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Electrostatic potential in a superconductor
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The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-
Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation
for the vector potential, the Schro¨dinger equation for the wave function, and the Poisson equation for the
electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great
extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex
lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential
and the related charge distribution are discussed.
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I. INTRODUCTION

Even in equilibrium, any inhomogeneous conductor h
internal electric fields that keep its charge distribution clo
to local neutrality. The superconductor is not an excepti
While the electrochemical potential is constant, the lo
chemical potential varies, in general, with any gradient in
system. A distinct property of the superconductor is that
equilibrium there can be an inhomogeneity due to the d
magnetic electric current.

The electric field in a superconductor with a stationa
current has been discussed already in 1937 by Bopp.1 From
the hydrodynamic description of a charged liquid, Bopp h
concluded that the inertial and Lorentz force created by
current are balanced by the Coulomb force. The correspo
ing electrostatic potential has the form of a Bernou
potential.2

If the Lorentz force dominates, the Bernoulli potential c
also be considered as Hall effect. While it was clear t
there has to be a Hall voltage that passes the Lorentz f
from electrons to the lattice, its measurements by contac
standard Hall setups did not show any. It was understo3

that by contacts one observes differences in the elec
chemical~not electrostatic! potential but this potential is con
stant in equilibrium.

With the aim to distinguish the electrostatic potential fro
the electrochemical one, as late as 1968, Bok and Kl4

have used the Kelvin capacitive coupling proposed by Hu3

and have observed first the Bernoulli potential on the surf
of a superconductor. Similar measurements have been
formed by Brown and Morris5,6 or more recently by Chiang
and Shevchenko.7,8

Even a perfect surface establishes itself a very strong
fect that essentially modifies the electric field.9 It is desirable
to observe the internal electric field directly in the bulk of
superconductor. A new experiment in this direction has b
performed recently by Kumagaiet al.10 who have measured
0163-1829/2002/65~14!/144511~18!/$20.00 65 1445
s
e
.
l
e
n
-

s
e
d-
i

t
ce
in
d
o-

t
e

er-

e-

n

the electric field in a type-II superconductor in mixed sta
by nuclear quadrupole resonance.

Another consequence of the electric field in the bulk is
charge of the vortex core. Blatteret al.11 have proposed an
experiment by which the vortex charge can be acces
Such measurement, however, is still to be performed. I
also speculated that the vortex charge affects the motio
vortices and thus plays a role in the sign reversal of the H
regime.12 Since the theory of the anomalous Hall voltage
still open, one cannot conclude about the core charge f
this effect.

In this paper we derive a phenomenological theory of
Ginzburg-Landau~GL! type that allows one to evaluate th
electric field in the bulk of superconductors at low tempe
tures. A brief presentation of this theory has been alre
published in Ref. 13. Here we present details and show h
to handle numerically this theory for the Abrikosov lattice
vortices. The electrostatic potential in the vortex lattice
shown for a selected temperature and the contribution of
electric field to forces acting on the condensate is discus
Throughout the paper we use the language of the two-fl
model. The fluid of superconducting electrons is called c
densate while electrons mean normal electrons.

In the following section we review theoretical approach
to the electric field. In Sec. III A we introduce the free ener
that includes the condensation energy of Gorter and Casi
the kinetic energy of Ginzburg and Landau, and the stand
electromagnetic energy. Section III B presents the esse
part of our approach. We use the variational principle to
rive three GL equations: the Maxwell equation for the ma
netic field, the Schro¨dinger equation for the wave function
and the Poisson equation for the electrostatic potential in
bulk of superconductors. In Sec. IV, the hydrodynamic p
ture is used to link the presented theory with the form
approaches reviewed in Sec. II. In Sec. V we discuss m
netic properties of the Abrikosov vortex lattice as a functi
of the temperature. In Sec. VI we compare the electrost
©2002 The American Physical Society11-1
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potential with other potentials acting on the condensate.
also present the charge distribution and show that its am
tude is very small, which allows one to employ a conveni
quasineutral approximation. Section VII presents the con
sions. In the Appendix we estimate the material parame
for niobium using the McMillan formula and empirical rule
established from chemical trends.

II. HISTORICAL REVIEW

The electric field in superconductors has been stud
since the discovery of superconductivity. Accordingly, va
ous approaches to this problem can be found in the literat
We will briefly remind the progress in this field made main
in late 1960’s and early 1970’s.

A. Bernoulli potential

The Bernoulli potential for superconductors has been fi
derived by Bopp.1 Here we follow the later approach o
London.2 The condensate has to obey two equations of m
tion. First, it is the London condition,

mv52eA, ~1!

wherev is the local velocity of the condensate andA is the
vector potential. Second, it is the Newton equation

mv̇5e~E1v3B!1Fs , ~2!

where the first term is the Lorentz force with the electric fie
E52]A/]t2“w and the magnetic fieldB5“3A. The ad-
ditional forceFs has been treated by different authors with
rather different approximations.

Since the motion of the condensate is fully determined
the London condition, one can use the Newton equation
determine the force acting on the condensate. Once the
ditional force will be specified, this procedure allows one
identify the electrostatic potentialw.

1. Time derivative of the London condition

To bring the London condition into a form that can b
easily compared with the Newton equation, we take the t
time derivative,d/dt5]/]t1(v“), of the London condition
~1!,

mv̇52e
]A

]t
2e~v“ !A. ~3!

The first term we express via the electric field,2]A/]t5E
1“w. For the second term we use a vector identity, which
components reads

vj“ jA i52@v3“3A# i1vj“ iA j . ~4!

In the first term of Eq.~4! one can recognize the Loren
force,ev3“3A5ev3B. In the second term of Eq.~4! we
substituteA by the velocity from the London condition

evj“ iA j52mvj“ ivj52“ i
1
2 mv2.

The time derivative of the London condition then read
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mv̇5e~E1v3B!1“~ew1 1
2 mv2!. ~5!

This equation can be compared with the Newton equation~2!
giving the electrostatic potential as

“ew5Fs2¹ 1
2 mv2. ~6!

2. Bernoulli potential

London assumed that the motion of the condensate is c
trolled by the Lorentz force only. In this approximation, the
is no additional force

Fs50. ~7!

From Eq.~6!, thus follows the electrostatic potential of th
Bernoulli type

ew52 1
2 mv2. ~8!

3. Quasiparticle screening

In 1964 van Vijfeijken and Staas14 have extended the Ber
noulli potential to finite temperatures using the two-flu
model. When flowing, normal electrons dissipate ener
Therefore, in the stationary case they have to stay at res
spite of the presence of an electric field. These authors h
introduced an unspecified force

Fn5e“w, ~9!

acting on electrons to keep them at rest,Fn1eE50. This
force is assumed to result from the interaction between
electrons and the condensate. Accordingly, there has to
reaction forceFs acting on the condensate so that the New
law of action and reaction is fulfilled,

nnFn1nsFs50, ~10!

wherenn and ns are densities of electrons and condensa
From Eqs.~9! and ~10! one finds the additional force

Fs52
nn

ns
e“w, ~11!

and from Eq.~6! follows the electrostatic potential

ew52
ns

n

1

2
mv2. ~12!

This is the Bernoulli potential~8! reduced by the share of th
condensate on the total density,n5nn1ns .

The reduction of the Bernoulli potential has becom
known as ‘‘screening by normal electrons’’ or ‘‘quasipartic
screening.’’ The quasiparticle screening, however, has to
distinguished from the Thomas-Fermi screening presen
all metals including superconductors.

4. Thomas-Fermi screening

In superconductors, the screening is the same as in no
metals. Starting from the time-dependent Ginzburg-Land
1-2
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ELECTROSTATIC POTENTIAL IN A SUPERCONDUCTOR PHYSICAL REVIEW B65 144511
theory, Jakeman and Pike15 have derived the Poisson equ
tion for the electric field with the reduced Bernoulli potent
as the driving term,

ew2lTF
2 ¹2ew52

ns

n

1

2
mv2. ~13!

Currents change typically on the scale of the London p
etration depth or the GL coherence length, which are m
larger than the Thomas-Fermi screening lengthlTF . The
electrostatic potentialw thus can be treated in the limit o
strong screening,lTF→0, and from Eq.~13! one recovers
Eq. ~12!.

5. Thermodynamic potential

Already in 1949, Sorokin16 has followed the hydrody-
namic approach of Bopp assuming an unspecified free
ergy,

Fs5E dr f s , ~14!

responsible for the superconducting transition. Heref s is the
density of free energy anddr denotes integration over th
sample volume. The free energy leads to a thermodyna
potential,

ws5
dFs

dns
5

] f s

]ns
, ~15!

which yields the additional force

Fs52“ws . ~16!

