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Based on Luttinger’s formulation the complex optical conductivity tensor is calculated within the framework
of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method for layered systems by means of a
contour integration technique. For polar geometry and normal incidaefciitio Kerr spectra of multilayer
systems are then obtained by including via’>a2 matrix technique all multiple reflections between layers and
optical interferences in the layers. Applications to Ce/dtd P§/Co/Pt on the top of a semi-infinite f¢&11)

Pt bulk substrate show a good qualitative agreement with the experimental spectra, but differ from those
obtained by applying the commonly used two-media approach.
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. INTRODUCTION 1950 several methods have been known in the
literaturé®!’ to treat multiple reflections and interferences
Magneto-optical effects not only provide a powerful tool Using either a X2 matrix®'® or 4x4 matrix°~** tech-
in probing the magnetic properties of solitfS,but are also  hique. In the present paper the magneto-optical Kerr spectra
of direct technological interest as phenomena to be used f&f 1ayered systems are evaluated for the most frequently used
high-density magneto-optical recordif§.Up to now, how- €xperimental setup, namely, polar geometry and normal in-
ever, realistic theoretical investigations were lacking, beidence, by making use of the complex optical conductivity
cause band-structure methods using supefcedlanot pro-  €nsor and the 2 2 matrix technique. . .
vide an adequate description of layered systems, for whic In Sec._ Il the theoretical background is rewgwed briefly.
special computational techniques such as the spin-polariz%ompmat'on""I aspects are then summarized in Sec. lIl. In
relativistic screened Korringa-Kohn-Rostoke(SKKR) ec. IV the two-media approa¢Bec. IV A and the applied

. . 2X2 matrix techniquéSec. IV Q are viewed as two differ-
method have been designied: Furthermore, the absorptive ent macroscopic models of how to calculate magneto-optical

parts of the optical conductivity tensor, as obtained from thekerr spectra of layered systems. Particular emphasis is
interband contribution$, are not sufficient for magneto- laced in Sec. IVB on the construction of layer-resolved
optical Kerr spectra calculation§, since the dissipative part ermittivities in terms of thémacroscopicmaterial equation
also have to be known. Hence, in supercell-type calculationsyithin linear response. This construction method, combined
besides the necessity to use the Kramers-Kronig relationgyith the 2x2 matrix technique, allows one to determine
one also has to include the interband contributions by meangyer-resolved permittivities ~self-consistently, see Sec.
of a semiempirical Drude teri?. Only recently a better |\ C 4. As an illustrationab initio Kerr spectra of Co/Pt
scheme was developed by two of the present authdrs, multilayer systems are presented and discussed in Sec. V.
which a contour integration was used to obtain the complexFinally, in Sec. VI the main results are summarized.
optical conductivity tensor as based on Luttinger’s forntdla,
which in turn includes all interband and intraband Il. THEORETICAL FRAMEWORK
contributionst® Combining this contour integration tech-
nique with the SKKR method, realistic interlayer and intra- _ o
layer complex optical conductivities can be obtained for lay- The_frequency-dependent complex optical conductivity
ered systems. tensoro(w) can be evaluated starting from the well-known
Having evaluated the interlayer and intralayer optical conKubo _formulglsand using a scalar potential description of the
ductivities, the magneto-optical Kerr spectra can then be caflectric field:™ However, by using the equivaléfitvector
culated by using a macroscopical model such as, e.g., t otgnnal,descnpuozn of the electric field, one ends up with
two-media approach: Because a layered system contains-Uttingers formuld
more boundaries than just the interface between the vacuum S (w)_g (0)
and the surface layer, the two-media approach does not fully T () =—" Bty )
include the dynamics of the electromagnetic waves propaga- hw+id
tion in such systems. Since the pioneering work of Abéte  with the current-current correlation function as givertby

A. Luttinger’s formalism

0163-1829/2002/64.4)/14444811)/$20.00 65 144448-1 ©2002 The American Physical Society



A. VERNES, L. SZUNYOGH, AND P. WEINBERGER PHYSICAL REVIEW B5 144448

if

~ f(ey)—flem such that
S o= (en)—f(em)

Jmdmn- (2

>

mnm ho+i6+(eq—€n) B N Ng
Heref(e) is the Fermi-Dirac distribution functior,, ande, 2ul0) ﬁ 021(2) 2 ,(22) -2 % ;N:zﬂ > 22,
are a pair of eigenvalues of the one—electron Hamiltonian, (4)
Jhn are matrix elements of the electronic current operatofyheres=#w+i8 and the kernel
(n=x,Y,2), andV is the referencécrystalline volume.

