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Electrostatic potential in a superconductor
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The electrostatic potential in a superconductor is studied. To this end Bardeen’s extension of the Ginzburg-
Landau theory to low temperatures is used to derive three Ginzburg-Landau equations—the Maxwell equation
for the vector potential, the Schiimger equation for the wave function, and the Poisson equation for the
electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great
extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex
lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential
and the related charge distribution are discussed.
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[. INTRODUCTION the electric field in a type-ll superconductor in mixed state
by nuclear quadrupole resonance.
Even in equilibrium, any inhomogeneous conductor has Another consequence of the electric field in the bulk is a
internal electric fields that keep its charge distribution closecharge of the vortex core. Blattet al!! have proposed an
to local neutrality. The superconductor is not an exceptionexperiment by which the vortex charge can be accessed.
While the electrochemical potential is constant, the localSuch measurement, however, is still to be performed. It is
chemical potential varies, in general, with any gradient in thealso speculated that the vortex charge affects the motion of
system. A distinct property of the superconductor is that invortices and thus plays a role in the sign reversal of the Hall
equilibrium there can be an inhomogeneity due to the diaregime!? Since the theory of the anomalous Hall voltage is

magnetic electric current. still open, one cannot conclude about the core charge from
The electric field in a superconductor with a stationarythis effect.
current has been discussed already in 1937 by Bdppm In this paper we derive a phenomenological theory of the

the hydrodynamic description of a charged liquid, Bopp hasGinzburg-LandauGL) type that allows one to evaluate the
concluded that the inertial and Lorentz force created by thelectric field in the bulk of superconductors at low tempera-
current are balanced by the Coulomb force. The correspondures. A brief presentation of this theory has been already
ing electrostatic potential has the form of a Bernoulli published in Ref. 13. Here we present details and show how
potential? to handle numerically this theory for the Abrikosov lattice of

If the Lorentz force dominates, the Bernoulli potential canvortices. The electrostatic potential in the vortex lattice is
also be considered as Hall effect. While it was clear thashown for a selected temperature and the contribution of the
there has to be a Hall voltage that passes the Lorentz foraglectric field to forces acting on the condensate is discussed.
from electrons to the lattice, its measurements by contacts ihroughout the paper we use the language of the two-fluid
standard Hall setups did not show any. It was understoodmodel. The fluid of superconducting electrons is called con-
that by contacts one observes differences in the electradensate while electrons mean normal electrons.
chemical(not electrostaticpotential but this potential is con- In the following section we review theoretical approaches
stant in equilibrium. to the electric field. In Sec. 1ll A we introduce the free energy

With the aim to distinguish the electrostatic potential fromthat includes the condensation energy of Gorter and Casimir,
the electrochemical one, as late as 1968, Bok and Kleinthe kinetic energy of Ginzburg and Landau, and the standard
have used the Kelvin capacitive coupling proposed by Bluntelectromagnetic energy. Section Il B presents the essential
and have observed first the Bernoulli potential on the surfacpart of our approach. We use the variational principle to de-
of a superconductor. Similar measurements have been paive three GL equations: the Maxwell equation for the mag-
formed by Brown and Morris® or more recently by Chiang netic field, the Schidinger equation for the wave function,
and Shevchenkb?® and the Poisson equation for the electrostatic potential in the

Even a perfect surface establishes itself a very strong désulk of superconductors. In Sec. IV, the hydrodynamic pic-
fect that essentially modifies the electric fi€ltl.is desirable ture is used to link the presented theory with the former
to observe the internal electric field directly in the bulk of aapproaches reviewed in Sec. Il. In Sec. V we discuss mag-
superconductor. A new experiment in this direction has beenetic properties of the Abrikosov vortex lattice as a function
performed recently by Kumagai all° who have measured of the temperature. In Sec. VI we compare the electrostatic
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otential with other potentials acting on the condensate. We L 102
glso present the chffrge distributiongand show that its ampli- Mv=e(E+VxB)+V(eptzmos). 2
tude is very small, which allows one to employ a convenienfThis equation can be compared with the Newton equdfpn
quasineutral approximation. Section VII presents the conclugiving the electrostatic potential as
sions. In the Appendix we estimate the material parameters
for niobium using the McMillan formula and empirical rules Vep=F—Vimv2. (6)
established from chemical trends.

2. Bernoulli potential

Il HISTORICAL REVIEW London assumed that the motion of the condensate is con-

The electric field in superconductors has been studiedrolled by the Lorentz force only. In this approximation, there
since the discovery of superconductivity. Accordingly, vari-is no additional force
ous approaches to this problem can be found in the literature.
We will briefly remind the progress in this field made mainly Fs=0. (7)

in late 1960's and early 1970's. From Eq.(6), thus follows the electrostatic potential of the

_ ) Bernoulli type
A. Bernoulli potential

The Bernoulli potential for superconductors has been first ep=—3mv’. 8
derived by Bopp. Here we follow the later approach of
London? The condensate has to obey two equations of mo- 3. Quasiparticle screening
tion. First, it is the London condition, In 1964 van Vijfeijken and Stadshave extended the Ber-

noulli potential to finite temperatures using the two-fluid
model. When flowing, normal electrons dissipate energy.
Therefore, in the stationary case they have to stay at rest in
spite of the presence of an electric field. These authors have
introduced an unspecified force

mv=—eA, (1

wherev is the local velocity of the condensate afds the
vector potential. Second, it is the Newton equation

mv=e(E+VvXB)+Fs, ) F,.—eVo 9

where the first term is the Lorentz force with the electric field

E=—0A/dt—V ¢ and the magnetic fielB=V X A. The ad-
ditional forceFg has been treated by different authors within

acting on electrons to keep them at resteE=0. This
force is assumed to result from the interaction between the
electrons and the condensate. Accordingly, there has to be a

ratrsuiar:cogfiﬁgerrgo?i%%rz}(mgnc%msdensate is fully determined b reaction force~g acting on the condensate so that the Newton
y ¥aw of action and reaction is fulfilled,

the London condition, one can use the Newton equation to

determine the force acting on the condensate. Once the ad-

ditional force will be specified, this procedure allows one to

identify the electrostatic potentigl. wheren,, and ng are densities of electrons and condensate.
From Egs.(9) and(10) one finds the additional force

n,F,+nsFs=0, (10

1. Time derivative of the London condition

To bring the London condition into a form that can be F—— mqu: (11)
easily compared with the Newton equation, we take the total s Ng '
time derivatived/dt= g/ dt+ (vV), of the London condition . .
(1) and from Eq.(6) follows the electrostatic potential
. IA __hsto
mv=—e—-—e(VV)A. 3 Gp=— 1 pme (12)

The first term we express via the electric fieldgA/ot=E This is the Bernoulli potential8) reduced by the share of the

+V . For the second term we use a vector identity, which incondensate on the total densiti=n,+ns.
components reads The reduction of the Bernoulli potential has become

known as “screening by normal electrons” or “quasiparticle
V.V A= —[VXVXA]+V;V.A (4) ~ screening.” The quasiparticle screening, however, has to be
I I I . . . . .
distinguished from the Thomas-Fermi screening present in
In the first term of Eq.(4) one can recognize the Lorentz all metals including superconductors.
force,evX VX A=evXB. In the second term of Eq4) we
substitute A by the velocity from the London condition, 4. Thomas-Fermi screening

ev;ViAj=—mv;V,v;= — Vizmo?. In superconductors, the screening is the same as in normal
The time derivative of the London condition then reads metals. Starting from the time-dependent Ginzburg-Landau
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theory, Jakeman and Pikehave derived the Poisson equa- instead of the Newton equatid@®). Here we have also in-
tion for the electric field with the reduced Bernoulli potential cluded the thermodynamic potentia) neglected in Ref. 21.
as the driving term, From Eq.(18) follows directly a quantum modification of

the Bernoulli potential,
NZVZep=— 2 my? 13
ep—ATeVier L (13 1 1
e*(pz—aﬁ(—iﬁv—e*A)zw—ZWS. (19

Currents change typically on the scale of the London pen- ) ) o .
etration depth or the GL coherence length, which are muct the quasiclassical approximation, —(AV —e*A)y

larger than the Thomas-Fermi screening lenytfg. The ~ =M* V¢, this formula reduces to potentiél?) derived by
electrostatic potentiap thus can be treated in the limit of Sorokin. _
strong screeninghtg—0, and from Eq.(13) one recovers To o.bta_un th_e. actugl value of the potenua!, the wave func-
Eq. (12). tion ¢ is identified with the GL wave function and solved
from the GL equation. Accordingly, the Cooperon mass and
5. Thermodynamic potential charge,m*=2m and e* =2e, appear in the Schdinger
equation(18).

