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Hartree-Fock-Bogoliubov theory of a charged Bose gas at finite temperature
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We critically examine the Hartree-Fock-BogoliubFB) solution of the equations of motion for conden-
sate fluctuations in a weakly coupled plasma of charged bosons at finite temperature. Analytic expressions are
derived for the first two infrared-divergent terms in both the momentum distribution of the noncondensate and
the anomalous Bose correlation function at low momenta. Incorporation into the theory of the appropriate form
of the Hugenholtz-Pines relation for the chemical potential is needed to cancel an unphysical divergence. Exact
cancellation of infrared-divergent terms is demonstrated in the HFB shift of the single-particle excitation
energy away from the Bogoliubov value at long wavelengths, with the residual terms raising it towards the
plasma frequency at low temperature. Numerical illustrations are presented for a number of properties of the
boson plasma as functions of temperature and density in the weak-coupling regime: these are the chemical
potential, the condensate fraction, the normal and anomalous momentum distribution functions and the corre-
sponding one-body density matrices, and the dispersion relation of single-particle excitations.
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. INTRODUCTION context Griffit! has critically analyzed the HFB scheme
with special regard to the classification(@bnserving versus

The fluid of charged bosons over a uniform neutralizinggapless approximations given by Hohenberg and Maltin
background[CBF (charged bosons flujdl interacting via for fluids of neutral bosons. The HFB approach has also been
inverse-first-power repulsions is a model in quantum statisused to describe the shape deformation modes of confined
tical mechanicshaving possible relevance to superconduc-atomic gases in dependence of temperatiire.
tivity in layered cuprate materidisand to the equation of In his work Griffin! has emphasized that the problem of
state and nuclear reactions in dense plasmas of pressumdetermining the excitation spectrum of a Bose-condensed
ionized heliunt Its counterpart with inverse-first-power at- fluid is difficult because of the need to satisfy several differ-
tractions can arise in systems of atoms immersed in particient constraints. In particular, in an explicit treatment of a
lar configurations of intense off-resonant laser beAms. Bose gas of neutral particles with contact interactions, he has

The properties of the CBF at zero temperature have beestressed that the HFB value for the chemical potential vio-
addressed in a number of theoretical studies, ranging frorfates the exact Hugenholtz-Pines expression for this quantity
the early work on the weak-coupling regimi treatments and that the predicted excitation spectrum violates the gap-
based either on the use of Jastrow-Feenberg correlated walgssness requirement. Proportionality between the single-
function® or on self-consistent accounts of correlatidns. particle and the collective sound-wave excitation spectra in
Quantum Monte Carlo calculatidhbave covered the whole the neutral fluid at long wavelengths can be understood from
range of coupling strength up to Wigner crystallization. Morethe argument developed by Gavoret and Nazsé® The
recently, the evaluation of the condensate fraction has bednng-range nature of the Coulomb interactions in the CBF
extended to finite temperatdrevithin the theoretical frame affects these properties and emphasizes the shortcomings of
provided by the Bogoliubov formalism. These theoretical re-the HFB approach. Because of the plasmon gap in the col-
sults could only be tested against Monte Carlo data at zerkective excitation spectrum at long wavelengths, one expects
temperature, showing that this most simple approach yieldthe same gap in the single-particle spectruni a0 > As
almost quantitative values for the interaction-induced deplewe shall see, the violation of the Hugenholtz-Pines relation is
tion of the condensate over a non-negligible range of couassociated in the CBF to infrared divergences and requires
pling strength. ad hocmending. Analytical results can then be derived in the

However, the standard Bogoliubov theory can be expectetbng-wavelength(low-momentum region, extending exact
to fail with increasing temperature, as the noncondensateesults previously obtainéd from sum-rule arguments at
fraction increases. The purpose of the present work is taero temperature. The modified HFB approach, incorporating
examine the roles of both the noncondensate and the anomidte Hugenholtz-Pines value of the chemical potential, is
lous Bose correlations in the CBF at finite temperatureamenable to numerical evaluation and, in particular, displays
within the Hartee-Fock-BogoliuboyHFB) approximation, the expected gap in the single-particle spectrum of the CBF
with due attention to the chemical potential of the fluid asat low temperature, though a discrepancy from the value of
given by the Hugenholtz-Pines relatith. the plasmon gap remains.