The positive infinitesimals implies that the electromag- = h ,
netic field is turned on at=—o, and hence describes the 2u(21,2)=— 5 TI*G(2) 3" G(z)], ()
interaction of the system with its surroundirfsHowever, ) ) )
as can be seen from E(@), & can also be viewed as a finite 1S related to the electronic Green functi@{z). The auxil-
lifetime broadening, which accounts for all scattering pro-iary quantity>. ,,(z;,z,) was already used in residual resis-
cesses at a finite temperature. tivity calculations ,T=0) of substitutionally disordered

Luttinger’s formula[Eq. (1)] and Eq.(2) have several bulk system® and magnetotransport calculations of inhomo-
advantages over the commonly used optical conductivity tengeneously disordered layered systefh@nly recently, how-
sor formula of Callaway.First of all, in contrast to the latter, €ver, it was shown? that Egs.(3)—(5) preserve all the ad-
Eq. (1) simultaneously provides both the absorptive and disvantages and features of Luttinger’'s formalism, as already
sipative parts of the optical conductivity tensor. Hence therénentioned above.
is no need for using the Kramers-Kronig relations in Lutting-  In the present pape}, ,,(z;,2,) is evaluated in terms of
er’s formalism. On the other hand, as recently shoimyt- relativistic current operatotsand the Green functions pro-
tinger’s formalism accounts for both interband and intrabandsided by the spin-polarized relativistic SKKR method for
contributions on the same footing. Thus by using Bqg.in  layered systenis® The optical conductivity tensor of a
combination with Eq.(2), one does not need to include a multilayer system is then givéhby
phenomenological Drude term in order to simulate the intra-
band contributior?. Furthermore, as was also demonstrated ~ N ~

a(w)=2 2 7"0),

Egs. (1) and (2) can be used for calculations in the static = ©
S . . o .- p=1¢g=1
(w=0) limit, provided the lifetime broadening is kept finite _
(6#0). with o P9(w) referring to either the interlayepg q) or in-
tralayer p=q) contribution to the optical conductivity ten-
B. Contour integration technique sor.
Instead of evaluating the sums in the expression for the ll. COMPUTATIONAL DETAILS
current-current correlation funct|c[|E~q. (2)] over eigenval- N .
ues of the one-electron Hamiltoniali,,,(w) can be calcu- In addition to the number of Matsubara poles considered,

lated by means of a contour integration in the complex enthe optical conductivit)_/ tensor aIs_o depends on the number
ergy plane. For the selection of a particular contbyrthis ~ ©f complex energy points, used in order to evaluate the
techniqué® exploits the facts that, with the exception of the €nergy integrals in Eqg¢3) and(4), and on the number ¢
Matsubara polesz,=eg+i(2k—1)8; (k=0,+1,+2,..., Ppoints used to calculate the scattering path operators that
and 6r=mkgT),?’ in both semiplanes the Fermi-Dirac distri- define the Green functiohsand 3, ,(z+fiw+i4,z) for a
bution function of complex argumeii{z) is analytica® and  given energyz. Recently, the present authors proposed two
is a real function for complex energigs- ¢ +i6; situated in ~ schemes to control the accuracy of thegeand k
between two successive Matsubara pdfeEhe latter prop-  integrations’

erty of f(2), e.g., is exploited by using;=2N;ér, where The first of these schemes is meant to control the accuracy
N, is the number of Matsubara poles includedlinn the  of the z integrations along each contour part by comparing
upper semiplane an, in the lower semiplané: the results obtained from the Konrod quadraftiré,

By applying the residue theorem, it has been shdwat, Kan +1% (@), with those from the Gauss integration

equivalently to Eq(2), one has rule, gnziw(w).% On a particular part of the contour,

_ _ iw(w) is said to be converged if the convergence critefion
S (w)= 3§ dz(2) % ,.(z+{,2)
r

Max| Ko 113 (@) = Gn 3 (@) <e,, (7)
_ % dz (2) S (z—*,2) ¥ is fulfilled for a given accuracy parametey.
r mr ' The other scheme refers to the cumulative special points
Ny method®? which permits one to perform two-dimensional
—2is S (724 z space integrations Wlth. an arbitrary high precision. This
Th= ;n:’zﬂ (22t £i29 method exploits the arbitrariness of the special points mesh
<, origin.3® For a given(arbitrary high accuracyej the conver-
+37 (2= £",20)], (3 gence criterion
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max|S, S, (2',2)— S .S ,,(2',2)|<ei (8)  (see Ref. 1§ the average complex refractive index of the
e N right- and left-handed circularly polarized light is dominated
has to apply for any complex energyon the contour og, by o,(®), and hence a direct formula results from Eq.
Matsubara pole. Here,=2'*2n, (nge N) is the number of  (12),**
divisions along each primitive translation vector in the two-
dimensionak space, and’ =z+¢ andz— *. ~  Oy(w) 1
In the present paper, the optical conductivity tensor calcu- K~ Z - ' (13
lations were carried out fof =300 K, using a lifetime oxx(®) 1_4l|~ (@)
broadening of 0.048 Ry and,=2 Matsubara poles in the PR
lower semiplane. Because the computatiorfrgf,(w) does L _
not depend on the form of the contdtrin the upper semi- With o(w) as given by Eq(6). It should be noted that the
plane we have accelerated the calculations by consideringlirect” formula in Eq. (13) was introduced by Reim and
N, =237 Matsubara poles. The convergence critgigs. (7) Schoene% in order to extract the optical conductivity tensor
and (8)] were fulfilled fore,=&,=10"2 a.u. §|Ef[ment50xx(w) and oyy(w) from experimental PMOKE
ata.