Already in 1949, Sorokitf has followed the hydrody-
namic approach of Bopp assuming an unspecified free en-

ergy, B. Thermodynamic correction

RickayzeR? proposed a thermodynamic approach to the
electric field. He assumes a quadratic dependence of the free
energy on the velocity, which limits his study to weak cur-
rents. For systems with a parabolic band, the increase of the
free energy due to the current equals the kinetic energy of the

]:S:J’ drfg, (14

responsible for the superconducting transition. Heris the
density of free energy andr denotes integration over the

cond te,
sample volume. The free energy leads to a thermodynamféon ensate
otential,
P fin=NssMu2. (20)
OFs Ifg . . .
W= = —, (15) The electrochemical potentiad,=Eg+ v\, + €, is con-
ons  dns stant in the whole system, thereforp=—1,,. Since v
which yields the additional force faf/an, the velocity variati_on of the local chen_1ica| pote_zn-
tial is vy, = dfin/oNn. Accordingly, the electrostatic potential
Fo=—Vw,. (16)  induced by the current reads
According to Eq.(6) the Bernoulli potential is modified as ang 1
e(pz—ﬁzmvz. (21)

ep=—1mv’—ws. (17)

The quasiparticle screening is one of the contributions that EXPression21) generalizes Eq(12). From the phenom-

result from the thermodynamic potential. There are alsdznPlogical density of the condensate,

other contributions that can provide information about the 4

pairing mechanism. Ng n( )
Unfortunately, London has disregarded the thermody-

namic potential in his bodkas unknown and unimportant. follows

His objection was correct at that time since the first reliable

thermodynamic potential has been derived eight years later n. 1 n.onT.1

by Bardeen, Cooper, and SchrieftéiOn the other hand, the ep=—— —mp2+4— ° - mul (23)

two-fluid free energy of Gorter and Casiffir?°known from n?2 n dinn 2

1934, could be used within Sorokin's approach to provide afrhe first term is the reduced Bernoulli potentidl2), the

least qualitative results. Our approach follows Sorokin, €Xsecond is a thermodynamic correction. According to Eq.

cept that we use an explicit thermodynamic potential of(22), the first term of Eq(23) depends on the temperature as

Gorter and Casimir and a nonlocal kinetic energy. 1-T4T# while the second one goes @4/T*. At higher

temperatures the second term dominates.

(22

6. Nonlocal corrections

As shown in Ref. 21, London’s approach can be modified 1. Bardeen-Cooper-Schrieffer estimate

towards strongly inhomogeneous systems using the 'Schro The density dependence ®f reflects the pairing mecha-
dinger equation for a Cooper pair, nism. Its magnitude can be estimated from the BCS
relation’’

1
— (—] _a* 2 * —
2m* ( ihV—e A) l/,—’_e QDlr/j_F 2WSl// 01 (18) kBTczl.l%wDe*l/DV, (24)
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TABLE |. Material parameters of pure niobium.

Critical temperaturéRef. 48 T, 95K
Debye temperaturéRef. 48 0p 275 K
Coupling parametefRef. 45 \ 0.89
Coulomb pseudopotRef. 45 w* 0.15
Coefficients of specific hedRef. 49 ¥ 719 Jm 3K ™2
Mass in pure NgRef. 49 mg 1.2m,
Hole density(Ref. 49 n 2.2x107 m3
Logarithmic derivative(Ref. 46 dIn Dyl IEE 1.1x10° J*
GL parametefRef. 45 Kpure 0.78
Density of stategA1) D 5.7x107 J Im3
Bare densit. .. (A3) Dy 3.0x10" J im3
BCS interaction(A4) Y 2.9x10° %8 Jn?
Condensation energig0) € con 1.6x10* IJm 3
Condensation energy per pair e@n/n 9.17x10°% eV
— 6
Coefficient(A7) %(ay/ﬁn)Tg 3.85<10°° eV
Coefficient(A15) 3€ gonl N 8.73x10°% eV
Coefficient ofC4 dlneon/dlnn 1.9
Coefficient ofC, dlny/dInn 0.42

whereD is the single-spin density of statesy, is the cutoff band structure have been addressed. For the sake of simplic-
frequency usually approximated by the Debye temperaturdty we discuss only the parabolic band, for which the station-
hwp~kgfp, andV is the BCS interaction. Assuming that ary BCS theory yields**
0p andV do not depend on the density, one finds
A%29InD
JinT, oD 1 JInD_ oy ee~ 75 g, "

ginn _alnn DV _alnnlnT_C' (25)

Zﬁ)Dh
Ao

(27)

Here Ag=1.7%gT, is the gap aff=0 andA is the actual
It remains to estimate the derivative of the density oflocal value of the gap.
states. For systems with a parabolic band the density of states Since the electric current locally depresses the gap,
is proportional to the Fermi momentum, kg , while the =~ =Agg+A’ with A’ec—v?, the potential(27) includes the
density of electrons isnxk?. Accordingly dInD/dInn  contribution of Bernoulli typeg=peqt ¢’ with ¢’ —v?.
~1/3. For niobium we have a very similar value As shown by Rickayzeff, ¢’ can be rearranged into the

4InDIdInn=0.32, see Table | and the Appendix. thermodynamic correction of E¢26).
With the BCS estimatd25), the electrostatic potential
(23) reads C. Aims of the present approach
1 n. n.4 6 In this paper we discuss the Ginzburg-Landau theory
egp=— _mv2(_s .l _|n_D) (26)  modified in two directions. First, following Bardeen we use
2 n n3 T its extension to low temperatures. Second, we include the

For conventional superconductoi, /T, is of the order of electrostatic potential. We focus on the bulk of superconduct-
P ¢ ors, i.e., on regions that are far from the surface on the scale

e e aper o SOecon 1 (05 Tromas.Ferm screening lenih
3'ce H . . )
For niobium the BCS formulé26) overestimates the ther- Starting from the free energy, we derive the Poisson equa

modynamic correction. The approximate factor from Eq tion along with the Maxwell eqyation for the vector poten-
(26) is (4/3)In(E/T)=4.5 while the full factor from Eq. tial, and the equation of the Schiager type for the wave

X a function. The presented theory yields nonlocal Bernoulli po-
éze?d%'(ves_ﬂ'(a InTc/9Inn)=3.0, see Eq(69) and the Ap- tential, quasiparticle screening, thermodynamic corrections,

thermoelectric field of normal metal &t=T., and Thomas-
Fermi screening.

Our approach parallels the original study of Sorokin,

Within the BCS theory, the electric field has been studiechowever, we use the explicit phenomenological free energy
by Adkins and Waldram® Rickayzer?®> and Hong?* Re-  proposed by Bardeen. It combines the GL theory with the
cently, Koyam& employed Bogoliubov-de Gennes equa- Gorter-Casimir free energy. Naturally, this theory is only ap-
tions and extended formulation of this theory to nonstationproximate. Its major advantage is its transparency and a
ary systems. In all these studies, materials with a generalimple implementation scheme.