According to Eq.~6! the Bernoulli potential is modified as

ew52 1
2 mv22ws . ~17!

The quasiparticle screening is one of the contributions
result from the thermodynamic potential. There are a
other contributions that can provide information about
pairing mechanism.

Unfortunately, London has disregarded the thermo
namic potential in his book2 as unknown and unimportan
His objection was correct at that time since the first relia
thermodynamic potential has been derived eight years l
by Bardeen, Cooper, and Schrieffer.17 On the other hand, the
two-fluid free energy of Gorter and Casimir18–20known from
1934, could be used within Sorokin’s approach to provide
least qualitative results. Our approach follows Sorokin,
cept that we use an explicit thermodynamic potential
Gorter and Casimir and a nonlocal kinetic energy.

6. Nonlocal corrections

As shown in Ref. 21, London’s approach can be modifi
towards strongly inhomogeneous systems using the Sc¨-
dinger equation for a Cooper pair,

1

2m* ~2 i\“2e* A!2c1e* wc12wsc50, ~18!
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instead of the Newton equation~2!. Here we have also in-
cluded the thermodynamic potentialws neglected in Ref. 21.

From Eq.~18! follows directly a quantum modification o
the Bernoulli potential,

e* w52
1

c

1

2m* ~2 i\“2e* A!2c22ws . ~19!

In the quasiclassical approximation, (2 i\“2e* A)c
5m* vc, this formula reduces to potential~17! derived by
Sorokin.

To obtain the actual value of the potential, the wave fun
tion c is identified with the GL wave function and solve
from the GL equation. Accordingly, the Cooperon mass a
charge,m* 52m and e* 52e, appear in the Schro¨dinger
equation~18!.

B. Thermodynamic correction

Rickayzen22 proposed a thermodynamic approach to t
electric field. He assumes a quadratic dependence of the
energy on the velocity, which limits his study to weak cu
rents. For systems with a parabolic band, the increase of
free energy due to the current equals the kinetic energy of
condensate,

f kin5ns
1
2 mv2. ~20!

The electrochemical potential,n5EF1nkin1ew, is con-
stant in the whole system, therefore,ew52nkin . Since n
5] f /]n, the velocity variation of the local chemical poten
tial is nkin5] f kin /]n. Accordingly, the electrostatic potentia
induced by the current reads22

ew52
]ns

]n

1

2
mv2. ~21!

Expression~21! generalizes Eq.~12!. From the phenom-
enological density of the condensate,

ns5nS 12
T4

Tc
4D , ~22!

follows

ew52
ns

n

1

2
mv214

nn

n

] ln Tc

] ln n

1

2
mv2. ~23!

The first term is the reduced Bernoulli potential~12!, the
second is a thermodynamic correction. According to E
~22!, the first term of Eq.~23! depends on the temperature
12T4/Tc

4 while the second one goes asT4/Tc
4 . At higher

temperatures the second term dominates.

1. Bardeen-Cooper-Schrieffer estimate

The density dependence ofTc reflects the pairing mecha
nism. Its magnitude can be estimated from the B
relation,17

kBTc51.14\vDe21/DV, ~24!
1-3



LIPAVSKÝ, KOLÁČEK, MORAWETZ, AND BRANDT PHYSICAL REVIEW B 65 144511
TABLE I. Material parameters of pure niobium.

Critical temperature~Ref. 48! Tc 9.5 K
Debye temperature~Ref. 48! uD 275 K
Coupling parameter~Ref. 45! l 0.89
Coulomb pseudopot.~Ref. 45! m* 0.15
Coefficients of specific heat~Ref. 48! g 719 J m23K22

Mass in pure Nb~Ref. 49! m0 1.2me

Hole density~Ref. 48! n 2.231028 m23

Logarithmic derivative~Ref. 46! ] ln D0/]EF 1.131019 J21

GL parameter~Ref. 45! kpure 0.78
Density of states~A1! D 5.731047 J21m23

Bare density . . . ~A3! D0 3.031047 J21m23

BCS interaction~A4! V 2.9310248 J m3

Condensation energy~30! «con 1.63104 J m23

Condensation energy per pair 2«con/n 9.1731026 eV

Coefficient~A7! 1
2

(]g/]n)Tc
2 3.8531026 eV

Coefficient~A15! ]«con/]n 8.7331026 eV
Coefficient ofC1 ] ln «con/] ln n 1.9
Coefficient ofC2 ] ln g/] ln n 0.42
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whereD is the single-spin density of states,vD is the cutoff
frequency usually approximated by the Debye temperat
\vD'kBuD , and V is the BCS interaction. Assuming tha
uD andV do not depend on the density, one finds

] ln Tc

] ln n
5

]D
] ln n

1

D 2V
'2

] lnD
] ln n

ln
uD

Tc
. ~25!

It remains to estimate the derivative of the density
states. For systems with a parabolic band the density of s
is proportional to the Fermi momentum, lnD}kF , while the
density of electrons isn}kF

3 . Accordingly ] ln D/] ln n
'1/3. For niobium we have a very similar valu
] ln D/] ln n50.32, see Table I and the Appendix.

With the BCS estimate~25!, the electrostatic potentia
~23! reads

ew52
1

2
mv2S ns

n
1

nn

n

4

3
ln

uD

Tc
D . ~26!

For conventional superconductors,uD /Tc is of the order of
few tens, therefore, the thermodynamic correction is
dominant contribution for approximatelyT. 2

3 Tc .
For niobium the BCS formula~26! overestimates the ther

modynamic correction. The approximate factor from E
~26! is (4/3)ln(uD /Tc)54.5 while the full factor from Eq.
~23! gives24(] ln Tc /] ln n)53.0, see Eq.~69! and the Ap-
pendix.

2. BCS microscopic theory

Within the BCS theory, the electric field has been stud
by Adkins and Waldram,23 Rickayzen,22 and Hong.24 Re-
cently, Koyama25 employed Bogoliubov-de Gennes equ
tions and extended formulation of this theory to nonstati
ary systems. In all these studies, materials with a gen
14451
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band structure have been addressed. For the sake of sim
ity we discuss only the parabolic band, for which the statio
ary BCS theory yields23,24

ew'
D2

2

] ln D
]EF

lnS 2vD\

D0
D . ~27!

Here D051.75kBTc is the gap atT50 andD is the actual
local value of the gap.

Since the electric current locally depresses the gapD
5Deq1D8 with D8}2v2, the potential~27! includes the
contribution of Bernoulli type,w5weq1w8 with w8}2v2.
As shown by Rickayzen,22 w8 can be rearranged into th
thermodynamic correction of Eq.~26!.

C. Aims of the present approach

In this paper we discuss the Ginzburg-Landau the
modified in two directions. First, following Bardeen we u
its extension to low temperatures. Second, we include
electrostatic potential. We focus on the bulk of supercondu
ors, i.e., on regions that are far from the surface on the s
of Thomas-Fermi screening length.

Starting from the free energy, we derive the Poisson eq
tion along with the Maxwell equation for the vector pote
tial, and the equation of the Schro¨dinger type for the wave
function. The presented theory yields nonlocal Bernoulli p
tential, quasiparticle screening, thermodynamic correctio
thermoelectric field of normal metal atT5Tc , and Thomas-
Fermi screening.

Our approach parallels the original study of Sorok
however, we use the explicit phenomenological free ene
proposed by Bardeen. It combines the GL theory with
Gorter-Casimir free energy. Naturally, this theory is only a
proximate. Its major advantage is its transparency an
simple implementation scheme.
1-4
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III. EXTENDED GINZBURG-LANDAU THEORY

A. Free energy

Bardeen26,27has extended the GL theory28,29by the use of
the Gorter-Casimir two-fluid model18–20so as to apply to all
temperatures. We briefly recall the Gorter-Casimir model a
introduce other components of the free energy.

1. Condensation energy of two-fluid model

Gorter and Casimir assumed that the superconduc
state is characterized by an order parameterÃ, which is zero
in the normal state and unity at zero temperature. They h
modified the normal-state density of free energy as

f s5U2«conÃ2 1
2 gT2A12Ã. ~28!

For Ã50, the free energy~28! equals the normal-state fre
energy consisting of the internal energyU and the entropy
term2 1

2 gT2. Sommerfeld’sg is the linear coefficient of the
specific heat. In the superconducting state,ÃÞ0, two
mechanisms are expected. First, the ordering releases
condensation energy«conÃ. Second, the ordering reduces t
entropy by the factorA12Ã.