It may be mentioned at this point that interest in the HFB  In brief, the plan of the paper is as follows. Section Il
approach to boson fluids at finite temperature has been reollects for convenience the main standard equations of the
vived in relation to developments in the study of Bose-HFB approach and presents their modification that we pro-
Einstein condensed atomic gases under confinement. In thipse for a Bose plasma in order to incorporate the
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Hugenholtz-Pines relation. A further subsection presents oufollowing a standard procedure, we use the Bogoliubov pre-
analytical results for the long-wavelength region and our nuscription in Eq.(2) to derive the equation of motion for the
merical results for the limiting value of the excitation energy flyctuation operatog(r).

as a function of temperature in the same region. Various |n the HFB scheme the following “mean-field” approxi-
other numerical results are presented in Sec. Ill, while Segnation is adopted

IV gives a brief summary and our conclusions.

$T(r DB(r,H=(d"(r' Hd(r,H)=n(r—r'[,t
Il. THE HFB APPROACH TO A BOSON PLASMA

As is well known'® the ideal Bose gas starts undergoing (r' ) p(r,t)=(o(r' D e(r,H)=m([r—r'[,t)}, (3)
Bose-Einstein condensation at a critical temperatlige _
—3.31(:2n?¥mkg), wheren is the particle number density where we have Ttroducezi the normal and the anomalous
andmthe particle mass. The condensate densjtincreases density matrix n and m. The three-point kernel
with decreasing temperature, to become equal to the totah'(r’,t)$(r’,t)d(r,t) is approximated as
densityn in the ideal gas at zero temperature. The role of the
interactions is to depress the condensate fraction and to shift
the critical temperaturd, away fromT,. Within the HFB

AT D DG(r,H)=(T(r' ) (r',1))(r,t)

approach this shift is a coupling-strength-dependent increase +T1(|r—r’| De(r',b)
in the present case of Coulomb repulsions.
The CBF is described by the Hamiltonian +m([r=r'|,) ('), (4)
+ h? 5 The equation of motion for the fluctuation operator in the
H:f dryp'(n)| =5 Vo m () HFB approximation then reads
1 g 2
- roatoerny,t ot ' dd(r,t h ~
#3) [ warwegoviehpeun, 800 S T
()
where y(r) is the bosonic field operatog is the chemical +J dr'{[no+n([r=r'[,)]e(r",1)
potential, and/(r) is the Coulomb interaction potential. The - -
average potential felt by each particle vanishes because of +[no+m(r=r'[,D]"(r", O}V(r—r’]).
the presence of the neutralizing background: that is, in the (5)

calculations reported below we take the Fourier transform of

V(r) asVy=4me?/k? with Vy_, set equal to zerd! The By taking the average of Eq2) and using the approxima-
coupling strength is measured by the dimensionless parantions set out in Eqs(3) and (4), we also obtain the expres-
etzrrs, defined byr ;ag=(47n/3)~ ' with ag as the Bohr  sjon for the chemical potential in the HFB approximation
radius.

The HFB approach is based on the equation of motion for 5 5
the field operator and adopts a decoupling procedure in order uyeg= f dr'[n(jr=r'|,0)+m([r—r’|,0)IV(r—r')).
to linearize it and solve it. The Bogoliubov prescription starts 6)
by separating out the condensate part from the field operator

Y(r) by settingy(r)=ypag+ ¢(r), whereag and¢(r) are  The condition of charge neutrality has been used in deriving
the field operators for the condensate and for the cloud ofgs.(5) and(6) by settingV,_,=0, as already remarked.
particles promoted out of the condensate. Hekgs (4(r)) The solution of Eq(5) is achieved by means of a normal-
is the condensate wave function, given by the ensemble avnode expansion for the fluctuation operator,
erage ofy(r) in the symmetry-broken state. In the homoge-
neous gas we take the condensate wave function as uniform R R
in space and time, and for the sake of simplicity we aIsqu(r,t)ZZ [uj(r)exp(—iE,-t/h)aj+v}*(r)exp(iEjt/h)a;r].
assume that it is real. ! @