2. BCS microscopic theory
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[ll. EXTENDED GINZBURG-LANDAU THEORY We use the isotropic effective mass for simplicity, the aniso-
tropic case will be discussed in the next paper.
In the Gorter-Casimir free energy we thus substitute the
BardeeR®?’ has extended the GL theGR7°by the use of  order parameter by
the Gorter-Casimir two-fluid mod®¥2°so as to apply to all
temperatures. We briefly recall the Gorter-Casimir model and C2lpl? 2lyl?

introduce other components of the free energy. @ n  2[y]%+n,

A. Free energy

(39

1. Condensation energy of two-fluid model 3. Electromagnetic energy

Gorter and Casimir assumed that the superconducting +pq density of free energy has four components
state is characterized by an order parametewhich is zero ’
in the normal state and unity at zero temperature. They have F=Fot Fiint Fet Fu - (36)

modified the normal-state density of free energy as _ )
The free energy; given by the volume integrdll4) of the

fs=U—ecom—3yT2/1—w. (28)  free energy density28), we shall call the condensation en-
ergy according to its most important part. The kinetic energy
Fiin is given by the GL expressiof83). The Coulomb inter-
action reads

For w =0, the free energy28) equals the normal-state free
energy consisting of the internal enertyand the entropy

term — £ yT2. Sommerfeld’sy is the linear coefficient of the

specific heat. In the superconducting state#0, two

. : ; 1 1
mechanisms are expected. First, the ordering releases the fcz—f fdrdr’— p(N)p(r'), (37)
condensation energy,,sw . Second, the ordering reduces the 2 4me r—r/|
entropy by the factoyl—w. wherep=e*| |2+ en,+ piaq is the charge density. The Cou-

In equilibrium the free energy reaches Its minimum. FTOM|5mb interaction also determines the electrostatic potential
6Fsl 6w =0fsldw =0 follows that the equilibrium value of by

the order parameter is a solution of

yT2 (= [ ar———p(r) @9
r)y= r p(r
€ oon=——. (29 4 J Aqre |p—y!
con 4\/m |r r |
At the critical temperature the ordering vanishes=0, or in its differential form by the Poisson equation
therefore, —eVip=p. (39
_1.72
econ—2YTc- (30 Finally, the Helmholtz magnetic free energy redds,
From Eq.(29) with Eq. (30) follows 1
_ - _ 2
T4 Fm jdr ZMO(B B.)<, (40
T whereB, is the applied magnetic field.

fThe total free energy is a functional of the wave function,
t%e vector potential, and thénorma) electron density
F ¢,A,n,]. The other physical quantities such Bs ¢, n,
ng, p, or w are subsidiary and have to be understood as
functions of the independent variablgs A, andn,.

N We note that much more sophisticated approximations of
w=—. (32)  the free energyFs+ Fi, have been developed from the BCS
theory and Eliashberg’s theory already in 1960’s, see, e.g.,
Ref. 31. In principle, one can start from any of these approxi-
mations. Since our prime interest is in the electrostatic po-

An electric current contributes to the free energy by thetential and the related charge distribution, we prefer to use
kinetic energy of the condensate. The kinetic energy prothe simple approximation of Bardeen.
posed by Ginzburg and Land&Usee Tinkhant® reads

which agrees with the observed temperature dependence
the condensate densit22). Accordingly, one can identify
the order parametess with the fraction of the condensate on
the total density of electrons,

2. Kinetic energy

B. Ginzburg-Landau equations of motions

1
Tkin:f dr WK—MV—G"A)MZ, (33 In equilibrium, the system stays in the state with mini-
mum free energy. Accordingly, the variations Bfwith re-
with the wave-function normalized as spect to the vector potentidl, the wave functiony, and the
electron densityn, have to vanish.
|l//|2=E- (34) During the variation procedure, the two-point functibp
2 and the one-point functionall the otherg are treated differ-
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ently. The local contributions are given by the corresponding
densitiesf [1(r),VI(r)], with F,= [drf,, and their varia-

tion is of Lagrange’s forni;

5F, ot, _of,

sl ol oVl

(41)

Here « represents the subscrigskin, andM while | stands

for A, ¢, orn,.
The variation of the Coulomb energy with respeci/tor

n, can be expressed by the variation with respect to th(?or

density of chargep that reads

S6Fc f ,
= r —_—
op(r) Ame |r—r'|

p(r’). (42

According to Eq.(38) we can abbreviate this variation as

SFc
5_p = . (43

1. Maxwell equation

The vector potentia® appears in the kinetic enerddii,
and its gradients enter the magnetic free energyB#AaVv
X A. From the condition of minimum with respect £ one
recovers the Maxwell equation,

VXVXAzﬂoj, (44)

PHYSICAL REVIEW B 65 144511

3. Diffusion of normal electrons

From the variation with respect to the electron density,
O0Flén,=0, one finds that the sum of all potentials acting on
the normal electrons has to vanish, i.e.,

5F, s
én,  dn,’

ep= (48)

This condition parallels Eq9) of van Vijfeijken and Staas.
The set of equation$44)—(48) is closed. Its particular

m is given by the condensation enerdly. Below we
evaluate derivatives of the condensation energy within the
Gorter-Casimir approximatiof28).

4. Effective potential acting on Cooper pairs

To describe the motion of the condensate given by the
effective potentialy, we have to evaluate the electrostatic
potential. This will be done in the spirit of van Vijfeijken and
Staas using the equation for normal electr¢fg).

Since e* =2e, the effective potential results from Egs.
(48) and (47) as

afs  ofg

S 49

X

The combination of the partial derivatives excludes a con-
tribution of functions that depend exclusively on the total
density,on/d||?>— 2dn/an,= 0. Accordingly, derivatives of
density-dependent material parametdss €.,,, v, andT.)

where the currenf is given by the quantum-mechanical go not contribute to the potentigl From Egs(49) and(28),

formula?®

*

j= %Re@(—mv-e*A)(//, (45)

known as the second GL equation. H@&ienotes the com-

plex conjugate ofy.

2. Schradinger equation

thus follows:

€con

yT? 1

T T T
1_
n

With the potential(50), the Schrdinger equation(46) is
identical to the extended GL equation proposed by

(50

. . 6,27
The wave functiony enters the free energy via the order Bardeer. . .
parameter, the Coulomb interaction via the charge density, Close toT., the potentialy approaches the quadratic

and the kinetic energy,;,, where also the gradients of

form of Ginzburg and Landau,

appear. The variation parallels the derivation of the first GL

equatior?® for details see Ref. 30.

The variation with respect tE leads to the equation of

the Schrdinger type®

1
W(—iﬁV—e*A)zszer:O. (46)
The effective potential
> (Fet+ Fo)=€* o+ al: (47)
= —F :e 77,
X 5|¢|2 c s ¢ (9|l//|2

covers all forces acting on Cooper pairs.

x—a+ Byl (51)
with
. YT _ VT(Z:
a=— (T—=To), B=557- (52

We note that the effective potentigldepends on the den-
sity n via y andT. In principle, one has to iterate the GL
equation together with relations for the densityin practice,
deviations of the density from its crystal value are very
small, [n+ pja/€|<n, and the approximatioen~ — py is
well justified when one solves faf andA.
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5. Poisson equation with screening

Now we rearrangé48) into the form of the Poisson equa-

PHYSICAL REVIEW B5 144511

The first term on the rhs of E¢59) is the nonlocal Ber-
noulli potential with quasiparticle screening. This can be

tion with the Thomas-Fermi screening. The variation of theseen if we multiply the GL equatiof#6) by ¢ that yields
free energy in Eq(48) reads
| |2
Y—=

(53 n

In the classical approximation of the kinetic energy,
(L/2m*) y(— 15V —e* A) 2y~ im*v?| 4|2 one finds that
the first term of Eq(59) is the screened Bernoulli potential
o = of van Vijfeijken and Staasy|¢|%/n~— (ng/n)3mv?.
an The second and third terms of E&9) are nonlinear gen-
is the Fermi energy at the normal ground state of total elecéalizations of the thermodynamic correction by Rickayzen.
tron densityn. In the presence of the electrostatic potential,NOte that the third term remains finite at the critical point,
the densityn differs from its crystal valuepy=— pia/e, by 1= Te and|y|—0, yielding the normal-state thermoelectric

1 34
the density perturbatiop/e. The Fermi energy thus depends field. , ) ,
on the charge density as The set of GL equations is closed. It consists of the Max-

well equation(44) with the current(45), the Schrdinger
equation(46) with the potential50), and the screened Pois-
son equatior(59). Deviations from the local charge neutral-
ity are given by the bare Poisson equati@g).
where E2 is the crystal value. As usual in the theory of
superconductivity, we associate the crystal Fermi energy
with the origin of the energy scaIE,2=0. o )
The density dependence of the local Fermi energy deter- Within the thermodynamic approach of Sec. Il B, the
mines the screening. The density derivative of the Fermi englectrostatic potentiap is a function of the wave functiog.

