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Hartree-Fock-Bogoliubov theory of a charged Bose gas at finite temperature
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We critically examine the Hartree-Fock-Bogoliubov~HFB! solution of the equations of motion for conden-
sate fluctuations in a weakly coupled plasma of charged bosons at finite temperature. Analytic expressions are
derived for the first two infrared-divergent terms in both the momentum distribution of the noncondensate and
the anomalous Bose correlation function at low momenta. Incorporation into the theory of the appropriate form
of the Hugenholtz-Pines relation for the chemical potential is needed to cancel an unphysical divergence. Exact
cancellation of infrared-divergent terms is demonstrated in the HFB shift of the single-particle excitation
energy away from the Bogoliubov value at long wavelengths, with the residual terms raising it towards the
plasma frequency at low temperature. Numerical illustrations are presented for a number of properties of the
boson plasma as functions of temperature and density in the weak-coupling regime: these are the chemical
potential, the condensate fraction, the normal and anomalous momentum distribution functions and the corre-
sponding one-body density matrices, and the dispersion relation of single-particle excitations.
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I. INTRODUCTION

The fluid of charged bosons over a uniform neutralizi
background@CBF ~charged bosons fluid!# interacting via
inverse-first-power repulsions is a model in quantum sta
tical mechanics1 having possible relevance to supercondu
tivity in layered cuprate materials2 and to the equation o
state and nuclear reactions in dense plasmas of pres
ionized helium.3 Its counterpart with inverse-first-power a
tractions can arise in systems of atoms immersed in part
lar configurations of intense off-resonant laser beams.4

The properties of the CBF at zero temperature have b
addressed in a number of theoretical studies, ranging f
the early work on the weak-coupling regime5 to treatments
based either on the use of Jastrow-Feenberg correlated
functions6 or on self-consistent accounts of correlation7

Quantum Monte Carlo calculations8 have covered the whole
range of coupling strength up to Wigner crystallization. Mo
recently, the evaluation of the condensate fraction has b
extended to finite temperature9 within the theoretical frame
provided by the Bogoliubov formalism. These theoretical
sults could only be tested against Monte Carlo data at z
temperature, showing that this most simple approach yie
almost quantitative values for the interaction-induced dep
tion of the condensate over a non-negligible range of c
pling strength.

However, the standard Bogoliubov theory can be expec
to fail with increasing temperature, as the noncondens
fraction increases. The purpose of the present work is
examine the roles of both the noncondensate and the an
lous Bose correlations in the CBF at finite temperat
within the Hartee-Fock-Bogoliubov~HFB! approximation,
with due attention to the chemical potential of the fluid
given by the Hugenholtz-Pines relation.10

It may be mentioned at this point that interest in the H
approach to boson fluids at finite temperature has been
vived in relation to developments in the study of Bos
Einstein condensed atomic gases under confinement. In
0163-1829/2002/65~14!/144507~7!/$20.00 65 1445
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context Griffin11 has critically analyzed the HFB schem
with special regard to the classification of~conserving versus
gapless! approximations given by Hohenberg and Martin12

for fluids of neutral bosons. The HFB approach has also b
used to describe the shape deformation modes of confi
atomic gases in dependence of temperature.13

In his work Griffin11 has emphasized that the problem
determining the excitation spectrum of a Bose-conden
fluid is difficult because of the need to satisfy several diff
ent constraints. In particular, in an explicit treatment of
Bose gas of neutral particles with contact interactions, he
stressed that the HFB value for the chemical potential v
lates the exact Hugenholtz-Pines expression for this quan
and that the predicted excitation spectrum violates the g
lessness requirement. Proportionality between the sin
particle and the collective sound-wave excitation spectra
the neutral fluid at long wavelengths can be understood fr
the argument developed by Gavoret and Nozie`res.14 The
long-range nature of the Coulomb interactions in the C
affects these properties and emphasizes the shortcomin
the HFB approach. Because of the plasmon gap in the
lective excitation spectrum at long wavelengths, one expe
the same gap in the single-particle spectrum, atT50.5,15 As
we shall see, the violation of the Hugenholtz-Pines relatio
associated in the CBF to infrared divergences and requ
ad hocmending. Analytical results can then be derived in t
long-wavelength~low-momentum! region, extending exac
results previously obtained15 from sum-rule arguments a
zero temperature. The modified HFB approach, incorpora
the Hugenholtz-Pines value of the chemical potential,
amenable to numerical evaluation and, in particular, displ
the expected gap in the single-particle spectrum of the C
at low temperature, though a discrepancy from the value
the plasmon gap remains.