IV. MAGNETO-OPTICAL KERR EFFECT

) B. Macroscopic model Il: layer-resolved permittivities
In the case of the polar magneto-optical Kerr effect

(PMOKE),* the Kerr rotation angle Within linear response thectythe Fourier-transformed

macroscopic material equatioffsaveraged over the refer-

1 ence volumeV, directly yield the total electric displacement
Oc=—5(A—AL) €)
2 1 1
- 3: N(F _ 3 K - AN )
and the Kerr ellipticity vad fD(f,w)—Vde ffvd r'e(w;r,r"E(r', o),
_ (14
ry—r_
KT T T (10 provided that the dielectric functio&(w;r,r") and the Fou-

rier components of the electric fielﬁ(F’,w) are known.
Using nonoverlapping cells in configuration spafthe
atomic sphere approximation, applied in the present ap-
0 proacH, the reference volume can be written as

T _Z* _ iAL

f:—g(i)—f:e x, (11
Here the complex amplitude of the reflected right- and left-
handed circularly polarized light is denoted % , and that
of the incident light by ®; A is the phase of the complex
reflectivity T.. andr . =|r.|. Equations(9) and(10) are ex- N
act, which can easily be deduced from simple geometricag
arguments. However, in order to apply these relations, one
needs to make use of a macroscopic model for the occurring0
reflectivities.

are given in terms of the complex reflectivity of the right-
(+) and left-handed—) circularly polarized light:

N N
V=2 (NZ Qn|=2 07,
p=1 i p=1

whereN is the number of atoms per layéhe same two-
dimensional lattice has to apply for each lapgr N the total
umber of layers, andl,; the volume of theith atomic
phere in layep.
Assuming that plane waves propagate in a layer as they
in a two-dimensional unbound homogeneous medium,
and thatD,(r,w) =D (r,®), the integral on the left-hand
side of Eq.(14) can be written within the ASA as

A. Macroscopic model I: the two-media approach

This simplest and most commonly used macroscopic d3rI5(F )
model treats the multilayer system as a homogeneous, aniso- k
tropic, semi-infinite medium, such that the incident light is

reflected only at the boundary between the vacuum and the N Z(—DMk+1)
surface (top) layer. In case of normal incidence the two- =N 21 Dy - Qi 1+62,1 (2k+3)!
media approach provides an appropriate formula for the P
complex Kerr angi& 20 2k
(I)KEQK_iSK:-~+ ~—1 (12) > . . . > .
ro+r_ whereD, is the amplitude of the electric displacemem,is

he refracti
which can be deduced from Eq®) and(10) by assuming a the refraction vector,

small difference in the complex reflectivity of the right- and -
left-handed circularly polarized light. Because Hm/(w) n _% (16)
usually is almost a hundred times smaller thanoRg ) P do
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ﬁp is the wave vectordy=2m/\ refers to the propagation C. 2X2 matrix technique

constant in vacuum andsS,; is the radius of théth atomic 1. Multiple reflections and optical interferences
sphere in layemp. Accordingly, the double integral on the

right- hand side of Eq(14) reduces to In contrast to the two-media approach, the inclusion of all

optical reflections and interferences within a multilayer sys-
tem assumes that each layer acts as a homogeneous, aniso-

f d3rf d3r e w;r,FE(T, o) tropic medium between two boundaries, and is characterized
v Jv by a layer-resolved dielectric tenséP (p=1, ... N).1819
N s As a first step the Fresnel or characteristic equétion
=(4m°N| > &> | Tdrr? e~ -
p.a=1 b 0 |np5/.w_np,u,npv_ezy|:0 (,U«.VZX,Y.Z) (20)
Sai o PLAi( or p 7 has to be solved in order to determine the normal modes of
X dr’ (r')“e?" Y w;r,r") . . }
0 the electromagnetic waves in a particular lagét Then by

solving the Helmholtz equation for each normal méte,

* (_1)k 20 )2k
X1+ ————|=——ngyr’ 17
=) (2k+ 1)1\ Ay @ ' ~ ~ ~ ~
k=1 2kt D do > 300 Mol €508, =0  (mr=xy.2),
where¢&, is the amplitude of the electric field in laygr and (21)
e U(w;r,r') is the dielectric functione(w;r,r’) at _ S
reQy andr’eQy;. the corresponding,, components of the electric field in

