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Two-dimensional superconductivity with strong spin-orbit interaction

S. K. Yip
Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

~Received 22 January 2002; published 27 March 2002!

We consider superconductivity confined at a two-dimensional interface with a strong surface spin-orbit
~Rashba! interaction. Some peculiar properties of this system are investigated. In particular, we show that an
in-plane Zeeman field can induce a supercurrent flow.
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Most superconductors have their underlying crystal str
tures and the normal states obeying inversion symmetry. T
symmetry allows the classification of superconductors1–3

into singlet and triplet pairing, and correspondingly even a
odd symmetry of the order parameter under sign chang

momentumpW→2pW , i.e., the opposite sides of the Fermi su
face. This classification has played an important role in
current understanding of superconductors and their pro
ties. Most ‘‘conventional’’ superconductors such as Nb a
Pb are singlets wave,4 oxide superconductors are likely to b
singletd wave,5 whereas superfluid3He is tripletp wave.6

When inversion symmetry is absent in the normal sta
such classification is no longer possible. The supercond
ing pairing can thus be neither singlet nor triplet,7 and the

order parameter neither even nor odd underpW →2pW . The
superconductor can, therefore, have rather peculiar phy
properties when compared with those where the abo
mentioned classification can be made. This absence of in
sion symmetry may be relevant to some known superc
ductors~see also references cited in Ref. 8!. An examination
of the list of superconductors in Table 6.1 of Ref. 9 sho
that, e.g., Mo3Al2C ~symmetryP4132), La5B2C6 ~symmetry
P4), and Mo3P ~symmetryI 4̄) are all without inversion cen
ters. Furthermore, two-dimensional (2d) surface supercon
ductivities have been induced by gate electric potentials
C60 and some molecular crystals in the field-effect-transis
geometry.10,11There is no inversion symmetry in these cas
since ‘‘up’’ and ‘‘down’’ are different due to the electric
gates, substrates, etc.

Some properties of superconductors without invers
centers have already been studied theoretically before~see
Refs. 7 and 8, and references therein!. For definiteness and
motivated by the last mentioned examples above, we h
consider, as in Refs. 7 and 8, a 2d superconductor at an
interface with no up-down symmetry. As pointed out the
one potentially important effect due to the lack of inversi
symmetry in such a geometry is the existence of a surf
spin-orbit coupling or Rashba12 term in the Hamiltonian of
the form2an̂3pW •sW . Heren̂ is the surface normal andsW are
the Pauli spin matrices. This term acts like an effective m
netic field alongn̂3pW and thus splits the spin degeneracy
the electrons at a given momentumpW . The energy difference
near the Fermi level can be large: in some systems i
known to be of order 0.1 eV~Ref. 13!, and is, therefore,
expected to be much larger than the superconducting gaD
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even for a transition temperature;100 K. Rashba splitting
of this magnitude hence is expected to have dramatic eff
on the superconducting properties in these systems. S
physical consequences due to this spin-orbit coupling te
have been considered in Refs. 7 and 8, using Green’s fu
tion approach. Gor’kov and Rashba7 calculated the spin sus
ceptibility in this system. Edelstein8 pointed out an interest
ing magnetoelectric effect, that a spin polarization can
induced by a supercurrent flow. Here we shall reconsi
these physical properties under the most probable c
where

pF
2

2m
@apF@uDu ~1!

using simple physical arguments.@HerepF is the Fermi mo-
mentum andm is the effective mass. The definition ofpF
will be made more precise below.# In addition, we give a
more complete description of the magnetoelectric effect
this system. More precisely, we shall show the existence
an inverse effect, i.e., a supercurrent can be induced by
applied Zeeman field. The relation of this effect to that p
posed by Edelstein and the possibility of its experimen
observation is discussed.