In brief, the plan of the paper is as follows. Section
collects for convenience the main standard equations of
HFB approach and presents their modification that we p
pose for a Bose plasma in order to incorporate
©2002 The American Physical Society07-1
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Hugenholtz-Pines relation. A further subsection presents
analytical results for the long-wavelength region and our
merical results for the limiting value of the excitation ener
as a function of temperature in the same region. Vari
other numerical results are presented in Sec. III, while S
IV gives a brief summary and our conclusions.

II. THE HFB APPROACH TO A BOSON PLASMA

As is well known,16 the ideal Bose gas starts undergoi
Bose-Einstein condensation at a critical temperatureT0
53.31(\2n2/3/mkB), wheren is the particle number densit
andm the particle mass. The condensate densityn0 increases
with decreasing temperature, to become equal to the t
densityn in the ideal gas at zero temperature. The role of
interactions is to depress the condensate fraction and to
the critical temperatureTc away fromT0. Within the HFB
approach this shift is a coupling-strength-dependent incre
in the present case of Coulomb repulsions.

The CBF is described by the Hamiltonian

H5E drc†~r !S 2
\2

2m
¹22m Dc~r !

1
1

2E E drdr 8c†~r 8!c†~r !V~ ur2r 8u!c~r 8!c~r !,

~1!

wherec(r ) is the bosonic field operator,m is the chemical
potential, andV(r ) is the Coulomb interaction potential. Th
average potential felt by each particle vanishes becaus
the presence of the neutralizing background: that is, in
calculations reported below we take the Fourier transform
V(r ) as Vk54pe2/k2 with Vk50 set equal to zero.17 The
coupling strength is measured by the dimensionless par
eter r s , defined byr saB5(4pn/3)21/3 with aB as the Bohr
radius.

The HFB approach is based on the equation of motion
the field operator and adopts a decoupling procedure in o
to linearize it and solve it. The Bogoliubov prescription sta
by separating out the condensate part from the field oper
c(r ) by settingc(r )5c0â01f̂(r ), whereâ0 and f̂(r ) are
the field operators for the condensate and for the cloud
particles promoted out of the condensate. Here,c05^c(r )&
is the condensate wave function, given by the ensemble
erage ofc(r ) in the symmetry-broken state. In the homog
neous gas we take the condensate wave function as uni
in space and time, and for the sake of simplicity we a
assume that it is real.

The equation of motion obeyed by the Heisenberg fi
operator is17

i\
]c~r ,t !

]t
5S 2

\2

2m
¹22m Dc~r !

1E dr 8c†~r 8,t !c~r 8,t !c~r ,t !V~ ur2r 8u!.

~2!
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Following a standard procedure, we use the Bogoliubov p
scription in Eq.~2! to derive the equation of motion for th
fluctuation operatorf̂(r ).

In the HFB scheme the following ‘‘mean-field’’ approxi
mation is adopted,11

f̂†~r 8,t !f̂~r ,t !>^f̂†~r 8,t !f̂~r ,t !&[ñ~ ur2r 8u,t !

f̂~r 8,t !f̂~r ,t !>^f̂~r 8,t !f̂~r ,t !&[m̃~ ur2r 8u,t !%, ~3!

where we have introduced the normal and the anoma
density matrix ñ and m̃. The three-point kerne
f̂†(r 8,t)f̂(r 8,t)f̂(r ,t) is approximated as

f̂†~r 8,t !f̂~r 8,t !f̂~r ,t !>^f̂†~r 8,t !f̂~r 8,t !&f̂~r ,t !

1ñ~ ur2r 8u,t !f̂~r 8,t !

1m̃~ ur2r 8u,t !f̂†~r 8,t !. ~4!

The equation of motion for the fluctuation operator in t
HFB approximation then reads

i\
]f̂~r ,t !

]t
5S 2

\2

2m
¹22m D f̂~r ,t !

1E dr 8$@n01ñ~ ur2r 8u,t !#f̂~r 8,t !

1@n01m̃~ ur2r 8u,t !#f̂†~r 8,t !%V~ ur2r 8u!.

~5!