In equilibrium the free energy reaches its minimum. Fro
dFs /dÃ5] f s /]Ã50 follows that the equilibrium value o
the order parameter is a solution of

«con5
gT2

4A12Ã
. ~29!

At the critical temperature the ordering vanishes,Ã50,
therefore,

«con5
1
4 gTc

2 . ~30!

From Eq.~29! with Eq. ~30! follows

Ã512
T4

Tc
4 , ~31!

which agrees with the observed temperature dependenc
the condensate density~22!. Accordingly, one can identify
the order parameterÃ with the fraction of the condensate o
the total density of electrons,

Ã5
ns

n
. ~32!

2. Kinetic energy

An electric current contributes to the free energy by
kinetic energy of the condensate. The kinetic energy p
posed by Ginzburg and Landau,28 see Tinkham,29 reads

Fkin5E dr
1

2m*
u~2 i\“2e* A!cu2, ~33!

with the wave-function normalized as

ucu25
ns

2
. ~34!
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We use the isotropic effective mass for simplicity, the anis
tropic case will be discussed in the next paper.

In the Gorter-Casimir free energy we thus substitute
order parameter by

Ã5
2ucu2

n
5

2ucu2

2ucu21nn
. ~35!

3. Electromagnetic energy

The density of free energy has four components,

F5Fs1Fkin1FC1FM . ~36!

The free energyFs given by the volume integral~14! of the
free energy density~28!, we shall call the condensation en
ergy according to its most important part. The kinetic ene
Fkin is given by the GL expression~33!. The Coulomb inter-
action reads

FC5
1

2E E drdr 8
1

4pe

1

ur2r 8u
r~r !r~r 8!, ~37!

wherer5e* ucu21enn1r latt is the charge density. The Cou
lomb interaction also determines the electrostatic poten
by

w~r !5E dr 8
1

4pe

1

ur2r 8u
r~r 8! ~38!

or in its differential form by the Poisson equation

2e¹2w5r. ~39!

Finally, the Helmholtz magnetic free energy reads,30

FM5E dr
1

2m0
~B2Ba!2, ~40!

whereBa is the applied magnetic field.
The total free energy is a functional of the wave functio

the vector potential, and the~normal! electron density
F@c,A,nn#. The other physical quantities such asB, w, n,
ns , r, or Ã are subsidiary and have to be understood
functions of the independent variablesc, A, andnn .

We note that much more sophisticated approximations
the free energyFs1Fkin have been developed from the BC
theory and Eliashberg’s theory already in 1960’s, see, e
Ref. 31. In principle, one can start from any of these appro
mations. Since our prime interest is in the electrostatic
tential and the related charge distribution, we prefer to
the simple approximation of Bardeen.

B. Ginzburg-Landau equations of motions

In equilibrium, the system stays in the state with min
mum free energy. Accordingly, the variations ofF with re-
spect to the vector potentialA, the wave functionc, and the
electron densitynn have to vanish.

During the variation procedure, the two-point functionFC
and the one-point functions~all the others! are treated differ-
1-5
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ently. The local contributions are given by the correspond
densities,f a@ l (r ),“ l (r )#, with Fa5*dr f a , and their varia-
tion is of Lagrange’s form,32

dFa

d l
5

] f a

] l
2“

] f a

]¹ l
. ~41!

Herea represents the subscriptss, kin, andM while l stands
for A, c, or nn .

The variation of the Coulomb energy with respect toc or
nn can be expressed by the variation with respect to
density of charger that reads

dFC

dr~r !
5E dr 8

1

4pe

1

ur2r 8u
r~r 8!. ~42!

According to Eq.~38! we can abbreviate this variation as

dFC

dr
5w. ~43!

1. Maxwell equation

The vector potentialA appears in the kinetic energyFkin
and its gradients enter the magnetic free energy viaB5“

3A. From the condition of minimum with respect toA, one
recovers the Maxwell equation,

“3“3A5m0j , ~44!

where the currentj is given by the quantum-mechanic
formula,29

j5
e*

m*
Rec̄~2 i\“2e* A!c, ~45!

known as the second GL equation. Herec̄ denotes the com
plex conjugate ofc.

2. Schrödinger equation

The wave functionc enters the free energy via the ord
parameter, the Coulomb interaction via the charge den
and the kinetic energyFkin , where also the gradients ofc
appear. The variation parallels the derivation of the first
equation,29 for details see Ref. 30.

The variation with respect toc̄ leads to the equation o
the Schro¨dinger type,33

1

2m* ~2 i\¹2e* A!2c1xc50. ~46!

The effective potential

x5
d

ducu2 ~FC1Fs!5e* w1
] f s

]ucu2 , ~47!

covers all forces acting on Cooper pairs.
14451
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3. Diffusion of normal electrons

From the variation with respect to the electron dens
dF/dnn50, one finds that the sum of all potentials acting
the normal electrons has to vanish, i.e.,

ew52
dFs

dnn
52

] f s

]nn
. ~48!

This condition parallels Eq.~9! of van Vijfeijken and Staas.
The set of equations~44!–~48! is closed. Its particular

form is given by the condensation energyf s . Below we
evaluate derivatives of the condensation energy within
Gorter-Casimir approximation~28!.

4. Effective potential acting on Cooper pairs

To describe the motion of the condensate given by
effective potentialx, we have to evaluate the electrosta
potential. This will be done in the spirit of van Vijfeijken an
Staas using the equation for normal electrons~48!.

Since e* 52e, the effective potential results from Eq
~48! and ~47! as

x5
] f s

]ucu2 22
] f s

]nn
. ~49!

The combination of the partial derivatives excludes a c
tribution of functions that depend exclusively on the to
density,]n/]ucu222]n/]nn50. Accordingly, derivatives of
density-dependent material parameters (U, «con, g, andTc)
do not contribute to the potentialx. From Eqs.~49! and~28!,
thus follows:

x522
«con

n
1

gT2

2n

1

A12
2ucu2

n

. ~50!

With the potential~50!, the Schro¨dinger equation~46! is
identical to the extended GL equation proposed
Bardeen.26,27

Close to Tc , the potentialx approaches the quadrat
form of Ginzburg and Landau,

x→a1bucu2, ~51!

with

a5
gTc

n
~T2Tc!, b5

gTc
2

2n2 . ~52!

We note that the effective potentialx depends on the den
sity n via g andTc . In principle, one has to iterate the G
equation together with relations for the densityn. In practice,
deviations of the density from its crystal value are ve
small, un1r latt /eu!n, and the approximationen'2r latt is
well justified when one solves forc andA.
1-6
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5. Poisson equation with screening

Now we rearrange~48! into the form of the Poisson equa
tion with the Thomas-Fermi screening. The variation of t
free energy in Eq.~48! reads

] f s

]nn
5

]U

]n
2

]

]nn
S «conÃ1

1

2
gT2A12Ã D . ~53!

The derivative of the internal energy,

]U

]n
5EF , ~54!

is the Fermi energy at the normal ground state of total e
tron densityn. In the presence of the electrostatic potent
the densityn differs from its crystal value,n052r latt /e, by
the density perturbationr/e. The Fermi energy thus depend
on the charge density as

EF5EF
01

]EF

]n

r

e
, ~55!

where EF
0 is the crystal value. As usual in the theory

superconductivity, we associate the crystal Fermi ene
with the origin of the energy scale,EF

050.
The density dependence of the local Fermi energy de

mines the screening. The density derivative of the Fermi
ergy is the inverse density of states,

]EF

]n
5

1

2D . ~56!

Using the Poisson equation~39! to evaluate the charge from
the electrostatic potential,r52e¹2w, one can express th
Fermi energy as

EF52lTF
2 ¹2ew ~57!

with the Thomas-Fermi screening lengthlTF
2 5e/(2De2).

By a substitution of the Fermi energy~57! in the stability
condition for normal electrons~48!, we arrive at the screene
Poisson equation,

ew2lTF
2 ¹2ew5

]

]nn
S «conÃ1

1

2
gT2A12Ã D . ~58!

The right-hand-side~rhs! of Eq. ~58! is readily evaluated
from the assumption that the condensation energy«con and
the Sommerfeldg depend only on the total densityn
52ucu21nn , and from the explicit form of the order param
eter,Ã52ucu2/(2ucu21nn), giving

ew2lTF
2 ¹2ew5x

ucu2

n
1

]«con

]n

2ucu2

n

1
T2

2

]g

]n
A12

2ucu2

n
. ~59!