1
afs U 9 1 — ——y(—ihV—e*A)?y. (60)
R Z T2 1= 2m*n
on. on _an, sconm'-i-zyT Vi—w|.

The derivative of the internal energy,

(54)

£ g0 oF P

on e (59

IV. HYDRODYNAMIC PICTURE

ergy is the inverse density of states,

JEr 1 56
on 2D 8
Using the Poisson equatid9) to evaluate the charge from
the electrostatic potentiah=— eV?¢, one can express the
Fermi energy as
Er=—\7:Ve¢ (57)

with the Thomas-Fermi screening Iengtﬁqu €l (2De?).

By a substitution of the Fermi enerd§7) in the stability
condition for normal electron@l8), we arrive at the screened
Poisson equation,

d 1
ep— N3 Viep=— sconm-i-zyTz\/l—m . (58

an,
The right-hand-sidgrhs) of Eq. (58) is readily evaluated
from the assumption that the condensation enesgy and
the Sommerfeldy depend only on the total density
=2|y|?+n,, and from the explicit form of the order param-
eter,w =2| |/ (2| |2+ n,), giving

%_‘_‘%%on 2| ‘MZ

2 2 _
—\2_V =
ep—AeViep=x— N

T2 9 2| ]?
v [y 2®

2 n (59

In the language of Jakeman and Pike, the Poisson equation

(59) is called third GL equation.

This contrasts with the original derivations of the Bernoulli
potential expressed in terms of the condensate velocily
make the link with the original approaches mentioned in Sec.
I, in this section we reformulate the above thermodynamic
theory in the hydrodynamic picture.

The hydrodynamic picture is readily obtained writing the
wave function in terms of the condensate deng&)) and

the phase),
LAY
Y= \fz e'’. (61
A velocity defined via the curreni=enyv, then reads
1
v=—(AVO—€e*A). (62

m

A. Sorokin’s relation

In the representatiof61) the Schrdinger equation46)
reads®

1 h% 1
—mu?— — —V2ns+ep+ws=0,

2 8m\/n—s

where we have usemh* =2m and y=2e¢+ 2w, as it fol-
lows from Eq. (47). The thermodynamic potentiaks is
given by

(63

(64)
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which is equivalent to Eq.15). With the nonlocal correction Bernoulli type derived by Rickayzen includes further ap-
neglectedV2\/ns~0, Eq.(63) turns into the Sorokin result proximations, in particular, the limit of the weak electric cur-
(17). rent. We note that for systems with vortices the nonlocal

Naturally, the explicit evaluation of the electrostatic po-approach is necessary since the “classical” kinetic energy
tential within the Sorokin approach parallels the nonlocalmv?/2 diverges at the vortex center. This divergence is com-
approach presented in the preceding section. Since this apensated by the nonlocal correction so that the “quantum”
proach is quite transparent, we show this procedure in detaikinetic energy remains regular.

Relation(50) reads

V. MAGNETIC PROPERTIES OF THE ABRIKOSQOV

2
€ vT 1
eo+ W= — 00n+4_ . (65) VORTEX LATTICE
n Ng In this section we evaluate the wave function and the
1- n magnetic field for the Abrikosov vortex lattice in niobium.

Pure niobium is close to the border between type-l and
Substituting Eq(65) into the local approximation of E¢63) type-Il superconductors since its GL parameter 0.78 is

one finds only slightly above 1{2. However, the GL parameter can be
increased up to about three by impurities. For simplicity we
1 5 Econ yT? 1 neglect the effect of impurities on material parameters other
oM =T T T T (66 than the GL parametet.
1 /1_ °s As will be proven in the following section, deviations of
n the total density of electrons from its unperturbed value are

ery small,|p|<pi.:. We will neglect these deviations and
eat the material parameters in the approximation of
quasineutrality;y(n) ~ y(ng), etc. In this approximation, the
first and the second GL equations are independent of the
third GL equation. Therefore, we shall ignore the electro-

static potential and related charge deviation within this sec-
B. Rickayzen'’s result tion.

which yields the condensate density as a function of the Iocq
velocity. Provided that the profile of velocities in the system
is known, from Eqs(66) and(59) one can directly evaluate
the electrostatic potential.

Now we recover Rickayzen'’s resuf23). To this end we
have to accept identical approximations. First we neglect the A. Dimensionless notation

Thomas-Fermi screening, so that &89) reads Our approach parallels Ref. 37. In our calculations we

B s 38con+T2 Jy /—1 ne ’ shall use dimensionless quantities,
o= (8(,0 Ws) n_on 2 an n' (67)

T
t=—,
Second, Rickayzen assumes a local relation between the Te
velocity and the electrostatic potential. Accordingly, we ne-
glect the gradient correction in E@63), i.e., we use the ALonB
Sorokin approximationee +wg= — (1/2)mv?, with the help b= \/——
of which we eliminate the Sorokin potential; from Eg. MoVBcBo
(67).
Third, following Rickayzen we take the limit of weak A
currents,nmv?/2<e.,— yT?/4. Up to linear orders in the a= ==,
kinetic energy, from Eq(66) follows ns=n2+n. with NoBBo
T4 n ~ T
r_ r= (70)
Ns T4 Sconmv ' (68) ALon

so that from Eq.(67), results the electrostatic potential ~ Close to the critical temperature;~ 1, these dimensionless
=@eqt @' as variables reduce to the usual fofth.
The thermodynamical critical fiel&., the London pen-

ns 1 d&con Nn T2 9y 1 nyT? etration depth\,,, and GL parametex depend on the tem-
ep’ =~ — Smu’— vt — = mu?. t
n 2 N econ 2 dn8 85 perature as

(69

Using Eqgs.(30) and(22), one can rearrange expressi@?)
into the potential23) derived by Rickayzen. N

In summary, the result of Sorokin corresponds to the local Mon(t)= °o
approximation of the presented approach. The potential of 1-t*

Be(t)=Bo(1-t?),

144511-8
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2
k(t)=ko 1

1
Beo(t) = \2kB.=2Bgxy

Ji+t?

2

(71)

The asymptotic values of these quantities in terms of the

parameters of the Gorter-Casimir model read

[MoY

BOZTC _2 y
o= [ m

o Velnug

_mTc [Y

Ko—neh %

(72

PHYSICAL REVIEW B5 144511

nodes of the wave function in the vortex cent®dgo the
guantum velocity. In this choice one hg8 X Q) =0 so that

V><Qb=b—gdescribes the spatial modulation of the mag-
netic field due to the diamagnetic currents.