By taking the average of Eq.~2! and using the approxima
tions set out in Eqs.~3! and ~4!, we also obtain the expres
sion for the chemical potential in the HFB approximation

mHFB5E dr 8@ ñ~ ur2r 8u,t !1m̃~ ur2r 8u,t !#V~ ur2r 8u!.

~6!

The condition of charge neutrality has been used in deriv
Eqs.~5! and ~6! by settingVk5050, as already remarked.

The solution of Eq.~5! is achieved by means of a norma
mode expansion for the fluctuation operator,

f̂~r ,t !5(
j

@uj~r !exp~2 iE j t/\!â j1v j* ~r !exp~ iE j t/\!â j
†#.

~7!

This leads to a set of Bogoliubov–de Gennes equatio
which can be diagonalized in Fourier transform to obtain
expression for the HFB spectrum of single-particle exci
tions,

Ek5A@«k1I n~k!#22I m~k!2 ~8!

and for the HFB mode amplitudes,
7-2
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uk
25

1

2
$11@«k1I n~k!#/Ek%

vk
25

1

2
$211@«k1I n~k!#/Ek%

6 . ~9!

In these equations«k5(\2k2/2m)2m and the self-energie
$I n(k),I m(k)% are to be determined self-consistently wi
Eqs.~8! and ~9! according to

$I n~k!,I m~k!%5n0Vk1 (
qÞ0

Vuq2ku$n~q!,m~q!%. ~10!

Here

n~q!5vq
21 f q~uq

21vq
2!

m~q!5uqvq~2 f q11!
J ~11!

with f q5@exp(Eq /kBT)21#21 are the Fourier transform of th
normal and the anomalous density matrix. Evidently,n(q) is
the momentum distribution of the Bose fluid. Thus, the co
densate fraction is given by

n05n2 (
qÞ0

@vq
21 f q~uq

21vq
2!#. ~12!

Finally, the normal and anomalous one-body density ma
ces are given by

n~r !5n01 (
qÞ0

@vq
21 f q~uq

21vq
2!#exp~ iq•r !

m~r !5n01 (
qÞ0

@uqvq~2 f q11!#exp~ iq•r ! 6 . ~13!

Equations~8!–~10! reduce to the standard Bogoliubov a
proximation~see, e.g., Ref. 9! when the contributions com
ing from the density matricesn(q) andm(q) are omitted. In
the same approximation the chemical potential can be se
zero. In the HFB approximation, however, Eq.~6! for the
chemical potential of the CBF is plagued by an infrared
vergence~see below!.

We overcome this difficulty in the present case of a Bo
plasma by recourse to the exact expression given for
chemical potential by the Hugenholtz-Pines relation. T
states that

m5S11~q50,v50!2S12~q50,v50!, ~14!

whereS i j (q,v) is the 232 matrix for the self-energies of
Bose-condensed gas.12 We then replace the divergent expre
sion in Eq.~6! by the expression

mHP5E dr 8@ ñ~ ur2r 8u,t !2m̃~ ur2r 8u,t !#V~ ur2r 8u!

5 (
qÞ0

Vq@n~q!2m~q!#. ~15!
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Equation~15! follows from Eq. ~14! by using the HFB ex-
pression for the self-energies given in Eq.~10!, together with
the requirement of charge neutrality that suppresses thq
50 term in the sum.

Equations~8!–~11! are well behaved when one adopts t
expression in Eq.~15! for the chemical potential. Their solu
tion will be presented in Sec. III below. However, befo
proceeding to numerical calculations we need to evalu
analytically the long-wavelength behavior of the CBF in t
HFB approach.

A. Long-wavelength behaviors

The following asymptotic expressions will be demo
strated below to hold at low momenta for the CBF at te
peratureT>0 in the HFB approximation:

lim
k→0

@ I n~k!5I m~k!#5
4pe2n0

k2
1

~4pe2!2n0

16E0k
~2 f 011!,

~16!

where we have introduced the notationsE05Ek50 and f 0
5 f k50. The infrared divergence in the HFB expression f
the chemical potential in Eq.~6!, and the cancellation of the
divergence at both leading and subleading order in Eq.~15!
from the Hugenholtz-Pines relation, are immediately evide

The corresponding asymptotic expressions for the nor
and anomalous distribution are obtained from Eqs.~9!–~11!,
which yield

lim
k→0

@n~k!5m~k!#5~2 f 011! lim
k→0

@ I n~k!/2Ek#. ~17!