In the language of Jakeman and Pike, the Poisson equa
~59! is called third GL equation.
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The first term on the rhs of Eq.~59! is the nonlocal Ber-
noulli potential with quasiparticle screening. This can
seen if we multiply the GL equation~46! by c̄ that yields

x
ucu2

n
52

1

2m* n
c̄~2 i\¹2e* A!2c. ~60!

In the classical approximation of the kinetic energ
(1/2m* )c̄(2 i\¹2e* A)2c' 1

2 m* v2ucu2, one finds that
the first term of Eq.~59! is the screened Bernoulli potentia

of van Vijfeijken and Staas,xucu2/n'2(ns /n) 1
2 mv2.

The second and third terms of Eq.~59! are nonlinear gen-
eralizations of the thermodynamic correction by Rickayz
Note that the third term remains finite at the critical poin
T→Tc and ucu→0, yielding the normal-state thermoelectr
field.34

The set of GL equations is closed. It consists of the Ma
well equation~44! with the current~45!, the Schro¨dinger
equation~46! with the potential~50!, and the screened Pois
son equation~59!. Deviations from the local charge neutra
ity are given by the bare Poisson equation~39!.

IV. HYDRODYNAMIC PICTURE

Within the thermodynamic approach of Sec. III B, th
electrostatic potentialw is a function of the wave functionc.
This contrasts with the original derivations of the Bernou
potential expressed in terms of the condensate velocityv. To
make the link with the original approaches mentioned in S
II, in this section we reformulate the above thermodynam
theory in the hydrodynamic picture.

The hydrodynamic picture is readily obtained writing th
wave function in terms of the condensate density~34! and
the phaseu,

c5Ans

2
eiu. ~61!

A velocity defined via the current,j5ensv, then reads

v5
1

m* ~\¹u2e* A!. ~62!

A. Sorokin’s relation

In the representation~61! the Schro¨dinger equation~46!
reads35

1

2
mv22

\2

8m

1

Ans

¹2Ans1ew1ws50, ~63!

where we have usedm* 52m and x52ew12ws as it fol-
lows from Eq. ~47!. The thermodynamic potentialws is
given by

ws5
1

2

] f s

]ucu2
, ~64!
1-7
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which is equivalent to Eq.~15!. With the nonlocal correction
neglected,¹2Ans'0, Eq. ~63! turns into the Sorokin resul
~17!.

Naturally, the explicit evaluation of the electrostatic p
tential within the Sorokin approach parallels the nonlo
approach presented in the preceding section. Since this
proach is quite transparent, we show this procedure in de

Relation~50! reads

ew1ws52
«con

n
1

gT2

4n

1

A12
ns

n

. ~65!

Substituting Eq.~65! into the local approximation of Eq.~63!
one finds

1

2
mv25

«con

n
2

gT2

4n

1

A12
ns

n

, ~66!

which yields the condensate density as a function of the lo
velocity. Provided that the profile of velocities in the syste
is known, from Eqs.~66! and ~59! one can directly evaluate
the electrostatic potential.

B. Rickayzen’s result

Now we recover Rickayzen’s result~23!. To this end we
have to accept identical approximations. First we neglect
Thomas-Fermi screening, so that Eq.~59! reads

ew5
ns

n
~ew1ws!1

ns

n

]«con

]n
1

T2

2

]g

]n
A12

ns

n
. ~67!

Second, Rickayzen assumes a local relation between
velocity and the electrostatic potential. Accordingly, we n
glect the gradient correction in Eq.~63!, i.e., we use the
Sorokin approximation,ew1ws52(1/2)mv2, with the help
of which we eliminate the Sorokin potentialws from Eq.
~67!.

Third, following Rickayzen we take the limit of wea
currents,nmv2/2!«con2gT2/4. Up to linear orders in the
kinetic energy, from Eq.~66! follows ns5ns

01ns8 with

ns852n
T4

Tc
4

n

«con
mv2, ~68!

so that from Eq.~67!, results the electrostatic potentialw
5weq1w8 as

ew852
ns

n

1

2
mv22

]«con

]n

nn

«con
mv21

T2

2

]g

]n

1

8

ngT2

«con
2

mv2.

~69!

Using Eqs.~30! and~22!, one can rearrange expression~69!
into the potential~23! derived by Rickayzen.

In summary, the result of Sorokin corresponds to the lo
approximation of the presented approach. The potentia
14451
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Bernoulli type derived by Rickayzen includes further a
proximations, in particular, the limit of the weak electric cu
rent. We note that for systems with vortices the nonlo
approach is necessary since the ‘‘classical’’ kinetic ene
mv2/2 diverges at the vortex center. This divergence is co
pensated by the nonlocal correction so that the ‘‘quantu
kinetic energy remains regular.

V. MAGNETIC PROPERTIES OF THE ABRIKOSOV
VORTEX LATTICE

In this section we evaluate the wave function and
magnetic field for the Abrikosov vortex lattice in niobium
Pure niobium is close to the border between type-I a
type-II superconductors since its GL parameterk50.78 is
only slightly above 1/A2. However, the GL parameter can b
increased up to about three by impurities. For simplicity
neglect the effect of impurities on material parameters ot
than the GL parameterk.

As will be proven in the following section, deviations o
the total density of electrons from its unperturbed value
very small,uru!r latt . We will neglect these deviations an
treat the material parameters in the approximation
quasineutrality,g(n)'g(n0), etc. In this approximation, the
first and the second GL equations are independent of
third GL equation. Therefore, we shall ignore the elect
static potential and related charge deviation within this s
tion.

A. Dimensionless notation

Our approach parallels Ref. 37. In our calculations
shall use dimensionless quantities,

t5
T

Tc
,

b5
lLonB

l0ABcB0

,

a5
A

l0ABcB0

,

r̃5
r

lLon
. ~70!

Close to the critical temperature,t→1, these dimensionles
variables reduce to the usual form.30

The thermodynamical critical fieldBc , the London pen-
etration depthlLon , and GL parameterk depend on the tem
perature as

Bc~ t !5B0~12t2!,

lLon~ t !5
l0

A12t4
,

1-8
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k~ t !5k0A 2

11t2,

Bc2~ t !5A2kBc52B0k0

12t2

A11t2
. ~71!

The asymptotic values of these quantities in terms of
parameters of the Gorter-Casimir model read

B05TcAm0g

2
,

l05A m

e2nm0
,

k05
mTc

ne\
A g

m0
. ~72!

Finally, we introduce a dimensionless amplitude of t
wave function and the dimensionless velocity,

v5
2ucu2

n~12t4!
,

Q5a2
1

k
¹̃u. ~73!

Our dimensionless notation is identical to Ref. 37.
The Schro¨dinger equation~46! with the effective potential

~50! in the dimensionless notation reads

2
1

2k2“̃
2v1

~“̃v!2

4k2v
1vQ2

5v2
t2

12t2 S 1

A12~12t4!v
21D v. ~74!

The terms on the left-hand side result from the kinetic
ergy, the terms on the right-hand side represent the poten

The Maxwell equation~44! with the current~45! reads

2“̃

2Qb52vQA2vQb . ~75!

The full quantum velocity is a sum of two terms,Q5QA
1Qb , whereQA is any model velocity field which cover
the singular contributions at vortices,

“̃3QA5b̄2F0(
R

d~ r̃2R!. ~76!

In our choice ofQA appears the mean value of the magne
field in the superconductor,

b̄5^b&5
1

VE dr̃ b, ~77!

therefore, for an ideally periodic vortex latticeQA is given
by the AbrikosovBc2 solution.37 The sum over the two-
dimensionald functions represents the contributions of t
14451
e
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nodes of the wave function in the vortex centersR to the
quantum velocity. In this choice one has^“3Qb&50 so that
“3Qb5b2b̄ describes the spatial modulation of the ma
netic field due to the diamagnetic currents.

B. Fourier representation

For the periodic lattice of vortices, it is advantageous
express all functions by Fourier series,

v~ r̃ !5 (
KÞ0

aK~12cosKr̃ !, ~78!

b~ r̃ !5b̄1 (
KÞ0

bKcosKr̃ . ~79!

We choose the direction of vortices along thez axis. The
function b( r̃ ) is the z component of the magnetic fieldb.
Since the system is translationally invariant alongz, the vec-
tors r̃5(x,y) and K ~reciprocal lattice vectors! are two di-
mensional.