B. Fourier representation

For the periodic lattice of vortices, it is advantageous to
express all functions by Fourier series,

w(r)= >, ax(1l—coskKr), (79)
K+#0
b(r)=b+ >, bxCcoskKr. (79)
K+#0

We choose the direction of vortices along thexis. The
function b(r) is the z component of the magnetic fielol

Finally, we introduce a dimensionless amplitude of theSince the system is translationally invariant alanthe vec-

wave function and the dimensionless velocity,

o 2ly?
T h(1-t%"
1.
Q=a- V4. (73)

Our dimensionless notation is identical to Ref. 37.
The Schrdinger equatiori46) with the effective potential
(50) in the dimensionless notation reads

1.-.. (Vo)?
——2V2w+ + wQ?
2k 4w Q

=w

—1)w. (74)

t? 1
_1—t2< 1I-1-He

torsT=(x,y) andK (reciprocal lattice vectojsare two di-
mensional.

The special choicews(1—cosKr), enforces nodes of
the wave functionw(R) =0, at the positions of the vortex
centers,R=(ix;+jX5,jy,) with i,j=0,£1,+2,.... For
the triangular lattice, two of the nearest-neighbor vortices are
at R=(x4,0) and R=(x»,y,), where x;,=2x, and y,
=3 X,. The distance between vortices, is determined by
the condition that each vortex contributes to the mean mag-

netic field by one elementary quantum of flub=x,y,b
=®y=2n/k. The sums in the Fourier representation run
over nonzero discrete moment@=(27/S)(iy,,jX1+iX5).

In this choice of the Fourier expansion the mean value of the
amplitude of the wave function reads

w={(w)= >, ag. (80)
K#0

The terms on the left-hand side result from the kinetic en-
ergy, the terms on the right-hand side represent the potential. SinceQp,=Q— Q4 is periodic one may write

The Maxwell equatiori44) with the current(45) reads

—V?Qp=—0Qa— 0Q. (79
The full quantum velocity is a sum of two term@=Q,

z

~ ~ K .
Q(N=Qa(N+ X bx—sinK-T (82)
K#0

X
K

+Q,, whereQ, is any model velocity field which covers with zx K=(K,,—K,) and z is the unit vector along the

the singular contributions at vortices,

6><QA=E—<I>OER S(T—R). (76)

axis z.

C. Simple iteration scheme

Now we are ready to specify the iteration scheme for the

In our choice ofQ, appears the mean value of the magneticFourier components of the wave-function and the quantum

field in the superconductor,

E=<b)=%j dr b,

therefore, for an ideally periodic vortex lattic@, is given

(77

by the AbrikosovB,, solution®’ The sum over the two-

velocity.

The Fourier representation of Ef4) reads

4Kk*((s— 2w+ wQ?+g)CcosKr)
K2+ 2«?

ag , (82

dimensionals functions represents the contributions of thewith

144511-9
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t? 1
el e @

0""0"

(Vw)? o.a\- :0:03‘0 '77”
VIR (84)
4k‘w 3\?0'6"'
X
The Fourier representation of E(f5) reads S 044
o.2~.-~-
2({[ wb+ w(b—b)+ p]cosKr
= _ Hlabrob-b)+ploskh) oL N
K24+ o &%
with
oo Jo -05 -05

pz(VwXQﬁ:QXW— (86)

y_.
2 FIG. 1. The condensate densfplotted asw(x,y)] in the trian-
gular lattice for temperaturé=0.5, magnetic inductiorB/B,

d f he Abrik luti =0.5, and GL parametet;=1.5. In the vortex centers the conden-
and «, one starts from the AbrikosoB., solution or some ;. densityn,(x,y)/n=(1—t*) w(x,y) goes to zero. Between the

other values oby andby . In the step(a) one evaluatesk  ortices w(x,y) approaches its equilibrium value (hich would

from Eq.(82) and upgrades)(x,y) according to Eq(78). IN pe constant in the absence of a magnetic figidlding nYn=1
the step(b) one evaluateby from Eq. (85 and upgrades _i4=0.94.

b(x,y) and Q(x,y) from Egs.(79) and (81). The iteration

Within a simple iteration scheme for given valuest,ob,

schemga),(b),(a),(b), . . . then leads to the periodic solution V)2
of Egs.(74) and (75). - @ +wQ2+( )
1-t 4Kk%w
D. Accelerated iteration scheme 2
w
As shown in Ref. 37, the convergence is accelerated if the = < -1 = > . (90
amplitude of the wave function is optimized after each use of V1-(1+c)o(1-t9

Eq. (82). Here we show how to make this optimization

within the Bardeen set of equations. Condition (90) is not convenient for the numerical treat-
Assume a change of the wave functiar(x,y), which ment. When the starting valye of the wave function is rea-

maintains its shape but modifies its amplitude, sonable, or after a few iteration stef@,(b),(a),(b), the cor-

rection ¢ will be small, c<1, so that the linear
o(X,y)=(1+Cc)w(X,y), (87) approximation of Eq(90) is sufficient,

i.e., the old valuew (the right-hand sideobtained from Eg. _ 2

(82) is replaced by a new value. c=— 2As”wtwQ7¥g) ) (92)
The constant has to be found at each iteration step from 1+ 2w’ [1-w(1-tH] ¥2)

the minimum of the free energy. Since we neglect the Cou-
lomb interaction in this part of the treatment, we can also As a third iteration stefc) we may thus use E¢87) with
eliminate the internal enerdy. The free energy normalized C given by Eq.(91). The iteration procedure we use starts
as from a preliminary adjustment of the wave function by a few
steps,(a),(c),(@,(c), ..., putting bx=0. After that the full
~ fo—U+fin+ Ty iteration schemea),(c),(b),(a),(c),(b), . . . isapplied yielding
f= : (88)  all Fourier coefficientsa,by .

1
77Tt (1-t9

E. Magnetic properties

in the dimensionless representation reads In Figs. 1-4 we present some numerical results to illus-

22 1= (1=t trate the properties of the Bardeen equations. As one can see
F-__° tVl-o(l-t )+(§><Q—ba)2+wQ2 from the dimensionless Eqé74) and (75), the behavior of

1-t* (1-t?)(1—t% the system is determined by a single material parameter, the
_ GL parameterx. We assume niobium doped with nhonmag-
(Vw)? netic impurities of a density giving the GL parametej
N 89 —15

Figure 1 shows a fishnet plot of the condensate density
When we substitute E¢87) into Eq.(89), the variation with  ng(x,y)/n=(1—t*w(x,y) for temperaturet=T/T,=0.5

respect tec, &(7)/(9c=0, yields the condition foc as and the mean magnetic fieBl= 0.5B.,. The dips inng cor-
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1 T T T T T——T — T T T T

ook 1=0.1,02,
o8k b=05

o7k K0=1.5
0.6
0.5

0.4

o(x,0), ®(0.y)

0.3

-0.1 ¢ 01 02 03 04 05 06 07 08 09 1

FIG. 2. The magnetic field in units of the upper critical fiég, X, y
fort=0.5, B/B.,=0.5, andky=1.5 as in Fig. 1B(x,y) reaches its

maximumB,,, at the vortex centers.

respond to the nodes of the wave functigriocated at the 4

FIG. 4. Profiles of the reduced condensate density,y) at
various temperaturds= T/T for B/B,=0.5 andky=1.5 as in Fig.

vortex centers. The condensate density reaches its maximum

between the vortices.

Note that the condensate density is smaller than its no
magnetic valuen)=n(1—T*/T%), also on the borders of the
elementary cells where the current is zero. This shows th
nonlocal effects given by gradient corrections, e.g., the se
ond term of Eq.(63), are important not only at the vortex

core but also between the vortices.

A complementary picture offers the plot of the magnetic
field B presented in Fig. 2. The magnetic field reaches itq,[S
maximum valueB.x, at the vortex centers. This maximum
field is very close to but slightly higher than the applied field
B, because the superconductor tries to expel the magnet
field and compresses it into vortices. The magnetic pressur
on the condensate is one of the forces balanced by the eleg-,

tric field.