The equation of motion obeyed by the Heisenberg field

&7
operator i This leads to a set of Bogoliubov—de Gennes equations,

’ which can be diagonalized in Fourier transform to obtain the
_ ﬁ_vz_ w(r) expression for the HFB spectrum of single-particle excita-
2m - tions,

aP(r,t)
f a

+Jdf'l//T(r’,t)lﬂ(r’,t)t//(r,t)V(lf—F’|)- Ex= ekt 1n(K)]*=1m(k)? ®

(2 and for the HFB mode amplitudes,
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, 1 Equation(15) follows from Eq.(14) by using the HFB ex-
Uk=§{1+ [ext1n(K)J/EL} pression for the self-energies given in Et0), together with
) the requirement of charge neutrality that suppressesqthe
1 =0 term in the sum.
vi={—1+[e+1,(K)J/E Equationg8)—(11) are well behaved when one adopts the
2 expression in Eq(15) for the chemical potential. Their solu-
tion will be presented in Sec. Ill below. However, before
proceeding to numerical calculations we need to evaluate
analytically the long-wavelength behavior of the CBF in the
HFB approach.

In these equations, = (72k?/2m)— . and the self-energies
{Ih(k),In(k)} are to be determined self-consistently with
Egs.(8) and(9) according to

{1n(K) T m(K) }=ngVi+ q;O Vig-kin(a),m(q)}. (10 A. Long-wavelength behaviors
Here The following asymptotic expressions will be demon-
strated below to hold at low momenta for the CBF at tem-
n(q)=v§+fq(u§+v§) peratureT=0 in the HFB approximation:
11
m(q) =Uqvq(2fq+1) " Iim[ln(k)zlm(k)]z47Tezzn0+(4we2)|ino(2fo+l),
with f,=[expEy/ksT)—1] * are the Fourier transform of the k=0 K 166, 16

normal and the anomalous density matrix. Evidemtlyy) is
the momentum distribution of the Bose fluid. Thus, the conyhere we have introduced the notatioBig=E,_, and f,

densate fraction is given by =f,_o. The infrared divergence in the HFB expression for
the chemical potential in Eq6), and the cancellation of the
No=n-— 2 [v§+fq(u§+v§)]. (12) divergence at both Ieadmg and_sublead'mg order m(HEﬁ).
q#0 from the Hugenholtz-Pines relation, are immediately evident.

. ) . The corresponding asymptotic expressions for the normal
Finally, the normal and anomalous one-body density matri:nq anomalous distribution are obtained from HE5-(11),

ces are given by which yield
()=t 3, [od+1(u o explia: 1 lim{n(l)=m(i9]=(2fo+ 1) im1,(K}2Ed. (17
(13 .
The result is
m(r)=ng+ 2 [Uquqg(2fq+ 1) Jexpiq-r)
#0
K i O (k) 1= (21 41re’n,
Equationg8)—(10) reduce to the standard Bogoliubov ap- ktno[n( )=m(k)]=(2fo+1) 2E k2

proximation(see, e.g., Ref.)9when the contributions com-

ing from the density matrices(q) andm(q) are omitted. In (4me?)?n,
the same approximation the chemical potential can be set to + W(Zfﬁ 1. (18
0

zero. In the HFB approximation, however, E®) for the

nggrgfgé(gg;eggﬁ)l\;f the CBF is plagued by an infrared dl_This asymptotic expression for(k) reduces af =0 to the
) exact result obtained by sum-rule arguments in Ref. 15, pro-

We overcome this difficulty in the present case of a Bose™; . .
plasma by recourse to the exact expression given for thglded that the energl¢, coincides with the plasma frequency

chemical potential by the Hugenholtz-Pines relation. This®p= Y47ne/m. We present at the end of this section a cal-
states that culation of Ey in the HFB approach and compare the result

with the plasma frequency.
1=31(9=0,0=0)—3,,(q=0,0=0), (14) To demonstrate the results given above in E4$) and
(18), we examine the HFB expressions for the self-energies
where2; (g, w) is the 2<2 matrix for the self-energies of a {I,(k),I4(k)} in Eq. (10). The integral on the RHS of this
Bose-condensed g&sWe then replace the divergent expres- equation is easily shown not to contribute at orélef, so
sion in Eq.(6) by the expression that the leading-order term in E{L6) is immediately estab-
lished. The leading-order term in EQL8) follows from Eq.
A ’ - ’ ’ (17)
'“HPZJ dr'[n(r=r’[,) =m(|r=r'[,)]V(lr—=r']) With the leading-order expression fotk) andm(k) we
can now return to the evaluation of the integral on the RHS
_ _ of Eqg. (10) and determine the subleading term in E&6).
qzo Viln(@)=m(@)]. (19 For the quantityl ,(k) we write
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[n(a)—limn(q)]
q—0