The special choice,v}(12cosKr̃ ), enforces nodes o
the wave function,v(R)50, at the positions of the vortex
centers,R5( ix11 jx2 , jy2) with i , j 50,61,62, . . . . For
the triangular lattice, two of the nearest-neighbor vortices
at R5(x1,0) and R5(x2 ,y2), where x152x2 and y2

5A3 x2. The distance between vortices,x1, is determined by
the condition that each vortex contributes to the mean m
netic field by one elementary quantum of flux,Sb̄5x1y2b̄
5F052p/k. The sums in the Fourier representation r
over nonzero discrete momenta,K5(2p/S)( iy2 , jx11 ix2).
In this choice of the Fourier expansion the mean value of
amplitude of the wave function reads

v̄5^v&5 (
KÞ0

aK . ~80!

SinceQb5Q2QA is periodic one may write

Q~ r̃ !5QA~ r̃ !1 (
KÞ0

bK

ẑ3K

K2
sinK• r̃ ~81!

with ẑ3K[(Ky ,2Kx) and ẑ is the unit vector along the
axis z.

C. Simple iteration scheme

Now we are ready to specify the iteration scheme for
Fourier components of the wave-function and the quant
velocity.

The Fourier representation of Eq.~74! reads

aK5
4k2^~s22v1vQ21g!cosKr̃ &

K212k2
, ~82!

with
1-9
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s5
t2

12t2 S 1

A12v~12t4!
21D v, ~83!

g5
~“̃v!2

4k2v
. ~84!

The Fourier representation of Eq.~75! reads

bK52
2^@vb1v̄~b2b̄!1p#cosKr̃ &

K21v̄
, ~85!

with

p5~¹v3Q!ẑ5Qx

]v

]y
2Qy

]v

]x
. ~86!

Within a simple iteration scheme for given values oft, b̄,
and k, one starts from the AbrikosovBc2 solution or some
other values ofaK andbK . In the step~a! one evaluatesaK
from Eq.~82! and upgradesv(x,y) according to Eq.~78!. In
the step~b! one evaluatesbK from Eq. ~85! and upgrades
b(x,y) and Q(x,y) from Eqs. ~79! and ~81!. The iteration
scheme~a!,~b!,~a!,~b!, . . . then leads to the periodic solutio
of Eqs.~74! and ~75!.

D. Accelerated iteration scheme

As shown in Ref. 37, the convergence is accelerated if
amplitude of the wave function is optimized after each use
Eq. ~82!. Here we show how to make this optimizatio
within the Bardeen set of equations.

Assume a change of the wave functionv(x,y), which
maintains its shape but modifies its amplitude,

v~x,y!5~11c!v~x,y!, ~87!

i.e., the old valuev ~the right-hand side! obtained from Eq.
~82! is replaced by a new value.

The constantc has to be found at each iteration step fro
the minimum of the free energy. Since we neglect the C
lomb interaction in this part of the treatment, we can a
eliminate the internal energyU. The free energy normalize
as

f̃ 5
f s2U1 f kin1 f M

1

4
gTc

2~12t2!~12t4!

, ~88!

in the dimensionless representation reads

f̃ 52
v

12t2 2
2t2A12v~12t4!

~12t2!~12t4!
1~“̃3Q2ba!21vQ2

1
~“̃v!2

4k2v
. ~89!

When we substitute Eq.~87! into Eq.~89!, the variation with
respect toc, ]^ f̃ &/]c50, yields the condition forc as
14451
e
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K 2
v

12t2 1vQ21
~“̃v!2

4k2v
L

52K t2

12t2

v

A12~11c!v~12t4!
L . ~90!

Condition ~90! is not convenient for the numerical trea
ment. When the starting value of the wave function is re
sonable, or after a few iteration steps~a!,~b!,~a!,~b!, the cor-
rection c will be small, c!1, so that the linear
approximation of Eq.~90! is sufficient,

c52
2^s2v1vQ21g&

t2~11t2!^v2
†12v~12t4!‡2 3/2 &

. ~91!

As a third iteration step~c! we may thus use Eq.~87! with
c given by Eq.~91!. The iteration procedure we use star
from a preliminary adjustment of the wave function by a fe
steps,~a!,~c!,~a!,~c!, . . . , putting bK[0. After that the full
iteration scheme~a!,~c!,~b!,~a!,~c!,~b!, . . . isapplied yielding
all Fourier coefficientsaK,bK .

E. Magnetic properties

In Figs. 1–4 we present some numerical results to ill
trate the properties of the Bardeen equations. As one can
from the dimensionless Eqs.~74! and ~75!, the behavior of
the system is determined by a single material parameter,
GL parameterk. We assume niobium doped with nonma
netic impurities of a density giving the GL parameterk0
51.5.

Figure 1 shows a fishnet plot of the condensate den
ns(x,y)/n5(12t4)v(x,y) for temperature t5T/Tc50.5
and the mean magnetic fieldB̄50.5Bc2. The dips inns cor-

FIG. 1. The condensate density@plotted asv(x,y)] in the trian-

gular lattice for temperaturet50.5, magnetic inductionB̄/Bc2

50.5, and GL parameterk051.5. In the vortex centers the conde
sate densityns(x,y)/n5(12t4)v(x,y) goes to zero. Between th
vorticesv(x,y) approaches its equilibrium value 1~which would
be constant in the absence of a magnetic field! yielding ns

eq/n51
2t450.94.
1-10
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ELECTROSTATIC POTENTIAL IN A SUPERCONDUCTOR PHYSICAL REVIEW B65 144511
respond to the nodes of the wave functionc located at the
vortex centers. The condensate density reaches its maxim
between the vortices.

Note that the condensate density is smaller than its n
magnetic value,ns

05n(12T4/Tc
4), also on the borders of th

elementary cells where the current is zero. This shows
nonlocal effects given by gradient corrections, e.g., the s
ond term of Eq.~63!, are important not only at the vorte
core but also between the vortices.

A complementary picture offers the plot of the magne
field B presented in Fig. 2. The magnetic field reaches
maximum value,Bmax, at the vortex centers. This maximu
field is very close to but slightly higher than the applied fie
Ba because the superconductor tries to expel the magn
field and compresses it into vortices. The magnetic pres
on the condensate is one of the forces balanced by the
tric field.

The temperature dependence of the condensate de
ns(x,y)/n5(12t4)v(x,y) is shown in Fig. 3. As one ex

FIG. 2. The magnetic field in units of the upper critical fieldBc2

for t50.5, B̄/Bc250.5, andk051.5 as in Fig. 1.B(x,y) reaches its
maximumBmax at the vortex centers.

FIG. 3. Profiles of the condensate densityn(x,y) at various

temperatures forB̄/Bc250.5 andk051.5. The solid lines show cut
along thex axis and the dashed lines along they axis.
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pects, the density of the condensate decreases as the tem
ture approaches the critical value,t→1. The dominant part
of this decrease can be attributed to the reduced fractio
the condensate expressed by the factor (12t4). We have
numerically checked that near the critical temperature
condensate density results identical to the solution of
standard GL theory.

In Fig. 4, the density of the condensate is normalized
its value in absence of the magnetic field,ns(x,y)/ns

0

5v(x,y). The suppression ofv(x,y) in the region between
the vortices is completely due to the magnetic field. One
see that at lower temperatures the condensate is less
pressed than it would result from the GL theory, where
latter one is equal to the curve att50.99. This follows from
the fact that the condensation energyFs increases with the
condensate density slower than the quadratic function of
GL theory.

F. Virial theorem

In the above treatment, the magnetic field was speci
by the mean valueB̄ of the magnetic induction in the sample
Macroscopic magnetic properties of the system, however,
given by the magnetizationM. Let us link these two quanti-
ties.

For simplicity we assume that the sample is an infin
cylinder in the direction of the applied field. In this longitu
dinal geometry one hasB̄5Ba1M . Since the nonlocal terms
of the free energy are terminated at the second-order de
tives ~the term called kinetic energy!, we can conveniently
use the virial theorem derived by Doria, Gubernatis, a
Rainer38 and generalized by Klein and Po¨ttinger,39 to evalu-
ate the applied magnetic fieldBa .

The idea of the virial theorem is as follows. Let us intr
duce a parameteri that scales coordinatesx andy. With this
scaling one can generate a new wave functionv8(r )
5v(ir ). Since the mean magnetic field is given by the de

FIG. 4. Profiles of the reduced condensate densityv(x,y) at

various temperaturest5T/Tc for B̄/Bc250.5 andk051.5 as in Fig.
3.
1-11
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sity of vortices, it scales asB̄8(r )5i22B̄(ir ). We rescale all
magnetic fields withi22 except for the applied fieldBa that
is an external parameter.