The temperature dependence of the condensate densi
ns(x,y)/n=(1—tHw(x,y) is shown in Fig. 3. As one ex-

ects, the density of the condensate decreases as the tempera-
rFure approaches the critical value;»1. The dominant part

of this decrease can be attributed to the reduced fraction of
dhe condensate expressed by the factor(%). We have
Sumerically checked that near the critical temperature the
condensate density results identical to the solution of the
standard GL theory.

In Fig. 4, the density of the condensate is normalized to
value in absence of the magnetic fieldy(x,y)/n2

= w(X,y). The suppression ab(x,y) in the region between

the vortices is completely due to the magnetic field. One can
Le that at lower temperatures the condensate is less sup-
Eressed than it would result from the GL theory, where the
tter one is equal to the curve tat 0.99. This follows from

Ithe fact that the condensation ener§y increases with the
ndensate density slower than the quadratic function of the
GL theory.

1 T T T T T T T T T

ool 1=0.1,0.2,...0.9,0.99
ogl b=0.5

| K0=1 5

ns(x,O)/n
0.99

e

X,y

-01 0 01 02 03 04 05 06 07 08 09

-] F. Virial theorem

-1 In the above treatment, the magnetic field was specified
4 by the mean valuB of the magnetic induction in the sample.

- Macroscopic magnetic properties of the system, however, are

given by the magnetizatiol. Let us link these two quanti-

n_(0,y)/n | ties.

For simplicity we assume that the sample is an infinite
cylinder in the direction of the applied field. In this longitu-

dinal geometry one ha=B,+ M. Since the nonlocal terms
_ of the free energy are terminated at the second-order deriva-
tives (the term called kinetic energgywe can conveniently
use the virial theorem derived by Doria, Gubernatis, and
Rainer® and generalized by Klein and ®inger?® to evalu-
ate the applied magnetic fiell, .

The idea of the virial theorem is as follows. Let us intro-

FIG. 3. Profiles of the condensate densitfx,y) at various duce a parametarthat scales coordinatesandy. With this
temperatures foB/B.,=0.5 andko=1.5. The solid lines show cuts Scaling one can generate a new wave functioh(r)

along thex axis and the dashed lines along thaxis.

=w(r). Since the mean magnetic field is given by the den-
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sity of vortices, it scales a8’ (r)=:¢ 2B(«r). We rescale all
magnetic fields with~2 except for the applied field, that 0.25}
is an external parameter.

From B=V XA one can see that the vector potential
scales a®\’ (r)=¢"*A(er), i.e., in the same way as a gradi- %3
ent. Accordingly, the density of kinetic energy scales with ¢
v~ 2. The mean value of free energy corresponding to the new® .|

wave function reads =
|
o[ e et o1
=\ ey
_ 0.05F
2
+L2<(1)Q2+(Vw) >+<(L2§><Q—ba)2>.
4w

0j2 Oj4 016 0j8 1
(92 B,/B,,

The condensation enerdyhe first term is independent of FIG. 5. The magnetization M=B,—B as a function of the

tflez scaling. The I,(metlc energ;hg second terjmscales W'th applied magnetic field, in units of the upper critical field, at
¢~ “. The magnetic energfthe third term has three contri- temperatures=0.999, 0.85, 0.7, 0.5, 0.3 fot,= L.5.

butions: (b?)=((V X Q)?), which scales with "%, —2bb,
= —2((VxQ)by), which scales with % andb, whichis  and —M =B, . Above B, the magnetization decreases and

independent of the scaling. . _ linearly vanishes aB., where the system undergoes a tran-
Since the scaling deforms the wave function and the insition into the normal state.

ternal magnetic field from their equilibrium values, the free At very low temperatures, the magnetization is deformed
energy(f’) is greater than the free ener@f). For.=1 the into an S shape. The slope of the decreas&/sB,, close to
free energy(f’) reaches its minimum being equal {6). B., increases with decreasing temperature and at a certain

This minimum is given by a variation with respect ¢o temperatureT, becomes infinite. Belowl,, the magnetic
behavior of the system achieves an anomal feature. As the

9 magnetic field is lowered from some high value, the system
2, (0=1=0. (93)  undergoes a first-order transition from zero to a finite mag-
netization at a field that is abo\g.,. Since the free energy
Condition(93) in the explicit form of the system with finite magnetization is lower than the free

energy of the normal state, the system jumps to a finite mag-

netization as soon as the applied magnetic field allows for
> +2((VXQ)?), (94)  such solution.

Such anomalous magnetic transition has been observed by
Ehrat and Rinderé?*'for lead doped with niobium. In spite
of this experimental result we believe that the first-order
transition seen in Fig. 5 is an artifact of the Bardeen approxi-
mation. Indeed, detailed theoretical discusst6r¥ of this
anomalous behavior point to the important role of scattering
on impurities. This mechanism is absent in the Bardeen ap-
proximation.
The temperaturd , can be determined from the Bardeen

equations. Close to the critical fieBl., the density of con-

v,.\2
2bb, = < 002+ V)

dkw

is called the virial theorem. Sinde, w, andQ are known,
the virial theorem(94) provides us with the value of the
applied magnetic fielth, without having to take the deriva-
tive of the computed free energy.

A convenient form of the virial theorem valid only for the
Bardeen equations makes use of the Sdimger equation
(74) from which follows

2
<wQ2+ (Vo) >:<w_3>, (95)  densate is small and one can expand the effective potential
Akw (50) into the GL form(51) with coefficients
with s from Eq.(83). The applied magnetic field then reads 5
_ Y re_2 T
_<2b2+a)—3> a—%(T T0), B= onZ: 97

(96)

a

2b

The magnetization- M = Ba—§ as a function of the ap-
plied magnetic fieldB, is shown in Fig. 5 for different tem-
peratures. At temperatures closeTiothe magnetization fol-

lows the line well known from the GL theory. Below the . / m’B 99)
lower critical field B.; the system is in the Meissner state as 2uohe”

For these asymptotic values one can introduce an asymptotic
GL paramete?®
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1.8+ «c’i'\\ ’"N ;"//f'ﬁ\‘
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- \ . \ \ -05 05
0 0.2 0.4 0.6 0.8 1
B/ B02 FIG. 7. The electrostatic potentidi(x,y), Eq. (101). The tem-
peraturet=0.5, the magnetic fiel@®/B.,=0.5, and the GL param-

FIG. 6. The applied fieldB, (solid lines with dots and  eterx,=1.5 are identical to the values used in Figs. 1 and 2. The
the field Bmay in the vortex center(solid lines with crossgs  thermodynamic coefficient§; andC, are specified in Table I.
plotted versus the inductiol8 for xy=1.5 at temperatures
=0.999,0.85,0.7,0.5,0.3 as in Fig. 5. For clarity, each line pair of A. Electrostatic potential
the next temperature is shifted up by 0.2. The dashed lines indicate

the largex limit Ba=§.

The electrostatic potential in the vortex lattice is given by

the screened Poisson equatid®). For simplicity we ne-

glect the screening, putting%FVZego:O. This approxima-

As one can see from E@97), this asymptotic GL parameter tion is justified below.

decreases with the temperature, To be compatible with the above notation, we define a
dimensionless electrostatic potential,

Ka= Kot (99 ) en 01
= .
it i FTe1-t)(1-tY
The transition temperaturé, appears when the asymptotic c
GL parameter equals to 2, i.e., With the screening neglected one finds from Esf),
p=s—w+Cio+Cryl1—(1-tHw, (102
Te
Ta= : (100  with temperature-dependent factors
V2ko
1 Jdlnecon
_ : _ Ci=—— , (103
For ko=1.5 one findsT,=0.47T.. We expect that one 1—t% dlnn
should be cautious about results of the Bardeen equations
below T,. an

Let us return to features related to the electrostatic forces.
As mentioned above, in the vortex core the magnetic field = _
B(x,y) is compressed and thus exceeds the value of the ap- 1-t“dlnn

plied fieldB,. In Fig. 6 we compare the applied field with The terms— in Eq. (102 corresponds to|#|%/n in Eq.

the f|eIdBmaX|n the center of the vortex. For all temperatures(sg) TheC; ,terms correspond to the second and third terms
the compression is stronger at lower magnetic fields. of Eq. (59), respectlvely

Figure 7 shows a fishnet plot of the electrostatic potential.
The potential reaches its minimum at the vortex centers, i.e.,
it attracts electrons to vortices.