We shall then consider a two-dimensional electronic s
tem lying in the x-y plane. The one-body part of the Ham
tonian is given by

H (1)5
p2

2m
2an̂3pW •sW ~2!

with n̂5 ẑ. We shall first summarize some consequences
Eq. ~2! that we shall need below. As mentioned, the effect
the Rashba term is like a Zeeman field alongn̂3pW . The
eigenstates of this spin-dependent part of the Hamilton
thus correspond to states with spins along and opposit
this direction. We shall label these spin states byupW ,1& and
upW ,2&, respectively. The spinors for these states can be c
sen to be~by rotating those for an up and down spin b
2p/2 alongp̂),

1

A2
S 1

ieifpW
D and

1

A2
S ie2 ifpW

1 D , ~3!

wherefpW is the angle betweenp̂ and thex̂ axis in the plane.
The energy of these states at a given momentumpW are given
©2002 The American Physical Society08-1
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by ep65p2/2m7aupu. For chemical potentialm̄, the u1&
and u2& bands are filled up to Fermi momentapF6

5@(2mm̄)1m2a2#1/26ma. The velocities of the particles
aredep6 /dp5p/m7a and different for theupW ,1& and upW ,
2& particles. However, at their respective Fermi mome
the Fermi velocities vF1 and vF2 are equal and
given by @2m̄/m1a2#1/2. The density of states atm̄ for the
bands are

N6~0!5~1/2p\2!@p/~dep6 /dp!#

5~m/2p\2!$16a/@~2m̄/m!1a2#1/2%.

They differ slightly @under condition ~1!# by a relative
amount of ordera/m̄. In the absence of spin-orbit couplin
(a50) they are both given byN0(0)5m/2p\2.

Let us first consider the spin susceptibility of this syste
in the normal state. For comparison, we note that the s
susceptibilityx0 in the absence of spin-orbit interaction
isotropic and given by (m/p\2)m2, herem is the magnetic
moment. This result can be obtained by elementary con
erations, which, however, we shall summarize since we s
use this type of argument repeatedly below. Under a m
netic field B, the energy of spins aligned~antialigned! with
the field is lowered~increased! by mB. Since the density of
states ism/2p\2, the number of particles~per unit area! for
these two species are changed by6(m/2p\2)mB, respec-
tively, giving a total magnetic moment of (m/p\2)m2B and
hence the Pauli susceptibility given above.

Now we return to the case withaÞ0. Consider first a
magnetic fieldB perpendicular to the plane~along ẑ). Since
the spins are originally in the plane, there are no Zeem
energy and thus population changes for either species.
Pauli part of the spin susceptibilityx'

P , therefore, vanishes
However, there is also a Van Vleck contributionx'

V . Under

the ẑ Zeeman field, theu1& state is modified to become

u1&85u1&1
u2&^2uszu1&mB

2ap
~4!

according to perturbation theory. The expectation value
the ẑ magnetic moment is given bŷ1uszu1&5(m2B/ap)
@using the spinors in Eq.~3!#. Similar expressions apply to
u2&. A net magnetic moment is present at momentumpW if
u1& is occupied whereasu2& is not. The total magnetic mo
ment of the system is, therefore, given by

Mz
V5

1

2p\2E
pF2

pF1

dpp
m2B

ap

5
m2

2p\2

pF12pF2

a
B. ~5!

Using the expressions for pF6 , we obtain x'
V

5(m/p\2)m25x0, the same spin susceptibility in the a
sence of spin-orbit coupling.

Now consider a magnetic field in the plane, e.g., along
ŷ axis. To calculate the spin susceptibility it is convenie
for each momentump̂, to resolveBW into components paralle
and perpendicular to the momentum directionpW ~see Fig. 1!.
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a

in

d-
ll

g-

n
he

f

e
,

The former ~latter! field is perpendicular~parallel! to the
original spin direction, and can only give rise to a Van Vle
~Pauli! contribution to the net magnetic moment. On
easily finds, using arguments as in the last two paragra
the results

x i
P5@N1~0!1N2~0!#m2/25x0/2 ~6!

and

x i
V5x0/2. ~7!