In the case of visible light the wave-vector dependence ofayerp are deduced. After having obtained tigs, the curl
the permittivity is negligiblé* Therefore, after having sub- Maxwell equation®*?
stituted Eqs(15) and(17) into Eq.(14), only the first term in oL
the power series expansions has to be kept, which immedi- Hp=npX &, (22
ately leads to .
provides the amplitudes of the magnetic fields for each
N _ - normal mode in layep. Here the Gaussian system of units
pzl {Dp_qzl qu(“’)aJEi Qpi=0, has been usedﬁp is the refraction vector, as given by Eq.
(16), and|ﬁp|=ﬁp, which in an anisotropic medium is di-
where the interlayerd# q), intralayer p=q) permittivites  rection and frequency dependéfit.
are given by Finally, the continuity of the tangential components of the
5 electric and magnetic fields at the boundary between adja-
(4m) D Spid ZJSqJ )2 cent layers leads to a set of equations which has to be solved
rr dr’ (r'") . . . ! .
7 Jo 0 recursively in order to determine the magneto-optical coeffi-
Z Qpi cients of the layered system, such as, e.g., the surface reflec-
o tivity. If no symmetry-reduced quantitias® are used, all the
XePU(w;r,r’). previous stepsEqgs. (20)—(22)] have to be performed nu-
o , _merically by using— for example— the>22 matrix tech-
It should be noted that a similar result connecting the Stat'?\ique of Mansuriput&19
current in layerp to the electric field _in_Iayeq is already Most frequently MOKE experiments are performed in a
known from electric transport theory '”J”hgm‘)gef‘e?&m polar geometry using normal incidence. Therefore in the fol-
layered system¥. By using the relatiorD,=€"(w)&,, the  |owing the 2x 2 matrix technique of Mansuripur is confined
layer-resolved permittivitieg "() are then solutions of the to this particular experimental geometry. This reduction has
following system of equations: the advantage that, with the exception of the last step, in
which the surface reflectivity has to be evaluated, all the
other steps can be carried out analytically.
In the case of cubic, hexagonal or tetragonal systems and

the orientation of the magnetizatidﬁp pointing along the

By mapping the interlayer and intralayer contributionssurface normal# direction, the layer-resolved permittivity
o "% w) to the microscopically exact optical conductivity tensor is given by

tensora(w) [Eq. (6)], onto the corresponding contributions

N

€l w)=

N

Ep(w)ﬁpzqzl”ep%w)é, p=1,...N. (19

of the permittivity tensor, €y €y 0

o L[ Ami_ =| €y € 0 | (23

€ (w)=N 1+ TG (w) , (19) 0 0 .égz
one then can establish a well-defined macroscopical modéssuming thate?,~ef, (p=1, ... N), the error introduced
for the evaluation of Kerr spectra. by this simplification— as can easily be shown — is propor-
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TABLE I. Solutions of the Helmholtz equatiof21) for polar z au) a’m
geometry and normal incidence, neglecting the difference in the

diagonal elements of the layer-resolved permittiv&lﬂ;ﬂ is the am- NACLEEL

plitude of the electric field in layep for beamk. .0 Y ___dl___ z,y=0
k 1 2 3 4 layer N OOOOOOO

Q) i e i ie@ - z
Epx arbitrary &gy arbitrary i€py ¥
Y ie arbitrary iel arbitrary
£y 0 0 0 0

_ iy p+l N

tional to the differencéed,—€b,, which in turn is usually layer p .....”
small enough to be neglected. If in polar geometry the inci- oo z,

dence is normal,

Npx=Npy=0 for p=1,... N,

the characteristic equatigq20) provides four normal modes
of electromagnetic waves in a laypr

N = p =P

Two of these four solutions are always situated in the lower ~ ========-=--=--—----—- z
half of the complex plane and the other two in the upper half. substrate
The first two solutionsn(;) andn{? correspond to a “down-

ward” (negativez direction propagation of the electromag-
netic waves, and the other twa$) andn{, to an “up-

ward” propagation (positive z directior‘).lg'19 These two
different kinds of cases are given by

FIG. 1. The macroscopic model used for a layered system
within the 2<2 matrix technique for polar geometry and normal

incidence. Thex axis is perpendicular to the plane of the figlﬁ@,

is the incident wave vector arﬁir) is the reflected wave vectdvl
denotes the total spontaneous magnetization of the system.

)= —Veb +ied,, dent, these can be solved only for two components of the
electric field, keeping the third one arbitrary. Therefore, fol-
ﬁéi):_ferx)x_i;gy (24) I(lwing the strategx proposed by Mansuripur, for beam 1
and (n{Y) and beam 31{(Y) the corresponding ) are chosen
to be arbitrary, whereas for beam @) and beam 41((}}),
ni)= fegxﬂzgy the £ are arbitrary’®'® For polar geometry and normal
incidence, the solutions of the Helmholtz equati@i) are
nglz): Fegx_i;);:y_ (25) given in Table I, and the corresponding components of the

magnetic field as obtained from E(2) are listed in Table
If in a given multilayer system a particular layeris  II-
paramagnetic, its permittivity tensaP® is again of form
shown in Eq.(23), with '€}, =0 and’e},="¢k,. In this case
only two beams are propagating, namely, those characterized Numbering the layers starting from the first one on top of
by ﬁglz)zﬁézz):_\/z_)%( and ﬁés’z)zﬁé?= \/E_Qx Furthermore, the substrate toward the surface, the surface layer has the

since the vacuum is a homogeneous, isotropic, semi-infinit@Yer iNdexp=N, see Fig. 1. The 22 re_flectivit;g g‘a”‘x
medium, in addition t0~£xy=0, ==L R, at the lower boundary,, of layerp is given by®