Vik_qn(q)=4me P E——
& Viean(@=4me 2 q+q2

(477 ?)%n

g (2fot1)

1
X E .
470 g*(k*—2k-q+q?)

(19

The value of the second integral on the RHS of E) is
1/(8k), while the first integral does not contribute to this
order!® With an identical argument fdr,(k) the subleading-
order terms in Eq(16), and hence in Eq18), are thus es-
tablished.

We turn next to the evaluation of the energy from Eq.
(8) in the long-wavelength limit. We get
4me’ny\ 2 vz
lim
k—0

Eo/ﬁ=( |1+—[|n(k)—| (K) = ]
(20)

We also have from Eqg10) and(14) that

1
lim [13(k) = 1K)~ ] = 3k* 2 0~ 2V[n(a) —m(a)],
k—0 q#0
(21
where according to Eq11) we have
ﬁ2q2
n(q)—m(q)= T (2fg+1) (22)
mE,
so that
1
lim[n(a)—m(a)]=- 5. (23)

qﬁO

We can thus write the final expression 8y in a form that
is suitable for numerical calculation,

477e2n0> 1’2[ 2m
1+
m

3n?

1 1/2
E .

This expression shows that the valuekyf is finite, as im-
plicitly assumed in the foregoing derivation of E¢$6) and
(18). The standard Bogoliubov approximation yieldg/#
=(4me’ny/m)2. As is shown in the top panel of Fig. 1, the
Hartree-Fock terms inside the brackets in E2{) raise the
value of Ey/# towards the plasma frequency £4°n/m)*/?

> q 2V,

q#0

Eo/ﬁ:(

X|n(q)—m(q)+ (24)
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FIG. 1. Top: the HFB single-particle excitation frequerity at
long wavelengthgin units of the plasma frequenay,) as a func-
tion of temperaturd /T, (in all figuresT, is the HFB critical tem-
peraturg for three values of the coupling strength. The dots
marked byB show the corresponding values in the standard Bogo-
liubov approximation afT=0. Bottom: curves for the chemical
potential from the Hugenholtz-Pines relation. The QNfTiantum
Monte Carlo values reported af=0 are from Moroniet al®

value for a special component of the two-body density ma-
trix in the CBF, that isn(q,q)/ng. It was shown in Ref. 15
from an exact sum-rule argument that this quantity takes the
value —1/2 at low momenta in the CBF dt=0. Thus, this

at low temperature, without quite reaching it. In both theexact asymptotic result holds in the HFB approximation,

Bogoliubov and the HFB approximation the valueE&f/#

which yields the same limiting value at all temperatufies

drops with increasing temperature to vanish at the criticak<T,.

temperaturd .. The corresponding behavior of the chemical

potential from Eq(15) is shown in the bottom panel of Fig.
1.

It is also worth making a remark on the asymptotic result

given in Eq.(23). The quantityn(q)—m(q) is the HFB

IIl. NUMERICAL RESULTS

We present in this section the results of numerical calcu-
lations of some other properties of the weakly coupled CBF
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FIG. 2. The HFB condensate fractio/n atr,=1 as a func- FIG. 4. The HFB normal density matri(r)/n atrs=1 and

tion of temperatureT (in units of e%/agks), compared with the various values of the reduced temperatlr& .
results for the ideal boson gdfee) and for the Bogoliubov ap-