From B5“3A one can see that the vector potent
scales asA8(r )5i21A(ir ), i.e., in the same way as a grad
ent. Accordingly, the density of kinetic energy scales w
i22. The mean value of free energy corresponding to the n
wave function reads

^ f 8&5K 2
v

12t2 2
t2A12v~12t4!

~12t2!~12t4!
L

1i22K vQ21
~“̃v!2

4kv
L 1^~i22

“̃3Q2ba!2&.

~92!

The condensation energy~the first term! is independent of
the scaling. The kinetic energy~the second term! scales with
i22. The magnetic energy~the third term! has three contri-
butions: ^b2&5^(“3Q)2&, which scales withi24; 22b̄ba

522^(“3Q)ba&, which scales withi22; andba
2 , which is

independent of the scaling.
Since the scaling deforms the wave function and the

ternal magnetic field from their equilibrium values, the fr
energy^ f 8& is greater than the free energy^ f̃ &. For i51 the
free energy^ f 8& reaches its minimum being equal to^ f̃ &.
This minimum is given by a variation with respect toi,

]

]i
^ f 8&ui5150. ~93!

Condition ~93! in the explicit form

2b̄ba5K vQ21
~“̃v!2

4kv
L 12^~¹3Q!2&, ~94!

is called the virial theorem. Sinceb̄, v, andQ are known,
the virial theorem~94! provides us with the value of th
applied magnetic fieldba without having to take the deriva
tive of the computed free energy.

A convenient form of the virial theorem valid only for th
Bardeen equations makes use of the Schro¨dinger equation
~74! from which follows

K vQ21
~¹v!2

4kv L 5^v2s&, ~95!

with s from Eq. ~83!. The applied magnetic field then read

ba5
^2b21v2s&

2b̄
. ~96!

The magnetization2M5Ba2B̄ as a function of the ap
plied magnetic fieldBa is shown in Fig. 5 for different tem-
peratures. At temperatures close toTc the magnetization fol-
lows the line well known from the GL theory. Below th
lower critical field Bc1 the system is in the Meissner sta
14451
l
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and 2M5Ba . Above Bc1 the magnetization decreases a
linearly vanishes atBc2 where the system undergoes a tra
sition into the normal state.

At very low temperatures, the magnetization is deform
into an S shape. The slope of the decrease,]M /]Ba , close to
Bc2 increases with decreasing temperature and at a ce
temperatureTa becomes infinite. BelowTa , the magnetic
behavior of the system achieves an anomal feature. As
magnetic field is lowered from some high value, the syst
undergoes a first-order transition from zero to a finite m
netization at a field that is aboveBc2. Since the free energy
of the system with finite magnetization is lower than the fr
energy of the normal state, the system jumps to a finite m
netization as soon as the applied magnetic field allows
such solution.

Such anomalous magnetic transition has been observe
Ehrat and Rinderer40,41 for lead doped with niobium. In spite
of this experimental result we believe that the first-ord
transition seen in Fig. 5 is an artifact of the Bardeen appro
mation. Indeed, detailed theoretical discussions42–44 of this
anomalous behavior point to the important role of scatter
on impurities. This mechanism is absent in the Bardeen
proximation.

The temperatureTa can be determined from the Bardee
equations. Close to the critical fieldBc2 the density of con-
densate is small and one can expand the effective pote
~50! into the GL form~51! with coefficients

a5
g

2n
~T22Tc

2!, b5
gT2

2n2 . ~97!

For these asymptotic values one can introduce an asymp
GL parameter,30

kas5A m2b

2m0\2e2. ~98!

FIG. 5. The magnetization2M5Ba2B̄ as a function of the
applied magnetic fieldBa in units of the upper critical fieldBc2 at
temperaturest50.999, 0.85, 0.7, 0.5, 0.3 fork051.5.
1-12
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As one can see from Eq.~97!, this asymptotic GL paramete
decreases with the temperature,

kas5k0t. ~99!

The transition temperatureTa appears when the asymptot
GL parameter equals to 1/A2, i.e.,

Ta5
Tc

A2k0

. ~100!

For k051.5 one findsTa50.47Tc . We expect that one
should be cautious about results of the Bardeen equat
below Ta .

Let us return to features related to the electrostatic forc
As mentioned above, in the vortex core the magnetic fi
B(x,y) is compressed and thus exceeds the value of the
plied field Ba . In Fig. 6 we compare the applied field wit
the fieldBmax in the center of the vortex. For all temperatur
the compression is stronger at lower magnetic fields.

VI. ELECTROSTATIC POTENTIAL AND CHARGE
IN THE ABRIKOSOV LATTICE

The electrostatic potentialw together with the Sorokin
thermodynamic potentialws control the motion of Coope
pairs. Indeed, the total effective potential acting on the C
per pairs isx5e* w12ws . The separation of the effectiv
potentialx into its electrostatic and thermodynamic comp
nents sheds a light on the role of the electrostatic potentia
the Schro¨dinger equation~18! or ~46!.

FIG. 6. The applied fieldBa ~solid lines with dots! and
the field Bmax in the vortex center~solid lines with crosses!

plotted versus the inductionB̄ for k051.5 at temperaturest
50.999,0.85,0.7,0.5,0.3 as in Fig. 5. For clarity, each line pair
the next temperature is shifted up by 0.2. The dashed lines ind

the large-k limit Ba5B̄.
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A. Electrostatic potential

The electrostatic potential in the vortex lattice is given
the screened Poisson equation~59!. For simplicity we ne-
glect the screening, puttinglTF

2 ¹2ew50. This approxima-
tion is justified below.

To be compatible with the above notation, we define
dimensionless electrostatic potential,

f5
en

1
4 gTc

2~12t2!~12t4!
w. ~101!

With the screening neglected one finds from Eq.~59!,

f5s2v1C1v1C2A12~12t4!v, ~102!

with temperature-dependent factors

C15
1

12t2

] ln «con

] ln n
, ~103!

and

C25
1

12t2

] ln g

] ln n
. ~104!

The terms2v in Eq. ~102! corresponds toxucu2/n in Eq.
~59!. TheC1,2 terms correspond to the second and third ter
of Eq. ~59!, respectively.

Figure 7 shows a fishnet plot of the electrostatic potent
The potential reaches its minimum at the vortex centers,
it attracts electrons to vortices.

The total electrostatic potentialf is composed of three
components: the Bernoulli potentialfB5s2v, the contribu-
tion due to the condensation energyf15C1v, and the re-
duced normal-state thermoelectric potentialf2

5C2A12(12t4)v. Individual components are compared
Fig. 8.

The Bernoulli potentialfB shown in Fig. 8 is negative
Due to the quasiparticle screening, the Bernoulli poten

f
te

FIG. 7. The electrostatic potentialf(x,y), Eq. ~101!. The tem-

peraturet50.5, the magnetic fieldB̄/Bc250.5, and the GL param-
eterk051.5 are identical to the values used in Figs. 1 and 2. T
thermodynamic coefficientsC1 andC2 are specified in Table I.
1-13
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reaches zero at the center of the vortex. With respect to
center of the vortex, the forces corresponding to the B
noulli potential are repulsive inside the core while they a
attractive outside.

The potentialf1 caused by the density dependence of
condensation energy is positive. Being proportional to
density of condensate, it has a minimum at the vortex ce
where it reaches zero. For niobium this contribution is dom
nant since the coefficientC151.9 is rather large compared t
the coefficients of other contributions.

The normal-state thermodynamic potentialf2 is also
positive giving the only nonzero contribution at the vort
center. One can see thatf2 reduces the total potential since
has the maximum at the vortex core and falls outside.
coefficient C250.42 is about four times smaller thanC1,
therefore, this term cannot cancel the potentialf1.