For each solutiom{¥ (k=1,...,4) of thecharacteristic C) sV (T 0\ /eW
. pz A" . pX pX Tp px
equation(20), the electric field must satisfy the Helmholtz @] =Rol o2] = ~, @ | (26)
equation(21). Because not all of the equations are indepen- Epy Epy 0 I Epy

2. Layer-resolved reflectivity matrix

TABLE II. Solutions of the curl Maxwell equatiof22) for polar geometry and normal incidence, ne-
glecting the difference in the diagonal elements of the layer-resolved permiii¥itg 32 is the amplitude
of the magnetic field in layep for beamk.

k 1 2 3 4
K . = = . = =
HE iEGINER, +iew, EQR—TE, —iEQVER,+iED, —EGNeR, e,
(k) 1 = o2 = 3 = o8 =
HFky) —EE,X) etiehy —IEE)y) e i€l SE)X) exntiehy Ié'f]y) e iehy
H 0 0 0 0
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also see the explicit discussion in the Appendix. The tangen- Dp- 512 1(C (334 1R 1)(012 334 Rp-1)~ 1
tlal components of the electric and magnetic field at a point (31)

ust above the boundar, are then given b
p J % g y R, is therefore given in terms oR,_, by the following

I e simple recursion relation:

( "X) = A(T+Ry) {’ZX))
P ' _
Epyl Epy Rp=(By+Dy1) MBy—Dy-1) p=1,...N. .
32
Hopx —612(1— R.) 5(1) 27 In order to determine the reflectivity matriRy of the sur-
Hoy) -+ P (2) face layer, one has to evaluate all reflectivity matriggsfor
Z

all layers below the surface layer. This requires starting the
where, according to Tables | and I, iterative procedure at the first layep€1) on top of the
substrate. But in order to calculaf®;, one needs to know
1 i —ip@  _R@ the 2X2 matrix Dy corresponding to the substrate; see Eq.
AE( _ ) . oBl=| P pz ) (28)  (32). Thisin turn, according to Eq31) is only the case if the
i1 P niy  in@ reflectivity matrixR, of the substrate is available. In order to
achieve this, one has to formulate the tangential components
of the electric and magnetic fields af by taking into ac-
count that the substrate is a semi-infinite bulk without any
boundaries, and hende,=0.131°ThusDy= B2, which ac-
cording to Eq(28) requires specifying the permittivity of the
substrate.

andZ is the 2<2 unit matrix.

Using the lower boundary, , as a reference plane for
the four beams in layep— 1, the tangential components of
the electric and magnetic fields at a pozjt just below the
boundaryz, are of the forms
(pr 3. Surface reflectivity matrix

Epy

&y
_A(C 1+Cp 1Rp 1)(5(2) )1

z, In the vacuum region, sindg,= 1 ande,, =0, one has to

deal with the superposition of only two beams, namely, that

Hox pl) I of the incident and reflected electromagnetic waves. These
( ) = B2 1(Cy2 1 —Co yRpy—1) e ) (29  beams are related through the surface reflectivity magjx
Hoy/ - such that for polar geometry and normal incidence,
where éégcx é£2cx rxx rxy ésgcx
(k) gn | Rou g = T olen ) 33
efiep s 0 vacy vacy —'rxy I yx vacy
Co¥it= —wsn |, k=13, (30 : ,
0 etiep1 see the Appendix. Thus the tangential components of the
. electric and magnetic fields at a point,,, namely, just
with above the interface between the vacuum and the surface, are
~ 0 ~ 0 given by
()Dp—j_qunp—lde_l’ kzl, PR ,4. )
&
Hereo_lpzzpﬂ—zp is the thickness_ of layep, ng,k) 1, IS de- (Evacx) =(I+ Rsu,f)<g§6x) ,
fined in Egs.(24) and (25), andqq is the propagation con- vacy/ z vacy

stant in vacuum, see Sec. IV B.

Based on Eq927) and(29), the continuity of the tangen- Hyacx
tial components of the electric and magnetic field on the ( )
boundaryz, implies that Huacy! 4+

i)

vacx

B\gc g(Rsurf)( i ) ’ (34)
vacy

1)
p—1x

5(2))_(6 “1 TRy 1)(52)

Q) where
(I+Ry) ) :

01 0 -1
Bgc:(_ L 0) and Bji= ( L o)' (35)

According to Eqs(29) and (34), the continuity of the tan-
gential components of the electric and magnetic fields at the
such that by eliminating the electric field vectors, one imme-~vacuum and surface layer interfaag,, ;=0, can be written
diately obtains as

12 g(l) 12 12 (‘:(l)
BR(I-R,) g<2> =B (€2~ Ry 1) 5(2) :

i)

£q)
(T+ Rsuro( g() —A(ch2+c§“RN>( "
vacy

Ny

Dp—1(T+Rp)=ByAT~Ry),

where
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i)
vacx

&)

vacy

Exy = N
(Buact BuadReur) =B(CH—CRRW)| 40 Woq=A| 1T Waric|| LT Woue| A7% (39
) : g