proach 8). with further increase of the HFB condensate fraction drops
very rapidly, in disagreement with the Monte Carlo data.
in the modified HFB approximation. Figure 2 reports the In view of the asymptotic behaviors given in E(.8),
condensate fractiony /n as a function of temperature at cou- Fig. 3 reports the quantity’n(q) at T=0 in order to display
pling strengthrs=1. In comparison with the result of the the subleading term that is absent in the simple Bogoliubov
simple BogoliuboWB) approach, there is a further large shift approximation. This term is also evident in the Monte Carlo
in the value of the critical temperature for the formation of adata, which are reported in Fig. 3 from the work of Moreni
condensate away from the ideal-gas value. ™0 the al.® and there is in fact reasonable quantitative agreement
change in the interaction-induced depletion of the condensateetween the HFB momentum distribution and these data.The
from the result of the simple BogoliubofB) approach is HFB predictions for the normal one-body density matrix
quite small at lowrg (rg=<5, say), thus confirming the re- n(r) at various temperatures are shown in Fig. 4.
sults reported in Ref. 9 and ensuring good agreement with Similar results are reported for the anomalous Bose cor-
the Monte Carlo data obtained by Moroai al® However,  relations in Figs. 5 and 6. Figure 5 shows bgfim(q) and

08 . T T T | 1 T T T T
HFB —— _ TT=00 ——
re=1 B ---ooee- re=1 TITS=04 -oonver
07 FL N MG Rl P T
0.6 |
. 05} N\&“
RPN z
g 5
= 04t 3
O o
€ i
& 03 §
NO'
02 F
01 F
0
0
qapg qag
FIG. 3. The HFB momentum distributiogn(q) at T=0 and FIG. 5. The HFB anomalous momentum distributigdm(q) at
r<=1 (in units ofag2), compared with the results from the Bogo- r¢=1 and two values off/T., compared with the HFB normal
liubov approachB) and from diffusion Monte Carlo runévC). momentum distributiomy®n(q). Both curves are in units oigz.
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FIG. 6. The HFB normal and anomalous density matrices; at FIG. 7. The HFB dispersion relation for single-particle excita-
=1 and two values of/T.. tions (in units of the plasma frequenay,) atrs=1 and various
values of T/T,.

2 = i -
q n:(q) atr_s—l a}tr;]d .tWO temperatures, tto |Ilustratef how t?\e.ate infrared divergences in both the normal and the anoma-
partures anse with increasing momentum away from el s momentum distribution, which are reproduced in the
common limiting values in Eq18). The normal and anoma-

) . : Lo HFB approach at both leading and subleading order. How-
lous one-body density matrices are given in Fig. 6. ever, the Coulomb case requiresathhocadjustment of the

_ Finally, Fig. 7 reports the HFB dispersion relation of chemical potential. Exact cancellation of divergent terms oc-
single-particle excitations as a function of temperaturesat curs between the two distributions in the evaluation of the
=1. The deviations from the plasma frequency in the longquasiparticle excitation energy at long wavelengths. The re-
wavelength limit and their dependence on temperature havéidual nondivergent HFB terms raise the quasiparticle energy
already been displayed in Fig. 1. The figure shows that, asid@wards the plasma frequency at zero temperature, without
for this, there is very little dependence of the dispersion requite satisfying the basic requirement that the Coulomb-
lation on temperature. There is, of course, no damping oinduced gap in the quasiparticle spectrum at long wave-
these excitations within the HFB approach. lengths should coincide with the plasmon gap in the collec-

tive density-fluctuation spectrum.
It appears, therefore, that the HFB approach may not pro-
IV. CONCLUSIONS vide an entirely fruitful starting point for an internally con-
sistent description of the boson plasma. An approach based
Summarizing, we have examined the results given by then the so-called dielectric formalisthmay be more promis-
Hartree-Fock-Bogoliubov approximation for the quasiparti-ing and we hope to examine it in future work, with specific
cle excitations in a weakly coupled boson plasma through thattention to the relationship between collective and single-
temperature range in which a Bose condensate is presempfarticle excitation frequencies as a function of temperature.
The long-range nature of the Coulomb interactions empha-
sizes the difficulties of the theory that in previous work on
neutral boson fluids have been shown to arise from subtle
dynamical correlations induced by the presence of a conden- This work was partially supported by MIUR under the
sate. For the boson plasma the Coulomb interactions genePRIN-2000 Initiative.
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