We want to stress that even at temperaturet50.5 when
96% of electrons are in the condensate, the thermodyna
correction to the electrostatic potential cannot be neglec
This result contradicts the temperature dependence of
thermodynamic correction derived by Rickayzen,22 see Eq.
~23!. Within the hydrodynamic picture one can show that t
limit of weak currents adopted by Rickayzen is responsi
for this disagreement. In this limit, the effect of the diama
netic current on the condensate densityns vanishes asT
→0, see Eq.~68!. The temperature dependence of the th
modynamic correction merely reflects the temperature
pendence ofns8 . The limit of weak current does not apply t
the vortex core. In the center of the vortex core, the cond
sate density has to go to zero keeping the magnitude of
thermodynamic correction appreciable at any temperatur

FIG. 8. The components of the electrostatic potential in the v
tex lattice of spacinga according to Eq.~102!. The individual po-
tentials are: the total potentialf ~solid lines!, the Bernoulli poten-
tial fB5s2v ~dashed lines!, the condensation potentialf1

5C1v ~dashed-dotted lines!, and the normal thermodynamic pote
tial f25C2A12(12t4)v ~dotted lines!. The splitting of lines at
larger distances characterizes thex direction ~lower curves! or y
direction ~upper curves!. Parameters as in Fig. 7.
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B. Effective potential

To enlighten the role of the electrostatic potential in t
balance of forces in superconductors, we compare the e
tive potentialx, the electrostatic potential acting on the Co
per paire* w, and the thermodynamic potential of Sorok
2ws in Fig. 9. All these contributions are in dimensionle
units corresponding to Eq.~101!.

One can see that the electrostatic potential is not a sm
correction to the effective potential of a thermodynamic o
gin. The amplitude of the electrostatic potential is about
order of magnitude larger than the amplitude of the effect
potential x. Accordingly, the effective potentialx5e* w
12ws results from a strong compensation of the thermo
namic potential 2ws and the electrostatic potentiale* w.

C. Charge

The distribution of the charge in the vortex lattice is giv
by the Poisson equation,r52e¹2w. We introduce a dimen-
sionless charge,

r̃5
r

en
, ~105!

which measures the relative deviation of the charge den
from the crystal value. In dimensionless representation
Poisson equation reads

r̃52C3

lTF
2

lLon
2

“̃

2f, ~106!

with

C35
2D«con

n2
~12t2!~12t4!. ~107!

Figure 10 shows a fishnet plot of the charge distributio

r- FIG. 9. The effective potentialx5e* w12ws ~full lines!, the
electrostatic potential acting on the Cooper paire* w ~dashed lines!,
and the thermodynamic potential 2ws ~dash-dotted lines! for k0

51.5. Parameters and presentation as in Fig. 8.
1-14
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In the vortex core the charge is depleted, the missing ch
is distributed between vortices.

A striking feature is the very rapid change of the char
sign at the distance about 0.4 from the vortex center. W
the charge in the core is rather flat, its spatial variation
tween vortices is quite strong. This picture of the cha
distribution is just opposite to the one assumed by Kuma
Nozaki, and Matsuda10 who expected a flat charge distribu
tion between vortices. Comparing these two pictures, h
ever, one has to keep in mind that Kumagaiet al. discuss
YBCO with k;100 while Fig. 10 presents the case ofk0
51.5 in niobium.

The particular shape of the charge seen in Fig. 10 res
from the interplay between the Bernoulli potentialfB and
the potentialf1 due to the condensation energy. In Fig. 1

FIG. 10. The function2¹2f proportional to the charge densit

r(x,y). The amplitude of the dimensionless charge density isr̃

59.5310211(12t2)(12t4)2
“̃

2f. Same parameters as in Figs.
8, and 9.

FIG. 11. The components of the charge density in the nota
of Fig. 8 for same parameters. The individual charge densities
the totalr ~solid lines!, the BernoullirB ~dashed lines!, the con-
densation partr1 ~dash-dotted lines!, and the normal thermody
namic partr2 ~dotted lines!.
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we show the charge density decomposed into contributi
corresponding to individual potentials,r i}¹2f i .

The charge distributionrB corresponding to the Bernoull
potentialfB has its maximum at the center of the vortex.
Ref. 21, where only the nonlocal~quantum! Bernoulli poten-
tial has been assumed, there is a minimum of the cha
density in the center of vortex. The local maximum seen
Fig. 11 follows from the quasiparticle screening not assum
in Ref. 21.

The amplitudes of the contributionsr1 andr2 depend on
the constantsC1 andC2, which strongly depend on the ma
terial in question. For niobium one hasC151.9 and C
50.42; therefore,r1 dominates. In the Appendix one can s
that both constantsC1 andC2 are proportional to the slope
of the density of states at the Fermi level. In general, one
say that the amplitude ofr2 is smaller than the amplitude o
r1 and the two contributions have opposite signs of the
riodic parts. We note that due to the large value ofC1 and
smallC2, the total charge has a minimum in the center of t
vortex.

D. Screening and the quasineutral approximation

For niobium, the Thomas-Fermi screening length is ve
small,

lTF
2

lLon
2

52.531026~12t4!. ~108!

One can thus neglect the screening,lTF
2 lLon

22
“̃

2f!f. In-
deed, the Laplace operator in the Fourier representatio

“̃

2→K25(4p/A3)kb̄( i 21 i j 1 j 2). Sincek is of the order
of unity, b̄,1 and the number of needed Fourier compone
is also limited,i , j ,100, the screening is negligible for a
Fourier components considered.

For niobium, the factor

2D«con

n2
53.831025, ~109!

which determinesC3 in Eq. ~106!, is also very small. Simi-
larly small value can be expected for any conventional
perconductor. It leads to relative charges of the order
10210. The quasineutral approximation,g(n)'g(n0) etc., is
thus well justified when one solves for the wave function a
the vector potential.

VII. CONCLUSIONS

In this paper we have discussed the electrostatic pote
in the Abrikosov lattice of vortices. To this end we hav
derived a set of three Ginzburg-Landau equations that
clude the Maxwell equation for the vector potential, t
Schrödinger equation for the wave function, and the Poiss
equation for the electrostatic potential. These equations
termine the minimum of the free energy made of four co
ponents: the condensation energy of Gorter and Casmir;
quantum kinetic energy of Ginzburg and Landau; the m
netic free energy of Helmholtz; and the Coulomb energy.

n
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1-15



th
r
ry
ac
rd
de
G

ve
a
dy
t
la

o
tr
a

qu
st
s
on
er
b

o
n
in

e
n

ct
on

ve

te
as
m

tic
-

or
o-
n
t
a
s
th
a
e

s

d
th

in
e

ing

n

-

s
ajor
S
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The marriage of the Gorter-Casimir two-fluid model wi
the Ginzburg-Landau theory has been suggested earlie
Bardeen who has also discussed properties of this theo
different temperature limits. We have employed his appro
as it offers a very simple extension of the GL theory towa
low temperatures. As our results document, this exten
theory can be treated with standard numerical tools of the
theory.

With the electrostatic interaction included, the effecti
potential acting on the superconducting condensate is n
rally a sum of the electrostatic potential and the thermo
namic potential. One can say that the electrostatic poten
~over-!screens the thermodynamic potential leaving a re
tively small effective potential.

In spite of the very important role of the electrostatic p
tential among forces acting on the condensate, the elec
static potential can be eliminated from the Ginzburg-Land
theory so that one has to solve a set of two, not three, e
tions. This simplification is possible by two reasons. Fir
the charge modulation that corresponds to this potential, i
small on the scale of the charge density in metals that
can neglect its effect on local values of material paramet

The second reason is more fundamental. As noticed
van Vijfeijken and Staas, there is a force between the c
densate and the normal electrons. This force keeps the
mal electrons at rest, i.e., it balances the electric field hav
an equal amplitude and the opposite orientation. The forc
van Vijfeijken and Staas is an exclusive function of the co
densate density. Accordingly, one can express the ele
force or the electrostatic potential as a function of the c
densate density. In this way the electrostatic potential can
unified with the thermodynamic potential into an effecti
potential of GL type.

In the numerical treatment we have used the parame
of niobium. Our choice of this conventional material w
determined by known empirical rules needed to predict a
plitudes of the individual contributions to the electrosta
potential. We expect that otherd-band superconductors be
have similarly.

Finally, we would like to stress that the presented the
is simplified in many directions. First, it is restricted to is
tropic materials. We have omitted all features of the ba
structure except for the density of states and its slope on
Fermi level. Second, the two-fluid model of Gorter and C
simir describes only gross features of the thermodynamic
superconductors. Third, the gradient approximation of
Ginzburg-Landau theory is justified only close to the critic
temperature, at low temperatures one has to take the kin
energy of Ginzburg and Landau as anad hocapproximation.
In the future, we plan to address layered structures and u
more general form of the Gorter-Casimir model.
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APPENDIX: ESTIMATE OF MATERIAL PARAMETERS
FOR NIOBIUM

In this appendix we estimate material parameters,]g/]n
and]«con/]n, which determine the electrostatic potential
the superconductor, see Eq.~59!. To be specific we assum
niobium.

1. Coefficient ­gÕ­n

The linear coefficient of the specific heatg is linked to the
density of statesD per spin and unitary volume,

g5 2
3 p2kB

2D. ~A1!