By eliminating the electric field vectors from this system of with
equations, it follows that
Wo k= (T+ Rp 1) (Cha i+ Cot  Rp i)~
NI+ Rgy) = B\%gﬁ Bsg surfs

where k=1,...N-p
and
FN=Br(CR—CIRN(CE+CERY) TA =DA%
(36) Wo=[(CM2+(CIHRI(CF+CYR,) T k=0.
Thus for the surface reflectivity matrix one obtains Because the 2 2 matrices\V, ., containR, , 6'1)2, andcg"',
3.1 012 which in turn depend on layer-resolved permittivities
Rsurr= (Fn—Blad ~(Byac= Fn)- (87 2 (w), Eq.(38) has to be solved iteratively.

The surface reflectivity matriRg, is therefore of the form The self-consistent procedure can be started by putting all
given in Eq.(33), also see the Appendix. In spherical coor- 2% 2 Weighting matricesV,q in Eq. (39) to unity, i.e., by
dinates, one immediately obtains the complex reflectivity of’€dlecting the phase differences of the electromagnetic

the right- and left-handed circularly polarized light as waves between the lower and upper boundaries in each layer
F: :Fx><I iny’ N
S . . 2P 0) = erd
which in turn determines the Kerr rotation anglg and the €ur(@) qul €ur(@). (40)

ellipticity ex; see Eqs(9) and(10).
These quantitie®?,(w)(® can be used to calculaf ) in
4. Self-consistent layer-resolved permittivities terms of Eqs(31) and(32). Improved layer-resolved permit-

In order to calculate the corresponding dielectric tensofiVities then follow from Eq.(38). This iterative procedure
[Eqg. (23)] from the interlayer and intralayer permittivities has to be repeated_u_npl_ the d|ffere_nce in the old an_d new
defined in Eq(19), for a homogeneous, anisotropic layer layer-resolved permittivities of laygy is below a numerical
a linear system of equations thresholdep:

~p = N ~pq ~ max[e? (w)(*D—2P (w)D]|<eg,. 41
( e, )(5 i ( )(5) )= 4D
b ep e T &\ —%pa zpall e

€xy  €xx py/ a=1 €xy  Exx ay V. RESULTS AND DISCUSSIONS

has to be solved; see E({.8). Here forgp one can take the

From experiments is known that Pt substrates “prefer” an
ansatz

fcc(111) orientation*? Therefore in the present contribution,

1) calculations for the layered systems Ca/Pt(111) and
Epx — Epx = A[(C})YV24 (¢34 12R ] px Pt;/Co/Pt/Pt(111) have been performed, with five Pt layers
oyl \Eoyl sert s iarny P P P\ e’ serving as buffefS to bulk fcc Pt. The Fermi level in Egs.
p P

(3) and(4) is that of paramagnetic fcc Pt bu(kattice param-
where, due to Eq(30), eter of 7.4137 a.i. which also serves as parent lattfte.e.,
no layer relaxation is considered.

(k+ A. Paramagnetic fcq111) Pt substrate

e 19052 (dl /2) 0 )
0 e*iao: (d /2) )

(C';'k“)l’ZE (
As mentioned above, in order to determine the surface
k=1,3. reflectivity the permittivity tensor of the semi-infinite sub-
strate has to be evaluated. As can be seen from Fig. Xxhe
By using the continuity equation of the tangential compo-element of the permittivity tensor of the {dd.1) Pt substrate
nents of the electric field at the boundarisge Eqs(27), shows a rather simple photon energy dependence. The real
(29 and (34)], one then obtains the layer-resolved permit-part of the permittivitye,,(w) has a peak around 1 eV, while
tivities as a weighted sum of the interlayer and intralayerthe imaginary part ok, () exhibits an almost perfect hy-

permittivities defined in Eq(19), perbolic frequency dependence. The strong decas giv)
L N for photon energies in the vicinity of the static limito(
X Exy| E ~ g =0) can be easily understood in terms of E4®) and(40);
_Zb 7P _q:1 Wpqe™, (38) also see Ref. 13: fob— 0 the real part ok, ,(w) must tend
o to minus infinity whereas the imaginary part has to decrease.
where The xy element of the permittivity tensor for f€tll) Pt

144448-7
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FIG. 2. The permittivity for fc€111) Pt bulk as a function of the
p.h olton enzr%g" ._The _real part ?fbthe perml_ttl\lnty is denoted by full FIG. 3. Imaginary part of the relative difference between the
circles, and the imaginary part by open circles. self-consistent and zeroth-order layer-resolvedelement of the

permittivity tensor as a function of the photon energyfor fcc
is identical zero over the whole range of optical frequenciesCo/Pt/Pt(111) (top) and P§/Co/Pt/Pt(111) (bottom). The data

a functional behavior that of course does not need to béepresented by fullopen circles correspond to the first Pt layer on
illustrated. top of (undey the Co layer(starg, the squares to the second layer,

and the diamonds to the third layer. Open triangles déup) de-
note the first(secondl Pt layer data on top of a paramagnetic