The total electrostatic potentiab is composed of three

The electrostatic potentiap together with the Sorokin components: the Bernoulli potentiék=s— w, the contribu-
thermodynamic potentialv, control the motion of Cooper tion due to the condensation energy=C,w, and the re-
pairs. Indeed, the total effective potential acting on the Cooduced  normal-state  thermoelectric  potential,
per pairs isy=e* ¢+2w. The separation of the effective =C,\1—(1—t% w. Individual components are compared in
potential y into its electrostatic and thermodynamic compo-Fig. 8.
nents sheds a light on the role of the electrostatic potential in The Bernoulli potentiakbg shown in Fig. 8 is negative.
the Schrdinger equatior(18) or (46). Due to the quasiparticle screening, the Bernoulli potential

1 dlny (104

VI. ELECTROSTATIC POTENTIAL AND CHARGE
IN THE ABRIKOSOV LATTICE
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dimensionless potentials
[=]

4k

. x/a, yla .

X/a, y/a '

FIG. 8. The components of the electrostatic potential in the vor- 16 9. The effective potentiay=e* ¢+ 2w, (full lines), the
tex lattice of spacing according to Eq(102). The individual po-
tentials are: the total potential (solid lineg, the Bernoulli poten-
tial ¢g=s—w (dashed lings the condensation potentiaf,
=C;,w (dashed-dotted lingsand the normal thermodynamic poten-

electrostatic potential acting on the Cooper @it (dashed lines
and the thermodynamic potentiaWwg (dash-dotted linesfor &,
=1.5. Parameters and presentation as in Fig. 8.

tial ¢,=C,\1—(1—t%)w (dotted lineg. The splitting of lines at B. Effective potential
larger distances characterizes thalirection (lower curve$ or y ) ) o
direction (upper curves Parameters as in Fig. 7. To enlighten the role of the electrostatic potential in the

balance of forces in superconductors, we compare the effec-

) tive potentialy, the electrostatic potential acting on the Coo-
reaches zero at the center of the vortex. With respect to thﬁer paire* ¢, and the thermodynamic potential of Sorokin

center of the vortex, the forces corresponding to the Berpy, iy Fig. 9. All these contributions are in dimensionless

noulli potential are repulsive inside the core while they arepits corresponding to EG102).

attractive outside. One can see that the electrostatic potential is not a small
The potentiakp, caused by the density dependence of thecorrection to the effective potential of a thermodynamic ori-

condensation energy is positive. Being proportional to theyin. The amplitude of the electrostatic potential is about an

density of condensate, it has a minimum at the vortex centesrder of magnitude larger than the amplitude of the effective

where it reaches zero. For niobium this contribution is domi-potential y. Accordingly, the effective potentiajy=e* ¢

nant since the coefficiel@, = 1.9 is rather large compared to + 2w results from a strong compensation of the thermody-

the coefficients of other contributions. namic potential %4 and the electrostatic potentiaf ¢.
The normal-state thermodynamic potenti@l is also
positive giving the only nonzero contribution at the vortex C. Charge

center. One can see thas reduces the total potential since it
has the maximum at the vortex core and falls outside.
coefficient C,=0.42 is about four times smaller tha®y,
therefore, this term cannot cancel the potengial

We want to stress that even at temperaturd.5 when - P
96% of electrons are in the condensate, the thermodynamic P=en (109
correction to the electrostatic potential cannot be neglected. ) o )
This result contradicts the temperature dependence of thihich measures the relat|vg deVIa}tlon of the charge Qen5|ty
thermodynamic correction derived by RickayZérsee Eq. from the crystgl value. In dimensionless representation the
(23). Within the hydrodynamic picture one can show that theP0iSSOn equation reads
limit of weak currents adopted by Rickayzen is responsible
for this disagreement. In this limit, the effect of the diamag-
netic current on the condensate density vanishes asl
—0, see Eq(68). The temperature dependence of the ther-
modynamic correction merely reflects the temperature de?
pendence of . The limit of weak current does not apply to 2De
the vortex core. In the center of the vortex core, the conden- csz%‘(l_ﬁ)(l_t“)_ (107
sate density has to go to zero keeping the magnitude of the n
thermodynamic correction appreciable at any temperature.  Figure 10 shows a fishnet plot of the charge distribution.

It The distribution of the charge in the vortex lattice is given
%y the Poisson equatiop= — €V?¢. We introduce a dimen-
sionless charge,

p=—C3—-V2¢, (106)

ith
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we show the charge density decomposed into contributions
corresponding to individual potentials,= V?2¢; .

The charge distributiopg corresponding to the Bernoulli
potential g has its maximum at the center of the vortex. In
Ref. 21, where only the nonloc&juantum Bernoulli poten-
tial has been assumed, there is a minimum of the charge
density in the center of vortex. The local maximum seen in
Fig. 11 follows from the quasiparticle screening not assumed
in Ref. 21.

The amplitudes of the contributiong andp, depend on
the constant€, andC,, which strongly depend on the ma-
terial in question. For niobium one has;=1.9 andC
=0.42; thereforep, dominates. In the Appendix one can see
that both constant€; and C, are proportional to the slope
-05 -05 of the density of states at the Fermi level. In general, one can
say that the amplitude gf, is smaller than the amplitude of
p1 and the two contributions have opposite signs of the pe-
~ riodic parts. We note that due to the large valueCgfand
=9.5x10 *{(1-t?)(1-t%)?V?¢. Same parameters as in Figs. 7, smallC,, the total charge has a minimum in the center of the
8, and 9. vortex.

“ ""!!!l‘/‘\l\l;;\;\"'\ “‘ "t {Jﬁ{’llll

" f “

N
\\ 7‘
= .
f B
% - :

FIG. 10. The function- V2¢ proportional to the charge density
p(x,y). The amplitude of the dimensionless charge density is

In the vortex core the charge is depleted, the missing charge
is distributed between vortices.

A striking feature is the very rapid change of the charge For niobium, the Thomas-Fermi screening length is very
sign at the distance about 0.4 from the vortex center. Whilémall,
the charge in the core is rather flat, its spatial variation be- \2
tween vortices is quite strong. This picture of the charge AR 61 .4
distribution is just opposite to the one assumed by Kumagai, 7~ = 25107 3(1-1). (108
Nozaki, and Matsudd who expected a flat charge distribu-
tion between vortices. Comparing these two pictures, howOne can thus neglect the screenimé,F)\LonV ¢<¢. In-
ever, one has to keep in mind that Kumagaial. discuss deed, the Laplace operator in the Fourier representation is
YBCO with k~100 while Fig. 10 presents the case «f 62~>K2_(47T/\/—)Kg(i2+ij +j2). Sincex is of the order

=15 n niobium. f unity, b< 1 and the number of needed F t
The particular shape of the charge seen in Fig. 10 result¥ unity, and the number of needed Fourier components
IS also limited,i,j <100, the screening is negligible for all

from the interplay between the Bernoulli potentiay and Fourier components considered.
the potential¢, due to the condensation energy. In Fig. 11, urier comp S slder
For niobium, the factor

D. Screening and the quasineutral approximation

Lon

2De
n

M —3.8x1075, (109

which determine<; in Eq. (106), is also very small. Simi-
larly small value can be expected for any conventional su-
perconductor. It leads to relative charges of the order of
10" 1%, The quasineutral approximatiogp(n)~ y(n,) etc., is
thus well justified when one solves for the wave function and
the vector potential.