The result is

lim
k→0

@n~k!5m~k!#5~2 f 011!F4pe2n0

2E0k2

1
~4pe2!2n0

32E0
2k

~2 f 011!G . ~18!

This asymptotic expression forn(k) reduces atT50 to the
exact result obtained by sum-rule arguments in Ref. 15, p
vided that the energyE0 coincides with the plasma frequenc
vp5A4pne2/m. We present at the end of this section a c
culation ofE0 in the HFB approach and compare the res
with the plasma frequency.

To demonstrate the results given above in Eqs.~16! and
~18!, we examine the HFB expressions for the self-energ
$I n(k),I m(k)% in Eq. ~10!. The integral on the RHS of this
equation is easily shown not to contribute at orderk22, so
that the leading-order term in Eq.~16! is immediately estab-
lished. The leading-order term in Eq.~18! follows from Eq.
~17!.

With the leading-order expression forn(k) andm(k) we
can now return to the evaluation of the integral on the R
of Eq. ~10! and determine the subleading term in Eq.~16!.
For the quantityI n(k) we write
7-3
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(
qÞ0

Vuk2qun~q!54pe2(
qÞ0

1

k222k•q1q2
@n~q!2 lim

q→0
n~q!#

1
~4pe2!2n0

2E0
~2 f 011!

3 (
qÞ0

1

q2~k222k•q1q2!
. ~19!

The value of the second integral on the RHS of Eq.~19! is
1/(8k), while the first integral does not contribute to th
order.18 With an identical argument forI m(k) the subleading-
order terms in Eq.~16!, and hence in Eq.~18!, are thus es-
tablished.

We turn next to the evaluation of the energyE0 from Eq.
~8! in the long-wavelength limit. We get

E0 /\5S 4pe2n0

m D 1/2

lim
k→0

H 11
2m

\2k2
@ I n~k!2I m~k!2m#J 1/2

.

~20!

We also have from Eqs.~10! and ~14! that

lim
k→0

@ I n~k!2I m~k!2m#5
1

3
k2(

qÞ0
q22Vq@n~q!2m~q!#,

~21!

where according to Eq.~11! we have

n~q!2m~q!52
1

2
1

\2q2

4mEq
~2 f q11! ~22!

so that

lim
q→0

@n~q!2m~q!#52
1

2
. ~23!

We can thus write the final expression forE0 in a form that
is suitable for numerical calculation,

E0 /\5S 4pe2n0

m D 1/2H 11
2m

3\2 (
qÞ0

q22Vq

3Fn~q!2m~q!1
1

2G J 1/2

. ~24!

This expression shows that the value ofE0 is finite, as im-
plicitly assumed in the foregoing derivation of Eqs.~16! and
~18!. The standard Bogoliubov approximation yieldsE0 /\
5(4pe2n0 /m)1/2. As is shown in the top panel of Fig. 1, th
Hartree-Fock terms inside the brackets in Eq.~24! raise the
value ofE0 /\ towards the plasma frequency (4pe2n/m)1/2

at low temperature, without quite reaching it. In both t
Bogoliubov and the HFB approximation the value ofE0 /\
drops with increasing temperature to vanish at the crit
temperatureTc . The corresponding behavior of the chemic
potential from Eq.~15! is shown in the bottom panel of Fig
1.

It is also worth making a remark on the asymptotic res
given in Eq. ~23!. The quantityn(q)2m(q) is the HFB
14450
l
l

lt

value for a special component of the two-body density m
trix in the CBF, that isn(q,q)/n0. It was shown in Ref. 15
from an exact sum-rule argument that this quantity takes
value21/2 at low momenta in the CBF atT50. Thus, this
exact asymptotic result holds in the HFB approximatio
which yields the same limiting value at all temperaturesT
,Tc .

III. NUMERICAL RESULTS

We present in this section the results of numerical cal
lations of some other properties of the weakly coupled C

FIG. 1. Top: the HFB single-particle excitation frequencyE0 at
long wavelengths~in units of the plasma frequencyvp) as a func-
tion of temperatureT/Tc ~in all figuresTc is the HFB critical tem-
perature! for three values of the coupling strengthr s . The dots
marked byB show the corresponding values in the standard Bo
liubov approximation atT50. Bottom: curves for the chemica
potential from the Hugenholtz-Pines relation. The QMC~quantum
Monte Carlo! values reported atT50 are from Moroniet al.8
7-4
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in the modified HFB approximation. Figure 2 reports t
condensate fractionn0 /n as a function of temperature at co
pling strengthr s51. In comparison with the result of th
simple Bogoliubov~B! approach, there is a further large sh
in the value of the critical temperature for the formation o
condensate away from the ideal-gas value. AtT50 the
change in the interaction-induced depletion of the conden
from the result of the simple Bogoliubov~B! approach is
quite small at lowr s (r s<5, say), thus confirming the re
sults reported in Ref. 9 and ensuring good agreement w
the Monte Carlo data obtained by Moroniet al.8 However,