It is advantageous to express the density derivative ofg in
terms of the energy derivative of the density of states. Us
]EF /]n51/2D we find

]g

]n
5

1

3
p2kB

2] ln D
]EF

. ~A2!

The density of statesD includes the mass renormalizatio
due to the electron-phonon interaction,45

D5D0~11l!, ~A3!

whereD0 is a bare density of states andl is the coupling
parameter. The value and the energy derivative ofD0 is pro-
vided byab initio studies of niobium.46

The value of the coupling parameterl is found compar-
ing D from the experimentalg with the theoreticalD0. The
energy derivative ofl, however, is not provided in the lit
erature. To estimate the derivative ofl we write it as a
product,

l5D0V, ~A4!

whereV is the BCS interaction.
According to trends found from the effects of impuritie

on the critical temperature and the specific heat, the m
changes ofl follow from the density of states while the BC
interactionV remains nearly constant.47 As a first approxima-
tion we thus assume

]V

]n
50 or

]V

]EF
50. ~A5!

Now we can complete the estimate of]g/]n. From Eqs.
~A3!–~A5!, it follows

]D
]EF

5~112l!
]D0

]EF
, ~A6!

therefore, relation~A2! can be expressed as

]g

]n
5

1

3
p2kB

2112l

11l

] ln D0

]EF
. ~A7!
1-16
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2. Coefficient ­«con Õ­n

The derivative of the condensation energy~30! includes
the derivative of the critical temperature. For niobium a
similar materials the critical temperature is given by the M
Millan formula,45

Tc5
uD

1.45
expF2

1.04~11l!

l2m* ~110.62l!G , ~A8!

whereuD is the Debye temperature andm* is the Coulomb
pseudopotential. From Eqs.~30! and ~A8! we express the
condensation energy as

«con5
p2

12.6
kB

2~11l!D0uD
2 expF22

1.04~11l!

l2m* ~110.62l!G .
~A9!

Experience from dilute alloys shows that the produ
D0uD

2 is nearly constant.47 We thus use as the second a
proximation,

]

]n
D0uD

2 50. ~A10!

In this approximation the derivative of the condensation
ergy is given by the derivative of the factor 11l and by the
derivative of the argument of the exponential,

]«con

]n
5«con

]

]nS 2
2.08~11l!

l2m* ~110.62l!
1 ln~11l! D .

~A11!

Again, the experience with dilute alloys shows that t
Coulomb pseudopotential is nearly constant,47 therefore, we
take as the third approximation,

]m*

]n
50. ~A12!

With approximation~A12! the density derivative of the con
densation energy becomes proportional to the derivative
the coupling parameter,

]«con

]n
5«con

]l

]nS 2.08~110.38m* !

@l2m* ~110.62l!#2 1
1

11l D .

~A13!

The density derivative of the coupling constant follow
from Eq. ~A4! and approximation~A5! as

]l

]n
5

V

2~11l!

] ln D0

]EF
. ~A14!
-
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The derivative of the condensation energy is thus prop
tional to the BCS interaction,

]«con

]n
5

«conV

~11l!2

] ln D0

]EF
S 1.04~110.38m* !~11l!

@l2m* ~110.62l!#2 1
1

2D .

~A15!

The material parameters for niobium that we have u
are listed in Table I. For convenience, we have included v
ues that can be evaluated from the above formulas, e.g.
critical temperature is given by Eq.~A8!. The logarithmic
derivative of the density of states with respect to the ene
is extracted from the figure in Ref. 46. The hole densityn has
been evaluated from the London penetration depth48

lLon
2 5

m

nse
2m0

. ~A16!

At zero temperature all holes are in the condensate,n5ns .
The listed density of holes follows fromlLon5l053.9
31028 m and the massm051.2me . This effective mass is
an estimate of values 1.12, 1.6, 1.28, and 1.22 for differ
orbits of the pure niobium.49

We assume that the properties of the material are modi
by oxygen impurities of a concentration ranging from 0
0.03. We neglect the effect of impurities on the thermod
namic parameters taking into account only their domin
effect on the London penetration depth and the GL cohere
length. In the dirty limit, the GL coherence length, defined
our model as

j25
n\2

m* g~Tc
22T2!

, ~A17!

scales with the square root of the mean-free pathl, j}Al ,
while the effective London penetration depth scales with
inverse, lLon}1/Al .29 Accordingly, the GL parameterk
5lLon /j is proportional to the inverse mean-free path,k
}1/l . One can see that the proper scaling of both charac
istic lengths is achieved by the scaling of the effective ma

m5m0

k0

kpure
, ~A18!

wherekpure is the GL parameter of the pure niobium whi
k0 is the actual value for a given concentration of impuriti
provided in Ref. 45.
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21J. Koláček, P. Lipavsky´, and E. H. Brandt, Phys. Rev. Lett.86,

312 ~2001!.
22G. Rickayzen, J. Phys. C2, 1334~1969!.
23C. J. Adkins and J. R. Waldram, Phys. Rev. Lett.21, 76 ~1968!.
24K. M. Hong, Phys. Rev. B12, 1766~1975!.
25T. Koyama, J. Phys. Soc. Jpn.70, 2102~2001!.
26J. Bardeen, inHandbuch der Physik, edited by S. Flu¨gge

~Springer-Verlag, Berlin, 1956!, Vol. XV, Sec. 28, p. 324.
27J. Bardeen, Phys. Rev.94, 554 ~1954!.
28W. L. Ginsburg and L. D. Landau, Zh. Eksp. Teor. Fiz.20, 1064

~1950!.
29M. Tinkham, Introduction to Superconductivity~McGraw-Hill,

New York, 1996!.
30J. R. Waldram,Superconductivity of Metals and Cuprates~Ar-

rowsmith, Bristol, 1996!.
31N. R. Werthamer,The Ginzburg-Landau Equations and The
14451
Extensions, in Superconductivity, edited by R. D. Parks~Marcel
Dekker, Inc., New York, 1969!, p. 321.

32D. Ter Haar,Elements of Hamiltonian Mechanics~North-Holland,
Amsterdam, 1961!.

33The free energy is a real function that depends on the com
function c and its conjugatec̄. We express absolute values a
products,ucu25c̄c, and takedc anddc̄ as independent pertur
bations, dF5(dF/dc̄)dc̄1(dF/dc)dc. Since dF/dc̄
5dF/dc, both variations vanish at the same time. The var
tional conditiondF/dc̄50 yields the Schro¨dinger equation.

34J. M. Ziman,Electrons and Phonons~Oxford University Press,
London, 1960!, Eq. ~9.11.9!.

35Equation~63! is the energy-conserving integral of motion of th
Newton-like form of the Schro¨dinger equation. This Newton
like equation itself may be found, e.g., inThe Feynman Lectures
on Physics~Ref. 36!.

36R. P. Feynman, R. B. Leighton, and M. Sand,The Feynman Lec-
tures on Physics, ~Addison-Wesley, Massachusetts, 1965!, Vol.
III, Sec. 21-8.

37E. H. Brandt, Phys. Rev. Lett.78, 2208~1997!.
38M. M. Doria, J. E. Gubernatis, and D. Rainer, Phys. Rev. B39,

9573 ~1989!.
39U. Klein and B. Po¨ttinger, Phys. Rev. B44, 7704~1991!.
40R. Ehrat and L. Rinderer, inProceedings of 11th Internationa

Conference on Low Temperature Physics, edited by J. F. Allen,
D. M. Finlayson, and D. M. McCall~St. Andrews, Scotland,
1968!.

41R. Ehrat and L. Rinderer, J. Low Temp. Phys.17, 255 ~1974!.
42G. Fisher and K. D. Usadel, Solid State Commun.9, 103 ~1971!.
43A. E. Jacobs, Phys. Rev. Lett.26, 629 ~1971!.
44A. E. Jacobs, Phys. Rev. B4, 3022~1971!.
45C. C. Koch, J. O. Scarbrough, and D. M. Kroeger, Phys. Rev. B9,

888 ~1974!.
46N. Elyashar and D. D. Koelling, Phys. Rev. B15, 3620~1977!.
47C. M. Varma and R. C. Dynes, inSuperconductivity in d- and f-

band Metals, edited by D. H. Douglass~Plenum Press, New
York, 1976!.

48C. Kittel, Introduction to Solid State Physics~Wiley, New York,
1976!.

49L. L. Boyer, D. A. Papaconstantopoulos, and B. M. Klein, Ph
Rev. B15, 3685~1977!.
1-18