VII. CONCLUSIONS

In this paper we have discussed the electrostatic potential

, in the Abrikosov lattice of vortices. To this end we have
~100k=""_ . . . . ~3 derived a set of three Ginzburg-Landau equations that in-

0 02 °-4X/a /aO-G 08 1 clude the Maxwell equation for the vector potential, the

ahé Schralinger equation for the wave function, and the Poisson
FIG. 11. The components of the charge density in the notatiorequation for the electrostatic potential. These equations de-

of Fig. 8 for same parameters. The individual charge densities ar€ermine the minimum of the free energy made of four com-
the totalp (solid lineg, the Bernoullipg (dashed lings the con-  ponents: the condensation energy of Gorter and Casmir; the
densation parp; (dash-dotted lings and the normal thermody- quantum kinetic energy of Ginzburg and Landau; the mag-

namic partp, (dotted lines. netic free energy of Helmholtz; and the Coulomb energy.
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The marriage of the Gorter-Casimir two-fluid model with  APPENDIX: ESTIMATE OF MATERIAL PARAMETERS
the Ginzburg-Landau theory has been suggested earlier by FOR NIOBIUM
Bardeen who has also discussed properties of this theory at

different temperature limits. We have employed his approacl&nd de conl IN, Which determine the electrostatic potential in

as it offers a very simple extension of the GL theory towards[he superconductor, see E&9). To be specific we assume
low temperatures. As our results document, this extendef]iqpium.

theory can be treated with standard numerical tools of the GL
theory.

With the electrostatic interaction included, the effective
potential acting on the superconducting condensate is natu- The linear coefficient of the specific hegts linked to the
rally a sum of the electrostatic potential and the thermodydensity of state$ per spin and unitary volume,
namic potential. One can say that the electrostatic potential
(overjscreens the thermodynamic potential leaving a rela- y=§w2kéD. (A1)
tively small effective potential.

In spite of the very important role of the electrostatic po-It is advantageous to express the density derivative of
tential among forces acting on the condensate, the electrdéerms of the energy derivative of the density of states. Using
static potential can be eliminated from the Ginzburg-LandawWEr/dn=1/2D we find
theory so that one has to solve a set of two, not three, equa-
tions. This simplification is possible by two reasons. First, gy 1 ,,dInD
the charge modulation that corresponds to this potential, is so on 37 "B JEg (A2)
small on the scale of the charge density in metals that one
can neglect its effect on local values of material parameters. The density of state® includes the mass renormalization

The. sgcond reason is more .fundamental. As noticed by,e 1o the electron-phonon interacti®h,
van Vijfeijken and Staas, there is a force between the con-
densate and the normal electrons. This force keeps the nor-
mal electrons at rest, i.e., it balances the electric field having

an equal amplitude and the opposite orientation. The force %hereDo is a bare density of states andis the coupling

van Vijfeijken and Staas is an exclusive function of the CON-narameter. The value and the energy derivativ®gfs pro-
densate density. Accordingly, one can express the electrigyeqq byab initio studies of niobiunf®

force or the electrostatic potential as a function of the con- The value of the coupling parameteris found compar-

de_n_sate Qensity. In this way th_e electros_tat@c potential can bﬁ,]g D from the experimentay with the theoreticalD,. The
unified with the thermodynamic potential into an effective energy derivative of, however, is not provided in the lit-

potential of GL type. erature. To estimate the derivative bf we write it as a
In the numerical treatment we have used the parameterp%roduct

of niobium. Our choice of this conventional material was
determined by known empirical rules needed to predict am-
plitudes of the individual contributions to the electrostatic
potential. We expect that othekband superconductors be- \\harev is the BCS interaction.

havg similarly. . According to trends found from the effects of impurities
. Finally, we would like to stress that the presented theory,, the critical temperature and the specific heat, the major
is simplified in many directions. First, it is restricted to iso- changes of follow from the density of states while the BCS

tropic materials. We have omitted all features of the banqnieractionv remains nearly constaftAs a first approxima-
structure except for the density of states and its slope on thg, | \ve thus assume

Fermi level. Second, the two-fluid model of Gorter and Ca-
simir describes only gross features of the thermodynamics of

In this appendix we estimate material parametésgon

1. Coefficient@y/ dn

D=Dy(1+\), (A3)

A=D,V, (A4)

superconductors. Third, the gradient approximation of the ﬂ: or ﬁ:o. (A5)
Ginzburg-Landau theory is justified only close to the critical an JEr
temperature, at low temperatures one has to take the kinetic
energy of Ginzburg and Landau as @ hocapproximation. Now we can complete the estimate @f/dn. From Egs.
In the future, we plan to address layered structures and use(&3)—(A5), it follows
more general form of the Gorter-Casimir model.

IE; =(1+ 2)\){9EF, (AB)
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2. Coefficient @& con/ IN The derivative of the condensation energy is thus propor-

The derivative of the condensation enei@p) includes tional to the BCS interaction,

the derivative of the critical temperature. For niobium and
similar materials the critical temperature is given by the Mc- g, eV dINDy[1.041+0.38*)(1+\) 1

; 45 = 2
Millan formula, N (1+41)2 JEg | [A—p*(1+0.620)]° T2)
6p F{ 1.041+)\) } (A19)

Te=125%*F ~ X * (11 0.620) (A8) _ o

The material parameters for niobium that we have used
where 6, is the Debye temperature apd is the Coulomb  are |isted in Table I. For convenience, we have included val-
pseudopotential. From Eq$30) and (A8) we express the yes that can be evaluated from the above formulas, e.g., the
condensation energy as critical temperature is given by E@A8). The logarithmic

derivative of the density of states with respect to the energy

2
scon=Lk§(l+ )\)Doeéex;{ —2 1'24(1+ M } _ is extracted from the figure in Ref. 46. The hole densihas
12.6 N—p (1+O.62\)(A9) been evaluated from the London penetration d&pth
Experience from dilute alloys shows that the product N2 — m (A16)
Dob3 is nearly constarft We thus use as the second ap- Lon neeug”
proximation,
At zero temperature all holes are in the condengaten.
ip 62=0 (A10) The listed density of holes follows from ,,=Ay=3.9
gn 07D X108 m and the masmy,=1.2m,. This effective mass is

In this approximation the derivative of the condensation en-aln estimate of values 1.12, 1.6, 1.28, and 1.22 for different

> At = o orbits of the pure niobiurf®
ergy is given by the derivative of the factor and by the . . o
derivative of the argument of the exponential, We assume that the properties of the material are modified

by oxygen impurities of a concentration ranging from 0 to
98 con 9 2.081+\) 0.03. We neglect the effect of impurities on the thermody-
o~ Seonge| T 3T F(1+0.62) +In(1+N) |. namic parameters taking into account only their dominant
K ' effect on the London penetration depth and the GL coherence
(A11)
length. In the dirty limit, the GL coherence length, defined in

Again, the experience with dilute alloys shows that theour model as
Coulomb pseudopotential is nearly constdrnerefore, we
take as the third approximation, n#?2

=
m* y(Te=T%)"

(A17)
ou*
=0, (A12)

scales with the square root of the mean-free patkec 1,
With approximation(A12) the density derivative of the con- while the effective London penetration depth scales with its
densation energy becomes proportional to the derivative dhverse, Ao, 1/\1.2° Accordingly, the GL parametei
the coupling parameter, =\ on/ € is proportional to the inverse mean-free path,
«1/l. One can see that the proper scaling of both character-
‘9800“:8 @ 2.081+0.38u%) + 1 istic lengths is achieved by the scaling of the effective mass,
an non [N —u*(1+0.620)]°  1+\)°
(A13)

Ko

m=m, (A18)

The density derivative of the coupling constant follows
from Eq. (A4) and approximatiofA5) as

1
Kpure

where kp,e is the GL parameter of the pure niobium while

IN V9D, (A14) Ko is the actual value for a given concentration of impurities

an 2(1+N) JEg provided in Ref. 45,
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