B. Self-consistent layer-resolved permittivities fec(111) Pt substrate.

In terms of the substrate and the zeroth-order layer- C. Polar Kerr effect for normal incidence
resolved permittivities[see Eq.(40)], the iterative determi-  The systems investigated here refer to a Co monolayer on
nation of the surface reflectivity matrix described above, alsqop of a fc¢111) Pt substrate, also considering the case of
provides self-consistent, layer-resolved permittiviégs(w)  three Pt cap layers. As already mentioned, five Pt layers
in a very efficient manner: in less than five iterations anserve as buffers to the semi-infinite host in order to ensure
accuracy of = 10 3for each layep [see Eq(41)], can be that the induced magnetic moments decrease monotonically
achieved. In order to illustrate this procedure, in Fig. 3 theto zero in the paramagnetic Pt substrate.
imaginary part of the relative difference between the self- The ab initio Kerr spectra obtained from self-consistent
consistent and zeroth-order layer-resolvedelement of the  layer-resolved permittivities, by applying thex2 matrix

permittivity tensor for Co/R{Pt(111) with and without Pt technique, are shown in Fig. 4. Usually, in experiments Pt
cap layers is displayed. cap layers are deposited on top of Co in order to prevent the

. . 4 .
This relative difference is to be viewed as the relative0Xidation of the surfacé! By performing a separate, mag-

error made by usinfaccording to Eq(40)] the 2X 2 matrix get/ic;) f{‘f‘o"oﬁ%. calculatio‘f?c,j. wle have tfound th?t .
technique with zeroth-order layer-resolved permittivities. As o/Pt(111) exhibits a perpendicular magnetization only in

can be seen from Fig. 3, this relative error is layer, frequencythe presence of Pt cap layers. Therefore, for the polar Kerr

and system dependent. The higher the photon energy and tﬁgectra of the Co/BPt(111) system.shown n F'Q' 4 the
Olar geometry, namely, the perpendicular orientation of the
larger the layered system, the less exact are the zeroth-ord

o . agnetization is imposed.

layer-resolved permlttlvmes.' However, for relatlvely small Analyzing the Kerr spectra of the capped and uncapped
layered systems, the relative error made by using onlyyqtems in Fig. 4, several differences can be observed. The
zeroth-order permittivities is typically below 5% f‘.s&x(“’) negative peak in the Kerr rotation anglg at 3 eV in the

and less than 20% fogy,(w). However, the resulting rela- gspectrum of Co/RtPt(111) almost disappears from the
tive error in the Kerr rotation angle and the ellipticity as gpectrum in the case of the capped layered system. In the
calculated by comparing the spectra, corresponding to thgerr ellipticity the zero location at 2.8 eV, observed for the
self-consistent and zeroth-order layer-resolved permittivitiesuncapped system, is shifted to 2.5 eV for the capped system,
is always less than 1%. Therefore, E40) can be consid- and simultaneously the infrargtR) positive peak is shrunk
ered as reasonably good approximation for layer-resolvednd moved toward lower photon energies. Besides these fea-
permittivities. tures, the sign of the ultravioléUV) peak in both the Kerr

144448-8
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FIG. 4. The magneto-optical Kerr rotation anglg(w) and el- FIG. 5. As in Fig. 4, but here the Kerr spectra was obtained by

lipticity ex(w) for polar geometry and normal incidence as a func-applying the two-media approach for fcc Cao/ARt(111) (open
tion of the photon energy obtained by applying the22 matrix circles and P§/Co/Pt/Pt(111) (full circles).

technique for the self-consistent layer-resolved permittivities of fcc - .
Co/Pt/Pt(111) (open circles and P§/Co/Pt/Pt(111) (full the capped system in Fig. 4 has a zero location at 2.5 eV, and
circles. positive peaks show up at 0.5, 3.5, 4, and 5 eV. These fea-

tures suggest that, in the case of Fo/Pt/Pt(111), the
Kerr spectra obtained by applying thex2 matrix technique
rotation and ellipticity spectra is changed, and moves towarg@re typical of Co/Pt layered systems.
lower photon energies, when the Co surface layer is capped. A similar investigation of the Kerr rotation spectra in Fig.
It was found(the results are not shown hetbat this shift of 5 reveals that, for the capped system, there are two negative
spectra increases with the number of Pt cap layers. Thed® peaks at 1 and 1.5 eV and a negative UV peak around 5
particular features can also be observed in the Kerr spect@V. The Kerr ellipticity for the capped system in Fig. 5 shows
obtained by using the two-media approach; see Fig. 5. In th@ zero location at 1 eV1.5 eV in case of a pure Co filjm
two-media Kerr rotation spectrum, the negative IR peak at 2w0 positive peaks at 4 and 5 eV, and a small negative peak

eV in Co/Pt/Pt(111) is shifted to about 1 eV in the case of around 3 eV. All these features make the Kerr spectra of
a capped system. Pt;/Co/Pt/Pt(111), described via the two-media approach,

