a function of magnetic fidid.or- fields. .

AM,
|

LOOW LWOL WO LWL LWL LWL LKL LW DLW LW
Ay naana ta e R T T =
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per junction. However, as the field is decreased, the flux IV. CONCLUSION
distribution of neighboring junctions slide out of phase re-
sulting in a frequency doubling of the total magnetization.
This scenario corresponds exactly to the suggested explan
tion given by Thomagt al.in Ref. 7 and it can be justified
through the following intuition. All the junctions will re-

Based on the above simple theory and the accompanying
sélimulations with their direct correspondence with published
experiments, we conclude that the long-range magnetic inter-
action is relevant for a wide variety of superconducting sys-

: . . : L . _ tems where the dynamics and configurations of flux quanta
spond identically(in phas if no magnetic interaction be re present. We have demonstrated the importance through

tween the junctions is present. Thus, when the external fiel wo very different experimental situations and interpreted the
is strong, the boundary effects dominate the flux structure, y P P

Additionally, at a dense packing of fluxons, the effective re-fnxﬁegggﬁnégty Iiﬁbsﬁtrviidin:e?)trltjar\i? tgser%ngr]llggtzlggthf;?r\?vhﬁree
pulsive flux interaction between junctions is vanishing. How- 9 piing. P P

. . . the agreement between our simulation results and the pub-
ever, since unipolar fluxons are mutually repulsive, decrea 9 P

ing magnetic fields result in the boundary effect eventuall)js'frzend tﬁ;(p;r:an}?)?rtr?lo?gcs)inﬁlOnzezr?n ?#giﬁ&;?ig?‘zlzri;ge
becoming insignificant compared to the internal repulsion g ping

between the flux modes, which will favor an out—of-phased'reC“y from the experimental system parameters without

flux distribution between junctions. Since the effective repul-flttmg' Thus, even though specific quantitative agreement

sion between the fluxon modes of the different junctions deyvIth experimental data may depend on system details, such

pends strongly on the length of the junctidisee, e.g., Eq. as the eIectromagnetic properfcies of the.surrogndings, the
(5)] and since the boundary effect is independent of the Sysr_)rlnc_mles qf thfe s!mple magnetic mofdel will prc;wde a_good
tem length, the frequency doubling transition may not bestﬁrtlng point for mtlgrpretmg ma;}y eaturis of experimen-
observed in the shorter junction systems since the boundatt)‘?l y observed coupling between fluxon behavior.

effects become relatively more important for shorter systems.
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