The 1/2 in Eqs.~6! and ~7! are due to angular averages. W
obtain finallyx i5x i

V1x i
P5x0. Hence the spin susceptibility

is not affected at all by the Rashba term. This result has b
obtained also in Ref. 7.

Now we consider the superconducting state. We shall c
sider the case where the Cooper pairing occurs between
6pW particles from the same band, i.e., betweenupW ,1& and
u2pW ,1&, on the one hand,~see Fig. 1! and betweenupW ,2&
and u2pW ,2&, on the other. We shall also limit ourselves
the case where the energy gapsD6 may be different for the
two bands but isotropic in momentum space. That the pair
occurs only within the same band is reasonable since
assume that the energies associated with the pairingD6 are
much less than the energy separation between the two b
2apF6 for a given momentumpW nearpF6 @see Eq.~1!#. The
assumption of this pairing is consistent with that in Ref.
We shall not justify it here and shall simply consider
physical consequences. Situations whereD6 arep̂ dependent
seem also possible and the following results can be gene
ized to these cases by simple arguments.

FIG. 1. ~1! Spin directions~thick arrows! on the u1& fermi
surface at two representative~equal and opposite! momenta. These
two electrons form a pair in the superconducting state.~2! An ap-

plied magnetic fieldBW is resolved into components parallel an
perpendicular to the spin direction. Theu2& spins are not shown in
this figure.
8-2



c
ne
t t
ity
er

n
n

te
an
k
on

b

e
ai

-

er
is

e-

e
/2
ity

l

in

a
g
-
no

t
a
,
um

ion
to

rst

e

tes

to

n.
n.

e.

ted

man
k

lity.

t

r
l
cted

ed

TWO-DIMENSIONAL SUPERCONDUCTIVITY WITH . . . PHYSICAL REVIEW B65 144508
Consider now the spin susceptibility in the supercondu
ing state, first for a magnetic field perpendicular to the pla
In this case argument as in the normal state shows tha
Pauli susceptibility vanishes. The Van Vleck susceptibil
being generated by virtual processes to states with en
separations much larger thanD6 @if Eq. ~1! applies#, is little
affected. We get, therefore,x'

V(T)5x'
V(T.Tc)5x0 and

thusx'5x0 independent of the superconducting transitio
Now consider a magnetic field in the plane. For the co

tribution from the pair6pW , we argue as in the normal sta
and resolve the magnetic field into components parallel
perpendicular top̂. The former again gives only a Van Vlec
contribution unaffected by the superconducting transiti
thus the total Van Vleck susceptibilityx i

V(T)5x0/2 as in the

normal state. The field component perpendicular top̂ again
gives only a Pauli contribution, which can be evaluated
arguments as in the case of superfluid3He.6 Consider first
the u1& band. In the absence of the magnetic field the Hilb
space for6pW consists of four possible states: ground p
with energy 0, ~two! broken pair with energyEp1

5Ajp1
2 1uD1u2 @herejp1[ep12m̄ is the normal state qua

siparticle energy relative to the chemical potential# corre-
sponding to occupied~empty! upW ,1& and empty~occupied!
u2pW ,1&, and excited pair with energy 2Ep1 . Under the
magnetic field, these energies are modified to become
Ep2hp , Ep1hp , 2Ep where hp5mB cosfpW , since the
magnetic moment ofupW ,1& along the field ism cosfpW . ~We
are leaving out the1 subscripts for the moment for easi
writing.! The net magnetization along the field direction
therefore,

~m cosfpW !$exp@2~Ep2hp!/T#2exp@2~Ep1hp!/T#%/Z,
~8!

whereZ[11exp@2(Ep2hp)/T#1exp@2(Ep1hp)/T#1e22Ep /T

is the partition function. For small magnetic field, this r
duces tom2B cos2fpW(1/4T)sech2(Ep/2T). The total magneti-
zation of theu1& band is given by summing overpW , which is
the same as multiplying by12 N1(0), integrate overjp and
average overfpW . ~the 1/2 factor is to avoid counting th
same pair twice!. The angular average gives a factor of 1
We obtain the contribution to the Pauli susceptibil
m2N1(0)Y(T,D1)/4 from this band. Here Y(T,D)
[*dj(1/4T)sech2(Ep/2T) is the Yosida function. The tota
Pauli susceptibility from both bands is thusx i