Comparing the spectra in Fig. 4 with those in Fig. 5, it isto resemble those of a pure Co film rather than those of a

evident that the theoretical Kerr spectra indeed depend on tHe®/ Pt layered system. _ ,
macroscopic model used to describe the propagation of eleg- Previous results, obtained by applying thec2 matrix

tromagnetic waves in the system. Because the systems inv chnique using as substrate permittjvity that of the. Ias.t Pt
tigated in here are much smaller than those used i yer below the Co on& showed similar characteristics in

experimenté45 a strict quantitative comparison with ex- the Kerr spectra. Hence these features cannot be ascribed to

perimental data cannot be made. However, a qualitative conthe presence of the substrate, since the substrate is taken into

parison based on the well-known, general features of thgccoun:j!n the X2 rr]n?trlx tec;]hmque, .Vt\)'h'l.r% itis nothm the
ColPt experimental Kerr spectra is still possifiiehe Kerr two-media approach. In another contributiont was shown

rotation angle showéa) a small negative IR peak at 1.5 eV, that the optical conductivity of these systems is dominated

which decreases in amplitude with decreasing Co thicknes y the contributions arising from the polarized Pt layers.

: . : herefore, the pure Co filmlike spectra, obtained for
and (b) a high and broad negative UV peak, which moves - )
from 4.1 to 3.9 eV for increasing Co thickness. The Kerrpt?’/CO/P%/Pt(lll) within the two-media approach, can be

ellipticity is characterized bya) a shift of the zero location S€€N @s an indication that a layered system cannot be ap-

at 1.5 eV(pure Co filn to 3.7 eV with decreasing Co thick- Proximated by a homogeneous medium in which, with the
ness,(b) a positive peak around 3 eV, i) a shift of the exception of the reflection at the surface, no other optical
minimum at 4.9 eV in pure Co film toward higher photon "€flECtions or interferences occur.
energies.

In the Kerr rotation spectra of the capped system shown in VI SUMMARY
Fig. 4, there is no negative IR peak around 1.5 eV, but a We have used the 22 matrix technique for the most
negative UV exists at 5.5 eV. The Kerr ellipticity spectra of frequently used experimental setup, namely, for polar geom-

144448-9
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etry and normal incidence. This technique allows one to acwhere
count for all multiple reflections and optical interferences in
a semi-infinite layered system. The Kerr rotation angle and
ellipticity can be directly obtained from the iteratively calcu- ap_1=ﬁp_1
lated surface reflectivity matrix, which in turn can be used to
determine layer-resolved permittivities self-consistently. For
a free surface of layered systems, realisile initio Kerr
spectra are obtained using the interlayer and intralayer con-
ductivities as given by Luttinger’s formula within the spin-
polarized relativistic screened Korringa-Kohn-Rostoker L ) )
method. The reflectivity matrix of layep as obtained from the recur-
A comparison of the theoretical Kerr spectra of sion relation[Eq. (32)] is also found to be diagonal,

Co/Pt/Pt(111) and Rt/Co/Pt/Pt(111) as obtained by ap- _

r

Rp:( ’ "'/) !
0 o

(1 ~(3) ~
e*'*”:a—)l—e*"*’g—)lrp_l
(@) EROE )
p-14+e ‘Pp—lrp,l

ze,i;

.~ (2 .~ (4) ~
o - e"‘Pé—)l—e"‘Pé—)lr
_1=Nny= =12 =) ~
Pt P 1Zef|<p§,21+e—|¢§,)1r

’
p—1
’

p—

1

plying the 2x2 matrix technique and the two-media ap-
proach, indicates that the former technique provides typical
results for layered systems, whereas the latter approach tends

to generate spectra specific for homogeneous films on top %here
a substrate.

nd-d;_
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APPENDIX: SYMMETRY OF REFLECTIVITY MATRICES In terms of the diagonal reflectivity matrix of the surface
layer Ry, and A and B,{,Z as given by Eq(28), Eq. (36)

Since for a semi-infinite substrat®,= 0, Dy= B, with reduces to

B as given by Eq(28), according to Eq(32), the reflec-
tivity matrix of the first layer on top of the substrate is given o~ ~,
by 1 ( iy —fN)

7,0
R: ~ 1
1 0 ri

~(1 ~(1

'F _ng.z)_n(Oz)
1= =)
SR

FN:E

where

where

ol

TNZBI’\I_ N

ol

By using Fy, together with the matrices defined in Eg5),

- n{@-n in Eq. (37), the resulting surface reflectivity matrix is of the
== =" form anticipated in Eq(33), i.e.,
nlz + nOz
Assuming that allp—1 reflectivity matrices are of this R — Fxx  Txy
diagonal form, namely suf=\ 7 )
Xy XX
Y, 0 , where
Rj: ~, | J:]-,---,(p_l)a
0 rj o~
. o - R4
by taking into account Eq$28) and(30), Eq. (31) immedi- M x

ately yields

B2-f2+a(f-1)°

row=—4i=—=——= — .
i f2-F2+a(f,-1)
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