FIG. 3. The HFB momentum distributionq2n(q) at T50 and
r s51 ~in units of aB

22), compared with the results from the Bogo
liubov approach~B! and from diffusion Monte Carlo runs~MC!.

FIG. 2. The HFB condensate fractionn0 /n at r s51 as a func-
tion of temperatureT ~in units of e2/aBkB), compared with the
results for the ideal boson gas~free! and for the Bogoliubov ap-
proach (B).
14450
te

th

with further increase ofr s the HFB condensate fraction drop
very rapidly, in disagreement with the Monte Carlo data.

In view of the asymptotic behaviors given in Eq.~18!,
Fig. 3 reports the quantityq2n(q) at T50 in order to display
the subleading term that is absent in the simple Bogoliub
approximation. This term is also evident in the Monte Ca
data, which are reported in Fig. 3 from the work of Moroniet
al.,8 and there is in fact reasonable quantitative agreem
between the HFB momentum distribution and these data.
HFB predictions for the normal one-body density mat
n(r ) at various temperatures are shown in Fig. 4.

Similar results are reported for the anomalous Bose c
relations in Figs. 5 and 6. Figure 5 shows bothq2n(q) and

FIG. 4. The HFB normal density matrixn(r )/n at r s51 and
various values of the reduced temperatureT/Tc .

FIG. 5. The HFB anomalous momentum distributionq2m(q) at
r s51 and two values ofT/Tc , compared with the HFB norma
momentum distributionq2n(q). Both curves are in units ofaB

22 .
7-5
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q2m(q) at r s51 and two temperatures, to illustrate how d
partures arise with increasing momentum away from th
common limiting values in Eq.~18!. The normal and anoma
lous one-body density matrices are given in Fig. 6.

Finally, Fig. 7 reports the HFB dispersion relation
single-particle excitations as a function of temperature ar s
51. The deviations from the plasma frequency in the lon
wavelength limit and their dependence on temperature h
already been displayed in Fig. 1. The figure shows that, a
for this, there is very little dependence of the dispersion
lation on temperature. There is, of course, no damping
these excitations within the HFB approach.

IV. CONCLUSIONS

Summarizing, we have examined the results given by
Hartree-Fock-Bogoliubov approximation for the quasipa
cle excitations in a weakly coupled boson plasma through
temperature range in which a Bose condensate is pre
The long-range nature of the Coulomb interactions emp
sizes the difficulties of the theory that in previous work
neutral boson fluids have been shown to arise from su
dynamical correlations induced by the presence of a cond
sate. For the boson plasma the Coulomb interactions ge

FIG. 6. The HFB normal and anomalous density matrices ar s

51 and two values ofT/Tc .
ff,
d

14450
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ir

-
ve
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-
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e
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e
nt.
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ate infrared divergences in both the normal and the ano
lous momentum distribution, which are reproduced in t
HFB approach at both leading and subleading order. Ho
ever, the Coulomb case requires anad hocadjustment of the
chemical potential. Exact cancellation of divergent terms
curs between the two distributions in the evaluation of
quasiparticle excitation energy at long wavelengths. The
sidual nondivergent HFB terms raise the quasiparticle ene
towards the plasma frequency at zero temperature, with
quite satisfying the basic requirement that the Coulom
induced gap in the quasiparticle spectrum at long wa
lengths should coincide with the plasmon gap in the coll
tive density-fluctuation spectrum.

It appears, therefore, that the HFB approach may not p
vide an entirely fruitful starting point for an internally con
sistent description of the boson plasma. An approach ba
on the so-called dielectric formalism19 may be more promis-
ing and we hope to examine it in future work, with speci
attention to the relationship between collective and sing
particle excitation frequencies as a function of temperatu
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FIG. 7. The HFB dispersion relation for single-particle excit
tions ~in units of the plasma frequencyvp! at r s51 and various
values ofT/Tc .
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