P(T)
5m2@N1(0)Y(T,D1)1(1↔2)#/4. The full susceptibility
is given byx i(T)5x i

V1x i
P(T). If D15D2 , we getx i(T)

5x0(11Y(T,D))/2. The above results agree with those
Ref. 7 under the condition~1!.

Now we turn to the electromagnetic effects. We sh
show that an applied Zeeman field in the plane, say alonŷ,
can produce a supercurrent flow alongx̂ in the superconduct
ing state. To demonstrate this we shall first consider the
mal state and show that the net current vanishes due to
cancellation of two contributions that can be identified
‘‘Pauli’’ and ‘‘Van Vleck.’’ These two contributions are due
respectively, to the change in occupation and the quant
mechanical wave function of the particles as in the case
14450
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spin susceptibility. We shall then show that the cancellat
no longer holds in the superconducting state, giving rise
the mentioned net supercurrent.

Consider now a magnetic fieldB along ŷ in the normal
state. The physical situation is as shown in Fig 1. Let us fi
consider the Pauli contribution from theu1& band. Theŷ
magnetic moment of the electron atpW is given bym cosfpW .
Hence the extra number of occupied states~per unit area and
per unit angle! due to the magnetic field with momentum
nearp̂ is given byN1(0)@mB cos(fpW)#. These electrons hav
velocity vF1 along p̂. Hence the current alongx̂ is equal to
the angular average ofN1(0)(vF1mB)cos2(fpW), i.e.,
(1/4p\2)pF1(mB), using N1(0)vF15pF1/2p\2. @This
Pauli contribution is, therefore, due to the fact that sta
with px&0 are more likely to be occupied thanpx,0 under
the fieldBy .# The reverse situation applies for theu2& band.
The total ~number! current density from both bands due
these population changes is given by

Jx
P5

1

4p\2 ~pF12pF2!mBy . ~9!

The superscriptP denotes that this is the Pauli contributio
In addition to this, there is also a Van Vleck contributio
The velocity of an electron atpW , given byvW 5]e/]pW , is ac-
tually pW /m1̂1a(nW 3sW ) and thus an operator in spin spac
In particularvx5px /m2asy . Under the magnetic fieldBy ,
the u1& state is modified as in Eq.~4! with sz→sy . Hence
the expectation value ofvx is given by (p/m2a)cos(fpW)
2(mB/p)u^2usyu1&u2. The first term is the velocity of the
u1& particle in the absence ofB and its contribution to the
current was taken into account by the Pauli term evalua
before. The second term, equals2(mB/p)sin2(fpW), is
present due to the modification of the state under the Zee
field. We shall call its contribution to the current a Van Vlec
contribution analogous to the case for the spin susceptibi
A net Van Vleck contribution atpW is present only ifu1& is
occupied whereasu2& is empty. The total Van Vleck curren
is thusJx

V5 1
2 (1/2p\2)*pF2

pF1dp p(2mB/p) where the factor

1/2 arises from angular average. We hence obtain

Jx
V52

1

4p\2 ~pF12pF2!mBy ~10!

giving Jx5Jx
P1Jx

V50 in the normal state as claimed.@It can
be easily shown thatJy

P and Jy
V both vanish due to angula

average over the fermi surface.# The vanishing of the tota
current is reasonable since otherwise dissipation is expe
in the presence of disorder.

In the superconducting state the calculation ofJ is similar
to that of the susceptibility. The Van Vleck contributionJV is
unaffected, while the Pauli contribution has to be multipli
by the Yosida functions. We, therefore, get

Jx~T!52kBy , ~11!

where

k~T!5
m

4p\2 @pF1$12Y~T,D1!%2pF2$12Y~T,D2!%#.

~12!
8-3
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S. K. YIP PHYSICAL REVIEW B 65 144508
We can similarly investigate the effect pointed out
Edelstein,8 i.e., the generation of a magnetic moment by
phase gradient. Under a phase gradient“F, say alongx̂, the
Cooper pairing is no longer between6pW but rather between
pW 1qW /2 and2pW 1qW /2, whereqW 5\(“F). Let us first calcu-
late the net magnetic moment atT50. In this case the mag
netic moment is the same as that of a Fermi sphere~circle!

shifted in momentum space byqW /2. The total moment can b
found by summing over all the excess~ overqW 50) moments
over the fermi surface~s!. For theu1& particles, the numbe
of extra particles alongp̂ is given by N1(0)@e(pW 1qW /2)
2e(pW )#5N1(0)vF1q cos(fpW)/2 since the quantity betwee
the square bracket is the difference in energy between
particles on the new and old fermi surfaces. These parti
carry aŷ magnetic moment ofm cos(fpW) per particle. Hence
the totalŷ magnetic moment from theu1& band is given by
mN1(0)vF1q/4. Therefore the total contribution from th
two bands is

M y~T50!5
m

8p\2 ~pF12pF2!q. ~13!

It can be easily seen that thex̂ magnetic moment vanishe
due to angular average overp̂.

The above result, Eq.~13!, is when all electrons remaine
paired. At finite temperatures, we need to take into acco
the contribution from broken pairs. For this it is essential
note that, under the phase gradient, the energies for a br
pair with particles occupied atpW is given by EpW1vW F(pW )
•qW /2, whereEpW is the energy given before for no phase g
dient. The thermal-averaged magnetic moment for the6pW
states is given by an expression similar to Eq.~8! in the
susceptibility calculation with 2hp→vW F(pW )•qW /2
5vF1q cos(fpW)/2, giving the final result 2(m/8p\2)
3(pF1q)Y(T,D1). @This negative contribution from the
quasiparticles is, therefore physically due to the ‘‘backflow
that it is easier to thermally excite quasiparticles with m
mentum opposite to the superfluid flow. These particles h
a net magnetic moment along2 ŷ for the u1& band.# A simi-
lar expression applies for theu2& band. Combining these
with Eq. ~13!, we, therefore, have finally
14450
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M y~T!5
m

8p\2 @pF1$12Y~T,D1!%2pF2$12Y~T,D2%#q

5
k

2
qx ~14!

with k(T) already defined in Eq.~12!. ForT nearTc , we can
perform an expansion inD. @12Y→@7z(3)/4p2#(D2/Tc

2)#.
Our expression then agrees with that given by Edelste8

who investigated the effect only nearTc .
The two magnetoelectric effects above are related. T

are connected by the fact that there is a cross term in the
energy densityF(T;qx ,By) given by 2(k(T)/2)qxBy .
Equations~14! and ~11! can be reproduced by using the r
lationsM y52]F/]By andJx52]F/]qx .

Generally, the currentJx and magnetizationM y are given
by the constitutive equations,

Jx5rs

qx

2m
2kBy , ~15!

M y5
k

2
qx1x iBy , ~16!

wherers is the superfluid~number! density.
The supercurrent induced by the in plane Zeeman fi

given in Eq.~11! can be sizeable and should be experime
tally observable. The order of magnitude of the electric c
rent I at T!D for a sample of widthw induced by the mag-
netic field is given by

F I

AG51022FapF

m̄
G FB

GGF 1

l /Å GF w

cmG , ~17!

where we have defined a lengthl of order of interparticle
distance through the two-dimensional number densityn by
n5 l 22. If apF /m̄ is not too small, say;0.1, a current of
order of milliampere seems easily achievable for sample
millimeter size under a magnetic field of order 100 G ifl
;10 Å, say. Measurement of this current seems mu
easier than the induced magnetization predicted
Edelstein.8
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